• Nenhum resultado encontrado

O aquecimento dos oceanos pode ajudar zoantídeos a superar competitivamente hidrocorais ramificados?

N/A
N/A
Protected

Academic year: 2021

Share "O aquecimento dos oceanos pode ajudar zoantídeos a superar competitivamente hidrocorais ramificados?"

Copied!
57
0
0

Texto

(1)

1

Universidade Federal do Rio Grande do Norte

Centro de Biociências

Programa de Pós-Graduação em Ecologia

Dissertação de Mestrado

O aquecimento dos oceanos pode ajudar zoantídeos a superar

competitivamente hidrocorais ramificados?

Bruno Charnaux Lonzetti

(2)

2

O aquecimento dos oceanos pode ajudar zoantídeos a superar

competitivamente hidrocorais ramificados?

Natal,

março de 2020

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ecologia, do Centro de Biociências da Universidade Federal do Rio Grande do Norte, como parte dos requisitos para obtenção do título de Mestre em Ecologia.

Orientador: Dr. Guilherme Ortigara Longo Coorientador: Dr. Edson Vieira Aparecido

(3)

3 Universidade Federal do Rio Grande do Norte - UFRN

Sistema de Bibliotecas - SISBI

Catalogação de Publicação na Fonte. UFRN - Biblioteca Setorial Prof. Leopoldo Nelson - -Centro de Biociências - CB Lonzetti, Bruno Charnaux.

O aquecimento dos oceanos pode ajudar zoantídeos a superar competitivamente hidrocorais ramificados? / Bruno Charnaux Lonzetti. - Natal, 2020.

57 f.: il.

Dissertação (Mestrado) - Universidade Federal do Rio Grande do Norte. Centro de Biociências. Programa de Pós-graduação em

Ecologia.

Orientador: Prof. Dr. Guilherme Ortigara Longo. Coorientador: Prof. Dr. Edson Aparecido Vieira.

1. Mudanças globais - Dissertação. 2. Coral - Dissertação. 3. Interação - Dissertação. 4. Competição - Dissertação. 5. Química - Dissertação. I. Longo, Guilherme Ortigara. II. Vieira, Edson Aparecido. III. Universidade Federal do Rio Grande do Norte. IV. Título.

RN/UF/BSCB CDU 504.7 Elaborado por KATIA REJANE DA SILVA - CRB-15/351

(4)

4 AGRADECIMENTOS

Agradeço à minha família por me ajudar a abraçar a oportunidade de morar do

outro lado do Brasil e descobrir um novo mundo profissional. Especificamente,

agradeço à minha mãe pelo amor incondicional que não deixa ser esquecido, ao meu pai

pelo jeito bobo-alegre e pela confiança depositada em qualquer ideia que venha a surgir,

e à minha irmã, mulher que admiro e tenho como referência para as grandes decisões da

vida. Vocês são especiais, são minha família. Um beijo!

Agradeço aos amigos da minha cidade natal, que me apoiaram durante a jornada

de mudança e se mantiveram presentes mesmo com a distância. A amizade de vocês é

uma joia que guardo com carinho. Vocês são meus irmãos, minha segunda família!

Agradeço aos amigos do Natal por me mostrarem quantas pessoas incríveis

existem no mundo. A entrega e o companheirismo de vocês é algo que faz aquecer o

coração e permite ver o mundo com olhos de mais amor. Conhecer pessoas tão

apaixonadas pelo que fazem me ajudou a entender um pouco mais sobre mim e a aceitar

que o mais belo da vida mora naquilo que te move.

Agradeço especificamente aos meus orientadores, Gui e Ed. O parágrafo anterior

é sobre vocês também. A paciência, a ajuda e a credibilidade que me deram são de valor

inestimável. Trabalhar ao lado de vocês faz eu me sentir gigante. Acho que nunca vi

pessoas mais dedicadas àquilo que amam e esse é um dos maiores ensinamentos que me

deram: ache aquilo que ama e seja bom e feliz pra demais fazendo o que faz! Obrigado!!

Agradeço à Helô por toda a parceria e leveza cultivadas. Estar do seu lado é

sinônimo de diversão e carinho. Obrigado por toda essa energia e bom humor! A

(5)

5 flores. É um presente maravilho conhecer e dividir momentos com as pessoas, gatas e

cachorra que te cercam. Obrigado!!

Agradeço à galera do LECOM, laboratório/casa que une pessoas de uma forma

que só vendo. Vocês são exemplo, simples assim. Obrigado por toda a ajuda!

Agradeço ao Dido, pessoa que nos recebe de braços e porta de casa abertos pra

trabalharmos num dos lugares mais bonitos que já vi. Obrigado por toda a ajuda em

campo e por todas as conversas. Você é uma daquelas pessoas que torna os dias de

trabalho mais felizes!

Agradeço à gestão da APARC por confiarem nas propostas de pesquisa. É um

prazer enorme ter a oportunidade de conhecer o excelente trabalho que desempenham.

Vocês fazem parte daquele aprendizado sobre ser foda! Parabéns!!

Agradeço a todos do Programa de Pós-Graduação em Ecologia da UFRN,

especialmente ao corpo docente. Vocês são professores e pessoas incríveis! Nunca

imaginei me sentir tão em casa em tão pouco tempo. Obrigado por todo o conhecimento

passado e por toda a horizontalidade na relação que criam com a gente. Vocês agregam

aquele sentimento essencial de pertencimento. Parabéns!!

Agradeço ao CNPq pela bolsa de mestrado, que viabilizou todo esse projeto de

pesquisa e de vida. Obrigado também pelo financiamento especificamente direcionado a

essa pesquisa. Obrigado!

Agradeço ao Serrapilheira pelo financiamento do projeto carro-chefe do

LECOM. Vocês contribuem pra magia acontecer e são símbolos de resistência e de

(6)

6 Por fim, agradeço a tod@s @s cientistas brasileir@s. Vocês têm uma raça

inexplicável. Obrigado pela resistência e pelo trabalho incansável por um futuro melhor.

O presente trabalho foi realizado com apoio da Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de

(7)

7 RESUMO

Interações competitivas entre organismos sésseis em ambientes recifais geralmente ocorrem através do contato físico, dada a limitação espacial nesses ambientes. O aquecimento dos oceanos é um dos fatores que podem afetar os resultados dessas interações, alterando a habilidade competitiva e o potencial de recuperação dos organismos. O Painel Intergovernamental sobre Mudanças Climáticas prevê em sua projeção com as maiores emissões de gases do efeito estufa um aumento médio na temperatura do Oceano Atlântico de 3 °C para o ano 2100. Millepora alcicornis é uma das únicas espécies de coral ramificado no Brasil, contribuindo para a complexidade estrutural no ambiente recifal. O zoantídeo Palythoa caribaeorum é um dos competidores de corais mais importantes do Atlântico Oeste. Ambas as espécies competem entre si desde a costa da Flórida até o Sudeste brasileiro. Se M. alcicornis suportar os 3 °C de aumento na temperatura, seguirá competindo com P. caribaeorum, pois esta, apesar de ter sua distribuição afetada, ainda ocorrerá em áreas recifais como o Caribe e o Nordeste brasileiro. Não se sabe como o aumento de temperatura afetará essa interação. Indo além de previsões da distribuição de espécies e levando em conta que interações também podem ser moduladas pelo aquecimento dos oceanos, estudamos a interação competitiva entre P. caribaeorum e M. alcicornis através de experimentos em campo e laboratório, abordando particularmente: o efeito do contato físico na saúde de

