• Nenhum resultado encontrado

Production of recombinant flagellin to develop ELISA-based detection of Salmonella Enteritidis

N/A
N/A
Protected

Academic year: 2021

Share "Production of recombinant flagellin to develop ELISA-based detection of Salmonella Enteritidis"

Copied!
8
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Medical

Microbiology

Production

of

recombinant

flagellin

to

develop

ELISA-based

detection

of

Salmonella

Enteritidis

Seyed

Ali

Mirhosseini,

Abbas

Ali

Imani

Fooladi,

Jafar

Amani

,

Hamid

Sedighian

AppliedMicrobiologyResearchCenter,BaqiyatallahUniversityofMedicalSciences,Tehran,Iran

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received4October2015 Accepted4April2016 Availableonline7July2017 AssociateEditor:RoxaneMaria FontesPiazza Keywords: SalmonellaEnteritidis FlagellinC IndirectELISA Bacterialdetection Foodcontaminated

a

b

s

t

r

a

c

t

Food-bornediseases,causedbythepathogenicbacteria,arehighlyprevalentintheworld.

Salmonellaisoneofthemostimportantbacterialgeneraresponsibleforthis.Salmonella

Enteritidis(SE)isoneofthenon-typhoidSalmonellaethatcanbetransmittedtohumanfrom poultryproducts,water,andcontaminatedfood.Inrecentyears,newandrapiddetection methodssuchasenzyme-linkedimmunosorbentassay(ELISA)andpolymerasechain reac-tion(PCR)havebeendeveloped.Inthisstudy,recombinantFliC(rFliC)wasproducedtobe usedasanantigen.Theimmunizationwasconductedinmicewiththepurifiedrecombinant FliC(rFliC).ThemiceweresubcutaneouslyimmunizedwithrFliCandelicitedsignificant rFliCspecificserumIgGantibodies.AnindirectELISAsystemwasestablishedforthe detec-tionofSalmonellaEnteritidis.Ourresultsconfirmedthattherecombinantflagellincanbe oneoftheexcellentindicatorsforthedetectionofSalmonellaEnteritidis.

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Salmonella represents a group of important gram-negative bacterialpathogens thatcauseintestinal andsystemic dis-eases in human and animal hosts after the ingestion of contaminatedwaterandfoodsuchaspoultrymeatandeggs.1

ApproximatelyonemillioncasesofSalmonellainfectionsare reportedeveryyearintheUnitedStates.2Inprevious

descrip-tivestudies from differentplacesand samplesin Iran,the prevalence of Salmonella was found to be as 9.2% in 272 stool samples and 8% in 369 stool. In a study, 610 sam-pleswereobtainedfromchildrenunder12yearsofagewith

Correspondingauthorat:AppliedMicrobiologyResearchCenter,BaqiyatallahUniversityofMedicalSciences,VanakSq.MolasadraSt.,

P.O.Box19395-5487,Tehran,Iran.

E-mail:Jafar.amani@gmail.com(J.Amani).

37.5% prevalence of gastroenteritis, which is also caused byan importantentericpathogen bacterium.3–6 More than

2500serovarshavebeenidentifiedforSalmonellaEnteritidis, based onantigenicdifferences inO,H1, and H2antigens.7

Among the 30 Salmonella serovars that are responsible for 73% casesofsalmonellosisinthe UnitedStates,Salmonella entericasubsp.entericaserovarEnteritidisorSalmonella Enter-itidis isan importantand dominant bacterial pathogen.It wasaprevalentcauseofhumansalmonellosisandcausative agentsoffoodborneillnessesworldwideduringtheearly1980s to thelate 1990s.8–10 Differentmethods(e.g.,conventional,

immunological, and molecular-based methods) have been developedforthedetectionofSalmonella.Althoughthecurrent

http://dx.doi.org/10.1016/j.bjm.2016.04.033

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

culture-basedmethodsforthedetectionofSalmonellaare sen-sitive and inexpensive but atthe same time theyare very timeand material-consumingandneed initialenrichment. For example,the conventional methodforthedetection of

Salmonellae,includingSalmonellaEnteritidis,fromeggstakes 5–7days,islabor-intensiveandinvolvestheisolationofthe organismusingpre-enrichmentaswellasselective enrich-ment procedures and serological confirmation tests. This method is useful for the detection of small numbers of

SalmonellaEnteritidis.

Molecularmethods(PCR)aregoodbuttheyalsohavefew limitations.For PCR-basedmethods,the pathogenneedsto begrownandahighconcentrationofnucleicacidisrequired to be extracted.11,12 Bacterial flagellin is one of the outer

membraneproteinsthatservemanyfunctionslikemobility, pathogenicity,and adjuvanticity and shows toll-like recep-tor(TLR)-ligandactivity.Itiseffectiveatverylowdoses13,14

andbindstotoll-like-receptor5(TLR5),whichispresenton theimmune-systemcells(epithelialcells,dendriticcells,and macrophage).One of the outmost flagellin proteinsis FliC whichhasamolecularweightof50–60kDa.15,16Thebinding

ofFliCwithTLR5leadstoacascadeofreactionsthatresults intheproductionofpro-inflammatorycytokineslikeTNF-␣, IL-6,andIL-12.17

In this study, we produced recombinant flagellin (r-FliC) for the detection of Salmonella Enteritidis (SE) using enzyme-linked immunosorbent assay (ELISA) and proposing its usefulness in ELISA for the detection of

Salmonella.

