• Nenhum resultado encontrado

Measurement of J/psi and psi(2S) prompt double-differential cross sections in pp collisions at root s=7 TeV

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of J/psi and psi(2S) prompt double-differential cross sections in pp collisions at root s=7 TeV"

Copied!
17
0
0

Texto

(1)

SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.191802

DOI: 10.1103/PhysRevLett.114.191802

Direitos autorais / Publisher's copyright statement:

©2015

by American Physical Society. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO Cidade Universitária Zeferino Vaz Barão Geraldo

(2)

Measurement of J=ψ and ψð2SÞ Prompt Double-Differential

Cross Sections in pp Collisions at

p

ffiffi

s

¼ 7 TeV

V. Khachatryan et al.* (CMS Collaboration)

(Received 13 February 2015; published 14 May 2015)

The double-differential cross sections of promptly produced J=ψ and ψð2SÞ mesons are measured in pp collisions atpffiffiffis¼ 7 TeV, as a function of transverse momentum pTand absolute rapidityjyj. The analysis

uses J=ψ and ψð2SÞ dimuon samples collected by the CMS experiment, corresponding to integrated luminosities of 4.55 and4.90 fb−1, respectively. The results are based on a two-dimensional analysis of the dimuon invariant mass and decay length, and extend to pT¼ 120 and 100 GeV for the J=ψ and ψð2SÞ,

respectively, when integrated over the intervaljyj < 1.2. The ratio of the ψð2SÞ to J=ψ cross sections is also reported forjyj < 1.2, over the range 10 < pT< 100 GeV. These are the highest pTvalues for which the

cross sections and ratio have been measured.

DOI:10.1103/PhysRevLett.114.191802 PACS numbers: 13.20.Gd, 13.85.Qk, 13.88.+e

Studies of heavy-quarkonium production are of central importance for an improved understanding of non-perturbative quantum chromodynamics (QCD) [1]. The nonrelativistic QCD (NRQCD) effective-field-theory framework [2], arguably the best formalism at this time, factorizes high-pTquarkonium production in short-distance

and long-distance scales. First, a heavy quark-antiquark pair, Q ¯Q, is produced in a Fock state2Sþ1L½aJ , with spin S, orbital angular momentum L, and total angular momentum J that are either identical to (color singlet, a ¼ 1) or different from (color octet, a ¼ 8) those of the corresponding quarkonium state. The Q ¯Q cross sections are determined by short-distance coefficients (SDCs), kinematic-dependent functions calculable perturbatively as expansions in the strong-coupling constant αs. Then this“preresonant” Q ¯Q pair binds into the physically observable quarkonium through a nonperturbative evolution that may change L and S, with bound-state formation probabilities proportional to long-distance matrix elements (LDMEs). The LDMEs are conjectured to be constant (i.e., independent of the Q ¯Q momentum) and universal (i.e., process independent). The color-octet terms are expected to scale with powers of the heavy-quark velocity in the Q ¯Q rest frame. In the nonrelativistic limit, an S-wave vector quarkonium state should be formed from a Q ¯Q pair produced as a color singlet (3S½11 ) or as one of three color octets (1S½80 , 3S½81 ,

and3P½8J ).

Three “global fits” to measured quarkonium data[3–5] obtained incompatible octet LDMEs, despite the use of essentially identical theory inputs: next-to-leading-order (NLO) QCD calculations of the singlet and octet SDCs. The disagreement stems from the fact that different sets of measurements were considered. In particular, the results crucially depend on the minimum pT of the fitted

measure-ments[6], because the octet SDCs have different pT

depend-ences. Fits including low-pT cross sections lead to the

conclusion that, at high pT, quarkonium production should

be dominated by transversely polarized octet terms. This prediction is in stark contradiction with the unpolarized production seen by the CDF[7,8]and CMS[9,10] experi-ments, an observation known as the“quarkonium polariza-tion puzzle.” As shown in Ref.[6], the puzzle is seemingly solved by restricting the NRQCD global fits to high-pT

quarkonia, indicating that the presently available fixed-order calculations provide SDCs that are unable to reproduce reality at lower pTvalues or that NRQCD factorization only

holds for pT values much larger than the quarkonium mass.

The polarization measurements add a crucial dimension to the global fits because the various channels have remarkably distinct polarization properties: in the helicity frame,3S½11 is longitudinally polarized,1S½80 is unpolarized,3S½81 is trans-versely polarized, and3P½8J has a polarization that changes significantly with pT. Bottomonium and prompt

charmo-nium polarizations reaching or exceeding pT ¼ 50 GeV

were measured by CMS[9,10], using a very robust analysis framework[11,12], on the basis of event samples collected in 2011. Instead, the differential charmonium cross sections published by CMS[13]are based on data collected in 2010 and have a much lower pT reach. Measurements of prompt

charmonium cross sections extending well beyond pT ¼

50 GeV will trigger improved NRQCD global fits, restricted to a kinematic domain where the factorization formalism is

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(3)

unquestioned, and will provide more accurate and reli-able LDMEs.

This Letter presents measurements of the double-differential cross sections of J=ψ and ψð2SÞ mesons promptly produced in pp collisions at a center-of-mass energy of 7 TeV, based on dimuon event samples collected by CMS in 2011. They complement other prompt charmonium cross sections measured at the LHC, by ATLAS [14,15], LHCb [16,17], and ALICE [18]. The analysis is made in four bins of absolute rapidity (jyj < 0.3, 0.3 < jyj < 0.6, 0.6 < jyj < 0.9, and 0.9 < jyj < 1.2) and in the pT ranges

10–95 GeV for the J=ψ and 10–75 GeV for the ψð2SÞ. A rapidity-integrated result in the rangejyj < 1.2 is also pro-vided, extending the pT reach to 120 GeV for the J=ψ and

100 GeV for theψð2SÞ. The corresponding ψð2SÞ over J=ψ cross section ratios are also reported. The dimuon invariant mass distribution is used to separate the J=ψ andψð2SÞ signals from other processes, mostly pairs of uncorrelated muons, while the dimuon decay length is used to separate the non-prompt charmonia, coming from decays of b hadrons,fromthe prompt component. Feed-down from decays of heavier charmonium states, approximately 33% of the prompt J=ψ cross section [19], is not distinguished from the directly produced charmonia.

The CMS apparatus is based on a superconducting solenoid of 6 m internal diameter, providing a 3.8 T field. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorim-eter, and a brass and scintillator hadron calorimeter. Muons are measured with three kinds of gas-ionization detectors: drift tubes, cathode strip chambers, and resistive-plate chambers. The main subdetectors used in this analysis are the silicon tracker and the muon system, which enable the measurement of muon momenta over the pseudora-pidity range jηj < 2.4. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [20].

The events were collected using a two-level trigger system. The first level, made of custom hardware process-ors, uses data from the muon system to select events with two muon candidates. The high-level trigger, adding information from the silicon tracker, reduces the rate of stored events by requiring an opposite-sign muon pair of invariant mass2.8 < M < 3.35 GeV, pT > 9.9 GeV, and jyj < 1.25 for the J=ψ trigger, and 3.35 < M < 4.05 GeV and pT > 6.9 GeV for the ψð2SÞ trigger. No pT

require-ment is imposed on the single muons at trigger level. Both triggers require a dimuon vertex fitχ2 probability greater than 0.5% and a distance of closest approach between the two muons less than 5 mm. Events where the muons bend towards each other in the magnetic field are rejected to lower the trigger rate while retaining the highest-quality dimuons. The J=ψ and ψð2SÞ analyses are conducted independently, using event samples separated at the trigger

level. The ψð2SÞ sample corresponds to an integrated luminosity of 4.90 fb−1, while the J=ψ sample has a reduced value, 4.55 fb−1, because the pT threshold of

the J=ψ trigger was raised to 12.9 GeV in a fraction of the data-taking period; the integrated luminosities have an uncertainty of 2.2%[21].

The muon tracks are required to have hits in at least eleven tracker layers, with at least two in the silicon pixel detector, and to be matched with at least one segment in the muon system. They must have a good track fit quality (χ2 per degree of freedom smaller than 1.8) and point to the interaction region. The selected muons must also match in pseudorapidity and azimuthal angle with the muon objects responsible for triggering the event. The analysis is restricted to muons produced within a fiducial phase-space window where the muon detection efficiencies are accurately measured: pT > 4.5, 3.5, and 3.0 GeV for

the regionsjηj < 1.2, 1.2 < jηj < 1.4, and 1.4 < jηj < 1.6, respectively. The combinatorial dimuon background is reduced by requiring a dimuon vertex fit χ2 probability larger than 1%. After applying the event selection criteria, the combined yields of prompt and nonprompt charmonia in the rangejyj < 1.2 are 5.45 M for the J=ψ and 266 k for the ψð2SÞ. The prompt charmonia are separated from those resulting from decays of b hadrons through the use of the dimuon pseudo-proper-decay-length [22], l ¼ LxyM=pT, where Lxy is the transverse decay

length in the laboratory frame, measured after removing the two muon tracks from the calculation of the primary vertex position. For events with multiple collision vertices, Lxy is calculated with respect to the vertex closest to the

direction of the dimuon momentum, extrapolated towards the beam line.

For eachðjyj; pTÞ bin, the prompt charmonium yields are evaluated through an extended unbinned maximum-likelihood fit to the two-dimensional ðM; lÞ event distri-bution. In the mass dimension, the shape of each signal peak is represented by a Crystal Ball (CB) function[23], with free mean (μCB) and width (σCB) parameters. Given

the strong correlation between the two CB tail parameters, αCBand nCB, they are fixed to values evaluated from fits to

event samples integrated in broader pT ranges. A single CB

function provides a good description of the signal mass peaks, given that the dimuon mass distributions are studied in narrowðjyj; pTÞ bins, within which the dimuon invariant mass resolution has a negligible variation. The mass distribution of the underlying continuum background is described by an exponential function. Concerning the pseudo-proper-decay-length variable, the prompt signal component is modeled by a resolution function, which exploits the per-event uncertainty information provided by the vertex reconstruction algorithm, while the nonprompt charmonium term is modeled by an exponential function convolved with the resolution function. The continuum background component is represented by a sum of prompt

(4)

and nonprompt empirical forms. The distributions are well described with a relatively small number of free parameters. Figure 1 shows the J=ψ and ψð2SÞ dimuon invariant mass and pseudo-proper-decay-length projections for two representativeðjyj; pTÞ bins. The decay length projections are shown for events with dimuon invariant mass within 3σCBof the pole mass. In the highest pT bins, where the

number of dimuons is relatively small, stable results are obtained by fixingμCBand the slope of the exponential-like function describing the nonprompt combinatorial back-ground to values extrapolated from the trend found from the lower-pT bins. The systematic uncertainties in the signal

yields are evaluated by repeating the fit with different functional forms, varying the values of the fixed param-eters, and allowing for more free parameters in the fit. The fit results are robust with respect to changes in the procedure; the corresponding systematic uncertainties are negligible at low pT and increase to≈2% for the J=ψ and

≈6% for the ψð2SÞ in the highest pT bins.