M. alcicornis (campo e laboratório); o potencial de recuperação de M. alcicornis após o

fim do contato (campo e laboratório); se essa interação é mediada por compostos químicos presentes na superfície de P. caribaeorum (campo e laboratório); e como o aquecimento do oceano pode afetar esses processos (laboratório; 27 °C vs. 30 °C). Descobrimos que o contato físico com P. caribaeorum causa mais danos do que com o seu controle em campo e em laboratório a 27 °C. A recuperação de M. alcicornis em laboratório a 27 °C e em campo ocorreu dentro de 10 dias. Algas filamentosas colonizaram a área de M. alcicornis que teve contato com P. caribaeorum em laboratório a 30 °C, dificultando sua capacidade de recuperação. O contato com o extrato químico de P. caribaeorum em laboratório a 27 °C e em campo causou mais danos a M. alcicornis do que o contato com seu controle. O contato com o extrato e seu controle causaram danos iguais a M. alcicornis em laboratório a 30 °C. Nossos resultados indicam que P. caribaeorum supera competitivamente M. alcicornis através de mecanismos físicos e químicos, e que um aumento de 3 °C na temperatura do oceano prejudica a recuperação de M. alcicornis e torna o aspecto físico do contato mais importante do que o aspecto químico. A taxa de sobrecrescimento de P. caribaeorum em M. alcicornis tende a subir com a intensificação dessa interação à medida que o oceano aquece, podendo levar à perda de complexidade estrutural e, consequentemente, de diversidade em recifes do Caribe e Brasil. Entender como o aquecimento dos oceanos pode afetar as interações competitivas é fundamental para projetarmos o futuro dos recifes.

(8)

8 ABSTRACT

Competitive interactions between sessile organisms in reef environments generally occur through physical contact, given the spatial limitation in these environments. Ocean warming is one of the factors that can affect the outcomes of these interactions, changing the competitive ability and recovery capacity of the organisms. The Intergovernmental Panel on Climate Change predicts and average increase of 3 °C in the temperature of the Atlantic Ocean for the year 2100, under highest greenhouse gas emission projection. The hydrocoral Millepora alcicornis is one of the only branching coral species in Brazil, contributing to structural complexity in reef environments. The zoanthid Palythoa caribaeorum is one of the most important coral competitors in the Western Atlantic. Both species compete with each other from the coast of Florida to southeastern Brazil. If M. alcicornis withstands the 3 °C increase in temperature, it will continue to compete with P. caribaeorum, which will still occur in reef areas in the Caribbean and northeastern Brazil, despite minor distribution shifts. Going beyond predictions of species distribution, the effect of ocean warming on species interactions is poorly known. Because interactions can be modulated by ocean warming, we studied the competitive interaction between P. caribaeorum and M. alcicornis through field and laboratory experiments, addressing in particular: the effect of physical contact on the health of M. alcicornis (field and laboratory); the recovery potential of M. alcicornis after the end of contact (field and laboratory); whether this interaction is mediated by chemical compounds present on the surface of P. caribaeorum (field and laboratory); and how ocean warming can affect these processes (laboratory: 27 °C vs. 30 °C). We found that physical contact with P. caribaeorum causes more damage than with its control in the field and in the laboratory at 27 °C. The recovery of M. alcicornis in the laboratory at 27 °C and in the field occurred within 10 days. Filamentous algae colonized the area of M. alcicornis that had contact with P. caribaeorum in the laboratory at 30 °C, jeopardizing its recovery. Contact with chemical extract of P.

caribaeorum in the laboratory at 27 °C and in the field caused more damage to M. alcicornis than contact with its control. Contact with the extract and its control caused

equal damage to M. alcicornis in the laboratory at 30 °C. Our results indicate that P.

caribaeorum outcompete M. alcicornis through physical and chemical mechanisms, and

that an increase of 3 °C in the ocean temperature impairs the recovery of M. alcicornis and makes the physical aspect of contact more important than the chemical. The rate of

P. caribaeorum overgrowth in M. alcicornis tends to increase with the intensification of

this interaction as the ocean warms, which can lead to a loss of structural complexity and, consequently, of diversity in reefs in the Caribbean and Brazil. Understanding how ocean warming can affect competitive interactions in reef environments is essential to project the future of these ecosystems.

(9)

9 LISTA DE FIGURAS

Figure 1 - A) Red dot indicating the Parrachos of Rio do Fogo in Rio Grande do Norte, Brazil (5°24’S, 35°36’W). B) Parrachos de Rio do Fogo viewed from the boat._____ 25 Figure 2 – Millepora alcicornis colony on the Parrachos of Rio do Fogo. ________ 26 Figure 3 – Millepora alcicornis fragments deployed on the reef flat. A) Fragment attached to a nail by a cable tie. B) Replicate group of fragments with treatments (from right to left): control fragment with no contact treatment; fragment in contact with Palythoa caribaeorum chunk; fragment in contact with the inert mimic dishwasher; and a chunk of P. caribaeorum that was followed up to evaluate survival and damage related to the experimental manipulation. __________________________________ 27 Figure 4 - Laboratory experiment setup. A) Millepora alcicornis fragment glued to squared plastic base deployed to aquarium bottom with Velcro®. B) The two aquaria setup with running seawater in a closed system and with proper lighting conditions. 29 Figure 5 – A) Palythoa caribaeorum on the Parrachos of Rio do Fogo. B) Competitive interaction between P. caribaeorum and Millepora alcicornis on the Parrachos of Rio do Fogo. ____________________________________________________________ 34 Figure 6 - Damage area (bleached or dead; cm2 mean ± SE) over time on Millepora alcicornis fragments in contact with Palythoa caribaeorum and inert mimic. Controls without any contact never experienced damage and so are not shown. Post hoc Tukey’s Test determined differences between days. Day 1 (A), day 3 (A), day 13 (B). _______ 35 Figure 7 - Damage area (bleached or dead; cm2 mean ± SE) over time on Millepora alcicornis fragments in 27°C and 30°C in contact with Palythoa caribaeorum and inert mimic. Controls without any contact never experienced damage and so are not shown. Post hoc Tukey’s Test determined the temperature treatments trajectory over time. 27 °C: day 1 (AB), day 3 (C), day 5 (BC), day 13 (AB), day 23 (A). 30°C: day 1 (A), day 3 (B), day 5 (B), day 13 (AB), day 23 (AB). ___________________________________ 37 Figure 8 – Bar plots of the color parameters L, a and b (graphs A, B and C, respectively) observed on Millepora alcicornis branches in the field after 24h of contact with control and treated gels. The y-axis on graphs A and C is cut for better data visualization. _________________________________________________________ 39 Figure 9 – Bar plots of the color parameters L, a and b (graphs A, B and C, respectively) observed on Millepora alcicornis fragments in the laboratory after 24h of contact with control and treated gels under 27 °C (blue background; ncontrol = 19; ntreated

(10)

10

= 19) and 30 °C temperatures (orange background; ncontrol = 20; ntreated = 20). The y-axis on graphs A and C is cut for better data visualization. ____________________ 40

(11)

11 SUMÁRIO APRESENTAÇÃO ____________________________________________________ 12 REFERÊNCIAS _____________________________________________________ 15 CAPÍTULO ÚNICO __________________________________________________ 19 ABSTRACT _________________________________________________________ 21 INTRODUCTION ____________________________________________________ 22 METHODS _________________________________________________________ 24 Competitive interactions survey _____________________________________________ 25 Physical interaction under current temperature ________________________________ 26 Physical interaction under warmer temperature _______________________________ 28 Effect of P. caribaeorum surface chemical compounds ___________________________ 29 Data acquisition __________________________________________________________ 31 RESULTS ___________________________________________________________ 33

Competitive interactions survey _____________________________________________ 33 Physical interaction under current temperature ________________________________ 34 Physical interaction under warmer temperature _______________________________ 35 Effect of Palythoa caribaeorum surface chemical compounds _____________________ 38 DISCUSSION _______________________________________________________ 41 ACKNOWLEDGEMENTS _____________________________________________ 45 REFERENCES ______________________________________________________ 46 CONCLUSÃO _______________________________________________________ 56

(12)

12 APRESENTAÇÃO

Comunidades e populações dos ecossistemas mais variados compartilham de

uma mesma característica, dependem dos recursos disponíveis no ambiente para sua

sobrevivência. Em nível de indivíduo, quando dois organismos apresentam certa ou

total sobreposição de nicho ecológico, presume-se que deve haver competição pelos

recursos necessários a cada um quando estes forem limitados (MacArthur and Levins

1967). Esta limitação pode ocorrer por diversas vias, como por exemplo a variação

sazonal de recursos alimentares, e a disponibilidade de espaços físicos a serem

ocupados quando se tratando de recursos abióticos.

