• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número1

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número1"

Copied!
6
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

article

Synergistic

antifungal

activity

of

the

lipophilic

fraction

of

Hypericum

carinatum

and

fluconazole

Gabriela

C.

Meirelles

a

,

Bruna

Pippi

b

,

Camila

Hatwig

a

,

Francisco

M.C.

de

Barros

a

,

Luis

F.S.

de

Oliveira

c

,

Gilsane

L.

von

Poser

a,∗

,

Alexandre

M.

Fuentefria

a,b

aProgramadePós-graduac¸ãoemCiênciasFarmacêuticas,UniversidadeFederaldoRioGrandedoSul,PortoAlegre,RS,Brazil

bProgramadePós-graduac¸ãoemMicrobiologiaAgrícolaedoAmbiente,UniversidadeFederaldoRioGrandedoSul,PortoAlegre,RS,Brazil cProgramadePós-graduac¸ãoemCiênciasFarmacêuticas,UniversidadeFederaldoPampa,Uruguaiana,RS,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received9June2016 Accepted29August2016 Availableonline28September2016

Keywords: Candida

Checkerboard Fluconazole

Hypericumcarinatum

Isobologram Synergisticactivity

a

b

s

t

r

a

c

t

Hypericumspecies,Hypericaceae,arerecognizedasasourceoftherapeuticalagents.Purifiedfractions

andisolatedcompoundshavebeenshownantimicrobialactivity.Astheindiscriminateuseofantifungals

andtheincreaseofinfectionscausedbyemergingspeciesareleadingtothesearchofnew

alterna-tivetreatments,theaimofthisstudywastocontinuethestudywithHypericum carinatumGriseb.

lipophilicfraction,richinphloroglucinolderivatives,investigatingtheeffectofitsassociationwith

flu-conazoleagainstemergingyeasts(Candidakrusei,C.famata,C.parapsilosisandCryptococcusneoformans).

ThesynergisticactivitybetweenH.carinatumlipophilicfractionandfluconazolewasassessedbytwo

methodologiesformultipledose–responseanalysis:checkerboardandisobologram.Regarding

syner-gisticexperiments,theeffectoftheassociationwashigherthantheeffectoffluconazolealoneagainst

CandidakruseiandC.famataisolates(MICfluconazoledecreasedabouteightandfourfolds,respectively),

suggestingthat,somehow,H.carinatumlipophilicfractioncompoundsarefacilitatingtheactionofthis

drug.Ontheotherhand,whentestedagainstCryptococcusneoformansandC.parapsilosis,fluconazole

showedbetterresultsthantheassociation.Thus,againstCandidakruseiandC.famata,thelipophilic

fractionofH.carinatumwasabletoreducetheMICvaluesoffluconazoleandcouldbeconsideredasa

potentialalternativetobeusedagainstemergingyeastspecies.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen

accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Fungalinfectionsareassociatedwithhighmorbidityand mor-talityrates.Inthelastdecades,emergingfungalinfections,also calledopportunisticinfections,havedrawnattentionduetothe high number of immunocompromised patients affected (Silva etal.,2012).SomespeciesofCandidaandCryptococcus,previously considerednonpathogenic,arenow recognizedasopportunistic pathogensresponsiblefordeep-seatedmycoses(Vandeputteetal., 2012;Alcazar-FuoliandMellado,2014).

ThehighincidenceofinfectionbyCandidaspeciesisduetomany factorssuchasimunossupressivetherapies,invasivesurgical pro-ceduresanduseofbroad-spectrumantibiotics(Pfalleretal.,2012).

Candidaalbicansisstillthemostprevalentspeciesbutinfections

causedbynon-Candidaalbicans(NCA)havesignificantlyincreased, bringingevenmoreworryingscenarioduetohighresistanceto

Correspondingauthor.

E-mail:gilsane@farmacia.ufrgs.br(G.L.vonPoser).

antifungalexhibitedbythesemicroorganisms(Pfalleretal.,2010, 2012).Sincetheepidemiologyofthesefungalinfectionsiscurrently changing,newalternativesareneededincaseofantifungaltherapy failure(Alcazar-FuoliandMellado,2014).

Becauseofyeastsinconstantsusceptibilityprofilesandlackof differentmoleculartargets,drugcombinationsappearasastrategy fortherapyduetothemultiplicityoftargets(Musioletal.,2014). Themainadvantageofthesecombinationsisthesynergistic inter-action,inwhichtheantifungalactivityisbetterthantheindividual effectsofeachcompound.

