• Nenhum resultado encontrado

Proteo contra Corroso e Fogo

N/A
N/A
Protected

Academic year: 2021

Share "Proteo contra Corroso e Fogo"

Copied!
58
0
0

Texto

(1)

PRINCÍPIOS DA PROTEÇÃO

DE ESTRUTURAS METÁLICAS

EM SITUAÇÃO DE

CORROSÃO E INCÊNDIO

COLETÂNEA DO

USO DO AÇO

Fábio Domingos Pannoni, M.Sc., Ph.D.

1ª Edição

2002

Volume

2

(2)

APRESENTAÇÃO

NO DIA-A-DIA

NA CONSTRUÇÃO CIVIL

NO TRANSPORTE

O AÇO POR VEZES INVISÍVEL

O aço é o produto mais reciclado do mundo: 40% da produção mundial é feita a partir da sucata ferrosa.

O aço lava, passa, cozinha e congela.

É o aço dos fogões, dos aquecedores, dos refrigeradores, das máquinas de lavar, dos talheres e utensílios domésticos.

O aço também transporta, faz compras, trata da saúde, constrói. O aço emprega milhares de brasileiros, traz milhões de dólares em divisas.

O aço brasileiro impulsiona o desenvolvimento, fortalece a independência econômica e melhora a qualidade da vida.

O aço dá qualidade à construção.

É essencial às moradias, às indústrias, à montagem da infra-estrutura nacional.

Está presente em pontes, viadutos, elevadores, em tubulações, revestimentos, acabamentos e em coberturas.

É o aço dos carros, caminhões, ônibus, trens, metrôs, navios, bicicletas e motocicletas. São muitos os meios de transportes produzidos com o aço brasileiro.

Distribuem as riquezas e espalham o progresso.

Exportam produtos, importam divisas e são importantes veículos de turismo e lazer.

Mais que o aço que você vê, o seu dia-a-dia é repleto de um aço que você não vê.

É o aço brasileiro presente nas indústrias que fabricam todos os produtos que não recebem nem um grama de aço. É o aço das máquinas e das ferramentas industriais que manufaturam tecido, madeira, plástico, louça, papel, brinquedos, couro, borracha e de todos os outros materiais.

É o aço das hidrelétricas, termelétricas e nucleares. O aço das torres de transmissão, dos transformadores, das subestações e dos cabos elétricos. É o aço das plataformas, tubulações e equipamentos de prospecção e extração de petróleo, dos

(3)

ÍNDICE

1 Introdução . . . 7

2 Como Acontece a Corrosão . . . 11

3 Aços Patináveis . . . 19

2.1 Dois Tipos Importantes de Ataque . . . 15

3.1 - Formação da Pátina Protetora. . . 21

3.2 - Precauções e Limitações . . . 22

4.1 - Principais Fatores da Corrosão Atmosférica . 27 5.1 - A Prevenção Começa na Etapa do Projeto . . 31

5.2 - Evite Umidade Residual. . . 33

5.3 - Considere o Risco da Corrosão Galvânica . . 35

5.4 - Soldagem . . . 37

5.5 - Preparo de Superfície. . . 39

5.6 - Tintas . . . 43

5.7 - Classificação das Tintas. . . 45

8.1 - Materiais Projetados . . . 65

8.2 - Argamassa Projetada . . . 66

8.3 - Fibra Projetada. . . 67

8.4 - Argamassa Projetada à Base de Vermiculita . 68 8.5 - Placas de Gesso Acartonado . . . 68

8.6 - Placas de Lã de Rocha . . . 68

8.7 - Enclausuramento em Concreto . . . 69

8.8 - Tintas Intumescentes . . . 70

4 A Corrosão Atmosférica do Aço . . . 25

5 Como Prevenir a Corrosão. . . 29

6 Proteção Frente ao Fogo: Generalidades. . . 51

7 As Normas Brasileiras . . . 59

8 Materiais Utilizados na Proteção Térmica de Estruturas de Aço . . . 63

(4)

INTRODUÇÃO

(5)

COLETÂNEA DO USO DO AÇO

O aço é a mais versátil e a mais importante das ligas metálicas conhecidas pelo ser humano. A produção mundial de aço no ano 2001 foi superior a 847 milhões de toneladas, sendo a

participação brasileira da ordem de 27 milhões de toneladas*. Cerca de 100 países produzem aço, e o Brasil é considerado o 9 produtor mundial.

O aço é produzido em um grande número de variedades, cada qual atendendo eficientemente a uma ou mais aplicações. Os aços-carbono comuns possuem na sua composição apenas quantidades limitadas dos elementos Carbono, Silício, Manganês, Cobre, Enxofre e Fósforo. Outros elementos existem apenas em quantidades residuais.

A quantidade de carbono presente no aço define a sua

classificação. Os aços de baixo carbono possuem no máximo 0,30% deste elemento, e incluem os aços destinados à

estampagem comumente laminados a frio e recozidos, utilizados na indústria automobilística na confecção de carrocerias. Os aços de médio carbono possuem de 0,30% a 0,60% de carbono, e são aços empregados como perfis e vergalhões na construção civil e como chapas destinadas à confecção de tanques de estocagem, tubulações, reatores e muitas outras aplicações. Os aços de alto carbono possuem de 0,60% a 1,00% de carbono e são

basicamente empregados na confecção de molas e arames de alta resistência.

Os aços, em geral, são classificados em Grau, Tipo e Classe. O normalmente identifica a faixa de composição química do aço. O identifica o processo de desoxidação utilizado, enquanto que a é utilizada para descrever outros atributos, como nível de resistência mecânica e acabamento superficial.

A designação do Grau, Tipo e Classe utiliza uma letra, número, símbolo ou nome. Existem vários sistemas de designação para os aços, como por exemplo ABNT (Associação Brasileira de Normas Técnicas, ASTM (American Society for Testing and Materials), SAE (Society of Automotive Engineers) e AISI (American Iron and Steel Institute).

A normalização unificada vem sendo utlizada com frequência cada vez maior, e é designada pela sigla UNS (Unified

Numbering System). o Grau Tipo Classe 9

1 - INTRODUÇÃO

(6)

COMO ACONTECE

A CORROSÃO

(7)

COLETÂNEA DO USO DO AÇO

2 - COMO ACONTECE A CORROSÃO

Os metais raramente são encontrados no estado puro. Eles quase sempre são encontrados em combinação com um ou mais elementos não-metálicos presentes no ambiente. Minérios são, de modo geral, formas oxidadas do metal.

Com raras exceções, quantidades significativas de energia devem ser fornecidas aos minérios para reduzi-los aos metais puros. A fundição e conformação posterior do metal envolvem processos onde mais energia é gasta. Corrosão pode ser

definida de modo bastante simplificado como sendo a tendência do metal produzido e conformado de reverter ao seu estado original, de mais baixa energia. De uma perspectiva puramente termodinâmica, a tendência de decréscimo energético é a principal encorajadora à corrosão metálica.

A corrosão atmosférica do aço carbono é um processo

eletroquímico (isto é, a corrosão do metal envolve tanto reações químicas quanto fluxo de elétrons) onde o metal reage com a atmosfera para formar um óxido ou outro composto análogo ao minério do qual ele se originou.

O quadro que descreve este processo incorpora três constituintes essenciais: o anodo, o catodo e uma solução eletricamente

condutora. O anodo (-) é o local onde o metal é corroído, a solução eletricamente condutora é o meio corrosivo, e o catodo (+) é parte da mesma superfície metálica (ou outro metal em contato com ela) que constitui o outro eletrodo da cela, e não é consumido no processo de corrosão.

13 Quadro Descritivo (anodo) (ferrugem) (catodo) carepa (catodo) Fe 0 0 H Fe

+

+

O2+H O2 O2+H O2 OH- Fe+ + OH-Anodo: Fe Fe + 2e++ -Catodo: ½ O + H O + 2e2 2 2OH -

-Na ferrugem: Fe + 2OH++ - Fe (OH)

2

Fe (OH) Fe (OH) (oxidação ao ar) Fe (OH) Fe OOH (transformação) Fe OOH = ferrugem

2 3

(8)

Quadro Descritivo Catodos e anodos são distribuídos aleatóriamente por toda a superfície metálica

e conectados elétricamente pelo substrato de aço. Íons ferrosos e hidroxilas são formados através de reações eletroquímicas, e se difundem

superficialmente.

Conforme as áreas anódicas corroem, um novo material de

diferente composição (a ferrugem) vai sendo exposta.

Este novo material causa alterações dos potenciais elétricos entre as áreas anódicas

e catódicas, causando sua mudança de local.

Com o tempo, as áreas catódicas se tornam

anódicas, e toda a superfície acaba se corroendo de modo

uniforme.

A reação global que descreve o processo de enferrujamento do aço carbono exposto ao ar é dada por:

O processo de corrosão atmosférica do aço carbono consiste, desse modo, de elétrons fluindo dentro do metal e íons fluindo no eletrólito superficial.