O espaço físico em ambientes recifais é um dos recursos mais limitados e

limitantes para organismos sésseis que se fixam na matriz recifal (Jackson 1977). A

falta de espaço aberto e apto à colonização faz com que organismos vizinhos se tornem

competidores em busca de expansão ou sobrevivência (Jackson 1977). Em recifes de

corais, que são aqueles construídos majoritariamente por corais escleractíneos (que

depositam esqueleto calcário), a diversidade desses organismos é elevada e

competidores de corais, como as algas, costumam apresentar abundância discreta. Já em

outros tipos de recifes, como os marginais, aqueles que ocorrem em condições que não

são as consideradas ótimas (Kleypas et al. 1999), a diversidade e abundância de corais

são reduzidas, tornando a abundância de competidores elevada. A competição entre

corais e outros organismos em ambos os tipos de recifes pode comprometer o estado de

saúde dos corais (Rasher and Hay 2010).

Os ambientes recifais estão entre os sistemas mais diversos do mundo (Connell

1978; Martínez et al. 2007), tornando essas formações cruciais para a manutenção de

processos ecossistêmicos, bem como das comunidades humanas associadas (Moberg

(13)

13 muitas espécies e são fundamentais para o ciclo de vida de muitas delas (Coni et al.

2013). Dessa forma, eles agregam uma enorme variedade de organismos que integram

uma complexa rede de interações e de manutenção da diversidade (Moberg and Folke

1999).

Corais são organismos sensíveis a variações de temperatura e sofrem com os

impactos globais como o aquecimento dos oceanos (Hughes et al. 2017). Estes

organismos perdem grande parte da sua fonte energética (Falkowski et al. 1984) quando

estão em temperaturas elevadas (Glynn 1983) e ficam menos resistentes aos

competidores por não poderem alocar energia suficiente para combatê-los (McClanahan

et al. 2009). Esse fenômeno é conhecido como o branqueamento de corais e tem

acontecido com maior frequência e intensidade à medida que os oceanos aquecem por

conta das mudanças climáticas (Hughes et al. 2018).

O branqueamento de corais se caracteriza pela interrupção da relação de

simbiose entre esses organismos e microalgas, chamadas zooxantelas, que vivem em

seu tecido e lhes conferem pigmentação, alimentação e proteção contra raios solares

(Buddemeier and Fautin 1993). A interrupção dessa simbiose pode se dar por conta de

diversos motivos, sendo um deles a elevação de temperatura. As zooxantelas aumentam

suas taxas reprodutiva e fotossintética com o aumento da temperatura, causando uma

superproliferação e produção excessiva de oxigênio que leva ao estresse oxidativo dos

corais. A resposta destes é expulsar as zooxantelas total ou parcialmente de seus tecidos.

Como consequência, os corais perdem a coloração e grande parte do seu alimento, a

glicose proveniente da fotossíntese realizada pelas zooxantelas (Falkowski et al. 1984;

Burriesci et al. 2012).

O branqueamento em massa de corais tem levado à perda desses organismos em

(14)

14 riqueza de espécies sustentada pelos ambientes recifais (Pratchett et al. 2018). Essa

perda se deve ao fato dos corais serem os maiores responsáveis pela complexidade

estrutural dos recifes (Graham and Nash 2012), e esta, por sua vez, ser a responsável

pela riqueza agregada a esses ambientes (Darling et al. 2017).

Recifes marginais não são necessariamente formados por corais ou com alta

abundância desses organismos (Mies et al. 2020), ainda assim a presença de corais

contribui para a riqueza desses ambientes. Assim, esses ambientes podem apresentar

respostas ao aquecimento dos oceanos diferentes das observadas em recifes de corais

nos centros de diversidade como os da região do Caribe e Indo-Pacífico (Mies et al.

2020). Recifes marginais também podem nos dar uma ideia de como será o futuro dos

recifes atualmente dominados por corais frente ao aquecimento dos oceanos.

Nos recifes brasileiros, considerados marginais, um dos mais importantes

agregadores de complexidade estrutural é o hidrocoral Millepora alcicornis Linnaeus,

1758 (Leão and Dominguez 2000; Leão et al. 2003). Essa espécie também apresenta

uma relação de simbiose com as zooxantelas e, portanto, também é impactada pelo

aquecimento dos oceanos. O zoantídeo Palythoa caribaeorum Duchassaing e

Michelotti, 1860, é bastante comum nos recifes brasileiros (Aued et al. 2018) e sua

distribuição também será afetada com o aquecimento dos oceanos (Durante et al. 2018).

A combinação do fator ‘aumento de temperatura’ com o fator ‘competição por espaço’ resulta em um cenário de impacto para os recifes que deve ser investigado a fundo.

Com o intuito de avaliar como o aquecimento dos oceanos pode modular os

efeitos da competição entre Millepora alcicornis e um competidor comum, o zoantídeo

Palythoa caribaeorum, fizemos experimentações em campo e em laboratório

reproduzindo a interação em temperatura atual e futura, e observando os efeitos sobre

(15)

15 tecido de M. alcicornis e que esses danos seriam potencializados em temperaturas

maiores. Descobrimos que, em condições atuais de temperatura, P. caribaeorum

danifica M. alcicornis através de mecanismos físicos e químicos, e que M. alcicornis

demonstra recuperação do dano dentro de 10 dias após o fim do contato. Um aumento

de 3 °C na temperatura prejudica a recuperação de M. alcicornis e torna o aspecto físico

do contato mais importante do que o aspecto químico. A taxa de sobrecrescimento de P.

caribaeorum em M. alcicornis tende a subir com a intensificação dessa interação à

medida que o oceano aquece, levando à perda de complexidade estrutural e,

consequentemente, de diversidade em recifes onde a interação ocorre.

REFERÊNCIAS

Aued, A.W., Smith, F., Quimbayo, J.P., Cândido, D. V., Longo, G.O., Ferreira, C.E.L.,

Witman, J.D., Floeter, S.R., and Segal, B. 2018. Large-scale patterns of benthic marine

communities in the Brazilian Province. PLoS One 13(6): e0198452. doi:10.1371/journal.pone.0198452.

Buddemeier, R.W., and Fautin, D.G. 1993. Coral Bleaching as an Adaptive Mechanism.

Bioscience 43(5): 320–326. doi:10.2307/1312064.

Burriesci, M.S., Raab, T.K., and Pringle, J.R. 2012. Evidence that glucose is the major

transferred metabolite in dinoflagellate-cnidarian symbiosis. J. Exp. Biol. 215(19):

3467–3477. doi:10.1242/jeb.070946.