The single-muon detection efficienciesϵμare measured with a“tag-and-probe” (T&P) technique[24], using event samples collected with triggers specifically designed for

this purpose, including a sample enriched in dimuons from J=ψ decays where a muon is combined with another track and the pair is required to have an invariant mass within the range 2.8–3.4 GeV. The procedure was validated in the phase-space window of the analysis with detailed Monte Carlo (MC) simulation studies. The measured efficiencies are parametrized as a function of muon pT,

in eight bins of muonjηj. Their uncertainties, reflecting the statistical precision of the T&P samples and possible imperfections of the parametrization, are ≈2%–3%. The efficiency of the dimuon vertex fitχ2probability require-ment is also measured with the T&P approach, using a sample of events collected with a dedicated (prescaled) trigger. It is around 95%–97%, improving with increasing pT, with a 2% systematic uncertainty. At high pT, when the

two muons might be emitted relatively close to each other, the efficiency of the dimuon triggerϵμμ is smaller than the product of the two single-muon efficiencies [13], ϵμμ ¼ ϵμ1ϵμ2ρ. The correction factor ρ is evaluated with

MC simulations, validated from data collected with single-muon triggers. For pT < 35 GeV, ρ is consistent with

being unity, within a systematic uncertainty estimated as

2.85 2.9 2.95 3 3.05 3.1 3.15 3.2 3.25 3.3 Events / 4 MeV 0 50 100 150 200 250 300 350 400 450 Data Total Prompt Nonprompt Background CMS ψ J/ < 32 GeV T 30 < p (7 TeV) -1 4.55 fb

Dimuon invariant mass [GeV] Pseudo-proper decay length [mm]

-0.5 0 0.5 1 1.5 2 2.5 mμ Events / 20 -1 10 1 10 2 10 3 10 Data Total Prompt Nonprompt Background CMS ψ J/ < 32 GeV T 30 < p (7 TeV) -1 4.55 fb

Dimuon invariant mass [GeV]

3.4 3.5 3.6 3.7 3.8 3.9 4 Events / 14 MeV 0 50 100 150 200 250 300 350 Data Total Prompt Nonprompt Background CMS (2S) ψ < 27.5 GeV T 25 < p (7 TeV) -1 4.9 fb

Pseudo-proper decay length [mm]

-0.5 0 0.5 1 1.5 2 2.5 mμ Events / 20 -1 10 1 10 2 10 Data Total Prompt Nonprompt Background CMS (2S) ψ < 27.5 GeV T 25 < p (7 TeV) -1 4.9 fb

FIG. 1 (color online). Projections on the dimuon invariant mass (left) and pseudo-proper-decay-length (right) axes, for the J=ψ (top) andψð2SÞ (bottom) events in the kinematic bins given in the plots. The right panels show dimuons of invariant mass within 3σCBof the

pole masses. The curves, identified in the legends, represent the result of the fits described in the text. The vertical bars on the data points show the statistical uncertainties.

(5)

2%, except in the 0.9 < jyj < 1.2 bin, where the uncer-tainty increases to 4.3% for the J=ψ if pT < 12 GeV, and

to 2.7% for theψð2SÞ if pT < 11 GeV. For pT > 35 GeV,

ρ decreases approximately linearly with pT, reaching

60%–70% for pT∼ 85 GeV, with systematic uncertainties evaluated by comparing the MC simulation results with estimations made using data collected with single-muon triggers: 5% up to pT ¼ 50 (55) GeV for the J=ψ [ψð2SÞ]

and 10% for higher pT. The total dimuon detection

efficiency increases from ϵμμ≈ 78% at pT ¼ 15 GeV to≈85% at 30 GeV, and then decreases to ≈65% at 80 GeV. To obtain the charmonium cross sections in eachðjyj; pTÞ bin without any restrictions on the kinematic variables of the two muons, we correct for the corresponding dimuon acceptance, defined as the fraction of dimuon decays having both muons emitted within the single-muon fiducial phase space. These acceptances are calculated using a detailed MC simulation of the CMS experiment. Charmonia are generated using a flat rapidity distribution and pTdistributions based on

previous measurements[13]; using flat pTdistributions leads

to negligible changes. The particles are decayed byEVTGEN

[25]interfaced toPYTHIA6.4[26], whilePHOTOS[27]is used

to simulate final-state radiation. The fractions of J=ψ and ψð2SÞ dimuon events in a given ðjyj; pTÞ bin with both

muons surviving the fiducial selections depend on the decay kinematics and, in particular, on the polarization of the mother particle. Acceptances are calculated using polariza-tion scenarios corresponding to different values of the polar anisotropy parameter in the helicity frame,λHX

ϑ : 0

(unpolar-ized), þ1 (transverse), and −1 (longitudinal). A fourth scenario, corresponding to λHX

ϑ ¼ þ0.10 for the J=ψ and

þ0.03 for the ψð2SÞ, reflects the results published by CMS [10]. The two other parameters characterizing the dimuon angular distributions[28],λφandλϑφ, have been measured to be essentially zero[10]and have a negligible influence on the acceptance. The acceptances are essentially identical for the two charmonia and are almost rapidity independent for jyj < 1.2. The two-dimensional acceptance maps are calcu-lated with large MC simulation samples, so that statistical fluctuations are small, and in narrow jyj bins, so that variations within the bins can be neglected. Since the efficiencies and acceptances are evaluated for events where the two muons bend away from each other, a factor of 2 is applied to obtain the final cross sections.

The double-differential cross sections of promptly pro-duced J=ψ and ψð2SÞ in the dimuon channel, Bd2σ=dp

Tdy, where B is the J=ψ or ψð2SÞ dimuon

branching fraction, are obtained by dividing the fitted prompt-signal yields, already corrected on an event-by-event basis for efficiencies and acceptance, by the inte-grated luminosity and the widths of the pT andjyj bins. The

numerical values, including the relative statistical and systematic uncertainties, are reported for both charmonia, five rapidity intervals, and four polarization scenarios in Tables 1–4 of the Supplemental Material [29]. Figure 2

shows the results obtained in the unpolarized scenario. With respect to thejyj < 0.3 bin, the cross sections drop by ≈5% for 0.6 < jyj < 0.9 and ≈15% for 0.9 < jyj < 1.2. Measuring the charmonium production cross sections in the broader rapidity rangejyj < 1.2 has the advantage that the increased statistical accuracy allows the measurement to be extended to higher-pT values, where comparisons with

theoretical calculations are particularly informative. Figure 3 compares the rapidity-integrated (unpolarized) cross sections, after rescaling with the branching fractionB of the dimuon decay channels[30], with results reported by ATLAS[14,15]. The curve represents a fit of the J=ψ cross section measured in this analysis to a power-law function [31]. The band labeled FKLSW represents the result of a global fit[6]comparing SDCs calculated at NLO[3]with ψð2SÞ cross sections and polarizations previously reported by CMS [10,13] and LHCb [17]. According to that fit, ψð2SÞ mesons are produced predominantly unpolarized. At high pT, the values reported in this Letter tend to be higher

than the band, which is essentially determined from results for pT < 30 GeV.

The ratio of theψð2SÞ to J=ψ differential cross sections is also measured in the jyj < 1.2 range, recomputing the J=ψ values in the pT bins of the ψð2SÞ analysis.

The measured values are reported in Table 5 of the Supplemental Material [29]. The corrections owing to the integrated luminosity, acceptances, and efficiencies cancel to a large extent in the measurement of the ratio. The total systematic uncertainty, dominated by the ρ correction for pT > 30 GeV and by the acceptance and

[GeV] T p 0 20 40 60 80 100 120 [nb / GeV] y d T p / d σ d -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 1 CMS -1 2) × y y < 1.2 ( < 0.3 y y y < 0.6 0.3 < < 0.9 0.6 < < 1.2 0.9 < of 2.2% not included Luminosity uncertainty ψ J/ (2S) ψ ψ : L = 4.55 fb J/ (2S) : L = 4.90 fb ψ -1 = 7 TeV s pp 2

FIG. 2 (color online). The J=ψ and ψð2SÞ differential pTcross

sections times the dimuon branching fractions for four rapidity bins and integrated over the rangejyj < 1.2 (scaled up by a factor of 2 for presentation purposes), assuming the unpolarized scenario. The vertical bars show the statistical and systematic uncertainties added in quadrature.

(6)

efficiency corrections for pT < 20 GeV, does not exceed

3%, except for pT > 75 GeV, where it reaches 5%. Larger

event samples are needed to clarify the trend of the ratio for pT above ≈35 GeV.

In summary, the double-differential cross sections of the J=ψ and ψð2SÞ mesons promptly produced in pp collisions atpffiffiffis¼ 7 TeV have been measured as a function of pTin

fourjyj bins, as well as integrated over the jyj < 1.2 range, extending up to or beyond pT ¼ 100 GeV. New global fits

of cross sections and polarizations, including these high-pT

measurements, will probe the theoretical calculations in a kinematical region where NRQCD factorization is believed to be most reliable. The new data should also provide input to stringent tests of recent theory developments, such as those described in Refs.[32–34].

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction

and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/ IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] N. Brambilla et al., Heavy quarkonium: progress, puzzles, and opportunities,Eur. Phys. J. C 71, 1534 (2011). [2] G. T. Bodwin, E. Braaten, and G. P Lepage, Rigorous QCD

analysis of inclusive annihilation and production of heavy quarkonium,Phys. Rev. D 51, 1125 (1995).

[3] M. Butenschoen and B. A. Kniehl, J=ψ Polarization at Tevatron and the LHC: Nonrelativistic-QCD Factorization at the Crossroads,Phys. Rev. Lett. 108, 172002 (2012). [4] B. Gong, L.-P. Wan, J.-X. Wang, and H.-F. Zhang,

Polari-zation for Prompt J=ψ, ψð2SÞ Production at the Tevatron and LHC,Phys. Rev. Lett. 110, 042002 (2013).