A velocidade de corrosão é muito influenciada pela condutividade elétrica do eletrólito: é menor em meios pouco condutores, como a água muito pura, e maior em meios condutores, como por exemplo a água do mar ou soluções ácidas.

Vários são os fatores que determinam a criação e distribuição de regiões anódicas e catódicas na superfície do metal. A existência de diferenças de composição química, de microestrutura, de concentração e velocidade de eletrólitos, de tensões residuais, dentre outras, determinam a formação de regiões catódicas ou anódicas.

Dois pontos importantes devem ser ressaltados:

4Fe+3O +2H O 2Fe O .H O

aço + oxigênio + água = ferrugem

1.Para que a corrosão do aço carbono aconteça, é necessária a presença simultânea de água e oxigênio. Na ausência de um deles, a corrosão não acontecerá.

2.Toda a corrosão acontecerá no anodo, assim sendo, o catodo não sofre ataque corrosivo.

(9)

Corrosão Atmosférica

15

2.1 - Dois Tipos Importantes de Ataque 2.1.1 - Corrosão Uniforme

A corrosão uniforme é o fenômeno de corrosão mais importante, comum, simples e conhecido. Ela acontece em um ambiente homogêneo (na ausência de um gradiente de temperatura, de pressão ou de concentração ao longo da interface) e se refere à perda de massa generalizada por toda a superfície metálica. Aços-carbono e as ligas de cobre são bons exemplos de materiais que podem sofrer este tipo de ataque.

A velocidade de corrosão uniforme é em geral expressa em termos de perda de massa por unidade de superfície e por unidade de tempo ou pela perda de espessura de metal corroído em função do tempo.

Como visto anteriormente, o mecanismo intrínseco da corrosão uniforme envolve a existência simultânea de duas reações eletroquímicas (anódica e catódica) uniformemente distribuídas pela superfície do metal.

A corrosão atmosférica é a forma mais comum de ataque

generalizado e é, certamente, a que envolve os maiores esforços para sua prevenção.

(10)

2.1.2 - Corrosão Galvânica

A corrosão galvânica é uma outra forma bastante comum de corrosão em meio aquoso e pode ocorrer quando dois metais diferentes são conectados eletricamente em um mesmo líquido condutor de eletricidade (eletrólito), formando uma pilha.

Enquanto um dos metais cede elétrons ao outro e se corrói (anodo), o outro metal fica protegido, e não sofre ataque (catodo).

Vários fatores determinam a existência potencial da corrosão

galvânica: a num dado meio

particular, (por exemplo chuvas ácidas

contendo dióxido de enxofre, típicas de ambientes industriais e centros urbanos), a

e a entre os metais em questão.

diferença de potencial eletroquímico a existência de eletrólito

existência de conexão elétrica entre os

metais razão de áreas

Diferentes metais e ligas podem ser ordenados com respeito à resistência frente à corrosão em um dado meio particular. Estas tabelas, conhecidas como séries galvânicas, são obtidas experimentalmente. O quadro descritivo reproduzido na próxima página foi construído utilizando-se como eletrólito a água do mar mantida a 25 C.

Metais situados no topo do quadro se corroem quando

conectados àqueles situados na base desta e imersos em um mesmo eletrólito. Enquanto os primeiros se corroem de modo pronunciado, os últimos são protegidos eletroquimicamente.

o Corrosão Atmosférica catodo anodo eletrólito e_ e_

(11)

COLETÂNEA DO USO DO AÇO

17 O ordenamento dos metais varia com o eletrólito, mas, de modo

geral, as mudanças são pequenas, e o quadro pode ser usado em variadas atmosferas.

Por exemplo, a união de duas chapas de aço inoxidável por intermédio de um parafuso de aço carbono poderá causar uma rápida deterioração no parafuso.

Como é, por muitas vezes, impossível eliminar o eletrólito e o contato elétrico entre metais diferentes, a melhor maneira de se evitar este tipo de ataque é através de pintura. Além disso, tintas anticorrosivas possuem pigmentos que modificam o eletrólito que porventura permeia a camada de tinta, minimizando em muito a corrosão metálica. Outra forma usual de proteção é feita através da utilização, onde possível, de fitas adesivas especialmente desenvolvidas para a minimização de efeitos galvânicos.

Para que a corrosão galvânica ocorra é necessário que existam três condições concomitantes:

1.Metais diferentes, 2.Presença de eletrólito,

3.Contato elétrico entre os dois metais.

Se uma das três condições não ocorrer, não haverá corrosão galvânica.

Quadro Descritivo ANÓDICO

(MAIS SUSCEPTÍVEL À CORROSÃO)

CATÓDICO

(MAIS RESISTENTE À CORROSÃO)

Magnésio e suas ligas Zinco Aço galvanizado Alumínio Cádmio Ferro fundido Chumbo Latões Bronzes Cobre Ligas cobre-niquel Aço inoxidável, tipo 410 Aço inoxidável, tipo 304 Aço inoxidável, tipo 316

Titânio O metal situado no topo da tabela corrói, protegendo o metal situado na base desta.

(12)

Corrosão Galvânica: Todo o conjunto é feito em aço

patinável, menos uma arruela, que sofre intenso ataque.

O corrimão de aço inoxidável está preso ao suporte de aço carbono. O conjunto está localizado dentro de um túnel (não há água condensada presente).

Não há corrosão galvânica.

O corrimão exposto ao tempo apresenta corrosão no aço carbono. A existência de eletrólito propicia corrosão galvânica.

(13)

AÇOS PATINÁVEIS

(14)

3 - AÇOS PATINÁVEIS

Todos os aços contêm pequenas quantidades de elementos de liga, tais como carbono, manganês, silício, fósforo e enxofre, seja porque estes integravam as matérias-primas (minérios e coque) com que foram fabricados, seja porque lhes foram

deliberadamente adicionados, para lhes conferirem determinadas propriedades. De modo geral, as adições são pequenas, de no máximo 0,5 a 0,7% da massa total do metal, proporção em que tais elementos não tem qualquer efeito apreciável sobre a

resistência deste à corrosão atmosférica. As pequenas variações de composição que inevitavelmente ocorrem durante o processo de fabricação do metal tampouco afetam significativamente suas características.

Entretanto, existem exceções. Sabe-se há mais de 80 anos, por exemplo, que a adição de pequenas quantidades de cobre, fósforo e outros elementos tem um efeito benéfico sobre os aços, reduzindo a velocidade em que são corroídos, quando expostos ao ar. Mas o grande estímulo ao emprego de aços enriquecidos com esses elementos foi dado pela companhia norte-americana United States Steel Corporation que, no início da década de 1930, desenvolveu um aço cujo nome comercial era Cor-Ten. O que distinguia o novo produto dos aços comuns, no que diz respeito à resistência à corrosão, era o fato de que,

, ele podia desenvolver em sua superfície uma película de óxidos aderentes e protetores, chamada de pátina*, que atuava reduzindo a velocidade do ataque dos agentes corrosivos presentes no meio ambiente.

sob certas condições ambientais de exposição

Enquadrados nas normas norte-americanas ASTM A 242, A 588 e A 709, que especificam limites de composição química e propriedades mecânicas, estes aços tem sido utilizados no mundo todo na construção de pontes, viadutos, edifícios, silos, torres de transmissão de energia, etc.

A formação da pátina protetora depende de vários fatores, tais como o grau de poluição atmosférica, a frequência dos ciclos de umedecimento e secagem, da orientação espacial, etc.

3.1 - Formação da Pátina Protetora

*O termo patinável se refere ao aço que tem a capacidade de desenvolver, sob certas condições de exposição, uma camada de óxidos protetores na sua superfície. Pátina é o nome da camada de cor esverdeada que se forma sobre o cobre ou bronze após longa exposição atmosférica, e que protege o substrato da corrosão, dificultando o acesso do oxigênio e da água.

(15)

COLETÂNEA DO USO DO AÇO

3.2 - Precauções e Limitações

Os seguintes pontos devem ser observados para a maximização dos benefícios proporcionados pelos aços patináveis. Evite:

• Contato com superfícies que absorvam água, como o concreto.

• Condições de umedecimento prolongados. Diferentes estruturas do mesmo aço dispostas lado a lado podem ser atacadas de maneira distinta. Esse fenômeno é atribuído à influência de seções abertas/fechadas, drenagem correta das águas de chuva e outros fatores que atuam diretamente sobre os ciclos de umedecimento e secagem. Assim, por exemplo, sob condições de contínuo molhamento, determinadas por secagem insatisfatória,

. Em muitas destas situações, a velocidade de corrosão do aço patinável é semelhante àquela encontrada para os aços carbono comuns. Exemplos incluem aços

patináveis imersos em água, enterrados no solo ou recobertos por vegetação. Regiões particulares tais como juntas de expansão, articulações e regiões superpostas tem

comportamento crítico quanto à corrosão, tal como ocorre com os aços carbono tradicionais.

• Utilizar estes aços enterrados no solo sem proteção. • Contato com metais diferentes. Os elementos de ligação (chapas, parafusos, porcas arruelas, rebites, etc.) devem apresentar não só resistência mecânica compatível com o aço patinável, mas também compatibilidade de composição

química, para minimizar a formação de células galvânicas. Todos os parafusos, porcas e arruelas devem obedecer a composição química descrita na norma ASTM A 325 Tipo 3, Grau A, ou equivalente.

