• Nenhum resultado encontrado

Bacteria isolated from Korean black raspberry vinegar with low biogenic amine production in wine

N/A
N/A
Protected

Academic year: 2021

Share "Bacteria isolated from Korean black raspberry vinegar with low biogenic amine production in wine"

Copied!
9
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Industrial

Microbiology

Bacteria

isolated

from

Korean

black

raspberry

vinegar

with

low

biogenic

amine

production

in

wine

Nho-Eul

Song

a

,

Hyoun-Suk

Cho

b

,

Sang-Ho

Baik

a,∗

aDepartmentofFoodScienceandHumanNutrition,andFermentedFoodResearchCenter,ChonbukNationalUniversity,Jeonju,Jeonbuk,

RepublicofKorea

bGucheondongBokbunjaCo.,Muju,Jeonbuk,RepublicofKorea

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6October2014 Accepted15September2015 Availableonline2March2016 AssociateEditor:SolangeInes Mussatto

Keywords:

Biogenicamines Histamine Aceticacidbacteria Vinegar

Wine

a

b

s

t

r

a

c

t

Ahighconcentrationofhistamine,oneofthebiogenicamines(BAs)usuallyfoundin fer-mentedfoods,cancauseundesirablephysiologicalsideeffectsinsensitivehumans.The objectiveofthisstudyistoisolateindigenousAcetobacterstrainsfromnaturallyfermented BokbunjavinegarinKoreawithreducedhistamineproductionduringstarterfermentation. Further,weexamineditsphysiologicalandbiochemicalproperties,includingBA synthe-sis.TheobtainedstrainMBA-77,identifiedasAcetobacteracetiby16SrDNAhomologyand biochemicalanalysisandnamedA.acetiMBA-77.A.acetiMBA-77showedoptimalacidity% productionatpH5;theoptimaltemperaturewas25◦C.Whenwepreparedandexamined theBAssynthesisspectrumduringthefermentationprocess,Bokbunjawinefermented withSaccharomycescerevisiaeshowedthatthehistamineconcentrationincreasedfrom2.72 ofBokbunjaextractto5.29mg/Landcadaverineanddopaminewasdecreasedto2.6and 10.12mg/L,respectively.BokbunjavinegarpreparedbyA.acetiMBA-77asthestarter,the his-tamineconcentrationofthevinegarpreparationstepwasdecreasedupto3.66mg/Lfrom 5.29mg/Linthewinepreparationstep.Toourknowledge,thisisthefirstreportto demon-strateaceticacidbacteriaisolatedfromBokbunjaseedvinegarwithlowspectrumBAand wouldbeusefulforwellbeingvinegarpreparation.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Biogenicamines(BAs)areorganicbasesthatprimarilyoccur infermentedfoodsduetothedecarboxylationofaminoacids bycertainmicroorganismswithbiologicalactivity.Duetothe

Correspondingauthor.

E-mail:baiksh@jbnu.ac.kr(S.-H.Baik).

undesirable physiologicaleffects causedby ahigh concen-trationofBAsinsensitivehumans,manyeffortshavebeen performedinordertoreducetheirconcentrationinvarious foods.Inparticular,theconsumptionoffoodswithhigh-level concentration of histamine can have vasodilation effects1 in humans aswell ascause headaches, heartpalpitations,

http://dx.doi.org/10.1016/j.bjm.2016.01.016

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

edema,vomiting,diarrheaandothersymptoms2;thus,there aregreatdemandstoreducethehistamineconcentrationin thepreparationoffermentedfoods.

Infermentedfoods,severalspeciesofhistamine-producing lactic acid bacteria (LAB) and yeast belonging to the Lac-tobacillus, Leuconostoc, Pediococcus genera,3 Oenococcus oeni,4

Staphylococcus spp., Enterobacter cloacae, and Candida spp.5 have been determined in a wide range of food products, not only fermented from fish, meat, vegetables and dairy products,but also from other typesoffoods, suchas beer and wine. Although many other BAs, except histamines such as putrescine, spermidine, methylamine, ethylamine, phenylethylamine,isoamylamineandcadaverine,areusually derived from the raw materials ofgrapes and grapemust themselves,mostoftheBAscanbesynthesizedordegraded duringfermentation.6Withregardtowinefermentation,BAs, especiallythroughfermentationprocesses, are wellrelated withthe malolacticfermentationstep.Inthis step,a large amountofBAsareformedinwinebythedecarboxylationof

Lactobacilli.7 LABsisolatedfromwine,suchasP. parvulus,L.

mali,Leu.Mesenteroids,L.brevis,O.oeniand L.hilgardii,were showntoproducevariousBAswithdifferentBAspectrum.8It hasbeenalsodemonstratedthatmanyyeaststrainspresent inwines(Saccharomyces cerevisiae,Brettanomyces bruxellensis, Kloeckera apiculata, among others) can produce histamine, phenylethylamine and cadaverine.9,10 These resultsclearly indicatethatmicroorganisms,suchasfermentationfactors, arecriticalforcontrollingBAsynthesisduringfermentation.

Vinegarfermentationusually occurred afteralcohol fer-mentationunderabsolutelyaerobicconditionduringlittlebit longtimefermentationthroughtheoxidationoftheethanol by AAB. When the total BAs contents in various vinegars wereexamined,interestingly,Balsamicand“PedroXiménez” Sherryvinegarsshowedthe highestamounts ofBAs; how-ever,apple,whiteand Sherrywinevinegarshadthelowest concentrations,therebyindicatingthatbiogeniccontents sig-nificantlyremainedaftervinegarfermentation,althoughthe amountofBAswere differentdependingonthe vinegars.11 AlthoughtheproducedBAsaftervinegarfermentation usu-allyoriginatefromyeastsorLABsduringwinefermentation, the finalproductsofvarious vinegarsstill contains signifi-cantamounts ofBAs, whichmightcausesignificant health problemsbecauseBAslevels areincreasedduring malolac-ticfermentation.12Hence,therearenumerousLABsthatare isolatedinordertocontrolBAsduringfermentation; further-more,theyareexaminedfortheirBAreductionability,aswell asconveyapotentialpossibilityforBAsreductioninthefinal wineproduct.13However,therehasbeennostudyyetonAAB forBAreductionabilityduringthefermentationprocess.8Only minimalknowledgeon the BAsynthesis abilityofAABs is present.