Coni, E.O.C., Ferreira, C.M., de Moura, R.L., Meirelles, P.M., Kaufman, L., and

Francini-Filho, R.B. 2013. An evaluation of the use of branching fire-corals (Millepora

spp.) as refuge by reef fish in the Abrolhos Bank, eastern Brazil. Environ. Biol. Fishes

(16)

16 Connell, J.H. 1978. Diversity in Tropical Rain Forests and Coral Reefs. Science (80-. ).

199(4335): 1302–1310. doi:10.1126/science.199.4335.1302.

Darling, E.S., Graham, N.A.J., Januchowski-Hartley, F.A., Nash, K.L., Pratchett, M.S.,

and Wilson, S.K. 2017. Relationships between structural complexity, coral traits, and

reef fish assemblages. Coral Reefs 36(2): 561–575. doi:10.1007/s00338-017-1539-z.

Durante, L.M., Cruz, I.C.S., and Lotufo, T.M.C. 2018. The effect of climate change on

the distribution of a tropical zoanthid ( Palythoa caribaeorum ) and its ecological

implications. PeerJ 6: e4777. doi:10.7717/peerj.4777.

Falkowski, P.G., Dubinsky, Z., Muscatine, L., and Porter, J.W. 1984. Bioenergetics

Symbiotic Coral. Bioscience 34(11): 705–709.

Glynn, P.W. 1983. Extensive ‘Bleaching’ and Death of Reef Corals on the Pacific Coast of Panamá. Environ. Conserv. 10(2): 149–154. doi:10.1017/S0376892900012248.

Graham, N.A.J., and Nash, K.L. 2012. The importance of structural complexity in coral

reef ecosystems. Coral Reefs 32(2): 315–326. doi:10.1007/s00338-012-0984-y.

Hughes, T.P., Anderson, K.D., Connolly, S.R., Heron, S.F., Kerry, J.T., Lough, J.M.,

Baird, A.H., Baum, J.K., Berumen, M.L., Bridge, T.C., Claar, D.C., Eakin, C.M.,

Gilmour, J.P., Graham, N.A.J., Harrison, H., Hobbs, J.-P.A., Hoey, A.S., Hoogenboom,

M., Lowe, R.J., McCulloch, M.T., Pandolfi, J.M., Pratchett, M., Schoepf, V., Torda, G.,

and Wilson, S.K. 2018. Spatial and temporal patterns of mass bleaching of corals in the

Anthropocene. Science (80-. ). 359(6371): 80–83. doi:10.1126/science.aan8048.

Hughes, T.P., Kerry, J.T., Álvarez-Noriega, M., Álvarez-Romero, J.G., Anderson, K.D.,

Baird, A.H., Babcock, R.C., Beger, M., Bellwood, D.R., Berkelmans, R., Bridge, T.C.,

(17)

17 Dalton, S.J., Diaz-Pulido, G., Eakin, C.M., Figueira, W.F., Gilmour, J.P., Harrison,

H.B., Heron, S.F., Hoey, A.S., Hobbs, J.-P.A., Hoogenboom, M.O., Kennedy, E. V.,

Kuo, C., Lough, J.M., Lowe, R.J., Liu, G., McCulloch, M.T., Malcolm, H.A.,

McWilliam, M.J., Pandolfi, J.M., Pears, R.J., Pratchett, M.S., Schoepf, V., Simpson, T.,

Skirving, W.J., Sommer, B., Torda, G., Wachenfeld, D.R., Willis, B.L., and Wilson,

S.K. 2017. Global warming and recurrent mass bleaching of corals. Nature 543(7645):

373–377. doi:10.1038/nature21707.

Jackson, J.B.C. 1977. Competition on Marine Hard Substrata: The Adaptive

Significance of Solitary and Colonial Strategies. Am. Nat. 111(980): 743–767.

doi:10.1086/283203.

Kittinger, J.N., Finkbeiner, E.M., Glazier, E.W., and Crowder, L.B. 2012. Human

Dimensions of Coral Reef Social-Ecological Systems. Ecol. Soc. 17(4): art17.

doi:10.5751/ES-05115-170417.

Kleypas, J.A., McManu, J.W., and Mene, L.A.B. 1999. Environmental limits to coral

reef development: Where do we draw the line? Am. Zool. 39(1): 146–159.

doi:10.1093/icb/39.1.146.

Leão, Z.M. a. N., Kikuchi, R.K.P., and Testa, V. 2003. Corals and coral reefs of Brazil.

In Latin American Coral Reefs. Elsevier. pp. 9–52.

doi:10.1016/B978-044451388-5/50003-5.

Leão, Z.M.A.N., and Dominguez, J.M.L. 2000. Tropical coast of Brazil. Mar. Pollut.

Bull. 41(1–6): 112–122. doi:10.1016/S0025-326X(00)00105-3.

MacArthur, R., and Levins, R. 1967. The Limiting Similarity, Convergence, and

(18)

18 Martínez, M.L., Intralawan, A., Vázquez, G., Pérez-Maqueo, O., Sutton, P., and

Landgrave, R. 2007. The coasts of our world: Ecological, economic and social

importance. Ecol. Econ. 63(2–3): 254–272. doi:10.1016/j.ecolecon.2006.10.022.

McClanahan, T.R., Weil, E., Cortés, J., Baird, a H., and Ateweberhan, M. 2009.

Consequences of coral bleaching for sessile reef organisms. In Coral Bleaching.

doi:10.1007/978-3-540-69775-6_8.

Mies, M., Francini-Filho, R.B., Zilberberg, C., Garrido, A.G., Longo, G.O., Laurentino,

E., Guth, A.Z., Sumida, P.Y.G., and Banha, T.N.S. 2020. South Atlantic coral reefs are

major global warming refugia and less susceptible to bleaching. Front. Mar. Sci.

7(June): 514. doi:10.3389/FMARS.2020.00514.

Moberg, F., and Folke, C. 1999. Ecological goods and services of coral reef ecosystems.

Ecol. Econ. 29(2): 215–233. doi:10.1016/S0921-8009(99)00009-9.

Pratchett, M.S., Thompson, C.A., Hoey, A.S., and Cowman, P.F. 2018. Coral

Bleaching. Edited ByM.J.H. van Oppen and J.M. Lough. Springer International

Publishing, Cham. doi:10.1007/978-3-319-75393-5.

Rasher, D.B., and Hay, M.E. 2010. Chemically rich seaweeds poison corals when not

controlled by herbivores. Proc. Natl. Acad. Sci. 107(21): 9683–9688. doi:10.1073/pnas.0912095107.

(19)

19

CAPÍTULOÚNICO

Can ocean warming help zoanthids outcompete branching hydrocorals?

A ser submetido para a revista ‘Coral Reefs’

(20)

20

Can ocean warming help zoanthids outcompete branching hydrocorals?

Lonzetti B. C.1, Vieira E. A.1, Longo G. O.1*

1

Laboratório de Ecologia Marinha, Departamento de Oceanografia e Limnologia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59014-002, Brasil.