• Os cordões de solda produzidos na soldagem dos aços patináveis devem possuir composição química semelhante à dos aços patináveis, evitando a formação de pares galvânicos. Para soldagem de múltiplos passes, pode-se utilizar eletrodo de composição química especial nos dois últimos filetes que ficam, efetivamente, em contato com a atmosfera. Para passe simples (1 cordão), pode-se utilizar eletrodo convencional, uma vez que a diluição na poça de fusão dos elementos

formadores da pátina é, em geral, suficiente para garantir a proteção contra corrosão no cordão de solda.

a formação da pátina fica gravemente prejudicada

(16)

COLETÂNEA DO USO DO AÇO

• Ambientes agressivos. Enquanto a presença de dióxido de

enxofre, , favorece o desenvolvimento da

pátina, o cloreto de sódio em suspensão nas atmosferas marinhas prejudica suas propriedades protetoras. Não se recomenda a utilização de aços patináveis não protegidos em ambientes industriais onde a concentração de dióxido de enxofre atmosférico seja superior a 250µg/m , e em

atmosferas marinhas onde a taxa de deposição de cloretos exceda 300mg/m /dia.

Alguns cuidados especiais devem ser tomados na utilização dos aços patináveis sem revestimento, tais como: (1)-a carepa de laminação deve ser eliminada através de jateamento com granalha ou areia para proporcionar um desenvolvimento uniforme e mais rápido da pátina protetora, (2)-elementos

enterrados no solo devem ser pintados, (3)-interfaces entre o aço e o concreto devem ser selados com selantes apropriados

(epoxídicos, poliuretânicos ou à base de silicones).

A tabela abaixo reúne algumas diferenças marcantes entre os aços patináveis e aços de alta resistência mecânica.

até certos limites

3 2 23 Pintura Ligações Elementos enterrados no solo

É aconselhável o jateamento da superfície, idependente da utilização ou não de pintura.

Requer tratamento de superfície e pintura adequadas à cada tipo de ambiente.

A pintura é dispensável em atmosferas pouco agressivas, onde a pátima é formada com facilidade.

A pintura é indispensável onde a concentração de dióxido de enxofre atmosférico é superior a 250 g/m , onde a taxa de deposição de cloretos é superior a 300 mg/m / dia ou onde houver acúmulo permanente de líquidos.

3 2

µ

Elementos de ligações (chapas, parafusos, porcas, etc.) devem ter compatibilidade química com o aço patinável. Utilizar parafusos do tipo ASTM A 325 Tipo 3, Grau A, ou equivalente. Parafusos zincados devem ser evitados.

Utilizar parafusos do tipo ASTM A 325 Tipo 1. Parafusos zincados devem ser evitados.

Deverão ser pintados. Deverão ser pintados.

Utilizar, em soldagem com arco elétrico os eletrodos E 7018 (eletrodo revestido), ER 70 S6 (MIG/MAG), F 7AO EM12K (arco submerso) e E 70T-1, E 71-T1 ou E 70T-4 (eletrodo tubular).

Os cordões de solda devem possuir composição química semelhante à dos aços patináveis, evitando a formação de pares galvânicos. Utilizar, emsoldagem com arco elétrico os eletrodos E 7018 W ou E 7018 G (eletrodo revestido), ER 8018 S-G (MIG/MAG), F 7AO-EW (arco submerso) e E 71T8 Ni1 ou E 80T1 W (eletrodo tubular). Para soldagem de múltiplos passes, pode-se utilizar eletrodos de composição química especial nos dois últimos filetes, que ficam, efetivamente, em contato com a atmosfera. Para passe simples (1 cordão), pode-se utilizar eletrodos convencionais (haverá diluição na poça de fusão).

AÇO PATINÁVEL AÇO DE ALTA RESISTÊNCIA

(17)

A CORROSÃO

ATMOSFÉRICA

DO AÇO

(18)

4 - A CORROSÃO ATMOSFÉRICA DO AÇO

A corrosão atmosférica pode ser considerada como sendo um processo descontínuo, onde o efeito acumulado da corrosão é função do tempo no qual a superfície metálica está recoberta por eletrólitos (tempo de umedecimento) e da velocidade média de corrosão durante estes períodos em que a superfície está umedecida.

Assim, a extensão do ataque depende das condições climáticas do local de exposição, e é função da umidade relativa da

atmosfera, da direção e freqüência da chuva, da neblina, do orvalho, da temperatura do ar e da superfície metálica, da velocidade dos ventos, da quantidade de horas de insolação e dos poluentes presentes na atmosfera.

Corresponde à fração do tempo durante a qual a superfície metálica fica recoberta por uma película de água (como a chuva e o orvalho), que possibilita a existência da corrosão atmosférica. Assim, o aço não pintado, quando exposto em ambientes secos, não apresenta corrosão.

Presentes em ambientes marinhos, cloretos são depositados na forma de pequenas gotas ou cristais formados pela evaporação das gotículas carregadas pelo vento que vem do mar. A

deposição dos sais (por conseguinte, a agressividade) decresce de forma acentuada com o aumento da distância da linha

costeira; a maior parte dos cloretos fica retida por decantação ou filtragem pela vegetação nos primeiros 5 km continente adentro. A tabela a seguir, contendo dados obtidos pelo autor, mostra alguns valores típicos da velocidade média de corrosão para diversos ambientes.

4.1 - Pricipais Fatores da Corrosão Atmosférica Tempo de Umedecimento

Poluição Atmosférica

(19)

Sorocaba, SP, Brasil

Altos níveis de poluição, especialmente dióxido de enxofre, cloretos e particulados.

Baixos níveis de poluição.

Pouca chuva com baixa umidade ou chuvas pesadas frequentes.

Temperaturas baixas, especialmente longos períodos abaixo de 0ºC.

Temperaturas altas com baixa umidade. Altos níveis de umidade persistente.

Temperaturas moderadas a altas com umidades moderadas a altas e/ou condensação.

Deposição frequente de particulas oceânicas (maresia) e pouca chuva.

Regiões abrigadas expostas ao sal e poluentes corrosivos.

Brasília, DF, Brasil São Paulo, SP, Brasil

Cubatão, SP, Brasil Santo André, SP, Brasil Praia Grande, SP, Brasil Arraial do Cabo, RJ, Brasil

Nota: 1 µm (1 mícron) = 0,001 mm Rural Urbana Urbana Industrial Industrial Marinho Marinho 15 9 40 61 69 171 126 LOCAL

ATMOSFERA MAIS CORROSIVA ATMOSFERA MENOS CORROSIVA

AMBIENTE VELOCIDADE MÉDIAµm/ano

A predição do desempenho do aço carbono em um dado ambiente é tarefa extremamente complexa, pois depende de muitos fatores, tais como a condição inicial de exposição, massa da amostra e orientação, velocidade do vento, condição de abrigo, natureza dos produtos de corrosão e poluentes não medidos. É, de fato, o "microclima" a que o aço está exposto que determina a sua velocidade de corrosão.

28

Sulfatos

SO + H O + ½O2 2 2 H SO2 4

O gás dióxido de enxofre é gerado pela queima de combustíveis fósseis, tais como o carvão e derivados de petróleo, e pela atividade vulcânica. Solubilizado nas águas da chuva e no orvalho, forma ácido sulfúrico devido à presença (catalítica) de ferrugem ou íon ferroso na superfície metálica:

Ambientes industriais são importantes fontes de SO .2

(20)

COMO PREVENIR

A CORROSÃO

(21)

COLETÂNEA DO USO DO AÇO

5 - COMO PREVENIR A CORROSÃO

5.1 - A Prevenção Começa na Etapa de Projeto

O principal objetivo do engenheiro e do arquiteto é fornecer à obra um projeto adequado com respeito à função, fabricação e resistência mecânica. Muitas construções estarão localizadas em regiões onde o ambiente é mais agressivo, o que significa

atenção às medidas de proteção. Como o custo do controle da corrosão é muito dependente do seu projeto, o engenheiro deve sempre incluir o aspecto da prevenção da corrosão em seu trabalho.

De modo geral, é difícil proteger uma estrutura metálica através da pintura (ou outro tratamento de superfície) se ela for

inadequadamente projetada sob o ponto de vista da corrosão.

Uma construção econômica é aquela que apresenta os menores custos totais ao longo de sua vida. Custos de manutenção, particularmente a pintura de manutenção, constituem parte importante do custo total. Assim, a construção mais barata pode não ser a mais econômica.

As figuras a seguir fornecem certo número de exemplos válidos para os engenheiros e arquitetos que projetam edifícios.

Simplifique as Formas!

Quanto mais simples a forma dada à construção, maiores as chances de que uma boa proteção frente à corrosão seja alcançada.

O meio mais eficiente e barato de evitar a corrosão é projetar corretamente a obra, não favorecendo o ataque corrosivo.