Black raspberry (Rubus coreanus Miquel), which is well known as ‘Bokbunja’ in Korea, is mainly cultivated in the southern parts of Korea, China and Japan, and has been increasedincultivationareaduetotheexpandedusageas atraditionalherbalmedicine.14 BecauseBokbunjacontains rich ingredients such as flavonoids, tannins, triterpeno-sidesand phenoliccompounds, variousfunctional aspects, suchascell proliferation inhibitionand apoptosis stimula-tion inHT-29 humancoloncancer cells15 andanti-fatigue,

anti-gastropathic, anti-inflammatory, anti-rheumatic and antioxidantactivities,havebeenreported.Duetoits extraor-dinaryfunctionality,atthepresent,varioustypesofprocessed products, such as sugar extracts, wine and vinegars, have beenactivelyproducedtocreatehigh-valueaddedBokbunja foodproducts.ThetraditionalBokbunjavinegarismadefrom the fermentationoffully ripenedfruitsthroughatwo-step fermentationofalcoholandvinegarfermentationstepswith the sugar-soakingsteppriortofermentation.Many studies indicated that the chemical constituents change the raw Bokbunjafruitandthefermentedwineandbeveragechange enhance the functional aspects, such as the antioxidant activity. Nevertheless, a high concentration of BAs might alsobeformedduringtheethanolandvinegarfermentation throughthedecarboxylationofaminoacids.

Inthisstudy,ourpurposewastoisolateindigenousAAB strains whichpossess the biogenic aminereductionability especiallyforhistamineproductionfromnaturallyfermented Bokbunjavinegar,andexaminedtheirusefulnessfor prepa-ration offermentedBokbunja vinegarshowingreduced BA concentrationwithespeciallyhistamine.

Materials

and

methods

Bacteriaandcultureconditions

AABwereisolatedfromnaturallyfermentedBokbunjavinegar intheMujuarea.Sampleswereserialdilutedandcultivated inaGYECagarmedium(5%glucose,1%yeastextract,ethanol 3%, 1.5%calcium carbonate,0.8%agar)for3 daysat29◦C. IsolatedAABcoloniesshowedaclearzoneontheGYECagar plate,whichwascultivatedinGYEbroth(5%glucose,1%yeast extract,3%ethanol)for3daysat29◦C,160rpm.Culturebroth wascollectedeverydayforanalyzingthepH,◦Brix,acidity(%) andcellgrowth.

Identificationby16SrDNAsequencing

Bacterial cells were grown aerobically in GYE broth at 26◦C. The bacterial sets of two primers 27f and 1490r were applied inorder to amplifythe V3 variable regionof the eubacterial 16S rDNA fragments. The DNA sequences of primers 27f (5-AGTTTGATCCTGGCTCAG-3) and 1490r (5-GTTACCTTGTTACGACTTC-3)were used. PCRswere per-formed in a Bio-Rad thermocycler (MyCycler, Bio-Rad Lab-oratories, Hercules, CA, USA) as described by Kopermsub andYunchalard.16ThePCRproductswereseparatedin1.0% agarosegelina1×TBEbuffer.Afterelectrophoresis,thegels werestainedwithethidiumbromideanddocumentedbythe GelDocXR+usingtheImageLabSoftware(Bio-Rad Laborato-ries,USA)imagingSystem2000(Bio-RadLaboratories,USA). DNAsequencingwasperformedwiththeABI-PrismBigDye DeterminatorCycleSequencingReadyReactionkitand ABI-Prism377Sequencer(AppliedBiosystemsJapan,Tokyo,Japan). Sequence similarity searches were carried out using the Basiclocalalignmentsearch(BLAST)ontheEMBL/GenBank databases; phylogenetic trees were constructed using the neighbor-joiningmethod.Finally,API20NEKit(bioMerieux,

(3)

France)was also used forthe identification of non-enteric Gramnegativerods.

SEManalysis

Cell morphology was observed by FE-SEM (Field Emission ScanningElectronMicroscope).Thebacterialcellsgrowingon GYEbrothfor3daysat26◦Cwerefixedin2.5% glutaralde-hydeindistilledwaterfor30min,post-fixedin1%osmium tetroxide indistilled waterfor 20min, dehydratedthrough gradedethanol;thepelletwasdriedfor24hbeforethe obser-vationandgold-coatedbysputtering.Thecellswerecoated withgoldbyacoater(SC502,Polaron,WestSussex,UK)and observed under a scanning electron microscope (SEM 515, Philips,Netherlands).

Phenotypicandtechnologicalfeaturesofstrains

CellshapewasobservedafterincubatingtheculturesinGYE brothat28◦Cfor3days.Oxidationofethanoltoaceticacid wastested inthe GYE brothcontainingglucose 10g, yeast extract10g,ethanol30mL(perliter)after3daysof incuba-tion at28◦C.Growth on 30% d-glucose; 0.5%yeast extract and 30% glucose incubation 7 days 28◦C and tolerance to ethanol(5,10,15and20%,v/v)weretested; agradient vol-umeofabsoluteethanolwasaddedtoeachflaskcontaining thesamemedium.17Growthonsinglecarbonsourceswas car-riedout withfructose,glycerol,raffinose,sucrose,mannose andsorbitol.Thecarbonsourcesweresterilizedbyfiltration (0.2␮m)andaddedtothesterilebasalmedium(yeastextract, 0.5g; vitamin-free casaminoacid, 3g) to afinal concentra-tionof0.3%by2%pre-cultureinoculation.18Thecontrolwas usedasaculturebrothwithoutthecarbonsource.The opti-caldensitywasmeasuredat600nmusingspectrophotometer (BeckmanSpectrophotometer,USA).Catalaseactivitywas per-formedbyaddingyoungcellstoadropofa10%H2O2solution andobservingtheproductionofO2,asdescribedpreviously.19 Catalaseoptimumcultureconditionwasalsodemonstrated. FivefactorsofculturebrothpHwereconsideredforthe cul-tureconditions.Fivehundred␮Lofpre-culturewasinoculated into50mLofeachoftheGYEbroth.Thebrothcultureswere thenincubatedat29◦Cat160rpm.Theacidityoftheculture mediawasmeasured bytitrating10mLsampleswith0.1N NaOHusingphenolphthaleinasapHindicator.