[5] K.-T. Chao, Y.-Q. Ma, H.-S. Shao, K. Wang, and Y.-J. Zhang, J=ψ Polarization at Hadron Colliders in Nonrela-tivistic QCD, Phys. Rev. Lett. 108, 242004 (2012). [6] P. Faccioli, V. Knünz, C. Lourenço, J. Seixas, and H. Wöhri,

Quarkonium production in the LHC era: a polarized perspective,Phys. Lett. B 736, 98 (2014).

[7] A. Abulencia et al. (CDF Collaboration), Polarization of J=ψ and ψð2SÞ Mesons Produced in p ¯p Collisions atffiffiffi

s

p ¼ 1.96 TeV,

Phys. Rev. Lett. 99, 132001 (2007). [8] T. Aaltonen et al. (CDF Collaboration), Measurements of

Angular Distributions of Muons from ϒ Decays in p ¯p Collisions atpffiffiffis¼ 1.96 TeV,Phys. Rev. Lett. 108, 151802 (2012).

[9] CMS Collaboration, Measurement of the ϒð1SÞ, ϒð2SÞ, andϒð3SÞ Polarizations in pp Collisions at pffiffiffis¼ 7 TeV,

Phys. Rev. Lett. 110, 081802 (2013).

[10] CMS Collaboration, Measurement of the prompt J=ψ and ψð2SÞ polarizations in pp collisions atpffiffiffis¼ 7 TeV,Phys. Lett. B 727, 381 (2013).

[11] P. Faccioli, C. Lourenço, and J. Seixas, Rotation-Invariant Relations in Vector Meson Decays into Fermion Pairs,Phys. Rev. Lett. 105, 061601 (2010). 0 20 40 60 80 100 120 -5 10 -4 10 -3 10 -2 10 -1 10 1 10 2 10 ψ J/ (2S) ψ = 7 TeV s pp -1 y -1 y -1 y -1 y y < 1.2, 4.55 fb (2.4%) CMS, < 0.75, 2.3 pb (3.5%) ATLAS, < 1.2, 4.90 fb (10.6%) CMS, < 0.75, 2.1 fb (2.4%) ATLAS, < 1.2 FKLSW, Power-law fit [GeV] T p [nb / GeV] T p d y / d 2 σ d

FIG. 3 (color online). The J=ψ (open symbols) and ψð2SÞ (closed symbols) differential (unpolarized) cross sections from this analysis (circles) and from ATLAS (squares) [14,15]. The vertical bars show the statistical and systematic uncertainties added in quadrature, not including the uncertainties from inte-grated luminosities and branching fractions, which are indicated by the percentages given in the legend. The curve shows a fit of the J=ψ cross section measured in this analysis to a power-law function, while the band labeled FKLSW represents a calculation of theψð2SÞ cross section using LDMEs determined with lower-pT LHC data[6].

(7)

[12] P. Faccioli, C. Lourenço, and J. Seixas, New approach to quarkonium polarization studies,Phys. Rev. D 81, 111502 (R) (2010).

[13] CMS Collaboration, J=ψ and ψð2SÞ production in pp collisions at pffiffiffis¼ 7 TeV, J. High Energy Phys. 02 (2012) 011.

[14] ATLAS Collaboration, Measurement of the differential cross-sections of inclusive, prompt and non-prompt J=ψ production in proton-proton collisions at pffiffiffis¼ 7 TeV,

Nucl. Phys. B850, 387 (2011).

[15] ATLAS Collaboration, Measurement of the production cross-section ofψð2SÞ → J=ψð→ μþμ−Þπþπ−in pp colli-sions atpffiffiffis¼ 7 TeV at ATLAS,J. High Energy Phys. 09, (2014) 079.

[16] LHCb Collaboration, Measurement of J=ψ production in pp collisions at pffiffiffis¼ 7 TeV, Eur. Phys. J. C 71, 1645 (2011).

[17] LHCb Collaboration, Measurement of ψð2SÞ meson pro-duction in pp collisions atpffiffiffis¼ 7 TeV,Eur. Phys. J. C 72, 2100 (2012).

[18] ALICE Collaboration, Measurement of prompt J=ψ and beauty hadron production cross sections at mid-rapidity in pp collisions at pffiffiffis¼ 7 TeV, J. High Energy Phys. 11 (2012) 065.

[19] P. Faccioli, C. Lourenço, J. Seixas, and H. Wöhri, Study of ψ0 and χ

c decays as feed-down sources of J=ψ

hadro-production,J. High Energy Phys. 10, (2008) 004.

[20] CMS Collaboration, The CMS experiment at the CERN LHC,JINST 3, S08004 (2008).

[21] CMS Collaboration, Absolute Calibration of the Luminosity Measurement at CMS: Winter 2012 Update, CMS Physics Analysis Summary Report No. CMS-PAS-SMP-12-008, 2012.

[22] CMS Collaboration, Prompt and non-prompt J=ψ produc-tion in pp collisions atpffiffiffis¼ 7 TeV,Eur. Phys. J. C 71, 1575 (2011).

[23] M. J. Oreglia, Ph.D. thesis, Stanford University, 1980, SLAC-R-236.

[24] CMS Collaboration, Measurements of inclusive W and Z cross sections in pp collisions at pffiffiffis¼ 7 TeV, J. High Energy Phys. 01 (2011) 080.

[25] D. J. Lange, The EvtGen particle decay simulation package,

Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[26] T. Sjöstrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 05 (2006) 026.

[27] E. Barberio and Z. Wąs, PHOTOS—a universal Monte Carlo for QED radiative corrections: version 2.0,Comput. Phys. Commun. 79, 291 (1994).

[28] P. Faccioli, C. Lourenço, J. Seixas, and H. Wöhri, Towards the experimental clarification of quarkonium polarization,

Eur. Phys. J. C 69, 657 (2010).

[29] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.114.191802 for tables with detailed results.

[30] K. A. Olive et al. (Particle Data Group), Review of Particle Physics,Chin. Phys. C 38, 090001 (2014).

[31] I. Abt et al. (HERA-B), A measurement of theψ0 to J=ψ production ratio in 920 GeV proton-nucleus interactions,

Eur. Phys. J. C 49, 545 (2007).

[32] Z.-B. Kang, J.-W. Qiu, and G. Sterman, Heavy Quarkonium Production and Polarization,Phys. Rev. Lett. 108, 102002 (2012).

[33] Z.-B. Kang, Y.-Q. Ma, J.-W. Qiu, and G. Sterman,

Heavy quarkonium production at collider energies:

Factorization and evolution, Phys. Rev. D 90, 034006 (2014).

[34] G. T. Bodwin, H. Sok Chung, U.-R. Kim, and J. Lee, Fragmentation Contributions to J=ψ Production at the Tevatron and the LHC, Phys. Rev. Lett. 113, 022001 (2014).

V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 M. Friedl,2 R. Frühwirth,2,bV. M. Ghete,2 C. Hartl,2 N. Hörmann,2 J. Hrubec,2 M. Jeitler,2,b W. Kiesenhofer,2 V. Knünz,2 M. Krammer,2,bI. Krätschmer,2D. Liko,2I. Mikulec,2 D. Rabady,2,c B. Rahbaran,2 H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2W. Treberer-Treberspurg,2W. Waltenberger,2C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3

S. Alderweireldt,4 S. Bansal,4 T. Cornelis,4 E. A. De Wolf,4 X. Janssen,4 A. Knutsson,4J. Lauwers,4 S. Luyckx,4 S. Ochesanu,4 R. Rougny,4 M. Van De Klundert,4H. Van Haevermaet,4 P. Van Mechelen,4 N. Van Remortel,4 A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5J. D’Hondt,5N. Daci,5N. Heracleous,5J. Keaveney,5S. Lowette,5M. Maes,5 A. Olbrechts,5Q. Python,5 D. Strom,5S. Tavernier,5 W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5

C. Caillol,6 B. Clerbaux,6 G. De Lentdecker,6 D. Dobur,6L. Favart,6 A. P. R. Gay,6 A. Grebenyuk,6 A. Léonard,6 A. Mohammadi,6L. Perniè,6,cA. Randle-conde,6T. Reis,6T. Seva,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wang,6

F. Zenoni,6 V. Adler,7K. Beernaert,7 L. Benucci,7 A. Cimmino,7 S. Costantini,7 S. Crucy,7 A. Fagot,7 G. Garcia,7 J. Mccartin,7A. A. Ocampo Rios,7D. Poyraz,7D. Ryckbosch,7S. Salva Diblen,7M. Sigamani,7N. Strobbe,7F. Thyssen,7

M. Tytgat,7 E. Yazgan,7N. Zaganidis,7S. Basegmez,8 C. Beluffi,8,dG. Bruno,8 R. Castello,8A. Caudron,8 L. Ceard,8 G. G. Da Silveira,8 C. Delaere,8T. du Pree,8 D. Favart,8L. Forthomme,8A. Giammanco,8,e J. Hollar,8 A. Jafari,8P. Jez,8 M. Komm,8V. Lemaitre,8C. Nuttens,8D. Pagano,8L. Perrini,8A. Pin,8K. Piotrzkowski,8A. Popov,8,fL. Quertenmont,8

(8)

W. L. Aldá Júnior,10G. A. Alves,10L. Brito,10M. Correa Martins Junior,10T. Dos Reis Martins,10J. Molina,10 C. Mora Herrera,10M. E. Pol,10 P. Rebello Teles,10 W. Carvalho,11J. Chinellato,11,g A. Custódio,11E. M. Da Costa,11

D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11H. Malbouisson,11D. Matos Figueiredo,11 L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11J. Santaolalla,11A. Santoro,11A. Sznajder,11

E. J. Tonelli Manganote,11,g A. Vilela Pereira,11C. A. Bernardes,12b S. Dogra,12aT. R. Fernandez Perez Tomei,12a E. M. Gregores,12bP. G. Mercadante,12b S. F. Novaes,12a Sandra S. Padula,12a A. Aleksandrov,13V. Genchev,13,c R. Hadjiiska,13P. Iaydjiev,13A. Marinov,13S. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13M. Vutova,13 A. Dimitrov,14I. Glushkov,14L. Litov,14 B. Pavlov,14P. Petkov,14J. G. Bian,15 G. M. Chen,15H. S. Chen,15M. Chen,15 T. Cheng,15R. Du,15C. H. Jiang,15R. Plestina,15,h F. Romeo,15J. Tao,15Z. Wang,15C. Asawatangtrakuldee,16Y. Ban,16 W. Guo,16S. Liu,16Y. Mao,16S. J. Qian,16D. Wang,16Z. Xu,16F. Zhang,16,iL. Zhang,16W. Zou,16C. Avila,17A. Cabrera,17 L. F. Chaparro Sierra,17C. Florez,17J. P. Gomez,17B. Gomez Moreno,17 J. C. Sanabria,17N. Godinovic,18D. Lelas,18 D. Polic,18I. Puljak,18Z. Antunovic,19M. Kovac,19V. Brigljevic,20K. Kadija,20J. Luetic,20D. Mekterovic,20L. Sudic,20 A. Attikis,21G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21H. Rykaczewski,21M. Bodlak,22