______________________________________________ * Corresponding author: Guilherme O. Longo

Email: guilherme.o.longo@gmail.com Telephone number: +55 84 3342 4969

(21)

21 ABSTRACT

Competitive interactions between sessile organisms in reef environments generally occur through physical contact, given the spatial limitation in these environments. Ocean warming is one of the factors that can affect the outcomes of these interactions, changing the competitive ability and recovery capacity of the organisms. The Intergovernmental Panel on Climate Change predicts and average increase of 3 °C in the temperature of the Atlantic Ocean for the year 2100, under highest greenhouse gas emission projection. The hydrocoral Millepora alcicornis is one of the only branching coral species in Brazil, contributing to structural complexity in reef environments. The zoanthid Palythoa caribaeorum is one of the most important coral competitors in the Western Atlantic. Both species compete with each other from the coast of Florida to southeastern Brazil. If M. alcicornis withstands the 3 °C increase in temperature, it will continue to compete with P. caribaeorum, which will still occur in reef areas in the Caribbean and northeastern Brazil, despite minor distribution shifts. Going beyond predictions of species distribution, the effect of ocean warming on species interactions is poorly known. Because interactions can be modulated by ocean warming, we studied the competitive interaction between P. caribaeorum and M.

alcicornis through field and laboratory experiments, addressing in particular: the effect

of physical contact on the health of M. alcicornis (field and laboratory); the recovery potential of M. alcicornis after the end of contact (field and laboratory); whether this interaction is mediated by chemical compounds present on the surface of P.

caribaeorum (field and laboratory); and how ocean warming can affect these processes

(laboratory: 27 °C vs. 30 °C). We found that physical contact with P. caribaeorum causes more damage than with its control in the field and in the laboratory at 27 °C. The recovery of M. alcicornis in the laboratory at 27 °C and in the field occurred within 10 days. Filamentous algae colonized the area of M. alcicornis that had contact with P.

caribaeorum in the laboratory at 30 °C, jeopardizing its recovery. Contact with

chemical extract of P. caribaeorum in the laboratory at 27 °C and in the field caused more damage to M. alcicornis than contact with its control. Contact with the extract and its control caused equal damage to M. alcicornis in the laboratory at 30 °C. Our results indicate that P. caribaeorum outcompete M. alcicornis through physical and chemical mechanisms, and that an increase of 3 °C in the ocean temperature impairs the recovery of M. alcicornis and makes the physical aspect of contact more important than the chemical. The rate of P. caribaeorum overgrowth in M. alcicornis tends to increase with the intensification of this interaction as the ocean warms, which can lead to a loss of structural complexity and, consequently, of diversity in reefs in the Caribbean and Brazil. Understanding how ocean warming can affect competitive interactions in reef environments is essential to project the future of these ecosystems.

(22)

22 INTRODUCTION

Reefs aggregate organisms by providing habitat, refuge and food, resulting in a

complex network of interactions and maintenance of diversity (Moberg and Folke

1999). The arrangement of these environments counts with substrate physical space

often as a limiting factor to sessile organisms’ settlement (Jackson 1977). Therefore,

corals are generally in contact with a variety of other organisms, such as algae. Some

seaweeds produce anti-herbivory or competition-suppressor secondary metabolites (Hay

2009), that are allocated rather on the surface than inside seaweeds (Nylund et al. 2007;

Longo and Hay 2017) and are deployed on corals upon contact (Rasher and Hay 2014).

Such contacts lead to either physically or chemically mediated competitive interactions

that can result in coral microbiota destabilization (Pratte et al. 2018), bleaching and

necrosis (Rasher and Hay 2010). These outcomes can be followed by coral death

(Bonaldo and Hay 2014) and subsequent overgrowth by the competitor (Diaz-Pulido et

al. 2009), favoring a dominance that reduces reef diversity.

The outcome of competitive interactions between corals and other reef

organisms can change with ocean warming (e.g. reduced coral

photosynthesis/respiration ratio; Brown et al. 2019) and acidification (e.g. increased

coral tissue loss and mortality rate; Diaz-Pulido et al. 2011; Del Monaco et al. 2017).

The Intergovernmental Panel on Climate Change’s (IPCC) latest projection using

business as usual greenhouse gases emissions (Representative Concentration Pathway

(RCP) 8.5) foresees a 3 °C average increase in the temperature of the Atlantic Ocean for

the year 2100. With ocean warming, corals’ symbiosis with dinoflagellates can be

disrupted by the thermal stress, resulting in coral death if higher temperatures persist for

a prolonged period of time (Hughes et al. 2018). The loss of dinoflagellates leaves

(23)

23 dinoflagellates’ photosynthesis (Burriesci et al. 2012). By these mechanisms, ocean warming can indirectly affect corals’ ability to compete, since thermal-stressed corals have less energy to allocate in competition efforts and so are more prone to be

outperformed by their competitors. However, added to the fact that most

coral-competition studies investigated coral-seaweed interactions (but see Cruz et al. 2016),

few studies have assessed how temperature modulates the outcome of a

coral-invertebrate interaction (see Almeida Saá et al. 2020), which is a common interaction in

several reefs worldwide (Grace 2017; Roth et al. 2018).

As reefs structural complexity is largely supported by coral cover, specifically

by branching species, coral loss leads to reef flattening (Graham and Nash 2012). Since

richness and diversity on these environments are positively linked to their structural

complexity (Darling et al. 2017), reduced coral cover implicates in less rich and diverse

reefs (Rogers et al. 2018). In the context of global changes, understanding how ocean

warming will affect corals’ competitive interactions can provide important information

to foresee reef health in future warming scenarios.

Considering that coral-invertebrate competitive interactions may also negatively

affect coral health (Cruz et al. 2016), with consequences for reef structural complexity,

and that the outcome of this interaction may be modulated by ocean warming, we

investigated the interaction between the branching hydrocoral Millepora alcicornis

Linnaeus, 1758 and the zoanthid Palythoa caribaeorum Duchassaing and Michelotti,

1860 under current and warmer temperatures predicted for the year 2100. Unlike in

other reef systems, branching corals such as the ones from the genus Acropora and

Montipora do not occur in Brazilian reefs. Among the few branching coral species in

Brazil is M. alcicornis, which is the main structural complexity aggregator in Brazilian

(24)

24 benthic organisms (Leão and Dominguez 2000; Leão et al. 2003; Leal et al. 2013, 2015;

Coni et al. 2013). The zoanthid P. caribaeorum is a fast-growing and

chemically-packed competitor (Ciereszko and Karns 1973; Bastidas and Bone 1996) that tends to

overgrow its competitors (Suchanek and Green 1981; Almeida Saá et al. 2020) and

commonly occurs in Brazilian reefs (Aued et al. 2018). Both species co-occur across the

Atlantic Ocean (M. alcicornis – from Florida, USA, to Southeast Brazil; and P.

caribaeorum – from Florida, USA, to Santa Catarina, Brazil) at shallow depths (Sebens

1982; Lewis 2006). If M. alcicornis withstands the 3 °C temperature increase projected

by the IPCC for 2100, it will continue to compete with P. caribaeorum, as this species,

despite having its distribution affected, will still occur in reef areas such as the

Caribbean and the Northeast of Brazil (Durante et al. 2018). By manipulating the

interaction between these species, we experimentally investigated in the field and in the

laboratory (i) the impact of P. caribaeorum direct contact on M. alcicornis, (ii) M.

alcicornis damaged tissue recovery, (iii) how ocean warming will modulate the

outcome of this interaction and (iv) if P. caribaeorum chemical compounds play a role

in the interaction. We expected: (i) direct contact with P. caribaeorum to cause M.

alcicornis tissue damage; (ii) M. alcicornis damaged tissue to recover better under

current temperature than warmer; (iii) P. caribaeorum direct contact to cause greater

damage under warmer temperature than current; (iv) P. caribaeorum chemical

compounds to play a role in the interaction.

METHODS

We conducted the fieldwork on the Parrachos of Rio do Fogo, a shallow patchy

reef located within a marine protected area (APARC, Portuguese acronym for Coral

(25)

25 Northeast Brazil (Figure 1). This reef complex is located six kilometers offshore,

presents relevant scenic beauty for tourism, sheltering corals and a great diversity of fish

and other marine species (Maida and Ferreira 1997; Feitosa et al. 2002).