WineandvinegarfermentationwithBokbunja

OrganicallygrownblackraspberrywasharvestedfromMuju provinceinSouthKoreaandquicklycooledinthefreezerat −20◦Cbeforeuse.Thecooledblackraspberrywasmixedwith organicsugar(GoiasaGoiatubaAlcoolLtda,Brazil)ataratioof 6:4,andthenripenedfor40daysat20◦C.Thepressedcrude extractwasfiltered,sterilizedat85◦Cfor15–20mindiluted to20–25◦Brixwithdistilledwater.Ethanolfermentationwas carried out bystarter yeast, S.cerevisiae no.7013(Fermivin, DSMFoodSpecialties,France).Dryyeastwasre-hydratedto 10%(w/v)bydistilledwaterat37◦Cand swelledfor30min before inoculation in the Bokbunja crude extract; ethanol fermentationwasstartedwiththeinoculationof0.02%(v/v) re-hydratedstarteryeastandfermentedat23◦Cfor5days.

Static vinegar fermentationby the traditionalmethod was performeddirectlyinoculate10%ofstartercultureinto the obtainedBokbunja wine.Theacetic acid fermentationwas performedinacrockat23◦Cwithoutagitationfor14days.

AnalysisofBAsproducedbymicroorganisminculture

brothbyHPLC

ThedeterminationofBAwascarriedoutbyhighpressure liq-uidchromatography.AnalysiswasperformedwithHPLC1200 series(AgilentTechnologies,SantaClara,CA,USA).The5mL samplesand5mLof0.1NHClweremixedand1mLofmixed solutionwerederivatizedwith0.5mLinternalstandard (1,7-diaminoheptane, 100mg/L) using saturated Na2CO3 0.5mL and1%dansylchlorideacetonesolution1mLat45◦Cfor1h. Afterderivatization,10%prolinesolution1mLwasaddedin ordertoremovetheremainedderivatizationreagents.5mLof etherwasmixedwithshakingfor3minandasupernatantwas driedusingN2gas.Sampleswereinjectedintriplicateontothe columnafteradding2mLofacetonitriletothedriedsamples, followed bybeingfilteredthrougha0.45␮mfilter(Minisart NY 25,Sartorius-stedimbiotech). All separations were per-formedonaCapcellPakC18Column(4.6mm×250mm,5␮m, ShiseidoCo.,Tokyo,Japan);thefluorescencewavelengthfor detectionwas254nm.Thecolumnwassetat40◦C,flowrate 1mL/min.Asthemobilephases,acetonitrilewasused.The programusedwasasfollows:lineargradientelutionfrom55% for10min;65%for5min;80%for10minfollowedby90%for 15min;thetotaltimewas40min.Elevenamines(tryptamine, 2-phenylethylamine,putescine,cadaverine,histamine, sero-tonin,trymine, spermidine,spermine,l-noradrenaline,and dopamine)wereinjectedasthestandardsolution.

Statistics

All analyses were performed in triplicate. The data were analyzed by a one-way ANOVA using the SPSS version 16.0 program. The results on the analyses are expressed as mean±standard deviation (SD). The differences among groupswereassessedbyusingDuncan’smultiplerangetests. Statisticalsignificancewasconsideredatp<0.05.

Results

and

discussion

Isolation,screeningandidentificationofAABfrom

naturallyfermentedKoreanblackraspberryvinegar

Bokbunjavinegars,asthescreeningsource,wasobtainedfrom variousareasinMuju,Korea(127◦44,35◦54),whichfermented BokbunjanaturallybyusingorganicallygrownBokbunja. Dur-ing theacetic acidfermentationover acourseof144days, AABcontinuouslyincreaseduptolog5.8CFU/mL.Themost high-level ethanolconcentrationwas12% attheinitial fer-mentationstageof3dayswithaconcomitantgrowthofyeast. Then,theaciditygraduallyincreasedfrom1.06%(w/v)to2% (w/v)after45daysoffermentation,andthenfinallyachieved 4.4%(w/v)acidityaftervinegarfermentationfor144days.

From a total of147 AAB-like strains isolated from nat-urally fermented Bokbunja vinegar on the GYEC medium,

(4)

0 1 2

MBA-41MBA-42MBA-55MBA-59MBA-60MBA-73MBA-75MBA-77MBA-78MBA-79MBA-81MBA-82MBA-103MBA-105MBA-110

3 4 5 6 7 His ta m in e (pp m, mg /L) Strains a ab abc bcd bcd bcd bcde

cde cde cde cde

de ef

fg g

Fig.1–Productionofhistamine(ppm,mg/L)byMBA-77 isolatedfromnaturallyfermentedBokbunjavinegar.The determinationofbiogenicaminewascarriedoutbyHPLC. Elevenamines:tryptamine,2-phenylethylamine,

putescine,cadaverine,histamine,serotonin,trymine, spermidine,spermine,l-noradrenaline,dopaminewere derivatizedwithdansylchloridewithinternalstandard (1,7-diaminoheptane)andinjectedasstandardsolution. Valuesrepresentmeansoftriplicate

determination±standarddeviation.Differentletters(e.g. a–g)wereassignedtosignificantlydifferentgroupsandthe sameletterswereassignedtosignificantlysimilargroups (p<0.05).