M. Finger,22M. Finger Jr.,22,jY. Assran,23,kA. Ellithi Kamel,23,lM. A. Mahmoud,23,mA. Radi,23,n,oM. Kadastik,24 M. Murumaa,24M. Raidal,24A. Tiko,24 P. Eerola,25 M. Voutilainen,25 J. Härkönen,26V. Karimäki,26R. Kinnunen,26 M. J. Kortelainen,26T. Lampén,26K. Lassila-Perini,26S. Lehti,26T. Lindén,26P. Luukka,26T. Mäenpää,26T. Peltola,26 E. Tuominen,26 J. Tuominiemi,26E. Tuovinen,26L. Wendland,26J. Talvitie,27T. Tuuva,27 M. Besancon,28F. Couderc,28 M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28C. Favaro,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28 G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28J. Rander,28A. Rosowsky,28 M. Titov,28S. Baffioni,29

F. Beaudette,29 P. Busson,29E. Chapon,29C. Charlot,29T. Dahms,29L. Dobrzynski,29N. Filipovic,29 A. Florent,29 R. Granier de Cassagnac,29L. Mastrolorenzo,29P. Miné,29 I. N. Naranjo,29 M. Nguyen,29 C. Ochando,29G. Ortona,29 P. Paganini,29S. Regnard,29R. Salerno,29J. B. Sauvan,29Y. Sirois,29C. Veelken,29Y. Yilmaz,29A. Zabi,29J.-L. Agram,30,p J. Andrea,30A. Aubin,30D. Bloch,30J.-M. Brom,30E. C. Chabert,30C. Collard,30E. Conte,30,pJ.-C. Fontaine,30,pD. Gelé,30

U. Goerlach,30 C. Goetzmann,30 A.-C. Le Bihan,30K. Skovpen,30P. Van Hove,30 S. Gadrat,31S. Beauceron,32 N. Beaupere,32C. Bernet,32,h G. Boudoul,32,c E. Bouvier,32S. Brochet,32C. A. Carrillo Montoya,32J. Chasserat,32

R. Chierici,32D. Contardo,32,c B. Courbon,32P. Depasse,32H. El Mamouni,32J. Fan,32J. Fay,32S. Gascon,32 M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32A. L. Pequegnot,32S. Perries,32J. D. Ruiz Alvarez,32

D. Sabes,32L. Sgandurra,32V. Sordini,32M. Vander Donckt,32P. Verdier,32S. Viret,32H. Xiao,32Z. Tsamalaidze,33,j C. Autermann,34S. Beranek,34M. Bontenackels,34M. Edelhoff,34L. Feld,34A. Heister,34K. Klein,34M. Lipinski,34 A. Ostapchuk,34M. Preuten,34F. Raupach,34J. Sammet,34S. Schael,34J. F. Schulte,34H. Weber,34B. Wittmer,34 V. Zhukov,34,fM. Ata,35M. Brodski,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Güth,35 T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35S. Knutzen,35P. Kreuzer,35M. Merschmeyer,35A. Meyer,35 P. Millet,35M. Olschewski,35K. Padeken,35P. Papacz,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35D. Teyssier,35

S. Thüer,35V. Cherepanov,36Y. Erdogan,36G. Flügge,36H. Geenen,36M. Geisler,36W. Haj Ahmad,36F. Hoehle,36 B. Kargoll,36T. Kress,36Y. Kuessel,36A. Künsken,36J. Lingemann,36,c A. Nowack,36I. M. Nugent,36C. Pistone,36 O. Pooth,36A. Stahl,36M. Aldaya Martin,37I. Asin,37N. Bartosik,37J. Behr,37U. Behrens,37A. J. Bell,37A. Bethani,37 K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37S. Choudhury,37F. Costanza,37C. Diez Pardos,37 G. Dolinska,37S. Dooling,37T. Dorland,37G. Eckerlin,37D. Eckstein,37T. Eichhorn,37G. Flucke,37J. Garay Garcia,37 A. Geiser,37A. Gizhko,37P. Gunnellini,37J. Hauk,37M. Hempel,37,qH. Jung,37A. Kalogeropoulos,37O. Karacheban,37,q M. Kasemann,37P. Katsas,37J. Kieseler,37C. Kleinwort,37I. Korol,37D. Krücker,37W. Lange,37J. Leonard,37K. Lipka,37 A. Lobanov,37W. Lohmann,37,qB. Lutz,37R. Mankel,37I. Marfin,37,qI.-A. Melzer-Pellmann,37A. B. Meyer,37G. Mittag,37 J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37A. Nayak,37E. Ntomari,37H. Perrey,37D. Pitzl,37R. Placakyte,37

A. Raspereza,37P. M. Ribeiro Cipriano,37B. Roland,37E. Ron,37 M. Ö. Sahin,37J. Salfeld-Nebgen,37P. Saxena,37 T. Schoerner-Sadenius,37M. Schröder,37C. Seitz,37S. Spannagel,37A. D. R. Vargas Trevino,37R. Walsh,37C. Wissing,37

V. Blobel,38M. Centis Vignali,38 A. R. Draeger,38J. Erfle,38 E. Garutti,38K. Goebel,38M. Görner,38J. Haller,38 M. Hoffmann,38R. S. Höing,38A. Junkes,38H. Kirschenmann,38R. Klanner,38R. Kogler,38T. Lapsien,38T. Lenz,38 I. Marchesini,38D. Marconi,38J. Ott,38T. Peiffer,38A. Perieanu,38N. Pietsch,38J. Poehlsen,38T. Poehlsen,38D. Rathjens,38 C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Seidel,38V. Sola,38H. Stadie,38G. Steinbrück,38 D. Troendle,38E. Usai,38L. Vanelderen,38 A. Vanhoefer,38C. Barth,39C. Baus,39 J. Berger,39C. Böser,39E. Butz,39

(9)

T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39F. Frensch,39M. Giffels,39A. Gilbert,39 F. Hartmann,39,cT. Hauth,39U. Husemann,39I. Katkov,39,fA. Kornmayer,39,cP. Lobelle Pardo,39M. U. Mozer,39T. Müller,39

Th. Müller,39A. Nürnberg,39G. Quast,39K. Rabbertz,39S. Röcker,39H. J. Simonis,39F. M. Stober,39R. Ulrich,39 J. Wagner-Kuhr,39 S. Wayand,39T. Weiler,39R. Wolf,39G. Anagnostou,40G. Daskalakis,40T. Geralis,40 V. A. Giakoumopoulou,40A. Kyriakis,40D. Loukas,40A. Markou,40C. Markou,40A. Psallidas,40I. Topsis-Giotis,40

A. Agapitos,41S. Kesisoglou,41A. Panagiotou,41N. Saoulidou,41E. Stiliaris,41E. Tziaferi,41X. Aslanoglou,42 I. Evangelou,42G. Flouris,42C. Foudas,42P. Kokkas,42 N. Manthos,42I. Papadopoulos,42E. Paradas,42J. Strologas,42 G. Bencze,43 C. Hajdu,43P. Hidas,43 D. Horvath,43,rF. Sikler,43V. Veszpremi,43G. Vesztergombi,43,sA. J. Zsigmond,43 N. Beni,44S. Czellar,44J. Karancsi,44,tJ. Molnar,44J. Palinkas,44Z. Szillasi,44A. Makovec,45P. Raics,45Z. L. Trocsanyi,45 B. Ujvari,45S. K. Swain,46S. B. Beri,47V. Bhatnagar,47R. Gupta,47U. Bhawandeep,47A. K. Kalsi,47M. Kaur,47R. Kumar,47 M. Mittal,47N. Nishu,47J. B. Singh,47Ashok Kumar,48Arun Kumar,48S. Ahuja,48A. Bhardwaj,48B. C. Choudhary,48 A. Kumar,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48V. Sharma,48S. Banerjee,49S. Bhattacharya,49K. Chatterjee,49

S. Dutta,49B. Gomber,49 Sa. Jain,49 Sh. Jain,49R. Khurana,49A. Modak,49 S. Mukherjee,49D. Roy,49S. Sarkar,49 M. Sharan,49A. Abdulsalam,50D. Dutta,50V. Kumar,50A. K. Mohanty,50,cL. M. Pant,50P. Shukla,50A. Topkar,50T. Aziz,51 S. Banerjee,51S. Bhowmik,51,uR. M. Chatterjee,51R. K. Dewanjee,51S. Dugad,51S. Ganguly,51S. Ghosh,51M. Guchait,51

A. Gurtu,51,v G. Kole,51S. Kumar,51M. Maity,51,u G. Majumder,51K. Mazumdar,51G. B. Mohanty,51B. Parida,51 K. Sudhakar,51N. Wickramage,51,w S. Sharma,52H. Bakhshiansohi,53H. Behnamian,53S. M. Etesami,53,x A. Fahim,53,y

R. Goldouzian,53M. Khakzad,53M. Mohammadi Najafabadi,53M. Naseri,53 S. Paktinat Mehdiabadi,53 F. Rezaei Hosseinabadi,53B. Safarzadeh,53,zM. Zeinali,53M. Felcini,54M. Grunewald,54 M. Abbrescia,55a,55b C. Calabria,55a,55bS. S. Chhibra,55a,55b A. Colaleo,55a D. Creanza,55a,55c L. Cristella,55a,55b N. De Filippis,55a,55c M. De Palma,55a,55bL. Fiore,55aG. Iaselli,55a,55cG. Maggi,55a,55cM. Maggi,55aS. My,55a,55cS. Nuzzo,55a,55bA. Pompili,55a,55b G. Pugliese,55a,55cR. Radogna,55a,55b,cG. Selvaggi,55a,55bA. Sharma,55aL. Silvestris,55a,cR. Venditti,55a,55bP. Verwilligen,55a