Figure 1 - A) Red dot indicating the Parrachos of Rio do Fogo in Rio Grande do Norte, Brazil (5°24’S, 35°36’W). B) Parrachos de Rio do Fogo viewed from the boat.

COMPETITIVE INTERACTIONS SURVEY

To determine the most common organisms competing with the hydrocoral

Millepora alcicornis (Figure 2), we photographed 42 colonies in a circular motion

around the colony aiming its basis. We then used the photo sequence of each colony to

visually estimate the contact percentage for each major group (i. e. crustose coralline

(26)

26

Figure 2 – Millepora alcicornis colony on the Parrachos of Rio do Fogo.

PHYSICAL INTERACTION UNDER CURRENT TEMPERATURE

In order to test the impact of physical competition between Millepora alcicornis and

Palythoa caribaeorum, we first simulated the contact interaction in the field. For that,

we took three healthy fragments (no sign of bleaching, epibionts or bioeroders;

measuring 6 to 8 cm) from 20 M. alcicornis colonies (n = 60) and disposed them

attached to stainless steel nails previously inserted on the reef flat matrix (Figure 3A

and 3B). Our replicates consisted of one fragment used as a manipulative control (no

contact), one subjected to contact with a chunk of P. caribaeorum simulating

competition with the zoanthid and one kept in contact with an inert mimic (kitchen

sponge without antibacterial and antimicrobial agents), which enabled us to separate the

(27)

27

caribaeorum chunks and its inert mimic had similar sizes (5 x 5 cm) and were kept in

contact with the hydrocoral fragments by a cable tie gently disposed around the pair of

fragment-contact treatment. We also held adjacent chunks of P. caribaeorum attached

alone to stainless steel nails for each replicate group. This was a precaution that enabled

the evaluation of health and survival of P. caribaeorum after cutting and detaching from

the substrate manipulation (all chunks survived and did not significantly differ in color).

We assessed fragments’ health through photographs of the contact area as close to them

as possible, in four steps: prior to contact introduction, 1, 3 and 13 days later. A ruler

was framed in all photos to set the size scale. On the first assessment (first day), contact

was removed, a photograph taken, and contact replaced. On the second assessment

(third day), contact was definitely removed. After 13 days, photographs were also taken

and they could give us an idea of damage duration and recovery.

Figure 3 – Millepora alcicornis fragments deployed on the reef flat. A) Fragment attached to a nail by a cable tie. B) Replicate group of fragments with treatments (from right to left): control fragment with no contact treatment; fragment in contact with Palythoa caribaeorum chunk; fragment in contact with the inert mimic dishwasher; and a chunk of P. caribaeorum that was followed up to evaluate survival and damage related to the experimental manipulation.

(28)

28 PHYSICAL INTERACTION UNDER WARMER TEMPERATURE

In order to test the effects of contact competition under controlled conditions in

laboratory and how different scenarios of temperature could modulate the outcome, we

took six healthy fragments (6 to 8 cm) from other 11 Millepora alcicornis colonies in

the field (n = 66), and transported them under sea water with aeration inside cooler

containers to replicate the same interactions in the lab under current and future

temperatures. Fragments were gently glued to squared plastic bases with a drop of

cyanoacrylate-based glue (Super Glue by Loctite®) (Dizon et al. 2008) (Figure 4A) and

evenly distributed (n = 33) in two identical aquaria (80 cm length, 50 cm width, 25 cm

height). Each aquarium was a closed seawater system with physical, biological and

chemical filtration, and in proper lighting conditions (4606.03 lux ± 327.41 SE; field

average for three months) with 12h photoperiod with simulated gradual dawn and dusk.

One aquaria was kept at 27 °C (field average for three months ± 0.13 SE) and the other

at 30 °C (RCP 8.5 projection for 2100; IPCC 2014) using a thermostat (Figure 4B).

Room temperature was maintained at 27 °C with an air-conditioning system.

Deployment of the plastic bases with fragments was ensured by attaching them to

aquarium bottom using Velcro®. We are aware that grouping contact treatments in one

single aquaria per temperature conditions, formally generates pseudo-replicates

(Underwood 1997). However, because the interactions and data collected were

restricted to the point of contact and that, excluding the contacted areas, corals remained

healthy regardless of the contact treatment, we used them as true replicates. We divided

the six fragments of each colony evenly in the aquariums, three fragments per aquarium.

This way we could control for contact and temperature treatments. We also held

adjacent chunks of P. caribaeorum deployed alone to each aquarium bottom. This was a

(29)

29 experimental manipulation. Since there was 100% survival rate and health maintenance

for this precaution procedure in the field, we decided to hold six (instead of one per

replicate group) adjacent chunks of P. caribaeorum in each aquarium (all chunks

survived and did not significantly differ in color, the health proxy). Salinity and pH

remained stable throughout the experiment and varied minimally among temperature

treatments (for the 27°C treatment: average salinity 38ppm; average pH 8.7; and for the

30°C treatment: average salinity 39ppm; average pH 8.8). We assessed fragments with

photographs of the contact area as closely to them as possible in six steps: prior to

contact introduction, 1, 3, 5, 13 and 23 days later. On the first assessment, contact was

removed, a photograph taken and contact replaced. On the second assessment, contact

was definitely removed. As we were conducting maintenance activities in the lab every

day, we could add the fifth and 23rd day assessments to better evaluate the recovering

process.

Figure 4 - Laboratory experiment setup. A) Millepora alcicornis fragment glued to squared plastic base deployed to aquarium bottom with Velcro®. B) The two aquaria setup with running seawater in a closed system and with proper lighting conditions.

EFFECT OF PALYTHOA CARIBAEORUM SURFACE CHEMICAL COMPOUNDS

In order to clarify if the chemistry of Palythoa caribaeorum played an important

role in the competitive outcome, we extracted chunks of P. caribaeorum (16 cm x 16

(30)

30 cm) from the study area and transported them to the laboratory in seawater with aeration

in containers. To acquire P. caribaeorum lipid-soluble surface extracts, in the laboratory

we poured 50 ml of hexane in a round mouth (5 cm diameter) glass recipient, drained

and discarded the seawater from the surface of the P. caribaeorum chunk by vertical

positioning and gently shaking it up and down and then attached the chunk to the recipient’s mouth with polyps facing the hexane. With the P. caribaeorum chunk pressed against the recipient to avoid hexane leakage, we turned the recipient upside

down and gently stirred it in a circular horizontal motion for 30 seconds with P.

caribaeorum polyps in contact with the hexane. We then transferred the solution to a

volumetric flask, coupled it to a rotary evaporator and separated the chemical

compounds found in P. caribaeorum form the hexane at a 30° C water bath. After that,

we transferred this extract to a smaller recipient, added an extra 15 ml of hexane to the

pre-used volumetric flask, vigorously shaking it to solubilize any remaining P.

caribaeorum extract, transferred this solution to the same smaller recipient already

containing P. caribaeorum extract and coupled this smaller recipient to the rotary

evaporator for a second round of separation of the chemical compounds found in P.

caribaeorum from the hexane. We repeated this whole process for four P. caribaeorum

chunks and in the end mixed all the extracts together. In this experiment we adapted an

extraction method for algae (Longo and Hay 2017), using hexane as a solvent because it

allows the acquirement of lipid-soluble metabolites from the surface of organisms

(Longo and Hay 2017), not penetrating wet cells or causing cell lysis if applied for 30

seconds (De Nys et al. 1998; Rasher and Hay 2010). We decided to use only surface

compounds from P. caribaeorum because it is a more realistic representation of what

happens in the interaction since the contact occurs surface to surface, where the

(31)

31 2007; Lane et al. 2009). It is worth stating that we do not know if the compounds tested

are produced by the zoanthid itself or by its inhabiting microbiota.