Plants from genus Hypericum, Hypericaceae, are an impor-tantsourceoftherapeuticagents.Purifiedfractionsandisolated compounds have shown antibacterial and antifungal activities (Barrosetal.,2013;DulgerandDulger,2014).Barrosetal.(2013) havereportedtheantifungalactivityoflipophilicextractsoffive

Hypericumspecies (H.carinatum,H.caprifoliatum,H.linoides,H.

myriathumand H.polyanthemum)againstseveralemerging

fun-galstrains,withbetterresultsforH.carinatum.Accordingtothese authors,dimericphloroglucinolderivatives(uliginosinB, hyper-brasilolBand japonicinA),present inlipophilicfractions could

http://dx.doi.org/10.1016/j.bjp.2016.08.001

(2)

beresponsiblefor theantifungalactivityshowed byHypericum

species.Othercompoundswithphloroglucinolpatternsuchas ben-zopyransandbenzophenonesalsoshowedantifungalactivity.

Duetotheindiscriminateuseofantifungalsandtheincrease ofinfections causedbyemerging species newalternative treat-mentsarenecessary.Thus,theaimofthisworkwastocontinue the study with Hypericum carinatum Griseb. lipophilic fraction (LF),investigating the effect of its associationwithfluconazole againsttheemergingyeastsCandidakrusei,C.famata,C.parapsilosis

andCryptococcusneoformans.ThesynergisticactivitybetweenLF

andfluconazolewasassessedbytwomethodologiesformultiple dose–responseanalysis:checkerboardandisobologram.

Materialsandmethods

Plantmaterial

AerialpartsofHypericumcarinatumGriseb.,Hypericaceae,were collectedinRioGrandedoSul,Brazil,inDecemberof2009.Voucher specimens are deposited in the herbarium of Federal Univer-sityRioGrandedoSul(ICN).Plantscollectionwasauthorizedby IBAMA(BrazilianInstituteofAmbientMediaandRenewable Nat-uralResources)(n◦003/2008,protocol:02000.001717/1008-60).

Lipophilicfractionpreparation

Thedriedandpowderedplantmaterial(ca.500g)wasextracted withhexaneatroomtemperature.Theextractwaspooled, evap-oratedtodryness under reduced pressure,and theepicuticular waxeswereremovedbyacetonetreatment.Thelipophilicfraction (LF)wasstoredat−20◦Cuntilbiologicalandchemicalevaluation. LFwasanalyzed byHPLC using a Shimadzu600pump (LC-6AD) and a Shimadzu SPD-10A dual absorbance detector. The separations were carried out with an isocratic solvent system (60% acetonitrile:40% water) to benzophenones determination and (95% acetonitrile, 5% water, 0.01% trifluoroacetic acid) to phloroglucinolderivativesusingaWatersNova-PackC18column (4␮m,3.9mm×150mm)adaptedtoaWatersNova-PackC1860 ˚A (3.9mm×20mm)guardcolumn.Theflowratewas1ml/min,the detectorsensitivitywas1.0Aufs,andthedetectionwasperformed at270/220nmatroomtemperature.

Constituentswereidentifiedbycomparisonwiththeretention timesoftheauthenticsamplesandco-injectionofisolated com-pounds.The yieldswereexpressedin %(weightcompound per weightdryextract)asmeanoftwoinjections.

LFtoxicity

The experimental protocol was approved by Local Ethical Committee(Protocol23081,UNIPAMPA).Thetoxicity ofLFwas evaluatedbycellviabilitytestandcometassay,accordingtoGüez etal.(2012),analyzingthreedifferentfractionconcentrations:500, 250and100␮g/ml.

Fungalstrains

Fourresistantstrainstofluconazolewereusedinthisstudy. Interpretativecriteriaofresistancewereusedaccordingto break-points from M27-S4 document (CLSI, 2012) to Candida and accordingtoEspinel-Ingroffetal.(2012)toCryptococcus neofor-mans.AllstrainsaredepositedintheMycologyCollectionofFederal UniversityofRioGrandedoSul,Brazil:Candidafamata(RL23) ori-ginatesfromhemoculture,C.krusei(CK03)fromNationalProgram ofQualityControl, C.parapsilosis(RL11) fromurineand

Crypto-coccusneoformans(HCCRY01)fromenvironment(environmental

pathogenic).C.kruseiATCC6258wasincludedascontrolinthe susceptibilitytesting.