G. Abbiendi,56a A. C. Benvenuti,56a D. Bonacorsi,56a,56b S. Braibant-Giacomelli,56a,56b L. Brigliadori,56a,56b R. Campanini,56a,56b P. Capiluppi,56a,56bA. Castro,56a,56b F. R. Cavallo,56a G. Codispoti,56a,56b M. Cuffiani,56a,56b G. M. Dallavalle,56a F. Fabbri,56a A. Fanfani,56a,56bD. Fasanella,56a,56bP. Giacomelli,56a C. Grandi,56a L. Guiducci,56a,56b S. Marcellini,56a G. Masetti,56a A. Montanari,56a F. L. Navarria,56a,56bA. Perrotta,56a A. M. Rossi,56a,56b T. Rovelli,56a,56b G. P. Siroli,56a,56b N. Tosi,56a,56bR. Travaglini,56a,56bS. Albergo,57a,57bG. Cappello,57a M. Chiorboli,57a,57b S. Costa,57a,57b

F. Giordano,57a,c R. Potenza,57a,57bA. Tricomi,57a,57b C. Tuve,57a,57bG. Barbagli,58a V. Ciulli,58a,58b C. Civinini,58a R. D’Alessandro,58a,58bE. Focardi,58a,58b E. Gallo,58a S. Gonzi,58a,58bV. Gori,58a,58bP. Lenzi,58a,58bM. Meschini,58a S. Paoletti,58a G. Sguazzoni,58aA. Tropiano,58a,58bL. Benussi,59 S. Bianco,59F. Fabbri,59 D. Piccolo,59R. Ferretti,60a,60b

F. Ferro,60a M. Lo Vetere,60a,60bE. Robutti,60aS. Tosi,60a,60bM. E. Dinardo,61a,61b S. Fiorendi,61a,61b S. Gennai,61a,c R. Gerosa,61a,61b,c A. Ghezzi,61a,61b P. Govoni,61a,61bM. T. Lucchini,61a,61b,c S. Malvezzi,61aR. A. Manzoni,61a,61b A. Martelli,61a,61b B. Marzocchi,61a,61b,c D. Menasce,61a L. Moroni,61a M. Paganoni,61a,61bD. Pedrini,61a S. Ragazzi,61a,61b

N. Redaelli,61a T. Tabarelli de Fatis,61a,61bS. Buontempo,62a N. Cavallo,62a,62cS. Di Guida,62a,62d,cF. Fabozzi,62a,62c A. O. M. Iorio,62a,62bL. Lista,62aS. Meola,62a,62d,cM. Merola,62aP. Paolucci,62a,cP. Azzi,63aN. Bacchetta,63aD. Bisello,63a,63b

R. Carlin,63a,63bP. Checchia,63aM. Dall’Osso,63a,63bT. Dorigo,63a U. Dosselli,63a F. Gasparini,63a,63bU. Gasparini,63a,63b A. Gozzelino,63a S. Lacaprara,63aM. Margoni,63a,63b A. T. Meneguzzo,63a,63b F. Montecassiano,63a M. Passaseo,63a J. Pazzini,63a,63b N. Pozzobon,63a,63b P. Ronchese,63a,63bF. Simonetto,63a,63b E. Torassa,63aM. Tosi,63a,63b P. Zotto,63a,63b

A. Zucchetta,63a,63bG. Zumerle,63a,63b M. Gabusi,64a,64bS. P. Ratti,64a,64bV. Re,64a C. Riccardi,64a,64b P. Salvini,64a P. Vitulo,64a,64bM. Biasini,65a,65bG. M. Bilei,65aD. Ciangottini,65a,65b,cL. Fanò,65a,65bP. Lariccia,65a,65bG. Mantovani,65a,65b

M. Menichelli,65aA. Saha,65a A. Santocchia,65a,65b A. Spiezia,65a,65b,c K. Androsov,66a,aa P. Azzurri,66a G. Bagliesi,66a J. Bernardini,66a T. Boccali,66a G. Broccolo,66a,66c R. Castaldi,66a M. A. Ciocci,66a,aaR. Dell’Orso,66a S. Donato,66a,66c,c G. Fedi,66aF. Fiori,66a,66cL. Foà,66a,66c A. Giassi,66a M. T. Grippo,66a,aaF. Ligabue,66a,66c T. Lomtadze,66aL. Martini,66a,66b A. Messineo,66a,66b C. S. Moon,66a,bb F. Palla,66a,c A. Rizzi,66a,66bA. Savoy-Navarro,66a,ccA. T. Serban,66a P. Spagnolo,66a P. Squillacioti,66a,aa R. Tenchini,66aG. Tonelli,66a,66bA. Venturi,66a P. G. Verdini,66a C. Vernieri,66a,66c L. Barone,67a,67b

F. Cavallari,67a G. D’imperio,67a,67b D. Del Re,67a,67bM. Diemoz,67a C. Jorda,67a E. Longo,67a,67bF. Margaroli,67a,67b P. Meridiani,67aF. Micheli,67a,67b,cG. Organtini,67a,67b R. Paramatti,67a S. Rahatlou,67a,67bC. Rovelli,67a F. Santanastasio,67a,67bL. Soffi,67a,67b P. Traczyk,67a,67b,cN. Amapane,68a,68bR. Arcidiacono,68a,68c S. Argiro,68a,68b M. Arneodo,68a,68c R. Bellan,68a,68bC. Biino,68a N. Cartiglia,68a S. Casasso,68a,68b,c M. Costa,68a,68bR. Covarelli,68a

(10)

A. Degano,68a,68b N. Demaria,68a L. Finco,68a,68b,c C. Mariotti,68a S. Maselli,68aE. Migliore,68a,68bV. Monaco,68a,68b M. Musich,68a M. M. Obertino,68a,68cL. Pacher,68a,68bN. Pastrone,68a M. Pelliccioni,68a G. L. Pinna Angioni,68a,68b A. Potenza,68a,68bA. Romero,68a,68b M. Ruspa,68a,68c R. Sacchi,68a,68bA. Solano,68a,68bA. Staiano,68a U. Tamponi,68a S. Belforte,69a V. Candelise,69a,69b,c M. Casarsa,69a F. Cossutti,69a G. Della Ricca,69a,69bB. Gobbo,69a C. La Licata,69a,69b M. Marone,69a,69bA. Schizzi,69a,69bT. Umer,69a,69bA. Zanetti,69aS. Chang,70A. Kropivnitskaya,70S. K. Nam,70D. H. Kim,71

G. N. Kim,71M. S. Kim,71D. J. Kong,71S. Lee,71Y. D. Oh,71H. Park,71A. Sakharov,71D. C. Son,71 T. J. Kim,72 M. S. Ryu,72J. Y. Kim,73D. H. Moon,73S. Song,73S. Choi,74D. Gyun,74B. Hong,74M. Jo,74H. Kim,74Y. Kim,74B. Lee,74 K. S. Lee,74S. K. Park,74Y. Roh,74H. D. Yoo,75M. Choi,76J. H. Kim,76I. C. Park,76G. Ryu,76Y. Choi,77Y. K. Choi,77

J. Goh,77 D. Kim,77E. Kwon,77J. Lee,77I. Yu,77A. Juodagalvis,78J. R. Komaragiri,79M. A. B. Md Ali,79,dd W. A. T. Wan Abdullah,79E. Casimiro Linares,80H. Castilla-Valdez,80E. De La Cruz-Burelo,80I. Heredia-de La Cruz,80 A. Hernandez-Almada,80R. Lopez-Fernandez,80A. Sanchez-Hernandez,80S. Carrillo Moreno,81F. Vazquez Valencia,81 I. Pedraza,82H. A. Salazar Ibarguen,82A. Morelos Pineda,83D. Krofcheck,84P. H. Butler,85S. Reucroft,85A. Ahmad,86 M. Ahmad,86 Q. Hassan,86 H. R. Hoorani,86W. A. Khan,86T. Khurshid,86M. Shoaib,86H. Bialkowska,87M. Bluj,87 B. Boimska,87T. Frueboes,87M. Górski,87M. Kazana,87K. Nawrocki,87K. Romanowska-Rybinska,87M. Szleper,87 P. Zalewski,87G. Brona,88K. Bunkowski,88M. Cwiok,88W. Dominik,88K. Doroba,88A. Kalinowski,88M. Konecki,88

J. Krolikowski,88 M. Misiura,88M. Olszewski,88P. Bargassa,89C. Beirão Da Cruz E Silva,89P. Faccioli,89 P. G. Ferreira Parracho,89M. Gallinaro,89L. Lloret Iglesias,89F. Nguyen,89J. Rodrigues Antunes,89J. Seixas,89 D. Vadruccio,89J. Varela,89P. Vischia,89S. Afanasiev,90I. Golutvin,90V. Karjavin,90V. Konoplyanikov,90V. Korenkov,90

G. Kozlov,90A. Lanev,90A. Malakhov,90V. Matveev,90,eeV. V. Mitsyn,90 P. Moisenz,90V. Palichik,90V. Perelygin,90 S. Shmatov,90N. Skatchkov,90V. Smirnov,90E. Tikhonenko,90A. Zarubin,90V. Golovtsov,91Y. Ivanov,91 V. Kim,91,ff E. Kuznetsova,91P. Levchenko,91V. Murzin,91V. Oreshkin,91I. Smirnov,91V. Sulimov,91L. Uvarov,91S. Vavilov,91

A. Vorobyev,91 An. Vorobyev,91 Yu. Andreev,92A. Dermenev,92S. Gninenko,92N. Golubev,92 M. Kirsanov,92 N. Krasnikov,92A. Pashenkov,92D. Tlisov,92A. Toropin,92V. Epshteyn,93V. Gavrilov,93N. Lychkovskaya,93V. Popov,93

I. Pozdnyakov,93G. Safronov,93S. Semenov,93A. Spiridonov,93V. Stolin,93E. Vlasov,93A. Zhokin,93V. Andreev,94 M. Azarkin,94I. Dremin,94M. Kirakosyan,94A. Leonidov,94G. Mesyats,94S. V. Rusakov,94A. Vinogradov,94A. Belyaev,95

E. Boos,95M. Dubinin,95,gg L. Dudko,95A. Ershov,95A. Gribushin,95V. Klyukhin,95O. Kodolova,95I. Lokhtin,95 S. Obraztsov,95S. Petrushanko,95V. Savrin,95A. Snigirev,95I. Azhgirey,96 I. Bayshev,96S. Bitioukov,96V. Kachanov,96 A. Kalinin,96D. Konstantinov,96V. Krychkine,96V. Petrov,96R. Ryutin,96A. Sobol,96L. Tourtchanovitch,96S. Troshin,96 N. Tyurin,96A. Uzunian,96A. Volkov,96P. Adzic,97,hhM. Ekmedzic,97J. Milosevic,97V. Rekovic,97J. Alcaraz Maestre,98