fifteenstrains,displaying bothahigh-level aceticacid pro-ducingactivitiesaswellasahighgrowthrate,wereselected. Then,thefifteenstrainswereexaminedforBAspectrumat amodifiedconditionaftercultivationontheGYECmedium. Asshown in Fig. 1, mostof the examined strains showed anidenticalBAprofile,showingonlythehistaminedetected. Cadaverin, spermidine, spermine, tyramine, serotonin and dopaminewerenotdetectedinouranalysis.Whenwe com-paredthe histamineconcentration, strain MBA-77 showed

Gluconacetobacter liquefaciens IFO 12388 Acetobacter syzygii strain G4-4

Acetobacter ghanensis 384

Acetobacter estunensis Acetobacter oeni B13

Acetobacter aceti

Acetobacter indonesiensis Acetobacter tropicalis A77

Acetobacter persicus Acetobacter farinalis G360-1 Acetobacter orleanensis Acetobacter cerevisiae

Acetobacter malorum EW-m

Acetobacter pasteurianus NBRC 3225

0.01

Acetobacter aceti NCIB

MBA-77

Acetobacter fabarum LMG Acetobacter lovaniensis NBRC 103497

Fig.3–Phylogenetictreeof16SrDNAsequencesofMBA-77 isolatedfromnaturalfermentedBokbunjavinegar.

SequencesimilaritysearcheswerecarriedoutusingBasic localalignmentsearch(BLAST)ontheEMBL/GenBank databasesandthephylogenetictreeswereconstructed usingtheneighbor-joiningmethod.

thesignificantlylowestconcentration(3.05mg/L)ofhistamine (p<0.05)withthehighestaceticacidinthemedium,asshown inFig.1.However,strainMBA-59showedasignificantlyhigher histamineproduction(p<0.05).

IdentificationoftheselectedAABfromnaturally

fermentedKoreanblackraspberryvinegar

AsshowninFig.2, theisolatewasrod-shapedandregular short lengthsizeofabout 4␮mlength. When the selected fifteen strains were identified by 16S rDNA sequence, all thestrainsshowed highsimilaritywithA.acetistrainNCBI 8621with99–100%homology.Inparticular,thestrainMBA-77 showingthelowesthistamineproductionshowedhigh sim-ilaritywiththeA.acetistrainNCBI8621with99%homology (Fig.3).Moreover,inthebiochemicaltestresultsusingAPI20 NEKit,theselectedstrainMBA-77showedatypical charac-teristicofAAB,therebyindicatingalmostidenticalchemical metabolicpropertieswithA.aceti(datanotshown).Asshown inTable1,theselectedstrainMBA-77wasrevealedasGram negative,catalasepositiveandoxidizedethanoltoaceticacid.

200 nmº EHT=15.00 kV 200 nmº EHT=15.00 kV WD=2.7 mm Mag=50.00 K X WD=2.7 mm JBNU CURF EM Lub. JBNU CURF EM Lub. Signal A=InLens Mag=50.00 K X Signal A=InLens

Fig.2–Fieldemission-scanningelectronmicroscope(FE-SEM)ofcellsofaceticacidbacteriaisolate(MBA-77)growninGYE broth(50,000×).

(5)

Table1–PhenotypicandtechnologicalfeaturesofaceticacidbacteriaisolatedfromtraditionalKoreanfermentedvinegar.

Strain Ethanol(%) d-Glucose(%) Growthonsinglecarbonsource(%) Catalase

activity 5 10 15 20 30 Fructose Glycerol Raffinose Sucrose Mannose Methanol

A.acetiMBA-77 + − − − − + ++ Wa + ++ W +

a w:weak.

Alltogether,wewereabletoidentifytheselectedstrain MBA-77asAcetobacteraceti,andnamingitA.acetiMBA-77.

Physiological,biochemicalandgrowthproperties

As shown in Table 1, A. aceti MBA-77 were tolerantat 5% ethanolconcentrationandshowedbettergrowthand avail-abilityat5%ethanol. Thisabilitytogrow from 5%(v/v)of ethanol is one ofthe mainphenotypic traitsfor selecting theAABstarterforvinegarproduction.20Whenthe fermen-tationprofilewas examinedbyusingvarioussinglecarbon sources, the A. aceti MBA-77 showed weak growth in the presentmethanolasacarbonsourceaswellasalowergrowth rateintheraffinosecontainingmedium.However,theA.aceti

MBA-77 was able to ferment raffinose and mannose more efficiently.AccordingtoWuet al.,18 Acetobacterpasteurianus speciesshowedahighdegreeofphenotypicvariability,such asethanoltolerance,growthon30%ofd-glucoseandsingle carbon sources, which are in accordance with the pheno-typicvariabilityofA.acetiandA.acetiMBA-77.Someofthese featureswerepreviouslyusedasthediscriminativetoolsfor taxonomicpurposesinordertodifferentiateAcetobacterfrom

GluconobacterandGluconacetobactergenera,becausethegrowth ond-mannitoland30%ofd-glucoseweredifferent.18However, inourresult,thesameA.acetispeciesshowedsimilar pheno-typicvariability,exceptfortheslightdifferenceraffinoseand mannosefermentability(datanotshown).Theoptimalacetic acidproductionofA.acetiMBA-77wasshownatpH5after 192hfermentation,asshowninFig.4.ComparedtoA.aceti

MBA-77,theoptimalgrowthofAABwasgenerallyobserved atpH4–5foroptimalaceticacidproductionduetothefast declineofviablecellsofA.acetibyalowoxygen concentra-tionwhenthepHvaluewaslowerthan3.4.21AABisalsoable togrowatlowerpHvalueswherebacterialactivityhasbeen detectedforpHvaluesunder3,eventhoughtheoptimalpH growthofAABisbetween5.0and6.5.17Thus,theobserved optimalconditionoftheA.acetiMBA-77forgrowthandacetic acidproductionappearstobeataveryunusuallyhighlevel. Theseresultsmightbeexplainedbythepropertiesofthe orig-inalsourceweusedinthisstudy forscreeningbecausethe pHofBokbunja seedvinegarmaintained avery low pHof 2.4–3.0duringvinegarfermentation.Thus,theA.aceti MBA-77mightbeadaptedtosuchlowpHenvironment.Moreover, theA.acetiMBA-77showedthehighestaceticacid produc-tion atpH5,which correspondstomostoftheAABs have beenknownforoptimalaceticacidproductionatpH5during fermentation.