Antifungalactivity

The screeningfor antifungal activity wascarried out witha concentration of 500␮g/ml. In order to achieve the test con-centration,samplesweresolubilizedwithdimethylsulfoxide2% (DMSO)andsabourauddextrosebroth(SDB).Further,the mini-malinhibitoryconcentration(MIC)wasdeterminedbythebroth microdilutionmethodaccordingtoM27-A3protocol(CLSI,2008). TheMICwasdefinedasthelowestconcentrationofLFinwhich themicroorganismtesteddidnotdemonstratevisiblegrowth.In microdilutionexperiments,samplesweresolubilizedwithDMSO 2%andRPMI-MOPSmedium(RPMI1640medium)containingl

-glutamine,withoutsodiumbicarbonatebufferedtopH7.0with 0.165mol/lofMOPSbuffer.TheconcentrationsofLFrangedfrom 1.9to500␮g/mlandallexperimentswerecarriedoutinduplicate. ControlwithDMSO2%waspreviouslyperformed.

Associationstudies

Checkerboardassay

TheeffectoffluconazolecombinedwithLFwasevaluatedin quadruplicateusingthecheckerboardmethod(Johnsonetal.,2004) withslightlymodifications.Thefluconazolefinalconcentrations ranged from 0.5 to 32␮g/ml for C. famata and C. neoformans,

and 4to64␮g/ml forC.krusei andC.parapsilosis.On theother

hand, theconcentration of LFranged from 31.25to 250␮g/ml

for C.famata and C.neoformansand 4 to250␮g/ml for C.

kru-sei and C. parapsilosis. Plates were incubated at 37◦C for 48h

and then, thetetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide(MTT)wasusedtoassessthefungal cellviability.Interactionwasevaluatedalgebraicallyby determin-ingthefractionalinhibitoryconcentrationindex(FICI)definedas thesumoftheMICofeachdrugincombination,dividedbythe MICofthedrugusedalone.AnFICI≤0.5isconsideredsynergistic; >0.5and≤1additive;>1and≤4indifferent,and>4antagonistic (KontoyiannisandLewis,2003).

Isobologram

TheisobologramwasperformedwiththeassociationofLFand fluconazoleagainstC.krusei(CK03)andC.parapsilosis(RL11).

A curveconcentration-effectof LFor fluconazolewas deter-minedwithlogarithmicconcentrations,inordertoobtaintheIC50 (inhibitoryconcentration50%)bynon-linearregression.Then,with theseresults,curvesconcentration-effectofassociationwerealso performedbynon-linear regression(Tallarida,2006,2007).The proportionofcombinationsisdemonstratedinTable1.

Theoreticaladditivecurves(IC50add)werecalculatedtoeach combinationaccordingtheequation:

Conc.add=f×Conc.fluconazole+(1−f)×Conc.Fraction

where, Conc.fluconazole and Conc.Fraction represent the equi-effectiveconcentrationofeachtreatmentaloneandfisthefraction ofeachsamplethatcomposestheactiveconcentrationof associ-ation(inthisstudytwofvalues0.5(50:50)and0.7(70:30)were used).Conc.addisthetotalconcentrationanditsvariancewas cal-culatedbythisequation:

VarIC50add=f∗2× VarIC50fluconazole+(1−f)∗2

×VarIC50fraction

(3)

Table1

Proportionofcombinationsusedinisobologramstudies.

Yeastsstrains Fluconazoleconcentration (%IC50)

LFconcentration (%IC50)

Candidakrusei

CK03

50 50

25 25

12.5 12.5

6.25 6.25

3.125 3.125

70 30

35 15

17.5 7.5

8.75 3.75

4.38 1.875

2.19 0.938

1.095 0.496

Candida parapsilosisRL11

50 50

25 25

12.5 12.5

6.25 6.25

3.125 3.125

70 30

35 15

17.5 7.5

8.75 3.75

4.38 1.875

2.19 0.938

1.095 0.496

CandidaparapsilosisRL11:IC50fluconazole:26.55␮g/mlandIC50LF:174.7␮g/ml; CandidakruseiCK03:IC50fluconazole:35.58␮g/mlandIC50LF:35.76␮g/ml.