In a beaker, we poured 9.5 ml of water and 0.196 g of Phytagel™

(Sigma-Aldrich, USA), mixed for homogenization, microwave heated the solution for 10

seconds, added 1 ml of the mixed extracts after resuspending them in 4 ml of hexane (1

ml for each chunk), mixed again, poured this solution on a strips-cut form containing a

fine mesh bellow, allowed it to dry and cut the gel-mesh strips to obtain 1 x 2 x 0.3 cm

gel-mesh rectangles. We followed the same procedure for controls, but added 1 ml of

hexane instead of P. caribaeorum extract (sensu Longo and Hay 2017).

In the study area, we gently attached the extract and control strips to different

branches of the same M. alcicornis colony (n = 20 colonies) using cable ties. We

assessed the treatments after 24h by taking pictures of the contact areas using the

camera flash to standardize light conditions in all pictures. In the laboratory experiment,

we followed the same procedure of M. alcicornis fragments collection and aquaria

placement performed on the laboratory experiment conducted with chunks of P.

caribaeorum, but now for 20 colonies (four fragments from each). We gently attached

the extract and control strips to the fragments on 27° C (n = 40, two of each colony) and

30° C (n = 40, two of each colony) aquariums using cable ties. We assessed the

treatments after 24 h by taking pictures of the contact areas using the camera flash to

standardize light conditions in all pictures, following the same procedure described

above.

DATA ACQUISITION

We used IMAGEJ v. 1.52a (Schneider et al. 2012) to measure the impacted area (cm2 –

(32)

32 experiments. For the photos of the chemical experiments, we used the L*a*b* model on

Adobe Photoshop® to extract color values of the contact area, as done by other studies

(Yam and Papadakis 2004; León et al. 2006; Afshari-Jouybari and Farahnaky 2011).

The L*a*b* model consists of three parameters, one for luminance or lightness (L*),

and two color gradients ranging from green to red (a*) and blue to yellow (b*). Each

one of these parameters can be interpreted as follows: the higher the value, the greater

the lightness (L*), the more red (a*), and the more yellow (b*). In biological terms,

higher values for lightness represent brighter colors, meaning bleaching, and lower

values for a* and b* represent less healthy coral color.

Data analysis

For the data on damaged area from the field experiment, after checking for the

absence of outliers and data normality and sphericity, we performed two-way repeated

measures ANOVA (p < 0.05), considering the effects of contact treatment (fixed, 2

levels: Palythoa caribaeorum and inert mimic), time (repeated, 3 levels: 1, 3 and 13

days), and the interaction between both. For significant factors, we conducted a

one-way ANOVA checking for data homogeneity and normality, considering the effects of

time (significant source, see results), and post hoc Tukey’s Test for pairwise

comparisons. For lab damage area data, after checking for the absence of outliers and

data normality and sphericity, we performed three-way repeated measures ANOVA (p <

0.05), considering the effects of contact treatment (fixed, 2 levels: P. caribaeorum and

inert mimic), temperature treatment (fixed, 2 levels: current and future) and time

(repeated, 5 levels: 1, 3, 5, 13 and 23 days), and the interaction among them. For

significant factors or interactions, we conducted two-way ANOVAs, considering the

effects of contact and temperature treatments for each time separately (except for the

(33)

33 comparison when factors or interactions were significant, checking for data

homogeneity and normality and applying Bonferroni correction for multiple

comparisons (p = 0.0125). We performed the analysis using the software Systat 12. For

the chemical experiment data, we compared ‘color’ of the damaged area between treatment and control, considering the three color parameters (L*, a* and b*) as

response variables. For that, we followed a multivariate approach building a similarity

matrix considering Euclidian distance. The similarity matrix was used to build a

non-metric multidimensional scaling plot (nMDS) for better visualization (Clarke 1993) and

to properly test the effects of treatment (field) and treatment and temperature

(laboratory) on color composition with PERMANOVA tests using 999 permutations

(Anderson 2001). For significant effects we performed a SIMPER analysis to obtain the

color parameters that were most important for the differences observed (Clarke 1993).

We performed these analyses using the software Primer 6.

RESULTS

COMPETITIVE INTERACTIONS SURVEY

The organisms that had the highest mean contact percentage per colony among the 42

surveyed Millepora alcicornis colonies were the epilithical algal matrix (58.38% ± 5.34

SE) and the zoanthid Palythoa caribaeorum (17.19% ± 5.54 SE; Figures 5A and 5B),

followed by crustose coralline algae (CCA) (14.14% ± 2.59 SE), macroalgae (9.29% ±

3.18 SE) and others (1% ± 0.95 SE). Considering that there is no clear evidence that the

epilithical algal matrix can inflict significant damage to corals via physical contact

(Jompa and McCook 2003a, 2003b; Pratte et al. 2018); that CCA is related to coral

(34)

34 zoanthid is a fast-growing and effective competitor (Bastidas and Bone 1996); we

conducted the experiments with the zoanthid P. caribaeorum.

Figure 5 – A) Palythoa caribaeorum on the Parrachos of Rio do Fogo. B) Competitive interaction between P.

caribaeorum and Millepora alcicornis on the Parrachos of Rio do Fogo.

PHYSICAL INTERACTION UNDER CURRENT TEMPERATURE

Contact with Palythoa caribaeorum caused a greater damage area on Millepora

alcicornis fragments compared to contact with the inert mimic (p < 0.05; Table 1). P. caribaeorum caused on average damages 1.84 times greater after one day of contact, 1.4

times greater after three days of contact and 1.66 times greater by the end of the 13 days

of experiment, when compared to the mimetic contact. Damage area peaked after the

first day of contact, stabilized until the third day and shrunk in about half by the 13th day

(35)

35

Table 1 - Two-way repeated measures ANOVA examining the area damaged by contact treatments on

Millepora alcicornis fragments (p < 0.05). Bold p-values stand for significant effects.

Between subjects Source Df MS F p Contact 1 79.27 8.48 0.006 Error 38 9.35 Within subjects Source Df MS F p Time 2 47.37 21.78 < 0.001 Time x Contact 2 4.61 2.12 0.13 Error 76 2.18

Figure 6 - Damage area (bleached or dead; cm2 mean ± SE) over time on Millepora alcicornis fragments in contact with Palythoa caribaeorum and inert mimic. Controls without any contact never experienced damage and so are not shown. Post hoc Tukey’s Test determined differences between days. Day 1 (A), day 3 (A), day 13 (B).

PHYSICAL INTERACTION UNDER WARMER TEMPERATURE

Damage extension depended on a combination of temperature, contact and time

(Table 2; Figure 7). After one day of contact, temperature interacted with contact

0 1 2 3 4 5 6 7 0 1 3 (contact removal) 13 Fr ag m en t d am ag e ar ea ( cm 2, m ea n ± S E)

Days after contact introduction

(36)

36 treatments (p < 0.01) showing that contact with inert mimic caused less damage than

contact with Palythoa caribaeorum at 27 °C (p < 0.05) and with inert mimic at 30 °C (p

< 0.05). Despite apparent for temperature, no treatment differed from the third to the

fifth day (contacts removed on the third day). From the 13th day onwards, Millepora

alcicornis fragments at 30 °C maintained greater damage areas compared to the 27 °C

temperature (p < 0.01), with average damages 1.61 times greater in the 13th day and

2.08 times greater in the 23rd day. The damage trajectory at 27 °C peaked on the third

day, showing signs of recovery from the 13th day (3rd ≠ 13th, p < 0.05) to the smallest

damage area on the 23rd. At 30 °C damage trajectory peaked on the third day, but did

not show signs of recovery until the 23rd day (3rd = 23rd, p > 0.05). In addition, 41% of

the M. alcicornis fragments (two treated with inert mimic and seven with P.

caribaeorum) at 30 °C had their damaged area partially colonized by algae on the 23rd

(37)

37

Table 2 - Three-way repeated measures ANOVA examining the impact of contact and temperature on

Millepora alcicornis fragments damaged area (p < 0.05). Bold p-values stand for significant effects.