Whenweexaminedthetemperatureforoptimalaceticacid fermentation,theA.acetiMBA-77showedahigheracidity(%) at25◦Cafter192hfermentation,asshowninFig.5,whichis

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 4 3 5 6 7 Acidity % pH

Fig.4–OptimalpHofA.acetiMBA-77isolatedfrom traditionalKoreanfermentedvinegar.Theacidity(%)was measuredundervariousconditions.ThepHexperiments wereperformedunderfivefactorsofculturebrothpH(3,4, 5,6and7)incubatedat160rpm.Eachexperimentwas performedintriplicate. 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 20 25 29 37 Acidity% Temperature(ºC)

Fig.5–OptimaltemperatureofA.acetiMBA-77isolated fromtraditionalKoreanfermentedvinegar.Theacidity(%) wasmeasuredundervariousconditions.Thetemperature experimentswereperformed20,25,29and37◦C,incubated at160rpm.Eachexperimentwasperformedintriplicate.

relativelylowerthanthegenerallyknownAABs.Intheabove optimumtemperature(25–30◦C),AABs weredeactivatedby thedenatureofenzymes,membranedamageandsensitivity tothetoxiceffectofaceticacid.22

(6)

Table2–Productionofbiogenicamines(mg/L)inBokbunjaextract,wineandvinegarfermentedbyaceticacidbacteria isolatedinBokbunjavinegar.

Bokbunjaextract Bokbunjawine Bokbunjavinegara

Tryptamine nd nd nd 2-Phenylethylamine nd nd nd Putescine nd nd nd Cadaverine 5.09±0.08a 2.6±0.16b nd Histamine 2.72±0.03c 5.29±0.05a 3.66±0.11b Serotonin 70.25±1.24b 80.98±1.74a nd Tyramine nd nd nd Spermidine 1.21±0.03b 4.77±0.09a nd l-Noradrenaine nd nd nd Dopamine 11.43±0.35a 10.12±0.07b nd Spermine nd nd nd Totalamines 90.7±1.73b 104.06±2.11a 3.66±0.11c

a BokbunjavinegarfermentedwithA.acetiMBA-77.

nd:notdetected.

Dataarethemean±SDofthesamplesanalyzedintriplicate.

Differentlowerletters(e.g.a–c)wereassignedtosignificantlydifferentbetweensamplesforeachbiogenicamine(p<0.05).

BAanalysisforBokbunjaextract

ToanalyzetheBAsproductionduringBokbunjavinegar fer-mentation,vinegarfermentationinalabscalewasperformed and sampling was carried out at each fermentation step ofthe Bokbunjaextract,winefermentationand aceticacid fermentation with a single culture inoculation of A. aceti

MBA-77.AsshowninTable2,BAspectrumofcadaverine, his-tamineandspermidinewasalreadyobservedintheBokbunja extract;5.09,2.72and1.21mg/L,respectively.García-Marino etal.23reportedthatgrapemustbeforewinemakingcontains BAs(8.35mg/L); histamine3.26mg/L, ethylamine1.03mg/L, putrescine 3.21mg/L and cadaverine 0.85mg/L. Their BA spectrums were slightly different but consistent with our resultthattotalBAcontenttendstoincreasethroughout wine-making (13.17mg/L). Surprisingly, serotonin and dopamine weredetectedas majorBAsinBokbunja extract.Wecould notdetectotherBAsoftyramineandputrescineinthe Bok-bunja extract, which already has been identified as being dominantinrawmaterials.6IthasbeenknownthattheBAs of putrescine, spermidine and histamine are normal con-stituentsoftherawmaterialsinwinefermentation;further, adiversehighconcentrationofBAsmightoccurduringthe fermentationprocessesofthewine-makingprocessthrough thedecarboxylationofaminoacids.24

ChangeofBAsduringethanolfermentationbyS.

cerevisiae

DuringBokbunjawinefermentationprocessesbyS.cerevisiae

asthestarter,20◦Brixofinitialsugarwasreducedtoafinal 10◦Brix, accumulating approximately 12% ethanol after 5 dayswithcontinuousincreasingyeastuntillog7.0CFU/mL. WhenweanalyzedBokbunjawineafter5daysofalcoholic fermentation, the BAs ofcadaverine, histamine, serotonin, spermidine and dopamine were detected. The histamine concentration increased from 2.72 of Bokbunja extract to 5.29mg/LofwinebyS.cerevisiaeduringwinefermentation.

Similarobservationshavebeenreportedbyotherauthors9,10 thatthisresultgenerallyduetotheyeastsmetabolitevarious amino acidsduring alcoholfermentation. Wedidnot con-trol the winefermentation process byS.cerevisiaein order to understand the effect of AABs we used in this study. When we compared the obtained BAs profile with several commercialBokbunjawinespurchasedfromdifferentregions in SouthKorea,25 our resultswere slightly different. Com-paredtoallthesamplesinwhichputrescineandtyramine exist as the most dominant amines detected100% in the samples, and tryptamine,cadaverine and spermidinewere foundin83%,78%and83%ofthesamples;theleastcommon amineswere2-phenylethylamineandhistamine,whichwere detectedin44%and50%ofthesamples,respectively. How-ever,inourresult,putrescineandtyraminewerenotdetected, and the most prevalent BAs of spermidine and dopamine were detectedin88%;cadaverine,histamineandspermine were found in 2.6, 5.3 and 4.8%, respectively, in Bokbunja winefermentedintheMujuprovince.Theseresultsclearly indicatedthatBAspectrawere significantlyexpandedafter the Bokbunja wine fermentationstepby using S.cerevisiae