Besides,theinteractionmagnitudewascalculatedthrough inter-actionindex(),followingtheformula:

␥b=dosefluconazoleIC50mixture+dosefractionIC50mixture

Theinteractionindexisanindicatorofthepotencyofthe asso-ciation.Valuesnextto1indicateadditiveinteraction;valueshigher than1,antagonisticinteraction,andvalueslowerthan1,synergistic interaction(GrabovskyandTallarida,2004).

Statisticalanalysis

Checkerboardandtoxicitydatawereevaluatedusingone-way analysis of variance (ANOVA) followed by Tukey’s test (Sigma Stat3.2software,JandelScientificCorporation®).Incheckerboard, thedifference between antifungal activity of fluconazole alone andincombinationwithLFwasevaluated.Differenceswere con-sideredstatisticallysignificantatp<0.05.The isobologramdata wereperformedwithStudentt test, whereIC50 mixtureis sig-nificantlyshorterthanIC50calculated(IC50add)toadetermined combination,thereisasynergisticinteraction(Coddetal.,2008).

Thenon-linearregressionanalysiswasperformedusingGraphPad Prism®version4.02.

Resultsanddiscussion

Chemicalanalysis

HPLC analysis were carried out to quantify the major con-stituents of LF. As demonstrated by Barros et al. (2013), the main constituents of H. carinatum lipophilic fraction are the phloroglucinolderivativeuliginosinB(1)(1.65±0.08%)andthe benzophenonescariphenoneA(2)(0.08±0.001%)andcariphenone B(3)(0.58±0.009%),confirmingthepreviousresults.

LFtoxicity

Theinvestigatedfraction(LF)didnotshowtoxiceffectsatthe concentrationused(250␮g/ml)inassociationstudiesas demon-stratedinFig.1.Accordingtotheseresults,theconcentrationof 500␮g/mlshowedDNAdamage(Fig.1A)aswellasreduced cellu-larviability(Fig.1B).Therefore,thehigherLFconcentrationused atthisstudy(250␮g/ml)isconsideredsafebythesetwotoxicity methodologies.

50

A

B

100

80

60

40

20

0 40

30

20

% DNA damage Cell viability

, %

a

a a a

a a b

b b b

10

0

Negativ e control

Negativ e control

Positiv e control

Positiv e control LF 50

µg/ml

LF 50 µg/ml

LF 250 µg/ml

LF 250 µg/ml

LF 100 µg/ml

LF 100 µg/ml

Fig.1.(A)DNAdamageindexdeterminedbycometassayand(B)CellviabilityinleucocytesforHypericumcarinatumlipophilicfraction(LF)inthreedifferentconcentrations. Phosphatebufferedsaline(PBS)wasusedasnegativecontrolandhydrogenperoxide(10␮M)(H2O2)aspositivecontrolinbothexperiments.DMSO2%wasusedasdiluent

(4)

Table2

Minimalinhibitoryconcentration(MIC)ofHypericumcarinatumlipophilicfraction (LF)againstemergingyeastsstrains.

Species Strains MICaLF

Candidafamata RL23 250

Candidakrusei CK03 >1000

Candidaparapsilosis RL11 250

Cryptococcusneoformans HCCRY01 125

aMIC(

␮g/ml):minimalinhibitoryconcentration.

Antifungalactivity

Concerningtheantifungal capacity,LFwascapableofinhibit thefungalgrowthinamoderateway(Table2).Thiscapacitymay beattributedto thepresence ofdimeric phloroglucinol deriva-tivesasuliginosinB(1)andthebenzophenonescariphenoneA(2) andcariphenoneB(3).Theseresultsareinaccordancewiththose describedbyBarrosetal.(2013).

Associationstudies

Theresultsobtainedinthecheckerboardanalysis(Fig.2)are interesting,sinceLFwascapableofreducingthefluconazoleMIC values for allspecies tested. For C.neoformans,C. kruseiand C.

parapsilosisthefluconazoleMICdecreasedabouteightfold(%Cell

damage=75.6%,ICIF=0.375;%Celldamage=91.2%,ICIF=0.25and %Celldamage=71.3%,ICIF=0.5,respectively),whileforC.famata

thisvaluewasaboutfourfold(%Celldamage=94.4%,ICIF=0.5). Nevertheless,forC.neoformansandC.parapsilosis,thefluconazole MICwascapableofachievingahighercelldamageincomparision withassociation.Therefore,theuseofthecombinationsisonly jus-tifiedwhendecreaseofdrugdoseisneeded,especiallyincases wherethemicroorganismsareresistanttothisazole.