C. Battilana,98E. Calvo,98M. Cerrada,98M. Chamizo Llatas,98N. Colino,98B. De La Cruz,98A. Delgado Peris,98 D. Domínguez Vázquez,98A. Escalante Del Valle,98C. Fernandez Bedoya,98 J. P. Fernández Ramos,98J. Flix,98

M. C. Fouz,98P. Garcia-Abia,98O. Gonzalez Lopez,98S. Goy Lopez,98J. M. Hernandez,98M. I. Josa,98 E. Navarro De Martino,98A. Pérez-Calero Yzquierdo,98J. Puerta Pelayo,98A. Quintario Olmeda,98I. Redondo,98 L. Romero,98M. S. Soares,98C. Albajar,99J. F. de Trocóniz,99M. Missiroli,99D. Moran,99H. Brun,100J. Cuevas,100

J. Fernandez Menendez,100S. Folgueras,100 I. Gonzalez Caballero,100J. A. Brochero Cifuentes,101 I. J. Cabrillo,101 A. Calderon,101J. Duarte Campderros,101M. Fernandez,101G. Gomez,101A. Graziano,101A. Lopez Virto,101J. Marco,101

R. Marco,101 C. Martinez Rivero,101 F. Matorras,101F. J. Munoz Sanchez,101J. Piedra Gomez,101T. Rodrigo,101 A. Y. Rodríguez-Marrero,101A. Ruiz-Jimeno,101 L. Scodellaro,101 I. Vila,101R. Vilar Cortabitarte,101D. Abbaneo,102 E. Auffray,102G. Auzinger,102 M. Bachtis,102P. Baillon,102A. H. Ball,102D. Barney,102A. Benaglia,102 J. Bendavid,102

L. Benhabib,102 J. F. Benitez,102 P. Bloch,102 A. Bocci,102A. Bonato,102O. Bondu,102 C. Botta,102 H. Breuker,102 T. Camporesi,102G. Cerminara,102S. Colafranceschi,102,iiM. D’Alfonso,102D. d’Enterria,102A. Dabrowski,102A. David,102

F. De Guio,102 A. De Roeck,102 S. De Visscher,102E. Di Marco,102M. Dobson,102 M. Dordevic,102 B. Dorney,102 N. Dupont-Sagorin,102A. Elliott-Peisert,102G. Franzoni,102W. Funk,102D. Gigi,102K. Gill,102D. Giordano,102M. Girone,102

F. Glege,102R. Guida,102 S. Gundacker,102M. Guthoff,102J. Hammer,102 M. Hansen,102 P. Harris,102J. Hegeman,102 V. Innocente,102 P. Janot,102K. Kousouris,102K. Krajczar,102P. Lecoq,102 C. Lourenço,102 N. Magini,102L. Malgeri,102 M. Mannelli,102 J. Marrouche,102 L. Masetti,102 F. Meijers,102S. Mersi,102E. Meschi,102F. Moortgat,102 S. Morovic,102

M. Mulders,102S. Orfanelli,102 L. Orsini,102 L. Pape,102E. Perez,102 A. Petrilli,102 G. Petrucciani,102 A. Pfeiffer,102 M. Pimiä,102D. Piparo,102 M. Plagge,102 A. Racz,102G. Rolandi,102,jj M. Rovere,102 H. Sakulin,102C. Schäfer,102 C. Schwick,102 A. Sharma,102 P. Siegrist,102 P. Silva,102M. Simon,102 P. Sphicas,102,kk D. Spiga,102 J. Steggemann,102

(11)

B. Stieger,102M. Stoye,102 Y. Takahashi,102 D. Treille,102A. Tsirou,102G. I. Veres,102,sN. Wardle,102H. K. Wöhri,102 H. Wollny,102W. D. Zeuner,102W. Bertl,103K. Deiters,103W. Erdmann,103R. Horisberger,103Q. Ingram,103H. C. Kaestli,103

D. Kotlinski,103U. Langenegger,103D. Renker,103 T. Rohe,103F. Bachmair,104L. Bäni,104L. Bianchini,104 M. A. Buchmann,104B. Casal,104N. Chanon,104G. Dissertori,104M. Dittmar,104M. Donegà,104M. Dünser,104P. Eller,104 C. Grab,104D. Hits,104J. Hoss,104G. Kasieczka,104W. Lustermann,104B. Mangano,104A. C. Marini,104M. Marionneau,104

P. Martinez Ruiz del Arbol,104 M. Masciovecchio,104 D. Meister,104 N. Mohr,104 P. Musella,104 C. Nägeli,104,ll F. Nessi-Tedaldi,104F. Pandolfi,104F. Pauss,104L. Perrozzi,104M. Peruzzi,104M. Quittnat,104L. Rebane,104M. Rossini,104 A. Starodumov,104,mmM. Takahashi,104K. Theofilatos,104R. Wallny,104H. A. Weber,104C. Amsler,105,nnM. F. Canelli,105 V. Chiochia,105A. De Cosa,105A. Hinzmann,105T. Hreus,105 B. Kilminster,105C. Lange,105J. Ngadiuba,105D. Pinna,105 P. Robmann,105F. J. Ronga,105S. Taroni,105Y. Yang,105M. Cardaci,106K. H. Chen,106C. Ferro,106C. M. Kuo,106W. Lin,106 Y. J. Lu,106R. Volpe,106 S. S. Yu,106 P. Chang,107Y. H. Chang,107 Y. Chao,107K. F. Chen,107 P. H. Chen,107C. Dietz,107 U. Grundler,107W.-S. Hou,107Y. F. Liu,107R.-S. Lu,107M. Miñano Moya,107E. Petrakou,107J. F. Tsai,107Y. M. Tzeng,107 R. Wilken,107B. Asavapibhop,108G. Singh,108N. Srimanobhas,108N. Suwonjandee,108A. Adiguzel,109M. N. Bakirci,109,oo S. Cerci,109,ppC. Dozen,109I. Dumanoglu,109E. Eskut,109S. Girgis,109G. Gokbulut,109Y. Guler,109E. Gurpinar,109I. Hos,109

E. E. Kangal,109,qqA. Kayis Topaksu,109G. Onengut,109,rrK. Ozdemir,109,ss S. Ozturk,109,oo A. Polatoz,109 D. Sunar Cerci,109,pp B. Tali,109,ppH. Topakli,109,ooM. Vergili,109C. Zorbilmez,109I. V. Akin,110B. Bilin,110S. Bilmis,110

H. Gamsizkan,110,tt B. Isildak,110,uu G. Karapinar,110,vv K. Ocalan,110,wwS. Sekmen,110 U. E. Surat,110M. Yalvac,110 M. Zeyrek,110 E. A. Albayrak,111,xx E. Gülmez,111M. Kaya,111,yy O. Kaya,111,zzT. Yetkin,111,aaaK. Cankocak,112 F. I. Vardarlı,112

L. Levchuk,113P. Sorokin,113J. J. Brooke,114E. Clement,114D. Cussans,114H. Flacher,114J. Goldstein,114 M. Grimes,114G. P. Heath,114H. F. Heath,114J. Jacob,114L. Kreczko,114C. Lucas,114Z. Meng,114D. M. Newbold,114,bbb

S. Paramesvaran,114 A. Poll,114 T. Sakuma,114S. Seif El Nasr-storey,114S. Senkin,114V. J. Smith,114 K. W. Bell,115 A. Belyaev,115,cccC. Brew,115 R. M. Brown,115D. J. A. Cockerill,115J. A. Coughlan,115 K. Harder,115S. Harper,115

E. Olaiya,115 D. Petyt,115 C. H. Shepherd-Themistocleous,115 A. Thea,115I. R. Tomalin,115T. Williams,115 W. J. Womersley,115S. D. Worm,115 M. Baber,116R. Bainbridge,116 O. Buchmuller,116 D. Burton,116D. Colling,116 N. Cripps,116P. Dauncey,116G. Davies,116M. Della Negra,116P. Dunne,116A. Elwood,116W. Ferguson,116J. Fulcher,116 D. Futyan,116G. Hall,116G. Iles,116M. Jarvis,116G. Karapostoli,116M. Kenzie,116R. Lane,116R. Lucas,116,bbbL. Lyons,116 A.-M. Magnan,116S. Malik,116B. Mathias,116J. Nash,116A. Nikitenko,116,mm J. Pela,116 M. Pesaresi,116K. Petridis,116 D. M. Raymond,116S. Rogerson,116A. Rose,116C. Seez,116P. Sharp,116,aA. Tapper,116M. Vazquez Acosta,116T. Virdee,116

S. C. Zenz,116 J. E. Cole,117 P. R. Hobson,117 A. Khan,117 P. Kyberd,117D. Leggat,117D. Leslie,117I. D. Reid,117 P. Symonds,117L. Teodorescu,117M. Turner,117J. Dittmann,118K. Hatakeyama,118A. Kasmi,118H. Liu,118N. Pastika,118 T. Scarborough,118 Z. Wu,118O. Charaf,119S. I. Cooper,119C. Henderson,119 P. Rumerio,119 A. Avetisyan,120T. Bose,120

C. Fantasia,120P. Lawson,120C. Richardson,120 J. Rohlf,120J. St. John,120L. Sulak,120J. Alimena,121E. Berry,121 S. Bhattacharya,121G. Christopher,121D. Cutts,121 Z. Demiragli,121 N. Dhingra,121 A. Ferapontov,121A. Garabedian,121

U. Heintz,121 E. Laird,121 G. Landsberg,121Z. Mao,121M. Narain,121S. Sagir,121T. Sinthuprasith,121T. Speer,121 J. Swanson,121 R. Breedon,122 G. Breto,122 M. Calderon De La Barca Sanchez,122S. Chauhan,122M. Chertok,122 J. Conway,122R. Conway,122 P. T. Cox,122R. Erbacher,122M. Gardner,122W. Ko,122R. Lander,122M. Mulhearn,122 D. Pellett,122J. Pilot,122F. Ricci-Tam,122S. Shalhout,122J. Smith,122M. Squires,122D. Stolp,122M. Tripathi,122S. Wilbur,122

R. Yohay,122 R. Cousins,123 P. Everaerts,123 C. Farrell,123J. Hauser,123 M. Ignatenko,123 G. Rakness,123 E. Takasugi,123 V. Valuev,123 M. Weber,123K. Burt,124R. Clare,124J. Ellison,124J. W. Gary,124 G. Hanson,124J. Heilman,124 M. Ivova Rikova,124 P. Jandir,124E. Kennedy,124 F. Lacroix,124O. R. Long,124A. Luthra,124 M. Malberti,124 M. Olmedo Negrete,124 A. Shrinivas,124 S. Sumowidagdo,124S. Wimpenny,124 J. G. Branson,125G. B. Cerati,125 S. Cittolin,125R. T. D’Agnolo,125A. Holzner,125 R. Kelley,125D. Klein,125 J. Letts,125 I. Macneill,125 D. Olivito,125