no.7013 as astarter culture. As shown inTable 2, ethanol fermentation byS. cerevisiaeno.7013 resultedin significant changesonBAs.Duringfermentation,cadaverine(5.09mg/L) anddopamine(11.43mg/L),whichwereoriginallypresented intheBokbunjaextract,wasdecreasedto2.6and10.12mg/L. However,otherBAs,suchashistamine,serotoninand sper-midine,wereproduced2.57,10.73and3.56mg/L,respectively, during alcoholfermentation.It isnotunusualforthe new synthesisofotherBAsduringethanolfermentationbecause generally,fourBAs,suchashistamine,tyramine,putrescine and cadaverine,havebeen foundinahigherconcentration inwine.Furthermore,mostoftheBAsynthesisisresponsible forthemicrobialfermentationofyeastandLABduringwine fermentation.Ithasbeendemonstratedthatmanystrainsof yeastspresent inwines(S.cerevisiae,B. bruxellensis,K. apic-ulata,etc.)canproducehistamine,ethanolamine,agmatine, phenylethylamine and cadaverine. Caruso et al.9 reported

(7)

thatB.bruxellensisproducedthehighesttotalBAs(15mg/L), followedbyS.cerevisiae(12.14mg/L)andhistamine; cadaver-ine,putrescineandtryptaminewereallproducedbystrains less than 4mg/L. Also, theyreported that the highest fer-mentative yeast (S. cerevisiae) showed the highest amount ofagmatine, andmiddlefermentativeyeastCandidastellata

also showed a capacity to produce cadaverine. Generally, in alcoholic beverages, the toxic dose is considered to be between 8 and 20mg/L for histamine, 25 and 40mg/L for tyramine, whereas as little as 3mg/L ofphenylethylamine cancausenegativephysiologicaleffects.26 AlthoughtheBA contentsinBokbunjawineinthisstudydidnotexceedthe toxic levels (especially for histamine of 5.29mg/L), which arethehighesthistamineconcentrationallthroughthe fer-mented wine at present, it strongly indicates that there must be a novelmethod to decrease those BAs, including histamine.

ChangeofBAsduringaceticacidfermentationbyA.aceti

MBA-77afterethanolfermentation

Aceticacid fermentationwasstarted byinoculatingstarter culture after 5days ofalcohol fermentation with increas-ingAABincreaseduptolog5.8CFU/mLduring14daysand finallyconverted to acetic acid up to6% during fermenta-tion (data not shown). Lots of AAB from various vinegars and wine based on different raw materialssuch as grape, strawberryor persimmon hasbeen isolated and examined fortheiracetificationasastarter.27–30WhenAcetobacter

mal-orum recovered from strawberry wine were used as native startersforacetification,theaceticacidconcentrationreached was5.5–6.6%(w/v)whichalmosttwotimeshigherthan spon-taneousacidificationonstrawberry.30Similarly,ourselected strainA.acetiMBA-77asthenaturalstarterwasalsoshowed goodfermentationprofile;onBokbunjaasrawmaterials, indi-catingthattheuseofindigenousstrainforacetificationmust beapplicableforefficientfermentationacetificationprocess. Moreover,whenweexaminedthe BAsofBokbunja vinegar afteracetic acidfermentationbyusingourselectedA.aceti

MBA-77 as the starter during the 14 days, we found that the histamineconcentrationwasdetectedin theBokbunja vinegarsample as 3.66mg/L, which isa 0.7-times reduced level compared toBokbunja wine (5.29mg/L), as shown in

Table 2. Moreover, in addition to a significant decrease of histamineconcentrationafteracetic acidfermentation,the expanded BA synthesis spectrum after ethanol fermenta-tionsignificantlydecreasedbyA.acetiMBA-77aswell.Even thoughthereducingrateofhistamineconcentrationdidnot increase ashigh aswe expected inthis experiment, how-ever, otherBAs occurred inBokbunjawine canbereduced significantly, which clearly indicates that the introduction ofA. aceti MBA-77 as the starter for acetic acid fermenta-tionwasaveryeffectivetoolforreducingtheBAscontents, includinghistamine,inthepreparationofBokbunjavinegar. Generally,a high concentrationofBAs canbe formed dur-ing the ethanol fermentation through the decarboxylation ofvariousaminoacids.23,31 Inaddition, BAsare physiolog-icallydegradedthroughoxidativedeaminationcatalyzedby aminesoxidase.Someaminesdegradingbacteriahavebeen studied.32,33However,duetosignificantinhibitionactivityby