Concerningtheisobologramanalysisthecurvesconcentration effectofeachcompoundtested(fluconazoleandLF)showedIC50 valuesof35.58␮g/mland35.76␮g/mlforC.kruseiand26.55␮g/ml and174.7␮g/mlforC.parapsilosis,respectively.Itisimportantto notethatthismethodologywasnotappliedtoC.famataand

Cryp-tococcusneoformansduetotheimpossibilityoftoconstructdose

responsecurveswithfluconazolealone.

Theresultsobtainedintheisobologram(Fig.3),areinagreement withthoseobtainedbythecheckerboardanalysis,where synergis-ticeffectwasfoundtobothspeciestested(C.kruseiCK03andC.

parapsilosisRL11).Theinteractionindex()wasless than1for

allproportionstestedforC.krusei(50:50=0.36;70:30=0.57)and forC.parapsilosis(50:50=0.79;70:30=0.75).However,thisindex againstC.parapsilosiswascloserto1,indicatingaprobable pres-enceofadditiveeffectinsteadofsynergistic,corroboratingwiththe ICIF(0.5)foundforthisassociationinthecheckerboardanalysis.

TheincreasedincidenceofsystemicinfectionscausedbyNCA species andthehighmortalityrates due toacquiredresistance againstdrugs currentutilized isworrisome,aswellasthehigh incidenceofpolymicrobialfungalinfections(Ruhnke,2014;Trifilio et al.,2015).Therefore, theassociationbetween different com-poundscouldbeanexcellentstrategytoreducethedrugdoses, andthus,achievetheresistancereversion.

TherearetwohypothesestolipophilicfractionofH.carinatum

decreasestheMICoffluconazole.Thefirstcouldberelatedtothe generalactionmechanismofphenoliccompounds,changethe fun-galdimorphism(Zhangetal.,2011)and/oropeningofmembrane ionicchannels(Raoetal.,2010)bothfoundforC.albicans.The sec-ondhypothesisliesinthefactthatsomebenzophenonesareable toblockthecytochromeP-450(Podustetal.,2007).Nevertheless, sinceitisafraction,thesynergisticeffectsofthebioactive com-poundsmixturecouldberesponsiblebyincreasingtheeffectivity

100 a

c

d e

b

b,c

a c

d e

b

b a

d d

80

60

40

Cell damage

, %

20

0

100

80

60

40

Cell damage

, %

A

C

B

D

20

0

MIC fluconaz ole

MIC/8 fluconaz ole

MIC LF MIC/4 LF

Association

100

c b

d d

a

80

60

40

Cell damage

, %

20

0

MIC fluconaz ole

MIC/4 fluconaz ole

MIC LF MIC/4 LF

Association

MIC fluconaz ole

MIC/4 fluconaz ole

MIC LF MIC/4 LF

Association

100

80

60

40

Cell damage

, %

20

0

MIC fluconaz ole

MIC/4 fluconaz ole

MIC LF MIC/4 LF

Association

Fig. 2.Interaction between the lipophilic fractionof Hypericum carinatum (LF) and fluconazoleagainst Cryptococcus neoformans HCCRY01 (MICFluco=32␮g/ml,

MICLF=250␮g/ml,Association=MIC/8Fluco:MIC/4LF)(A),CandidafamataRL23(MICFluco=8␮g/ml,MICLF=250␮g/ml,Association=MIC/4Fluco:MIC/4LF)(B),Candidakrusei

CK03 (MICFluco=32␮g/ml, MICLF>250␮g/ml, Association=MIC/4Fluco:MIC/4LF) (C) and Candida parapsilosis RL 11(MICFluco=32␮g/ml, MICLF=250␮g/ml,

(5)

40

30

20 *

* 10

Fluconaz

ole (IC

50

)

A

B

0

0 10 20 30 40

LF (IC50)

50

40

30

20

10

Fluconaz

ole (IC

50

)

0

0 50 100 150 200

LF (IC50)

250 *

Fig.3.InteractionanalysisoffluconazolewiththelipophilicfractionofHypericumcarinatum(LF)(IC50)againstCandidakrusei(CK03)(A)andCandidaparapsilosis(RL11)

(B).Thecontinuouslinerepresentstheadditivitylineandthepointstheexperimentalcombinationsatdifferentlevels.*representssignificantdifferencesbetweenDeqADD (calculated)andDeqmix(experimental)withp<0.05.()Additiveequieffectiveconcentration(70:30),()Concentrationequi-effectiveoftheassociation(70:30),() Additiveequi-effectiveConcentration(50:50)and()concentrationequi-effectiveoftheassociation.

ofitself,andthen,theantifungaleffectisachievedbyasumof mechanisms(Wagner,2011).