S. Padhi,125 C. Palmer,125M. Pieri,125M. Sani,125V. Sharma,125S. Simon,125M. Tadel,125Y. Tu,125A. Vartak,125 C. Welke,125F. Würthwein,125A. Yagil,125G. Zevi Della Porta,125D. Barge,126J. Bradmiller-Feld,126C. Campagnari,126

T. Danielson,126A. Dishaw,126 V. Dutta,126 K. Flowers,126 M. Franco Sevilla,126 P. Geffert,126 C. George,126 F. Golf,126 L. Gouskos,126J. Incandela,126C. Justus,126N. Mccoll,126S. D. Mullin,126J. Richman,126D. Stuart,126W. To,126C. West,126 J. Yoo,126A. Apresyan,127A. Bornheim,127J. Bunn,127Y. Chen,127J. Duarte,127A. Mott,127H. B. Newman,127C. Pena,127 M. Pierini,127 M. Spiropulu,127J. R. Vlimant,127R. Wilkinson,127S. Xie,127R. Y. Zhu,127V. Azzolini,128A. Calamba,128

(12)

W. T. Ford,129A. Gaz,129M. Krohn,129E. Luiggi Lopez,129U. Nauenberg,129J. G. Smith,129K. Stenson,129S. R. Wagner,129 J. Alexander,130A. Chatterjee,130J. Chaves,130J. Chu,130S. Dittmer,130N. Eggert,130N. Mirman,130G. Nicolas Kaufman,130 J. R. Patterson,130A. Ryd,130E. Salvati,130L. Skinnari,130W. Sun,130W. D. Teo,130J. Thom,130J. Thompson,130J. Tucker,130 Y. Weng,130 L. Winstrom,130P. Wittich,130 D. Winn,131S. Abdullin,132M. Albrow,132J. Anderson,132G. Apollinari,132

L. A. T. Bauerdick,132 A. Beretvas,132 J. Berryhill,132 P. C. Bhat,132 G. Bolla,132 K. Burkett,132J. N. Butler,132 H. W. K. Cheung,132F. Chlebana,132S. Cihangir,132V. D. Elvira,132I. Fisk,132J. Freeman,132E. Gottschalk,132L. Gray,132 D. Green,132S. Grünendahl,132O. Gutsche,132J. Hanlon,132D. Hare,132R. M. Harris,132J. Hirschauer,132B. Hooberman,132 S. Jindariani,132M. Johnson,132U. Joshi,132B. Klima,132B. Kreis,132S. Kwan,132,aJ. Linacre,132D. Lincoln,132R. Lipton,132

T. Liu,132 R. Lopes De Sá,132 J. Lykken,132 K. Maeshima,132 J. M. Marraffino,132V. I. Martinez Outschoorn,132 S. Maruyama,132D. Mason,132P. McBride,132P. Merkel,132K. Mishra,132S. Mrenna,132S. Nahn,132C. Newman-Holmes,132

V. O’Dell,132O. Prokofyev,132 E. Sexton-Kennedy,132 A. Soha,132W. J. Spalding,132 L. Spiegel,132 L. Taylor,132 S. Tkaczyk,132N. V. Tran,132L. Uplegger,132E. W. Vaandering,132R. Vidal,132A. Whitbeck,132J. Whitmore,132F. Yang,132

D. Acosta,133P. Avery,133P. Bortignon,133D. Bourilkov,133 M. Carver,133D. Curry,133S. Das,133M. De Gruttola,133 G. P. Di Giovanni,133R. D. Field,133M. Fisher,133I. K. Furic,133J. Hugon,133J. Konigsberg,133A. Korytov,133T. Kypreos,133

J. F. Low,133K. Matchev,133H. Mei,133 P. Milenovic,133,dddG. Mitselmakher,133 L. Muniz,133A. Rinkevicius,133 L. Shchutska,133M. Snowball,133D. Sperka,133J. Yelton,133M. Zakaria,133S. Hewamanage,134S. Linn,134P. Markowitz,134 G. Martinez,134J. L. Rodriguez,134J. R. Adams,135T. Adams,135A. Askew,135J. Bochenek,135B. Diamond,135J. Haas,135 S. Hagopian,135V. Hagopian,135K. F. Johnson,135H. Prosper,135V. Veeraraghavan,135M. Weinberg,135M. M. Baarmand,136

M. Hohlmann,136H. Kalakhety,136 F. Yumiceva,136 M. R. Adams,137L. Apanasevich,137 D. Berry,137R. R. Betts,137 I. Bucinskaite,137R. Cavanaugh,137 O. Evdokimov,137 L. Gauthier,137 C. E. Gerber,137D. J. Hofman,137 P. Kurt,137 C. O’Brien,137

I. D. Sandoval Gonzalez,137 C. Silkworth,137P. Turner,137N. Varelas,137B. Bilki,138,eeeW. Clarida,138 K. Dilsiz,138M. Haytmyradov,138V. Khristenko,138J.-P. Merlo,138H. Mermerkaya,138,fffA. Mestvirishvili,138A. Moeller,138

J. Nachtman,138 H. Ogul,138Y. Onel,138 F. Ozok,138,xx A. Penzo,138R. Rahmat,138S. Sen,138P. Tan,138E. Tiras,138 J. Wetzel,138K. Yi,138I. Anderson,139B. A. Barnett,139B. Blumenfeld,139S. Bolognesi,139D. Fehling,139A. V. Gritsan,139 P. Maksimovic,139C. Martin,139M. Swartz,139M. Xiao,139P. Baringer,140A. Bean,140G. Benelli,140C. Bruner,140J. Gray,140 R. P. Kenny III,140D. Majumder,140M. Malek,140M. Murray,140D. Noonan,140S. Sanders,140J. Sekaric,140R. Stringer,140 Q. Wang,140J. S. Wood,140 I. Chakaberia,141 A. Ivanov,141 K. Kaadze,141 S. Khalil,141 M. Makouski,141Y. Maravin,141 L. K. Saini,141N. Skhirtladze,141I. Svintradze,141J. Gronberg,142D. Lange,142F. Rebassoo,142D. Wright,142C. Anelli,143

A. Baden,143 A. Belloni,143 B. Calvert,143 S. C. Eno,143 J. A. Gomez,143N. J. Hadley,143S. Jabeen,143R. G. Kellogg,143 T. Kolberg,143 Y. Lu,143A. C. Mignerey,143 K. Pedro,143Y. H. Shin,143A. Skuja,143 M. B. Tonjes,143S. C. Tonwar,143

A. Apyan,144R. Barbieri,144K. Bierwagen,144 W. Busza,144I. A. Cali,144 L. Di Matteo,144G. Gomez Ceballos,144 M. Goncharov,144D. Gulhan,144M. Klute,144Y. S. Lai,144Y.-J. Lee,144A. Levin,144P. D. Luckey,144C. Paus,144D. Ralph,144 C. Roland,144G. Roland,144G. S. F. Stephans,144K. Sumorok,144D. Velicanu,144J. Veverka,144B. Wyslouch,144M. Yang,144

M. Zanetti,144 V. Zhukova,144B. Dahmes,145 A. Gude,145 S. C. Kao,145 K. Klapoetke,145 Y. Kubota,145 J. Mans,145 S. Nourbakhsh,145R. Rusack,145A. Singovsky,145N. Tambe,145 J. Turkewitz,145J. G. Acosta,146 S. Oliveros,146

E. Avdeeva,147K. Bloom,147 S. Bose,147 D. R. Claes,147 A. Dominguez,147 R. Gonzalez Suarez,147 J. Keller,147 D. Knowlton,147I. Kravchenko,147J. Lazo-Flores,147F. Meier,147F. Ratnikov,147G. R. Snow,147M. Zvada,147J. Dolen,148

A. Godshalk,148I. Iashvili,148 A. Kharchilava,148A. Kumar,148S. Rappoccio,148G. Alverson,149E. Barberis,149 D. Baumgartel,149M. Chasco,149A. Massironi,149D. M. Morse,149D. Nash,149T. Orimoto,149D. Trocino,149R.-J. Wang,149

D. Wood,149 J. Zhang,149 K. A. Hahn,150A. Kubik,150N. Mucia,150N. Odell,150 B. Pollack,150 A. Pozdnyakov,150 M. Schmitt,150S. Stoynev,150 K. Sung,150M. Trovato,150M. Velasco,150S. Won,150A. Brinkerhoff,151K. M. Chan,151

A. Drozdetskiy,151 M. Hildreth,151C. Jessop,151 D. J. Karmgard,151 N. Kellams,151K. Lannon,151S. Lynch,151 N. Marinelli,151 Y. Musienko,151,eeT. Pearson,151 M. Planer,151 R. Ruchti,151G. Smith,151 N. Valls,151M. Wayne,151 M. Wolf,151A. Woodard,151L. Antonelli,152J. Brinson,152 B. Bylsma,152 L. S. Durkin,152 S. Flowers,152A. Hart,152 C. Hill,152R. Hughes,152K. Kotov,152T. Y. Ling,152W. Luo,152D. Puigh,152M. Rodenburg,152B. L. Winer,152H. Wolfe,152

H. W. Wulsin,152 O. Driga,153P. Elmer,153J. Hardenbrook,153 P. Hebda,153S. A. Koay,153 P. Lujan,153 D. Marlow,153 T. Medvedeva,153 M. Mooney,153J. Olsen,153 P. Piroué,153X. Quan,153H. Saka,153 D. Stickland,153,c C. Tully,153 J. S. Werner,153A. Zuranski,153 E. Brownson,154S. Malik,154 H. Mendez,154J. E. Ramirez Vargas,154 V. E. Barnes,155 D. Benedetti,155D. Bortoletto,155L. Gutay,155Z. Hu,155M. K. Jha,155M. Jones,155K. Jung,155M. Kress,155N. Leonardo,155

(13)

D. H. Miller,155N. Neumeister,155F. Primavera,155B. C. Radburn-Smith,155 X. Shi,155 I. Shipsey,155D. Silvers,155 A. Svyatkovskiy,155F. Wang,155W. Xie,155L. Xu,155J. Zablocki,155N. Parashar,156J. Stupak,156A. Adair,157B. Akgun,157