ethanol forspecificenzymes,suchasmonoamine oxidase, diamineoxidaseandhistamine-N-methyltransferase,which areresponsiblefortheneutralizationofBAstonon-toxic prod-uctsunder normalconditionsafterwinefermentation, the fermentedwinecontainingBAsmightcauseunfavorableside effectseveniftheconcentrationofeachindividualBAsdidnot reachuptothehightoxiclevel.6Namely,itwouldbe desir-abletoreduceethanolconcentrationorBAsconcentrationin the fermentedfoods inorder toprevent those unfavorable sideeffects. Interestingly,vinification itselfmaynotreduce thealreadyformedBAs,includinghistamine.Rather,amore highcontentofBAconcentrationisfoundaftervinification.34 Thisresultmightbecausedbytediousandlong-term vine-garfermentationinunstableenvironments.ComparedtoBAs inbalsamicvinegarresultingin51.5–525␮g/Lofputrescine, 23.1–60.4␮g/Lofcadaverineand101–223.3␮g/Lofspermidine byOrdó ˜nezetal.,11however,thoseBAsandaswellotherBAs, suchascadaverine,serotonin,spermidineanddopaminein Bokbunjawine,werenotdetectedafteraceticacid fermen-tation inBokbunjavinegar. Previously, itwas alsoreported thatthemostabundantlyremainedBAsaftervinegar fermen-tationwereputrescineandhistamine,whichwereproduced afterwinefermentationandtransferredtovinegar.11Thetoxic effectsofhistamineamongtheBAsareenhancedinthe pres-enceofcadaverineandputrescinebyinhibitingthehistamine metabolizing enzymes of diamine oxidase and histamine methyltransferase.1Whenweexaminedtheputrescine con-centration of Bokbunja vinegar, we found that putrescine wasnotdetectedallthroughtheBokbunjavinegar fermen-tation,therebyindicatingthatvinegarfermentationbyusing Bokbunja mustbeusefultocontroltheBAs, although Bok-bunjaalsocontainsnumerousfunctionalcomponents,such as phenolic compounds, like other materials. During vine-garfermentation,theactualtotalcontentofBAsinvinegars are very diversedependingon theused lawmaterials ran-gingfrom23.35to1445.2␮g/L;moreoveritscontentsgenerally decreasedafterwinefermentation(130mg/L)perhapsdueto thedegradationbysomebacterialstrainspresentinwineor vinegar.11However,mostofthestudiesonbacterialreduction invinegarfermentationhavebeenfocusedmainlyonLAB. Pre-viously,Landeteetal.8reportedthatnoneoftheAABsamong the 40 strains and 36 ofyeast strains which isolated from wineorgrapemustproduceBAswhereasLABisolatedfrom wine, Pediococcussp.,Lactobacillus sp.,L.mesenteroidsandO. ovnicanproducehistamine,tyramine,phenylethylamineand putrescine.Also,P.parbulusandL.hilgardiihavebeendetected as high histamine-producing bacteria.7 In our studies, the total BA concentration significantly decreased after vine-garfermentation(3.66±0.11mg/L,onlyhistamine)compared to wine (104.06±2.11mg/L) and extract (90.7±1.73mg/L), eventhoughwetriedvinegarfermentationbyusingA.aceti

MBA-77. Because A. aceti MBA-77 was never identified as BA-degrading AAB,this isthefirstreporteverpublishedto indicate that an acetic acid bacterium is able to decrease histamine.

Inthis study,wewere abletoisolatetheMBA-77 strain, whichshowedhigheraceticacidsynthesisandlowBA syn-thesis abilityaswell. Theselectedstrain was identifiedas

A. aceti by a biochemical and 16S rRNA sequencing anal-ysis. Theoptimal condition for A. aceti MBA-77 was pH 7

(8)

and25◦C.Moreover,A.acetiMBA-77wastolerantatthe5% ethanolconcentrationalongwithalowergrowthrateina raf-finosecontainingmedium.When theselectedwasused as thestarter foracetic acid fermentation,BAs spectrumand concentration present in Bokbunja extract were increased duringalcoholicfermentation.However,thoseincreasedBAs spectrumandconcentrationweredecreasedaftervinegar fer-mentationbyA.acetiMBA-77.TheAABisolatedhereinisthe firstapplicationasastartercultureforBAanalysisinvinegar; furthermore,itmightbehelpfultomanufacturevinegarwith alowBAsynthesis.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

This research was supported by High value-added Food Technology Development Program, of the Korea Institute of Planning and Evaluation for Technology in Food, Agri-culture, Forestry and Fisheries (IPET),and the Ministry for Food,Agriculture,Forestry,andFisheriesofRepublicofKorea (313037-03).

r

e

f

e

r

e

n

c

e

s

1.LehaneL,OlleyJ.Histaminefishpoisoningrevisited.IntJ FoodMicrobiol.2000;58:1–37.

2.TaylorSL,EitenmillerRR.Histaminefoodpoisoning: toxicologyandclinicalaspects.CritRevToxicol.

1986;17:91–128.

3.LandeteJM,FerrerS,PoloL,PardoI.Biogenicaminesin winesfromthreeSpanishregions.JAgricFoodChem.

2005;53:1119–1124.

4.Lonvaud-FunelA,JoyeuxA.Histamineproductionbywine lacticacidbacteria:isolationofahistamine-producingstrain ofLeuconostocoenos.JApplBacteriol.1994;77:401–407.

5.KungHF,LeeYH,TengDF,HsiehPC,WeiCI,TsaiYH. Histamineformationbyhistamine-formingbacteriaand yeastinmustardpickleproductsinTaiwan.FoodChem.

2006;99:579–585.

6.Lonvaud-FunelA.Biogenicaminesinwines:roleoflactic acidbacteria.FEMSMicrobiolLett.2001;199:9–13.

7.LandeteJM,FerrerS,PardoI.Whichlacticacidbacteriaare responsibleforhistamineproductioninwine?JAppl Microbiol.2005;99:580–586.

8.LandeteJM,FerrerS,PardoI.Biogenicamineproductionby lacticacidbacteria,aceticbacteriaandyeastisolatedfrom wine.FoodControl.2007;18:1569–1574.

9.CarusoM,FioreC,ContursiM,SalzanoG,PaparellaA, RomanoP.Formationofbiogenicaminesascriteriaforthe selectionofwineyeasts.JMicrobiolBiotechnol.

2002;18:159–163.

10.TorreaD,AncínC.Contentofbiogenicaminesina Chardonnaywineobtainedthroughspontaneousand inoculatedfermentations.JAgricFoodChem.

2002;50:4895–4899.

11.Ordó ˜nezJL,CallejónRM,MoralesML,García-ParrillaMC.A surveyofbiogenicaminesinvinegars.FoodChem.

2013;141:2713–2719.

12.moDugoG,VilasiF,LaTorreGK,PellicanoTM.Reversephase HPLC/DADdeterminationofbiogenicaminesasdansyl derivativesinexperimentalredwines.FoodChem.

2006;95:672–676.

13.CapozziV,RussoP,LaderoV,etal.Biogenicamines degradationbyLactobacillusplantarum:towardapotential applicationinwine.FrontMicrobiol.2012;3:122.