Somestudiesreportassociationbetweenextractsand antifun-galdrugssuchasessentialoilsinassociationwithketoconazole againstseveralfungalspecies(Giordanietal.,2004)and benzophe-noneenrichedfractionfromBrazilianredpropoliswithfluconazole andanidulafunginagainstC.parapsilosisandC.glabrata(Pippietal., 2015).Ontheotherhand,manystudieshavedemonstratedthe associationbetweenplantmetabolitesandantifungaldrugsagainst

Candidaspecies.Forexample,theassociationofthetannin

puni-calaginandfluconazoleagainstC.albicansandC.parapsilosis(Endo etal.,2010)andflavonoids(catechin,quercetinand epigallocat-echingallate)associatewithfluconazoleagainstC.tropicalis(Da Silvaetal.,2014).

TherearenodoubtsthatcombinedtherapybetweenLFand flu-conazoleisbenefic,butfurtherstudiesmustbeperformedinorder todeterminethenatureofthisinteraction.Theanalysisofisolated compoundsofthisfractionsaloneand/orcombinedwith flucona-zoleisneededaimingtostandardizethisassociationincaseswhere themonotherapywithfluconazoleisineffective.

Conclusion

TheresultsofthisstudyreinforcetheuseofHypericumspecies as source of products with biological importance. Association studiesareverysignificant,especiallyinemerging fungi,which are worldwide distributed and frequent causesof infections in immunocompromisedpatients. ThelipophilicfractionofH.

car-inatumwasabletoreduce theMICof fluconazole,probablyby

facilitating theaccess ofthe drugwithinthe fungalcell. These resultsareimportantduetotheincreasingresistanceof emerg-ingyeastspeciestoavailabledrugsused foravariety offungal infectionsandtheexplorationofpotentialalternativetherapeutic sourcesformultidrugtherapy.

Authors’contributions

GCM(PhDstudent)contributedinfractionpreparation, chem-ical characterization, biological studies (antifungal activity and associationstudies), analysis ofdata and draftedthe paper.BP contributedtobiologicalstudies(antifungalactivityand associa-tionstudies–checkerboard)andcriticalreadingofmanuscript,CH contributedtobiologicalstudies(antifungalactivity),FMCB con-tributedtochemicalcharacterization,LFSOcontributedtotoxicity studies,GLVPandAMFsupervisedthelaboratoryworkand con-tributedtocriticalreadingofthemanuscript.Alltheauthorshave readthefinalmanuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

TheauthorsaregratefultotheBrazilianagencies(CAPES,CNPq andFAPERGS)forfinancialsupportandbyfellowships.Theauthors are also grateful toDr. Sérgio Bordignon (UNILASALLE, RS) for botanicalspeciesidentification.

References

Alcazar-Fuoli,L.,Mellado,E.,2014.Currentstatusofantifungalresistanceandits impactonclinicalpractice.Br.J.Haematol.166,471–484.

Barros,F.M.C.,Pippi,B.,Dresch,R.R.,Dauber,B.,Luciano,S.C.,Apel,M.A.,Fuentefria, A.M.,vonPoser,G.L.,2013.Antifungalandantichemotacticactivitiesand quan-tificationofphenoliccompoundsinlipophilicextractsofHypericumspp.native toSouthBrazil.Ind.CropsProd.44,294–299.

CLSIM27–A3,2008.ReferenceMethodforBrothDilutionAntifungal Susceptibil-ityTestingofYeasts:ThirdInformationalSupplement.ClinicalandLaboratory StandardsInstitute,Wayne,PA,USA.

CLSIM27-S4,2012.ReferenceMethodforBrothDilutionAntifungal Susceptibil-ityTestingofYeasts:FourthInformationalSupplement.ClinicalandLaboratory StandardsInstitute,Wayne,PA,USA.