Between subjects Source Df MS F p Temperature 1 53.86 5.01 0.03 Contact 1 6.03 0.56 0.46 Temperature x Contact 1 9.38 0.87 0.36 Error 40 10.75 Within subjects Source Df MS F p Time 4 43.08 44.56 < 0.001 Time x Temperature 4 7.70 7.97 < 0.001 Time x Contact 4 0.27 0.28 0.89

Time x Temperature x Contact 4 3.61 3.73 0.01

Error 160 0.97

Figure 7 - Damage area (bleached or dead; cm2 mean ± SE) over time on Millepora alcicornis fragments in 27°C and 30°C in contact with Palythoa caribaeorum and inert mimic. Controls without any contact never experienced damage and so are not shown. Post hoc Tukey’s Test determined the temperature treatments trajectory over time. 27 °C: day 1 (AB), day 3 (C), day 5 (BC), day 13 (AB), day 23 (A). 30°C: day 1 (A), day 3 (B), day 5 (B), day 13 (AB), day 23 (AB).

0 1 2 3 4 5 6 7 0 1 3 (contact removal) 5 13 23 Fra gme n t d am age area (c m 2, m ea n ± S E)

Days after contact introduction

(38)

38 EFFECT OF PALYTHOA CARIBAEORUM SURFACE CHEMICAL COMPOUNDS

In the field, the color composition of areas contacted by control and extract

treatments were different considering a significance level of 6% (PERMANOVA:

Pseudo-F = 2.94, p = 0.06; Figure 8), with extract treatment leading to a whiter color

(SIMPER: 64.72%). We opted to adjust the significance level based on the consistency

of the results obtained from the natural contact with Palythoa caribaeorum both in the

field and in the laboratory. Therefore, assuming a 6% chance of type I error instead of a

5% chance seemed reasonable. In the lab, we did not observe differences between the

color of areas contacted by control and extract gels (p = 0.53), but the temperature

treatments had an effect on the damaged areas color (PERMANOVA: Pseudo-F = 3.49,

p < 0.05; Figure 9), with the 30 °C treatment leading to a whiter color in both contact

(39)

39

Figure 8 – Bar plots of the color parameters L, a and b (graphs A, B and C, respectively) observed on

Millepora alcicornis branches in the field after 24h of contact with control and treated gels. The y-axis on

(40)

40

Figure 9 – Bar plots of the color parameters L, a and b (graphs A, B and C, respectively) observed on

Millepora alcicornis fragments in the laboratory after 24h of contact with control and treated gels under 27 °C

(blue background; ncontrol = 19; ntreated = 19) and 30 °C temperatures (orange background; ncontrol = 20; ntreated =

20). The y-axis on graphs A and C is cut for better data visualization.

(41)

41 DISCUSSION

We studied the competitive effects of the common zoanthid Palythoa

caribaeorum on the hydrocoral Millepora alcicornis and our results indicate a tendency

of P. caribaeorum outcompeting M. alcicornis, via both physical and chemical effects,

an outcome that tends to intensify in warmer temperatures predicted for the future.

Known for its notorious competitive ability (Bastidas and Bone 1996; Rabelo et al.

2013; Silva et al. 2015) and unpalatability to other organisms (Moore and Scheuer

1971; Gleibs et al. 1995), this zoanthid is also expected to restrict its distribution

towards the equator as ocean temperature increases (Durante et al. 2018). This indicates

that if M. alcicornis endures the predicted 3 °C warming for the year 2100, it would still

have P. caribaeorum as a competitor in the reefs of the Caribbean and northeastern

Brazil. While in other parts of the world many branching coral species aid structural

complexity to the reefs, M. alcicornis is one of the main species to add structural

complexity to Brazilian reefs (Leão and Dominguez 2000; Leão et al. 2003) and

experiences great mortality facing thermal stress events (Duarte et al. 2020). More

frequent and intense competitive interactions with P. caribaeorum is likely to occur in

the future and may be decisive for decreasing complexity and consequently diversity,

particularly in the Brazilian reefs where P. caribaeorum is abundant (Aued et al. 2018).

As P. caribaeorum is a common invertebrate in other important reef areas, the effects

observed here could become frequent and intense elsewhere, being a threat to other reef

systems including the Caribbean (Durante et al. 2018).

The greater damage caused by P. caribaeorum contact in the field could be

interpreted as a sign that chemical compounds on the surface of the zoanthid (Ciereszko

and Karns 1973) could be mediating the competitive interaction, an assumption

(42)

42 Bone 1996; Rabelo et al. 2013). Another sign of chemical activity appeared after the

first day of the lab experiment, where P. caribaeorum contact caused greater damage

under 27 °C when compared to P. caribaeorum mimic contact. By specifically testing

the effects of surface-chemical compounds, we found that P. caribaeorum extracts

contacting M. alcicornis in the field resulted in whiter areas if compared to controls. We

believe that the lack of significant difference between the extract and control contacts in

the lab was due to a marine heatwave (Hobday et al. 2016) striking the study area

during fragments collection, which may have compromised M. alcicornis health status

prior to the experiment commencement, even though no bleaching was observed. Still,

we consider that our findings reinforce previous assumptions of the role played by P.

caribaeorum chemical compounds during competitive interactions. However, when we

focus on the lack of significant difference between extract and control contacts under 30

°C temperature, another possible interpretation is that the temperature factor becomes

more important than the contact identity at a certain point of warming. This could

translate into any kind of physical contact being harmful in higher temperatures.

Despite the importance of chemical activity, organisms can also have other

harming mechanisms such as overgrowing and shading their competitors (Box and

Mumby 2007), causing anoxia (Haas et al. 2013) and shifts in microbiota (Pratte et al.

2018). P. caribaeorum mainly uses its rapid growth rate to overtop competitors without

physical contact as tactic (Almeida Saá et al. 2020), applying lateral aggression and

overtopping with physical contact upon the genus Millepora (Suchanek and Green

1981). Our experimental time span did not allow us to notice such overgrowing

outcomes, but observations in the field strongly confirm them. It was common to find

M. alcicornis greatly reduced in size because of being overtopped by P. caribaeorum.

Referências

Documentos relacionados

[r]

Os modelos desenvolvidos por Kable &amp; Jeffcry (19RO), Skilakakis (1981) c Milgroom &amp; Fry (19RR), ('onfirmam o resultado obtido, visto que, quanto maior a cfiráda do

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Provar que a interseção de todos os subcorpos de E que são corpos de decomposição para f sobre F é um corpo de raízes fe

The fourth generation of sinkholes is connected with the older Đulin ponor-Medvedica cave system and collects the water which appears deeper in the cave as permanent

It is stored in numerous caves, in the hard disks of the Quaternary and in the continental and marine sediments of Aegean Archipelago wider area.. We are still

- The meteorological shelter, located outside, near the entrance of the cave, registered high temperatures in all seasons, with the maximum temperature always higher than 20C.. -

Karstic land use in the intertropical region, with fanning and cattle breeding dominant (e.g. the valley of São Francisco &gt; should be periodically monitored so that