(22)

PROBLEMA SOLUÇÃO O TÍPICA PROBLEMA SOLUÇÃO TÍPICA UMIDADE E SUJEIRA PODEM SE ACUMULAR NA FENDA CORROSÃO POTENCIAL (FRESTA)

CANTOS VIVOS E SOLDA DESCONTÍNUA

CUIDADO COM O ACÚMULO DE ÁGUA E SUJEIRA

CRIE SITUAÇÕES QUE EVITEM O ACÚMULO DE SUJEIRA E ÁGUA CANTOS ARREDONDADOS E SOLDA CONTÍNUA REFORÇOS CRIAM ACÚMULO DE ÁGUA E SUJEIRA ELIMINE O ACÚMULO DE ÁGUA E SUJEIRA ELIMINE A FENDA POR

SOLDAGEM OU SELANTE (EPOXI OU POLIURETANO)

CONDIÇÃO DESFAVORÁVEL CONDIÇÃO FAVORÁVEL UMIDADE PENETRA NA FENDA UTILIZE CORDÃO DE SOLDA OU SELANTE UTILIZE PERFIL OU OUTRA GEOMETRIA T

(23)

5.2 - Evite Umidade Residual

Como já visto anteriormente, a corrosão não ocorre na ausência de umidade. Uma das tarefas mais importantes do engenheiro será a de garantir que a construção esteja protegida da umidade tanto quanto possível. Os perfis devem ser dispostos de modo que a umidade não fique retida e que a construção possa ser devidamente pintada. Evite a criação de cavidades; juntas parafusadas são preferíveis às soldadas em campo, que necessitam de controle e testes. Deve-se criar condições para que, uma vez que a umidade tenha se depositado, possa secar.

33

PROBLEMA SOLUÇÃO O TÍPICA PROBLEMA SOLUÇÃO TÍPICA

UMIDADE E SUJEIRA PODEM SE ACUMULAR NA FENDA ÁGUA RETIDA SOLDA NA BASE CRIA FRESTA ENRIJECEDORES IMPEDEM A DRENAGEM CRIAÇÃO DE FRESTA A CHAPA DE BASE E OS CHUMBADORES NO NÍVEL DO SOLO RESULTA EM RETENÇÃO DE ÁGUA A CHAPA DE BASE ACIMA DO SOLO, SOBRE BASE DE CONCRETO

PROMOVE A PROTEÇÃO. INCLINAÇÃO PARA A DRENAGEM DA ÁGUA

SOLDE O TOPO DA JUNTA

DEIXE FURO PARA A DRENAGEM

ELIMINAÇÃO DE FRESTA NÃO ACUMULA

ÁGUA USE SELANTE PARA

DIFICULTAR O INGRESSO DA ÁGUA

(24)

A água fica coletada aqui.

A água fica coletada aqui.

(25)

COLETÂNEA DO USO DO AÇO

35

5.3 - Considere o Risco da Corrosão Galvânica

Para que ocorra o efeito galvânico, as seguintes condições devem ser preenchidas:

• Os metais devem estar distantes na série eletroquímica, • Os metais devem estar em contato direto um com o outro, • Ambos os metais devem estar em contato com a mesma solução eletrolítica,

• A solução deve conter oxigênio dissolvido (ou ácido), para a manutenção do processo catódico.

É função do projetista fazer com que pelo menos uma destas condições não ocorra. Sempre que possível, diferentes metais e ligas não devem ser unidos diretamente, principalmente se estiverem situados em locais diferentes na série galvânica (veja quadro abaixo). Os efeitos galvânicos podem ser esperados se a diferença de potencial entre os metais for superior a 0,05V*. O método mais comum de controle da corrosão galvânica é o da colocação de um isolante elétrico entre os dois metais. Deve-se ressaltar que o isolante não deve ser poroso, pois poderia acarretar corrosão por frestas.

Parafusos, arruelas, porcas e rebites são sensíveis à corrosão por terem composição química diferente da dos aços que unem, e, assim podem propiciar a formação de pares galvânicos. A escolha correta destes componentes minimizará em muito este tipo de problema.

ANÓDIO

(MAIS SUSCEPTÍVEL À CORROSÃO)

CATÓDICO

(MAIS RESISTENTE À CORROSÃO)

Magnésio e suas ligas Zinco Aço galvanizado Alumínio Cádmio Ferro fundido Chumbo Latões Bronzes Cobre Ligas cobre-niquel Aço inoxidável, tipo 410 Aço inoxidável, tipo 304 Aço inoxidável, tipo 316

Titânio

*Esta diferença de potencial pode ser medida experimentalmente mergulhando-se, num mesmo eletrólito, os dois metais e medindo-se a tensão existente entre eles com o auxílio de um multímetro.

(26)

Utilize sempre eletrodos, porcas, arruelas e parafusos de especificação compatível com seu material. A tabela abaixo fornece a especificação genérica de parafusos para a união de aços ASTM A 36, ASTM A 572 e ASTM A 588. Observe que, quando a obra empregar aços resistentes à corrosão (ASTM A 588), deve-se empregar parafusos que tenham essas mesmas características. Não se recomenda a utilização de parafusos e porcas galvanizadas sem pintura em estruturas de aço carbono comum ou patináveis expostos à atmosfera ou sob condições de condensação de umidade. A diferença de potencial eletroquímico entre o revestimento de zinco e o aço pode ocasionar uma corrosão acelerada da camada de zinco.

Quadro Descritivo ASTM A 36 ASTM A 572 ASTM A 572 ASTM A 307 ASTM A 325 TIPO 1 ASTM A 325 TIPO 3 41,5 kN/cm2 82,5 kN/cm para diâmetro < 25,4 mm 72 2 ,5 kN/cm para diâmetro < 25,4 mm2 82,5 kN/cm para diâmetro < 25,4 mm 72 2 ,5 kN/cm para diâmetro < 25,4 mm2

AÇO ESPECIFICAÇÃO RESISTÊNCIA À RUPTURA (fW)

Parafuso Fresta

Fresta Porca

Rebite

(27)

COLETÂNEA DO USO DO AÇO

37 Frestas, cordões de solda e uniões parafusadas são regiões

particulares da estrutura que merecem atenção especial. A fotografia abaixo ilustra uma fresta.

Frestas promovem a corrosão.

5.4 - Soldagem

Melhor será a soldagem quanto menor a quantidade de bolsões e fissuras. Não deverá haver escória superficial, pois ela

propiciará o desenvolvimento da corrosão sob a camada de tinta*. É muito comum que o eletrodo tenha uma composição diferente da liga que está sendo soldada, pois este é aplicado a grandes grupos de aços similares. Isto pode acarretar uma diferença de potencial (nem sempre desprezível) entre o metal de solda e o metal base. As considerações feitas para a corrosão galvânica entre metais diferentes se aplicam integralmente à esta situação.

O processo de resfriamento do cordão de solda também pode resultar em diferenças de potencial devido às diferenças de tratamento térmico entre o metal de solda e o metal base. Através da seleção de um eletrodo que seja um pouco mais nobre que o metal de base podemos obter uma combinação favorável de pequenos catodos (o cordão de solda) e grandes anodos (o metal de base). Muitos dos problemas são eliminados, deste modo, particularmente em eletrólitos de alta condutividade: a corrosão do metal de base será distribuída por uma área muito maior do que a área (protegida galvanicamente) do cordão de solda (que não corroerá).

*As escórias são compostas, de modo geral, de materiais higroscópicos que, através do fenômeno da osmose, bombeiam moléculas de água através da camada de tinta, favorecendo em muito o processo da corrosão.

(28)

Sempre que possível, essas regiões devem ser jateadas, ou pelo menos alisadas com discos abrasivos ou esmeril. A tinta deve ser esfregada cuidadosamente com pincel, antes de cada demão normal ser aplicada, produzindo um reforço de pintura.

A fotografia abaixo mostra a necessidade, na etapa de constru-ção da estrutura, de um reforço de pintura nos cordões de solda.

Este reforço de dá antes da aplicação da tinta de fundo, e é feito através da pintura detalhada, com pincel, das áreas envolvidas na soldagem, com um primer contendo pigmentos anticorrosivos. Frestas devem ser eliminadas sempre que possível, pois

acumulam eletrólitos e impedem o preparo de superfície, a pintura inicial e a manutenção posterior. Soldas devem ser contínuas, evitando a criação de "bolsões" de acúmulo de eletrólitos.

Construção da estrutura. Cordões de solda.

Frestas devem ser eliminadas. Soldas devem ser contínuas.

(29)

COLETÂNEA DO USO DO AÇO

39 Corrosão nas frestas.

5.5 - Preparo de Superfície

O aquecimento do aço carbono a temperaturas situadas entre 575 C e 1370 C provoca a formação de uma camada de óxidos denominada carepa de laminação. Esta película é formada por três camadas de óxidos sobrepostos: wustita (FeO), magnetita (Fe O ) e hematita (Fe O ).