Codd,E.E.,Martinez,R.P.,Molino,L.,Rogers,K.E.,Stone,D.J.,Tallarida,R.J.,2008.

Tramadolandseveralanticonvulsantssynergizeinattenuatingnerve injury-inducedallodynia.Pain134,254–262.

DaSilva,C.R.,DeAndradeNeto,J.B.,DeSousaCampos,R.,Figueiredo,N.S.,Sampaio, L.S.,Magalhães,H.I.F.,Cavalcanti,B.C.,Gaspar,D.M.,DeAndrade,G.M.,Lima, I.S.P.,DeBarrosViana,G.S.,DeMoraes,M.O.,Lobo,M.D.P.,Grangeiro,T.B.,Nobre, H.V.,2014.Synergisticeffectoftheflavonoidcatechin,quercetin,or epigallocat-echingallatewithfluconazoleinducesapoptosisinCandidatropicalisresistant tofluconazole.Antimicrob.AgentsChemother.58,1468–1478.

Dulger,G.,Dulger,B.,2014.AntifungalactivityofHypericumhavvaeagainstsome medicalCandidayeastandCryptococcusspecies.Trop.J.Pharm.Res.13,405–408.

Endo,E.H.,GarciaCortez,D.A.,Ueda-Nakamura,T.,Nakamura,C.V.,DiasFilho,B.P., 2010.Potentantifungalactivityofextractsandpurecompoundisolatedfrom pomegranatepeelsandsynergismwithfluconazoleagainstCandidaalbicans. Res.Microbiol.161,534–540.

Giordani,R.,Regli,P.,Kaloustian,J.,Mikaïl,C.,Abou,L.,Portugal,H.,2004.Antifungal effectofvariousessentialoilsagainstCandidaalbicans.Potentiationofantifungal actionofamphotericinBbyessentialoilfromThymusvulgaris.Phyther.Res.18, 990–995.

Grabovsky,Y.,Tallarida,R.J.,2004.Isobolographicanalysisforcombinationsofafull andpartialagonist:curvedisoboles.J.Pharmacol.Exp.Ther.310,981–986.

Güez,C.M.,Waczuk,E.P.,Pereira,K.B.,Querol,M.V.M.,daRocha,J.B.T.,deOliveira, L.F.S.,2012.Invivoandinvitrogenotoxicitystudiesofaqueousextractof Xan-thiumspinosum.Braz.J.Pharm.Sci.48,461–467.

Johnson,M.D.,Macdougall,C.,Ostrosky-zeichner,L.,Perfect,J.R.,Rex,J.H.,2004.

Minireviewcombinationantifungaltherapy.Antimicrob.AgentsChemother.48, 693–715.

Kontoyiannis,D.P.,Lewis,R.E.,2003.Combinationchemotherapyforinvasivefungal infections:whatlaboratoryandclinicalstudiestellussofar.DrugResist.Updat. 6,257–269.

Musiol,R., Mrozek-Wilczkiewicz,a, Polanski,J.,2014. Synergy againstfungal pathogens:workingtogetherisbetterthanworkingalone.Curr.Med.Chem. 21,870–893.

(6)

clinicalbreakpointsforfluconazoleandCandida:timeforharmonizationofCLSI andEUCASTbrothmicrodilutionmethods.DrugResist.Updat.13,180–195.

Pfaller,M.,Neofytos,D.,Diekema,D.,Azie,N.,Meier-Kriesche,H.U.,Quan,S.P.,Horn, D.,2012.Epidemiologyandoutcomesofcandidemiain3648patients:data fromtheprospectiveantifungaltherapy(PATHAlliance®)registry,2004–2008. Diagn.Microbiol.Infect.Dis.74,323–331.

Pippi,B.,Lana,A.J.D.,Moraes,R.C.,Güez,C.M.,Machado,M.,deOliveira,L.F.S.,Lino vonPoser,G.,Fuentefria,A.M.,2015.Invitroevaluationoftheacquisitionof resis-tance,antifungalactivityandsynergismofBrazilianredpropoliswithantifungal drugsonCandidaspp.J.Appl.Microbiol.118,839–850.