14.KimTJ.KoreanResourcesPlantsII.Seoul,Korea:Departmentof SeoulUniversity;1996.

15.KimEJ,LeeYJ,ShinHK,ParkJHY.Inductionofapoptosisby theaqueousextractofRubuscoreanuminHT-29humancolon cancercells.Nutrition.2005;21:1141–1148.

16.KopermsubP,YunchalardS.Identificationoflacticacid bacteriaassociatedwiththeproductionofplaa-som,a traditionalfermentedfishproductofThailand.IntJFood Microbiol.2010;138:200–204.

17.SieversM,SwingsJ.FamilyAcetobacteraceae.In:GarrityGM, ed.Bergey’sManualofSystematicBacteriology.Vol.2.NewYork: Springer;2005:41–95.

18.WuJJ,GulloM,ChenFS.DiversityofAcetobacterpasteurianus

strainsisolatedfromsolid-statefermentationofcereal vinegars.CurrMicrobiol.2010;60:280–286.

19.NavarroRR,KomagataK.DifferentiationofGluconacetobacter liquefaciensandGluconacetobacterxylinusonthebasisofDNA basecomposition.JGenApplMicrobiol.1999;45:7–15.

20.GulloM,GiudiciP.Aceticacidbacteriaintraditional balsamicvinegar:phenotypictraitsrelevantforstarter culturesselection.IntJFoodMicrobiol.2008;125: 46–53.

21.JoyeuxA,Lafon-LafourcadeS,Ribereau-GayonP.Evolutionof aceticacidbacteriaduringfermentationandstorageofwine.

ApplEnvironMicrobiol.1984;48:153–156.

22.deOryI,RomeroLE,CanteroD.Modellingthekineticsof growthofAcetobacteracetiindiscontinuousculture: influenceofthetemperatureofoperation.ApplMicrobiol Biotechnol.1998;49:189–193.

23.García-MarinoM,TriguerosÁ,Escribano-BailónT.Influence ofoenologicalpracticesontheformationofbiogenicamines inqualityredwines.JFoodCompAnal.2010;23:

455–462.

24.HajósG,Sass-KissA,SzerdahelyiE,BardoczS.Changesin biogenicaminecontentofTokajgrapes,winesand Aszu-wines.JFoodSci.2000;65:1142–1144.

25.JiaS,KangYP,ParkJH,LeeJ,KwonSW.Determinationof biogenicaminesinBokbunja(RubuscoreanusMiq.)wines usinganovelultra-performanceliquidchromatography coupledwithquadrupole-timeofflightmassspectrometry.

FoodChem.2012;132:1185–1190.

26.SouflerosE,BarriosML,BertrandA.Correlationbetweenthe contentofbiogenicaminesandotherwinecompounds.AmJ EnolVitic.1998;49:266–269.

27.HidalgoC,MateoE,CerezoAB,TorijaMJ,MasA. Technologicalprocessforproductionofpersimmonand strawberryvinegars.IntJWineRes.2010;2:55–61.

28.HidalgoC,VegasC,MateoE,etal.Effectofbarreldesignand theinoculationofAcetobacterpasteurianusinwinevinegar production.IntJFoodMicrobiol.2010;141:56–62.

29.HidalgoC,GarcíaD,RomeroJ,MasA,TorijaMJ,MateoE.

Acetobacterstrainsisolatedduringtheacetificationof blueberry(VacciniumcorymbosumL.)wine.LettApplMicrobiol.

2013;57:227–232.

30.HidalgoC,TorijaMJ,MasA,MateoE.Effectofinoculationon strawberryfermentationandacetificationprocessesusing nativestrainsofyeastandaceticacidbacteria.FoodMicrobiol.

2013;34:88–94.

31.Moreno-ArribasMV,PoloMC.Occurrenceoflacticacid bacteriaandbiogenicaminesinbiologicallyagedwines.Food Microbiol.2008;25:875–881.

(9)

32.CallejónS,SendraR,FerrerS,PardoI.Identificationofa novelenzymaticactivityfromlacticacidbacteriaableto degradebiogenicaminesinwine.ApplMicrobiolBiotechnol.

2014;98:185–198.

33.AlvarezMA,Moreno-ArribasMV.Theproblemofbiogenic aminesinfermentedfoodsandtheuseofpotentialbiogenic

amine-degradingmicroorganismsasasolution.TrendsFood SciTechnol.2014;39:146–155.

34.ChangSC,LinCW,JiangCM,etal.Histamineproductionby bacillibacteria,aceticbacteriaandyeastisolatedfromfruit wines.LWT-FoodSciTechnol.2009;42:280–285.

Referências

Documentos relacionados

Como objetivos específicos, buscou-se: i descrever a política de capacitação da UFJF e suas possíveis limitações; ii analisar se as capacitações ofertadas são suficientes para

The results showed that the higher effi ciency in light energy uptake, paired with better photochemical performance and better CO 2 fi xation in plants under direct sunlight

De acordo com a literatura García-Mas (2001) definiu a existência de dois factores básicos que influenciam a cooperação desportiva: factores disposicionais onde o

A simple formulation is developed to model the influence of the aerosol hygroscopic growth in the dependence of the atmospheric electric field measurements with relative humidity..

In conclusion, despite all the convenience provided to future European mission- aries, Francisco de Pina was clearly influenced by Father João Rodrigues “Tçuzu”, as in the case

O presente estudo tem como principal objetivo estudar a intenção suicida e sua relação com os sintomas psicopatológicos, vergonha, autocriticismo e autocompaixão em

In ragione di queste evidenze, il BIM - come richiesto dalla disciplina comunitaria - consente di rispondere in maniera assolutamente adeguata alla necessità di innovazione dell’intera

Fuerzas y servicios de seguridad Fechas importantes de fundación Tutela gubernamental Estatuto militar/civil Cobertura territorial Nº total de efectivos en 2008

Para atingir o objetivo de uma educação artística de qualidade, disponível para todos, apenas a existência de atividades relacionadas com a arte e a cultura, não é