Placas, tarugos, blocos, chapas, perfis e outros produtos conformados de aço são laminados em temperaturas pouco superiores a 1000 C. A carepa formada é uma película cinza-azulada, muito dura, que recobre completamente o aço. A espessura da carepa pode variar de 10 µm a 1000 µm. Devido ao fato de que a carepa possui coeficiente de dilatação diferente daquele do aço, ela acaba se trincando durante os ciclos de aquecimento e resfriamento, permitindo a penetração de água e oxigênio. A presença de eletrólitos causa a formação de uma pilha, onde o metal é oxidado e a reação de redução do oxigênio acontece sobre a carepa. Depois de algum tempo de ataque, a ferrugem progride por baixo da carepa, expulsando-a da

superfície do aço.

o o

o

3 4 2 3

(30)

A seqüência abaixo mostra a evolução típica da degradação da carepa, causada pela corrosão do substrato metálico.

A carepa, como visto, não protege o aço da corrosão atmosférica. Ela precisa ser removida antes de se iniciar o processo de pintura, pois uma vez trincada, ela reterá os

constituintes necessários ao processo corrosivo. A pintura sobre a carepa não evitará que o processo de corrosão continue. A ferrugem se expandirá e terminará com a ruptura da película de tinta.

Além da carepa de laminação, outros contaminantes presentes prejudicarão a aderência das tintas, tais como pós, ferrugem, terra, óleos, graxas, suor e sais.

A necessidade de grau mínimo de limpeza superficial varia de acordo com o tipo de tinta a ser aplicada e com as condições a que estas ficarão expostas.

A norma mais citada e empregada no Brasil para a preparação da superfície do aço é a Norma Sueca SIS 05 59 00-1967 "Graus de Enferrujamento da Superfície de Aço Laminado a Quente e Graus de Preparo destas Superfícies para Aplicação de

Revestimentos Anticorrosivos".

Esta norma foi elaborada pelo Instituto Sueco de Corrosão, de acordo com o American Society for Testing and Materials (ASTM) e o Steel Structures Paint Council (SSPC), dos EUA.

Aço revestido pela carepa é esposto ao tempo.

A carepa é mais nobre do que o aço, que se corrói. O produto de corrosão (a ferrugem) se expande e empurra a carepa para fora da superfície do metal.

A carepa possui coeficiente de dilatação diferente do aço. Dilatação e contração constantes provocam seu fissuramento. O oxigênio e a água entram pelas fissuras e provocam o aparecimento de uma pilha galvânica aço/carepa.

O2 H O2 Quadro Descritivo

(31)

COLETÂNEA DO USO DO AÇO

41 Os padrões de grau de corrosão são definidos através de

fotografias do estado de intemperismo em que o aço se encontra para pintura:

- superfície com carepa de laminação ainda intacta.

- supefície com carepa de laminação se destacando e com presença de ferrugem.

- superfície com corrosão generalizada e sem carepa. - superfície com corrosão generalizada e com pontos profundos de corrosão (pites).

Os padrões de grau de limpeza também são definidos através de fotografias do estado em que as superfícies ficam após o

tratamento de limpeza:

: Limpeza manual, executada com ferramentas manuais como escovas, raspadores, lixas e palhas de aço.

: Limpeza mecânica executada com ferramentas mecanizadas como escovas rotativas pneumáticas ou elétricas.

: É o jato ligeiro ( ). A superfície resultante deverá encontrar-se inteiramente livre de óleos, graxas e materiais como carepa, tinta e ferrugem soltas. A carepa e a ferrugem remanescentes poderão permanescer, desde que firmemente aderidas. O metal deverá ser exposto ao jato abrasivo por tempo suficiente para provocar a exposição do metal base em vários pontos da superfície sob a camada de carepa.

: Chamado de jato comercial. A superfície resultante do jateamento poderá apresentar manchas e pequenos resíduos devidos à ferrugem, carepa e tinta. Pelo menos da área deverá estar isenta de resíduos visíveis, enquanto o restante será limitado pelas manchas e resíduos.

: Chamado de jato ao metal quase branco. É definida como superfície livre de óleo, graxa, carepa, ferrugem, tinta e outros materiais, podendo apresentar pequenas manchas claras devidas a resíduos de ferrugem, carepa e tinta. Pelo menos 95% da área deverá estar isenta de resíduos visíveis, sendo o restante referente aos materiais acima mencionados.

: Conhecido como jato ao metal branco. Após a limpeza, o aço deverá exibir cor metálica uniforme, branco-acinzentada, sendo removidos 100% de carepas e ferrugens. A superfície resultante estará livre de óleos, graxas, carepa, tinta, ferrugem e de qualquer outro depósito.

• A • B • C • D • St 2 • St 3 • Sa 1 • Sa 2 • Sa 2 ½ • Sa 3 brush off

(32)

A superfície metálica deverá ser previamente lavada com água e tensoativos neutros, esfregando-se com uma escova de nylon. Após a lavagem, secar a superfície naturalmente ou com ar comprimido limpo (isento de óleo) e seco. Esta providência é necessária, pois as operações de escovamento e jato não removem óleos, gorduras e sais da superfície.

O método do jateamento é muito empregado na pintura industrial, sendo também muito comum nos fabricantes de

estruturas metálicas. Ela é feita através do impacto de partículas, geralmente abrasivas, impelidas a alta velocidade contra a

superfície a ser limpa. Esta técnica possui duas grandes vantagens:

• Elimina todas as impurezas superficiais, permitindo o contato do revestimento com o substrato,

• Confere rugosidade à superfície, permitindo a ancoragem do revestimento.

Diversos materiais podem ser utilizados como abrasivos: areia, granalha de aço (esférica e angular), vidro, ferro fundido e outros.

Com ferramentas mecânicas Limpeza manual

Limpeza motorizada Com jato abrasivo Ligeiro (Brush-off) Comercial

Metal quase branco Metal branco Outros métodos Limpeza com solventes Limpeza a fogo Decapagem química Intemperismo e jato abrasivo

St 2 N-6 7346 St 2 7347 7348 7348 7348 7348 N-7 N-9 St 3 St 3 Sa 1 Sa 1 Sa 1 NACE-4 Brush-off 3_CLASSEa 2_CLASSEa 1_CLASSEa NACE-3 NACE-2 NACE-1 Sa 2 Sa 2 Sa 2 ½ Sa 2 ½ Sa 3 Sa 3 N-5 N-11 Sa 2 Sa 2 ½ Sa 3 SSPC-SP2 SUECA SIS 055900-67 SSPC PETROBRÁS NACE RM-01-70 BS BS-4232-67 SSPC-SP3 SSPC-SP7 SSPC-SP6 SSPC-SP10 SSPC-SP5 SSPC-SP1 SSPC-SP4 SSPC-SP8 SSPC-SP9

(33)

COLETÂNEA DO USO DO AÇO

A areia é o agente abrasivo mais utilizado em campo, onde o jateamento é feito a céu aberto e não há preocupação em se recuperar o abrasivo (a areia é utilizada no máximo 2 vezes). A areia promove o melhor tipo de rugosidade para a ancoragem, pois tem ação simultânea de corte e impacto. A areia deve

produzir uma rugosidade no metal que corresponda a cerca de ¼ a da espessura total da película seca do revestimento.

A granalha é normalmente utilizada em cabines fechadas. Ela é feita de aços especiais, muito duros. O formato de suas

partículas pode ser redondo ( ) ou angular ( ). As redondas podem ser recicladas até 450 vezes e deixam um perfil bastante arredondado. As angulares podem ser recicladas até 350 vezes e deixam um perfil anguloso e irregular.

A pintura é o principal meio de proteção das estruturas metálicas. Tintas são suspensões homogêneas de partículas sólidas

(pigmentos) dispersas em um líquido (veículo), em presença de componentes em menores proporções, chamados de aditivos. Os pigmentos são pós orgânicos ou inorgânicos finamente divididos (aprox. 5 m de diâmetro). Em suspensão na tinta líquida, são aglomerados pela resina após a secagem, formando uma camada uniforme sobre o substrato. Os pigmentos

promovem a cor, opacidade, coesão e inibição do processo corrosivo, e também a consistência, a dureza e resistência da película. shot grit µ 5.6 - Tintas 43 pigmento resina solvente ve íc u lo m a té ri a n ã o vo lá ti l Quadro Descritivo

(34)

Os pigmentos anticorrosivos mais utilizados nas tintas de proteção ao aço carbono são:

. Um dos pigmentos mais antigos utilizados na

proteção do aço, tem coloração laranja. Ele tem características alcalinas (neutraliza compostos ácidos) e oxidante (íons

solúveis, como o íon ferroso são oxidados a férricos, insolúveis). O zarcão é tóxico, pois o chumbo é um metal pesado.

. É um pigmento que, em contato com água, dissolve-se parcialmente, liberando os ânions fosfato que passivam localmente a superfície do aço, formando fosfatos de ferro.

. É utilizado o zinco metálico de alta pureza disperso em resinas epoxídicas ou etil silicato. As tintas ricas em zinco são também chamadas de "galvanização a frio", e conferem proteção catódica ao substrado de aço (o zinco se corrói, protegendo o aço processo idêntico à proteção

auferida pela galvanização tradicional). Um risco na pintura e o zinco começará a se corroer, protegendo o aço.