Podust,L.M.,vonKries,J.P.,Eddine,A.N.,Kim,Y.,Yermalitskaya,L.V.,Kuehne,R., Ouellet,H.,Warrier,T.,Alteköster,M.,Lee,J.S.,Rademann,J.,Oschkinat,H., Kaufmann,S.H.E.,Waterman,M.R.,2007.Small-moleculescaffoldsforCYP51 inhibitorsidentifiedbyhigh-throughputscreeninganddefinedbyX-ray crys-tallography.Antimicrob.AgentsChemother.51,3915–3923.

Rao,A.,Zhang,Y.,Muend,S.,Rao,R.,2010.Mechanismofantifungalactivityof ter-penoidphenolsresemblescalciumstressandinhibitionoftheTORpathway. Antimicrob.AgentsChemother.54,5062–5069.

Ruhnke,M.,2014.AntifungalstewardshipininvasiveCandidainfections.Clin. Micro-biol.Infect.20Suppl.6,11–18.

Silva,S.,Negri,M.,Henriques,M.,Oliveira,R.,Williams,D.W.,Azeredo,J.,2012. Can-didaglabrata,CandidaparapsilosisandCandidatropicalis:biology,epidemiology, pathogenicityandantifungalresistance.FEMSMicrobiol.Rev.36,288–305.

Tallarida,R.J.,2007.Interactionsbetweendrugsandoccupiedreceptors.Pharmacol. Ther.113,197–209.

Tallarida,R.J.,2006.Anoverviewofdrugcombinationanalysiswithisobolograms. J.Pharmacol.Exp.Ther.319,1–7.

Trifilio,S.,Zhou,Z.,Fong,J.L.,Zomas,A.,Liu,D.,Zhao,C.,Zhang,J.,Mehta,J.,2015.

Polymicrobialbacterialorfungalinfections:incidence,spectrumofinfection, riskfactors,andclinicaloutcomesfromalargehematopoieticstemcell trans-plantcenter.Transpl.Infect.Dis.17,267–274.

Vandeputte,P.,Ferrari,S.,Coste,A.T.,2012.Antifungalresistanceandnewstrategies tocontrolfungalinfections.Int.J.Microbiol.2012,1–27.

Wagner,H.,2011.Synergyresearch:approachinganewgenerationof phytophar-maceuticals.Fitoterapia82,34–37.

Zhang,L.,Chang,W.,Sun,B.,Groh,M.,Speicher,A.,Lou,H.,2011.Bisbibenzyls,a newtypeofantifungalagent,inhibitmorphogenesisswitchandbiofilm for-mationthroughupregulationofDPP3inCandidaalbicans.PLoSOne6,1–8,

Imagem

Fig. 1. (A) DNA damage index determined by comet assay and (B) Cell viability in leucocytes for Hypericum carinatum lipophilic fraction (LF) in three different concentrations.
Fig. 2. Interaction between the lipophilic fraction of Hypericum carinatum (LF) and fluconazole against Cryptococcus neoformans HCCRY01 (MIC Fluco = 32 ␮g/ml, MIC LF = 250 ␮g/ml, Association = MIC/8 Fluco :MIC/4 LF ) (A), Candida famata RL 23 (MIC Fluco =
Fig. 3. Interaction analysis of fluconazole with the lipophilic fraction of Hypericum carinatum (LF) (IC 50 ) against Candida krusei (CK03) (A) and Candida parapsilosis (RL11) (B)

Referências

Documentos relacionados

Tentando uma espécie de tipificação destes modelos contratuais, as modalidades mais comuns são o contrato de exclusividade - que se traduz na gestão exclusiva, por

Biofilm production and evaluation of antifungal suscep- tibility amongst clinical Candida spp isolates including strains of the Candida parapsilosis complex. Candidaemia observed at

Other species are also frequently associated with the development of infections, such as Candida glabrata , Candida tropicalis , Candida parapsilosis , Candida krusei and

Relativamente à estrutura do texto expositivo, segundo Giasson (2000), a organização da informação que se apresenta permite uma certa flexibilidade. Porém, a sua produção

An analytical procedure consisting of separation and precon- centration using cloud point extraction was developed to allow the simultaneous extraction and determination of

The three-dimensional packing of I shows a supramolecular organometallic zigzag chain of aligned cations of the same conformational isomer in an up± down con®guration, obtained via

(1994) que obteve valores semelhantes, no ciclo II de seleção com a ER 5028, nesses locais, e no mesmo ano agrícola. Consideran- do a variabilidade detectada por meio das