K. M. Ecklund,157F. J. M. Geurts,157W. Li,157B. Michlin,157 B. P. Padley,157R. Redjimi,157 J. Roberts,157J. Zabel,157 B. Betchart,158A. Bodek,158P. de Barbaro,158R. Demina,158Y. Eshaq,158T. Ferbel,158M. Galanti,158A. Garcia-Bellido,158

P. Goldenzweig,158J. Han,158A. Harel,158 O. Hindrichs,158A. Khukhunaishvili,158 S. Korjenevski,158 G. Petrillo,158 M. Verzetti,158D. Vishnevskiy,158R. Ciesielski,159 L. Demortier,159K. Goulianos,159 C. Mesropian,159 S. Arora,160

A. Barker,160 J. P. Chou,160 C. Contreras-Campana,160E. Contreras-Campana,160D. Duggan,160 D. Ferencek,160 Y. Gershtein,160 R. Gray,160E. Halkiadakis,160D. Hidas,160E. Hughes,160 S. Kaplan,160A. Lath,160 S. Panwalkar,160 M. Park,160S. Salur,160S. Schnetzer,160D. Sheffield,160 S. Somalwar,160 R. Stone,160 S. Thomas,160P. Thomassen,160 M. Walker,160K. Rose,161S. Spanier,161A. York,161 O. Bouhali,162,gggA. Castaneda Hernandez,162 M. Dalchenko,162

M. De Mattia,162S. Dildick,162R. Eusebi,162W. Flanagan,162J. Gilmore,162T. Kamon,162,hhhV. Khotilovich,162 V. Krutelyov,162 R. Montalvo,162 I. Osipenkov,162Y. Pakhotin,162 R. Patel,162 A. Perloff,162 J. Roe,162 A. Rose,162 A. Safonov,162I. Suarez,162A. Tatarinov,162K. A. Ulmer,162N. Akchurin,163C. Cowden,163J. Damgov,163C. Dragoiu,163 P. R. Dudero,163J. Faulkner,163K. Kovitanggoon,163S. Kunori,163S. W. Lee,163T. Libeiro,163I. Volobouev,163E. Appelt,164

A. G. Delannoy,164S. Greene,164 A. Gurrola,164W. Johns,164C. Maguire,164Y. Mao,164A. Melo,164M. Sharma,164 P. Sheldon,164 B. Snook,164S. Tuo,164J. Velkovska,164M. W. Arenton,165S. Boutle,165B. Cox,165B. Francis,165 J. Goodell,165R. Hirosky,165 A. Ledovskoy,165H. Li,165C. Lin,165C. Neu,165 E. Wolfe,165 J. Wood,165 C. Clarke,166

R. Harr,166 P. E. Karchin,166C. Kottachchi Kankanamge Don,166 P. Lamichhane,166 J. Sturdy,166D. A. Belknap,167 D. Carlsmith,167 M. Cepeda,167S. Dasu,167L. Dodd,167S. Duric,167E. Friis,167 R. Hall-Wilton,167 M. Herndon,167 A. Hervé,167 P. Klabbers,167 A. Lanaro,167C. Lazaridis,167 A. Levine,167 R. Loveless,167A. Mohapatra,167 I. Ojalvo,167

T. Perry,167G. A. Pierro,167G. Polese,167I. Ross,167T. Sarangi,167A. Savin,167 W. H. Smith,167D. Taylor,167 C. Vuosalo167and N. Woods167

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2

Institut für Hochenergiephysik der OeAW, Wien, Austria

3National Centre for Particle and High Energy Physics, Minsk, Belarus 4

Universiteit Antwerpen, Antwerpen, Belgium

5Vrije Universiteit Brussel, Brussel, Belgium 6

Université Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium 8

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

9Université de Mons, Mons, Belgium 10

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12a

Universidade Estadual Paulista, São Paulo, Brazil

12bUniversidade Federal do ABC, São Paulo, Brazil 13

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15

Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17

Universidad de Los Andes, Bogota, Colombia

18University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia 19

University of Split, Faculty of Science, Split, Croatia

20Institute Rudjer Boskovic, Zagreb, Croatia 21

University of Cyprus, Nicosia, Cyprus

22Charles University, Prague, Czech Republic 23

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

25Department of Physics, University of Helsinki, Helsinki, Finland 26

Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28

(14)

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 30

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

32Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France 33

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany 37

Deutsches Elektronen-Synchrotron, Hamburg, Germany

38University of Hamburg, Hamburg, Germany 39

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 41

University of Athens, Athens, Greece

42University of Ioánnina, Ioánnina, Greece 43

Wigner Research Centre for Physics, Budapest, Hungary

44Institute of Nuclear Research ATOMKI, Debrecen, Hungary 45

University of Debrecen, Debrecen, Hungary

46National Institute of Science Education and Research, Bhubaneswar, India 47

Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49

Saha Institute of Nuclear Physics, Kolkata, India

50Bhabha Atomic Research Centre, Mumbai, India 51

Tata Institute of Fundamental Research, Mumbai, India

52Indian Institute of Science Education and Research (IISER), Pune, India 53

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

54University College Dublin, Dublin, Ireland 55a

INFN Sezione di Bari, Bari, Italy

55bUniversità di Bari, Bari, Italy 55c

Politecnico di Bari, Bari, Italy

56aINFN Sezione di Bologna, Bologna, Italy 56b

Università di Bologna, Bologna, Italy

57aINFN Sezione di Catania, Catania, Italy 57b

Università di Catania, Catania, Italy

57cCSFNSM, Catania, Italy 58a

INFN Sezione di Firenze, Firenze, Italy

58bUniversità di Firenze, Firenze, Italy 59

INFN Laboratori Nazionali di Frascati, Frascati, Italy

60aINFN Sezione di Genova, Genova, Italy 60b

Università di Genova, Genova, Italy

61aINFN Sezione di Milano-Bicocca, Milano, Italy 61b

Università di Milano-Bicocca, Milano, Italy

62aINFN Sezione di Napoli, Napoli, Italy 62b

Università di Napoli’Federico II’, Napoli, Italy

62cUniversità della Basilicata (Potenza), Napoli, Italy 62d

Università G. Marconi (Roma), Napoli, Italy

63aINFN Sezione di Padova, Padova, Italy 63b

Università di Padova, Padova, Italy

63cUniversità di Trento (Trento), Padova, Italy 64a

INFN Sezione di Pavia, Pavia, Italy

64bUniversità di Pavia, Pavia, Italy 65a

INFN Sezione di Perugia, Perugia, Italy

65bUniversità di Perugia, Perugia, Italy 66a

INFN Sezione di Pisa, Pisa, Italy

66bUniversità di Pisa, Pisa, Italy 66c

Scuola Normale Superiore di Pisa, Pisa, Italy

67aINFN Sezione di Roma, Roma, Italy 67b

Università di Roma, Roma, Italy

68aINFN Sezione di Torino, Torino, Italy 68b

(15)

68cUniversità del Piemonte Orientale (Novara), Torino, Italy 69a

INFN Sezione di Trieste, Trieste, Italy

69bUniversità di Trieste, Trieste, Italy 70

Kangwon National University, Chunchon, Korea

71Kyungpook National University, Daegu, Korea 72

Chonbuk National University, Jeonju, Korea

73Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 74

Korea University, Seoul, Korea

75Seoul National University, Seoul, Korea 76

University of Seoul, Seoul, Korea

77Sungkyunkwan University, Suwon, Korea 78

Vilnius University, Vilnius, Lithuania

79National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia 80

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

81Universidad Iberoamericana, Mexico City, Mexico 82

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

83Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico 84

University of Auckland, Auckland, New Zealand

85University of Canterbury, Christchurch, New Zealand 86

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

87National Centre for Nuclear Research, Swierk, Poland 88

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

89Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal 90

Joint Institute for Nuclear Research, Dubna, Russia

91Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 92

Institute for Nuclear Research, Moscow, Russia

93Institute for Theoretical and Experimental Physics, Moscow, Russia 94

P.N. Lebedev Physical Institute, Moscow, Russia

95Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 96

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

97University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 98

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

99Universidad Autónoma de Madrid, Madrid, Spain 100

Universidad de Oviedo, Oviedo, Spain

101Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 102

CERN, European Organization for Nuclear Research, Geneva, Switzerland

103Paul Scherrer Institut, Villigen, Switzerland 104

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

105Universität Zürich, Zurich, Switzerland 106

National Central University, Chung-Li, Taiwan

107National Taiwan University (NTU), Taipei, Taiwan 108

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand

109Cukurova University, Adana, Turkey 110

Middle East Technical University, Physics Department, Ankara, Turkey

111Bogazici University, Istanbul, Turkey 112

Istanbul Technical University, Istanbul, Turkey

113National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 114

University of Bristol, Bristol, United Kingdom

115Rutherford Appleton Laboratory, Didcot, United Kingdom 116

Imperial College, London, United Kingdom

117Brunel University, Uxbridge, United Kingdom 118

Baylor University, Waco, Texas 76798, USA

119The University of Alabama, Tuscaloosa, Alabama 35487, USA 120

Boston University, Boston, Massachusetts 02215, USA

121Brown University, Providence, Rhode Island 02912, USA 122

University of California, Davis, Davis, California 95616, USA

123University of California, Los Angeles, California 90095, USA 124

University of California, Riverside, Riverside, California 92521, USA

125University of California, San Diego, La Jolla, California 92093, USA 126

Referências

Documentos relacionados

a relação que se pode estabelecer entre aquilo que um afásico já carrega consigo (o.. velho) e a forma como esse conhecimento é transformado pela afasia, gerando um novo, que

O eixo Educação e Ensino conta com sete artigos a seguir relacionados: “A disciplina de Geografia e o uso de jogos pedagógicos enquanto recurso metodológico de ensino:

O controle das emissões de dióxido de enxofre gasoso, provenientes da queima de carvão que contém enxofre, pode ser feito pela reação desse gás com uma suspensão de hidróxido

esperados Produtos esperados Recursos necessários Descarte inadequado de resíduos no rio VIGIAGUA - Instrumento de implementação das ações de vigilância da qualidade

Despite what one has analysed so far, we ask ourselves if we cannot go further in the interpretation of Jn 19,34: is it possible to read a sacramental meaning in the water element

As oportunidades de trabalho e com uma remuneração tradicional (recebimento mensal de salário) que muitas vezes não ocorrem nas propriedades rurais familiares são apresentados

Results from experiments in buffer with added ethanol suggest that the greater heat sensitivity shown in wines can be largely attributed to ethanol, although potentiation of this

Como objetivos específicos buscou-se: a caracterizar as principais produções agrícolas desenvolvidas pelos pequenos produtores para a geração de renda, na escala temporal de 1997-2015