. É um pigmento amarelo, parcialmente solúvel em água que, assim como o fosfato de zinco, passiva localmente a superfície do aço, pela precipitação de cromatos de ferro. Este pigmento é tóxico, pois o cromo é um metal pesado.

. É um pigmento vermelho que não tem nenhum mecanismo de proteção anticorrosiva por passivação, alcalinização ou proteção catódica. Entretanto, por ser sólida e maciça, a partícula atua como barreira à difusão de espécies agressivas, como água e oxigênio. Este pigmento é muito utilizado nas tintas de fundo, não é tóxico, tem bom poder de tingimento e apresenta boa cobertura.

. O alumínio lamelar e outros pigmentos também lamelares tais como a mica, talco, óxido de ferro micáceo e certos caulins atuam pela formação de folhas microscópicas sobrepostas, constituindo uma barreira que dificulta a difusão de espécies agressivas. Quanto melhor a barreira, mais durável será a tinta. A junção de resinas

bastante impermeáveis com pigmentos lamelares oferece uma ótima barreira contra a penetração dos agentes agressivos.

• Zarcão • Fosfato de zinco • Zinco metálico • Cromato de zinco • Óxido de ferro • Alumínio e outros

(35)

45 Os solventes tem por finalidade dissolver a resina e, pela

diminuição da viscosidade, facilitam a aplicação da tinta. Os solventes mais comuns utilizados em tintas são os líquidos orgânicos e a água.

Os ligantes mais comuns são as resinas e os óleos, mas também podem ser inorgânicos, como os silicatos solúveis. Ele tem a função de envolver as partículas de pigmento e mantê-las unidas entre si e o substrato. A resina proporciona impermeabilidade, continuidade e flexibilidade à tinta, além de aderência entre esta e o substrato. As resinas se solidificam através da simples evaporação do solvente ou pela polimerização, com ou sem a intervenção do oxigênio do ar. Em alguns casos, a resina é frágil e não possui boa aderência. Nestes casos, adicionam-se os chamados plastificantes, que, não sendo voláteis, permanecem na película após a secagem.

Como visto anteriormente, as tintas são compostas, de modo geral, de pigmentos dispersos em um resina particular,

solubilizada em uma mistura de solventes. Assim sendo, como o número de possibilidades de composição é relativamente

limitado, as tintas podem ser classificadas em grupos que apresentam semelhanças. As classificações mais comuns das tintas são feitas pelo tipo de resina empregada ou pigmento utilizado.

As tintas de fundo, conhecidas como , são

costumeiramente classificadas de acordo com o principal pigmento anticorrosivo participante, enquanto que as tintas intermediárias e de acabamento são usualmente classificadas de acordo com a resina empregada, como por exemplo, epoxídicas, acrílicas, alquídicas, etc.

primers

5.7 - Classificação das Tintas

(36)

Os tipos de tintas mais importantes para a proteção do aço carbono, tendo como classificação o tipo de resina, são:

. Conhecidas como esmaltes sintéticos, são tintas monocomponentes de secagem ao ar. São utilizadas em interiores secos e abrigados, ou em exteriores não poluídos. Como as resinas utilizadas são saponificáveis, não resistem ao molhamento constante ou à imersão em água.

. São tintas bicomponentes de secagem ao ar. A cura se dá pela reação química entre os dois componentes. O componente A é, de modo geral, à base de resina epoxídica, e o B, o agente de cura, pode ser à base de poliamida,

poliamina ou isocianato alifático. São mais impermeáveis e mais resistentes aos agentes químicos do que as alquídicas. Resistem à umidade, imersão em água doce ou salgada, lubrificantes, combustíveis e diversos produtos químicos. As epoxídicas à base de água tem a mesma resistência daquelas formuladas à base de solventes orgânicos. Não são indicadas para a exposição ao intemperismo (ação do sol e da chuva), pois desbotam e perdem o brilho (calcinação).

. São tintas bicomponentes em que o componente A é baseado em resina de poliéster ou resina acrílica, e o B, o agente de cura, é à base de isocianato alifático. As tintas poliuretânicas são bastante resistentes ao intemperismo. Assim, são indicadas para a pintura de

acabamento em estruturas expostas ao tempo. São

compatíveis com primers epoxídicos e resistem por muitos anos com menor perda da cor e do brilho originais.

. São tintas monocomponentes à base de solventes orgânicos ou de água, e, assim como as tintas poliuretânicas, são indicadas para a pintura de acabamento. São tintas bastante resistentes à ação do sol.

As tintas de fundo são aplicadas diretamente sobre a superfície metálica limpa. Sua finalidade é a de promover aderência do esquema ao substrato, e contém, costumeiramente, pigmentos inibidores de corrosão. Elas são utilizadas para a proteção dos aços estruturais, e são classificadas de acordo com os pigmentos inibidores adicionados em sua composição. Como exemplos, temos as tintas de fundo à base de fosfato de zinco, de zinco metálico ou de alumínio.

• Alquídicas

• Epoxídicas

• Poliuretânicas

(37)

COLETÂNEA DO USO DO AÇO

47 As tintas de fundo são formuladas com altos teores de pigmentos

e, por isso, são semibrilhantes ou foscas.

Cada um destes pigmentos inibidores pode ser incorporado em uma certa variedade de ligantes, gerando, por exemplo, tintas de fundo alquídicas à base de fosfato de zinco, tintas epoxídicas à base de fosfato de zinco, etc.

Tintas intermediárias não possuem as mesmas propriedades das tintas de fundo anticorrosivas, mas auxiliam na proteção,

fornecendo espessura ao sistema de pintura empregado

(proteção por barreira). De modo geral, quanto mais espessa a camada seca, maior a vida útil do revestimento, assim, várias demãos poderão ser aplicadas, até que se atinja a espessura adequada.

Tintas intermediárias e de acabamento são, normalmente,

classificadas de acordo com seus ligantes, como por exemplo as epoxídicas, vinílicas, poliuretânicas, etc.

As tintas de acabamento tem a função de proteger o sistema contra o meio ambiente, e também dar a cor e o brilho adequados. Elas devem ser resistentes ao intemperismo, a agentes químicos e ter cores estáveis. De modo geral, são tintas brilhantes com boa resistência à perda de cor e brilho.

As várias camadas de pintura devem, naturalmente, ser

compatíveis entre si. Eles podem pertencer à mesma família ou podem ser muito diferentes. Uma precaução que sempre deve ser adotada é a de todas as tintas do sistema devem

preferencialmente pertencer ao mesmo fabricante. Isso

minimizará a possibilidade de ocorrência futura de defeitos tais como a delaminação (descolamento).

As aditivos melhoram certas propriedades específicas das tintas. Existem aditivos antinata, secantes, plastificantes, antimofo, anti-sedimentante, nivelante, tixotrópicos, etc.

Um mesmo aço, pintado com tipos diferentes de tintas, pode apresentar comportamento muito diferenciado quando exposto ao mesmo meio agressivo.

(38)

Esta diferença pode ser explicada admitindo-se que as tintas empregadas tenham diferentes mecanismos de ação contra a corrosão. Estes mecanismos, de maneira geral, são classificados em:

: A tinta deve ser o mais impermeável possível e aplicada em espessuras elevadas. Tintas de alta espessura, chamadas de HB (high build) tem como vantagem a economia de mão-de-obra para a aplicação. Além das tintas de alta espessura, as que oferecem melhor proteção por barreira são as betuminosas e as de alumínio. O

inconveniente da proteção por barreira é que, se houver um dano à película, a corrosão se alastrará sob a película por aeração diferencial. Assim, é sempre recomendável que se utilize tintas de fundo com mecanismos de proteção catódica ou anódica.

: A proteção das regiões anódicas é proporcionada pelos pigmentos anticorrosivos, todos de caráter oxidante. A proteção pode ser dada através da dissolução do pigmento (como o cromato de zinco, que, em contato com água, libera íons passivantes de cromato) ou por ação oxidante (o zarcão Pb O , p.ex., é um oxidante enérgico de características alcalinas)

: A proteção é dada através da formação de pares galvânicos entre o aço carbono e partículas de zinco em pó (são as chamadas tintas ricas em zinco). Nestas, o zinco se corrói, protegendo o substrato de aço carbono. O teor mínimo recomendável de zinco na película seca é de 85% (o contato elétrico é fundamental à manutenção da proteção). Na elaboração de um sistema de pintura, todos os dados devem ser considerados, como o ambiente, substrato, preparação de superfície, tintas, seqüência de aplicação, número de demãos, espessuras, tipos de aplicação e a que condições de trabalho estará submetida a superfície.

• Proteção por barreira

• Proteção anódica

• Proteção catódica

(39)

COLETÂNEA DO USO DO AÇO 49 Preparo de superfície mínimo Tintas Tintas de Acabamento Espessura total recomendada ( m)µ Alquídicas Alquídicas Poliuretânicaou Epoximastic Alquídica ou Epoximastic Alquídica ou Epoximastic Poliuretânica Epoxi Epoxi com pigmentos anticorrosivos Epoxi com pigmentos anticorrosivos 1 demão de primer e 2 de acabamento. Epoximastic: 2 demãos. Alquídica com pigmentos anticorrosivos 2 demãos de primer e 2 de acabamento. Epoximastic: 1 demãos. Alquídica com pigmentos anticorrosivos 1 demão de primer e 2 de acabamento. Epoximastic: 1 demãos. Epoxi com pigmentos anticorrosivos 2 demão de primer e 2 de acabamento. Epoximastic: 2 demãos. Sa 2 ½ 100-175 70-125 250-300 100-175 70-125 250-300 Sa 2 ½ St 3, Sa 2 St 2, Sa 2 Sa 2 ½ St 2, St 3, Sa 2 AMBIENTE INTERNO EXTERNO

Úmido Seco Industrial Urbano Rural Marinho

ATENÇÃO: A APLICAÇÃO DE PROTEÇÃO CONTRA A

CORROSÃO DEVE SER ESTUDADA EM CONJUNTO COM A NECESSIDADE DE PROTEÇÃO FRENTE AO FOGO

(PROTEÇÃO PASSIVA) DA ESTRUTURA. A APLICAÇÃO DE PROTEÇÃO PASSIVA EM ÁREAS INTERNAS, ONDE NÃO EXISTA CONDENSAÇÃO DE ÁGUA NÃO REQUER PREPARO DE SUPERFÍCIE, A NÃO SER A RETIRADA DE CAREPAS E FERRUGENS SOLTAS, ALÉM DE GRAXAS E ÓLEOS,

QUANDO HOUVER.

Pigmentos anticorrosivos: Zarcão, cromato de zinco, fosfato de zinco, zinco metálico, silicato de cálcio, etc.

A tabela abaixo traz alguns exemplos de sistemas de pintura recomendados para os aços carbono expostos em diferentes ambientes.

As orientações aqui apresentadas são genéricas, cabendo ao profissional uma consulta prévia e detalhada com os fabricantes de tintas e aplicadores.

(40)

PROTEÇÃO

FRENTE AO FOGO:

GENERALIDADES

(41)

COLETÂNEA DO USO DO AÇO

6 - PROTEÇÃO FRENTE AO FOGO: GENERALIDADES

A maior parte das mortes ocorridas em incêndios de edifícios ocorre por asfixia, ainda nos primeiros estágios do fogo. Pesquisas européias tem mostrado que o risco deste tipo de morte é 30 vezes menor do que nos sistemas de transporte tradicionais. O risco à vida devido à falha estrutural ocasionada pelo fogo é ainda menor*.

Mesmo sendo de baixo risco, a proteção à vida humana deve ser sempre considerada em projetos de edifícios. A principal

finalidade da segurança contra incêndio é reduzir o risco à vida e minimizar a perda do patrimônio. Um sistema de segurança contra incêndio apropriado consiste de um conjunto de sistemas ativos tais como sistemas de detecção, chuveiros automáticos, extintores, etc., e sistemas passivos, tais como materiais de proteção térmica, compartimentação e outros.

Vários são os fatores que influenciam a intensidade e a duração do incêndio. Alguns deles são a carga de incêndio (quantidade e tipo de material combustível) e sua distribuição no edifício, ventilação do compartimento, propriedades térmicas de pisos e paredes, sistemas de detecção de incêndio, existência de brigada de incêndio, pontos de suprimento de água, chuveiros automáticos, disponibilidade de extintores de incêndio

adequados, etc...

A principal característica de um incêndio, no que diz respeito ao estudo das estruturas, é a curva que fornece a temperatura dos gases em função da progressão do incêndio. Esta curva,

representada abaixo, mostra três regiões distintas:

53 V elocidade de liberação de calor (k-W) Inflamação Generalizada Período de Crescimento Ignição Tempo Temperatura Máxima Descaimento (Esfriamento) Incêndio totalmente desenvolvido

*V. P. e Silva e R. H. Fakury. "Brazilian Standards for Steel Structures Fire Design", Fire Safety Journal 37, p. 217-227 (2002)

(42)

1. O período de crescimento, no qual a temperatura média do compartimento é relativamente baixa e o fogo está localizado próximo à sua origem.

2. O estágio do incêndio totalmente desenvolvido, durante o qual todos os combustíveis existentes no compartimento estão

queimando, e as chamas preenchem todo o volume do ambiente. 3. O período de decaimento, definido por alguns pesquisadores como sendo o estágio do incêndio quando a temperatura média caiu a 80% do seu valor de pico (a temperatura máxima). Conhecendo-se esta curva, é possível calcular a temperatura atingida pelos componentes estruturais e sua correspondente resistência àquela temperatura. Se medidas de proteção ativa contra incêndio não forem eficientes para a extinção do incêndio durante a fase posterior à inflamação generalizada, deve-se considerar o efeito da ação térmica, ou seja, a redução da resistência dos elementos estruturais. A curva do incêndio real é de difícil delineamento experimental, pois é função de muitos parâmetros (carga de incêndio, ventilação, fator de forma dos componentes metálicos, etc.). Assim sendo, adotou-se, por convenção, uma curva padronizada (a curva do incêndio padrão) como modelo para a análise experimental de estruturas e

materiais em fornos laboratoriais. As principais normas internacionais que tratam de ensaios de resistência frente ao fogo são a LPS 1107 "Requirements, Tests and Methods of Assessment of Passive Fire Protection Systems for Structural Steelwork", a BS 476 "Fire Tests on Building Materials and Structures", ISO 834 "Fire-resistance Tests Elements of Building Construction" e ASTM E 119 "Standard Test Methods for Fire Tests of Building Construction and Materials"*.

É importante ressaltar que estes modelos de ensaio não representam um incêndio real, assim sendo, seus resultados devem ser analisados com cuidado.

* Loss Prevention Standard. "Requirements, Tests and Methods of Assessment of Passive Fire Protection Systems for Structural Steelwork". LPS 1107 : Issue 1: 20.10.87, BRE/Garston, 1987.

* British Standards Institution. "Fire Tests on Building Materials and Structures". BS 476 :Part 8 : 1972, London, UK, 1972. *International Standardization for Organization. "Fire-resistance Tests Elements of Building Construction". ISO 834, Genève, Swiss, 1994.

*American Society for Testing and Materials. "Standard Test Methods for Fire Tests of Building Construction and Materials". E119, West Conshohocken, USA, 2000

(43)

COLETÂNEA DO USO DO AÇO

55 A curva de incêndio padrão descrita pela Norma ISO 834 é

dada pela equação:

Onde T é a temperatura dos gases ( C), t é o tempo (minutos) e To é a temperatura no instante t=0, geralmente admitida 20 C. A temperatura do aço é inferior à temperatura dos gases quentes existentes na atmosfera do forno. Essa temperatura pode ser medida experimentalmente (inserindo termopares na estrutura) ou através de métodos analíticos, como o recomendado pela NBR 14323 "Dimensionamento de Estruturas de Aço de Edifícios em Situação de Incêndio Procedimento".

o o T = 345 log(8t+1) + To Curva do icêndio padrão (ISO 834) Curva do icêndio NATURAL T emperatura Tempo

A figura abaixo mostra a curva de um incêndio real confrontada com a curva do incêndio padrão conforme ISO 834. A

característica principal das normas acima mencionadas é que elas tem somente um ramo ascendente, admitindo portanto que a temperatura dos gases seja sempre crescente com o tempo e, além disso, independente das características do ambiente e da carga de incêndio.

Quadro Descritivo

Associação Brasileira de Normas Técnicas. "Dimensionamento de Estruturas de Aço de Edifícios em Situação de Incêndio Procedimento". NBR 14323, Rio de Janeiro, 1999.

(44)

A figura abaixo ilustra o avanço da temperatura no forno, no aço desprotegido e no aço protegido.

Todos os materiais estruturais perdem progressivamente sua resistência e rigidez quando aquecidos.

Esta mudança de propriedades acontece tanto para o aço carbono quanto para o concreto, que são elementos estruturais básicos na concepção estrutural. Como exemplo, o aço estrutural mantém, a 550 C, cerca de 60% da sua resistência à 20 C. Assim sendo, se constituintes de uma estrutura forem aquecidos o suficiente, eles poderão entrar em colapso.

As conseqüências desta falha dependerão da importância destes componentes no controle do comportamento geral da estrutura. Enquanto que a falha de uma coluna situada na base de um edifício pode levar ao colapso de todo um conjunto, a falha de uma viga secundária pode resultar em um dano mínimo, pois as cargas serão transferidas para outros componentes e elementos estruturais não diretamente afetados pelo fogo.

Temperatura crítica é a temperatura que causa o colapso. A temperatura critica verdadeira pode ser determinada através de ensaios para cada elemento estrutural, mas, de modo geral, este caminho não é economicamente viável, além de demandar muito tempo. Como regra, fixa-se um valor convencional de

temperatura crítica recomendado por normas ou códigos, que garanta com certa margem de segurança a integridade estrutural.

o o T = 345log(8t+1) + To ISO 834 T emperatura Tempo

Aço sem proteção térmica

Aço com proteção térmica

(45)

COLETÂNEA DO USO DO AÇO

O aumento de temperatura de um elemento estrutural de aço, em incêndio, é proporcional ao seu fator de massividade. Fator de massividade de um corpo é a relação entre a área exposta ao fogo (A) e o volume (V) aquecido do corpo. Para barras

prismáticas, o fator de massividade pode ser expresso pela relação entre o perímetro exposto ao fogo (µ) e a área da seção transversal da barra, sendo também conhecido como fator de forma da seção, ou seja F=(µ/A), m .-1

57

A velocidade de aquecimento de um perfil sob fogo depende: Do perímetro (Hp), Da seção tranversal (A). Baixo perímetro Alta A Aquecimento lento Alto perímetro Baixa A Aquecimento rápido Quadro Descritivo

A segurança estrutural é garantida quando a temperatura do aço em situação de incêndio atinge um valor menor do que a

temperatura crítica da estrutura.

A Figura abaixo mostra os fatores de redução em temperatura elevada (relativos aos valores a 20ºC) previstos pela NBR 14323 para o limite de escoamento dos aços laminados a quente (k ), o limite de escoamento dos aços trefilados (k ) e o módulo de elasticidade de todos os tipos de aço (k ).

y, yo, , E 1 0,8 0,6 0,4 0,2 0 0 200 400 600 Temperatura [ºC] 800 1000 1200 kyO, Quadro Descritivo kE , ky,

(46)

A tabela abaixo fornece a temperatura do aço (em ºC) sem proteção térmica em função do fator de massividade, conforme modelo do incêndio-padrão, e é útil para a verificação da necessidade ou não de proteção térmica em elementos estruturais. FATOR DE MASSIVIDADE, m-1 Tempo (min.) 10 50 100 200 250 300 207 341 505 551 583 444 626 724 733 736 628 738 815 826 831 731 840 875 878 879 799 902 912 913 914 890 935 941 942 942 941 960 964 965 966 971 982 985 986 986 993 1000 1003 1004 1004 1011 1017 1019 1020 1020 1027 1032 1034 1034 1035 20 30 40 70 50 80 100 60 90 110

(47)

AS NORMAS

BRASILEIRAS

(48)

7 - AS NORMAS BRASILEIRAS

Para que se possa verificar a segurança estrutural em situação de incêndio dos elementos estruturais de aço de uma edificação é necessário conhecer a exigência de resistência ao fogo para cada tipo de elemento (viga, pilar, laje) conforme as normas vigentes no país. As Normas Brasileiras que tratam da segurança estrutural frente ao fogo foram aprovadas em 1999: NBR 14432 "Exigências de Resistência ao Fogo de Elementos Construtivos de Edificações Procedimento" e NBR 14323 "Dimensionamento de Estruturas de Aço de Edifícios em Situação de Incêndio Procedimento". O desempenho requerido para os elementos de construção estrutural (concreto, madeira ou aço) ou de

compartimentação prescritos na NBR 14432 trata de prevenir o colapso estrutural, tornando possível a retirada dos ocupantes, de reduzir os danos às propriedades vizinhas e permitir o rápido acesso do Corpo de Bombeiros.

A Norma fornece uma tabela, resumida acima, com

recomendações consagradas, fruto do consenso da sociedade, de tempos requeridos de resistência ao fogo (TRRF) sob o conceito de fogo padrão descrito na Norma ISO 834.

h £ 6m 6m < h£ 12m 12m < h £ 23m 23m < h £ 30m h > 30m 90 120 90 120 90 120 90 120 90 120 90 120 90 120 30 60 60 90 120 90 30 120 120 (90) 120 (90) 120 120 , Altura de Edificação

TEMPO REQUERIDO DE RESISTÊNCIA AO FOGO (TRRF*), EM MINUTOS, SEGUNDO NBR 14432:2000

Ocupação Residência Comercial Escritório Escola Locais Públicos Estacionamento Fechado Estacionamento Aberto Hospital

Indústria com Baixa Carga de Incêndio

Loja com Baixa Densidade de carga de incêndio Loja com Alta Densidade de carga de incêndio Indústria com Alta Densidade de Carga de Incêndio Hotel 30 30 60 60 60 60 60 60 60 60 60 60 60 30 30 30 30 30 30 60 30 60 30 30 30 30 30 30 30 30 60 60 (30) 60 (30) 60 (30) 60 (30) 60 (30) 60 (30) 60 (30) 90 (60)

Tempo requerido de resistência ao fogo (TRRF) é definido como sendo o tempo mínimo de resistência de um elemento construtivo submetido ao incêndio padrão.

(a) Valores entre parenteses são válidos para edificações com área _< 750m .

(b) A altura da edificação (h) é a distância compreendida entre o ponto que caracteriza a saída situada no nível de descarga do prédio e o piso do último pavimento, excetuando-se zeladorias, barrilete, casa de máquinas, piso sem a permanência humana.

(49)

COLETÂNEA DO USO DO AÇO

De acordo com a elevação de temperatura dos gases do forno como descritos na ISO 834, BS476 e LPS1107, quando a Tabela propõe uma resistência ao fogo de 30 minutos, significa que a estrutura deve permanecer estável quando a atmosfera ao seu redor estiver a aproximadamente 820 C, 1 hora significa 930 C e 2 horas 1030 C. Quanto maior a resistência requerida, maior a temperatura que a estrutura deve resistir.

A Norma aceita, como alternativa, o uso de qualquer método cientificamente confirmado ou normatizado, como o Método do Tempo Equivalente, a Análise de Risco como a proposta por Gretener ou métodos mais avançados de engenharia de incêndio.

A medida que o risco à vida humana é considerado maior, devido à ocupação, altura do edifício, etc., a exigência torna-se mais rigorosa e maior será o tempo requerido de resistência. A Norma prevê ainda isenções, baseadas na pequena

probabilidade da ocorrência de acidentes em pequenos edifícios cuja evacuação é simples, tais como estruturas de pequena área ou de um andar. A tabela abaixo resume estas isenções

prescritas na NBR 14432.

Apesar da NBR 14432 ser válida para todo o Brasil, é importante

o o

o

verificar a existência de algum regulamento local específico.

Área, m2 Densidade de Carga de Incêndio

(MJ/m2) Altura

Equipamentos de Proteção de Incêndioaa

£ 2 pavimentos

Duas fachadas para acesso dos bombeirosf

.

Mínimo por Lei.

Estruturas de concreto ou aço mas com vigas compostas e fatores de forma mínimos de 250m para colunas e 350m para vigas. Estruturas de concreto ou aço.

Compartimentação em conformidade com outras Normas Brasileiras. Em conformidade com outras Normas Brasileiras.

Perímetro das fachadas >_ 50% do perimetro da edificação.

a b c d e f -1 -1 ISENÇÕES SEGUNDO A NBR 14432 Ocupação Qualquer Qualquer Qualquer Qualquer Qualquer Qualquer Qualquer Qualquer <_ 5000 <_ 1500 <_ 1000 <_ 500 <_ 23 m <_ 30 m <_ 30 m <_ 1200 <_ 2000 <_ 750 Qualquer Qualquer Incombustível Qualquer Qualquer Qualquer Térrea Térrea Térrea Térrea Térrea Mínimo Mínimo Mínimo Mínimo Mínimo Mínimo Mínimo Mínimo Chuveirose Qualquer Qualquer Qualquer Qualquer

Estádios, aeroportos, estações ferroviarias Estacionamento abertob Lojasd Lojasd Lojasd Industriald 62

(50)

MATERIAIS UTILIZADOS

NA PROTEÇÃO TÉRMICA

DE ESTRUTURA

DE AÇO

Referências

Documentos relacionados

O presente trabalho evidenciou fibrose miocárdica em pacientes na forma indeterminada da doença de Chagas, em frequência e extensão semelhantes ao grupo classificado como

pública, educação, atividades de saúde e apoio social Comércio por grosso e a retalho Atividades imobiliárias, administrativas e dos serviços de apoio Outras atividades de

Neste artigo, nosso objetivo foi demonstrar como o trabalho com a estratégia de projetos – visto sob a ótica da complexidade, interdisciplinaridade e transversalidade

Apesar de os resultados apresentados confirmarem a tendência para haver uma produção mais robusta de advérbios conectivos e conjunções e locuções conjuncionais concessivas

Neste trabalho foram feitas análises do processo produtivo e seus controles, como, produção, lenha usada, tempo de queima e sua relação no processo, análise das paradas,

Porém, quando o mesmo revestimento foi aplicado sobre grau de limpeza St3 (realizado com ferramentas manuais e mecânicas), mesmo que o substrato apresente aspecto um pouco

Quando dois Juízes fizerem o mesmo sinal, ou indicarem ponto para o mesmo competidor, o Árbitro deverá considerar a sua opinião, mas pode não mandar parar o combate

2 - Consideram-se efetuadas para os correspondentes grupos e subgrupos farmacoterapêuticos da classificação ora aprovada as referências a grupos e subgrupos