Materials

and

methods

Kits,enzymes,andreagents

Theplasmid extraction and gel purification kits were pro-curedfromiNtRON(Seongnam,Korea).Nickel-nitrilotriacetic acid(Ni-NTA)agarosewasobtainedfromQiagen(Maryland, State,USA).Primers weresynthesized bySinaclon(Tehran, Iran). Restriction endonucleases were obtained from Sina-clon(Tehran,Iran).T4DNAligasewassuppliedbyFermentas (Vilnius,Lithuania).Allotherreagentswere ofatleast ana-lytical grade and obtained from Sigma–Aldrich or Merck, Germany,includingkanamycin(40␮g/mL,Sigma), nitrocellu-losemembrane(PROTRAN),anti-polyhistidineantibodiesand anti-mouseIgGconjugatedwithhorseradishperoxidase(HRP) (RAYBiotech), and an ELISA reader (Bio-Rad, Berkeley, CA, USA).

Bacterialstrainsandcultureconditions

ThestandardstrainofSalmonellaentericaserovarEnteritidis (SE)(ATCC–13076,InstitutePasteurofIran)wasusedasthe sourceofflicgene.ItwasgrowninLuria-Bertani(LB)brothor LBagarat37◦C.Bacterialgenomewasextractedbythe CTAB-NaClmethod,andtheDNAconcentrationwasmeasuredbya spectrophotometer(Cecil,UK,OD260and280nm).Thequality oftheisolated DNAwasassessedbyelectrophoresison1% agarosegel.

Amplificationofflicgene

A colony of Salmonella Enteritidis was grown in Luria-Bertani broth (LB broth)overnight at 37◦C under constant agitation at 150rpm. The genomic DNA was extracted

from the Salmonella strain and flic gene was amplified

by polymerase chain reaction (PCR) using the following twospecificprimers(flicF: 5-tatagaattcatggcacaagtcattaatac-3 containing an EcoRI-engineered restriction site and flic

R: 5-tatataagcttttaacgcagtaaagagagg-3 containing a

HindIII-engineeredrestrictionsite).Theprimersweredesignedtoover the completesequence offlicgene (1518bp)locatedon the chromosomalDNA ofSalmonellaenteritidis asmentioned in thedatabaseavailableattheNationalCenterfor Biotechnol-ogyInformation(NCBI).Fortheamplificationoftheflicgene, thepolymerasechainreaction(PCR)wasstandardizedusing 10pMofeach gene specificprimers, 2␮L of25mM MgCl2,

10mMofeachdNTPs,2.5␮Lof10×enzymebufferand0.5U ofTaqDNApolymerase(Fermentas)ina-25␮Lfinalreaction volume. The amplificationwas carried out withthe initial denaturationofDNAat95◦Cfor5minfollowedby30cyclesat 95◦Cfor1min,annealingat55◦Cfor45s,extensionat72◦C for1min,andthenafinalextensionat72◦Cfor5min.The amplifiedproductwasanalyzedbytheelectrophoresisusing 1%agarosegelandethidiumbromideasatrackingdye.Forthe cloningofflicgene,theamplificationwascarriedoutwithpfu DNApolymerase(Fermentas,Lithuania)inareactionmixture (25␮L)containingDNAinthepresenceof4mMmagnesium sulfateand10pMofeachprimer.Thecyclingconditionswere initialdenaturationat95◦Cfor5min,followedby30cyclesat 95◦Cfor1min,55◦Cfor45s,72◦Cfor60sandthefinal exten-sionat72◦Cfor5min.ThePCRproductswere analyzedby electrophoresison1%agarosegelsandvisualizedbyethidium bromidestaining.

Cloningandexpressionofflagellin

TheamplifiedPCR productwasdouble-digested withEcoRI

andHindIII,andclonedintotheprokaryoticexpression vec-tor pET-28a (+)at EcoRI/HindIIIsite to formthe expression plasmid pET-fliCwith kanamycinresistanceas aselectable marker.EscherichiacoliDH5␣transformantsgrownovernight onLBplatescontainingkanamycin(20␮g/mL)werescreened. For ligation, the flic gene PCR product and vector plasmid wereusedintheratioof2:1.Theligatedproductwasinitially propagated in E. coli DH5␣ competent cells.15 The

trans-formed colonies were screened by colony PCR, restriction enzymeanalysis,andsequencing.TherecombinantpET-fliC plasmid extracted from E. coliDH5␣ cells waspurified and transformedintoE.coliBL21(DE3)strainfortheexpression of flagellin. The expression was induced by adding 1mM isopropyl-␤-d-1-thiogalactopyranoside(IPTG)togrowing cul-tureofthetransformedE.coliBL21(DE3)whenOD600reached 0.6,at37◦C,underconstantshakingat150rpm.Azero-time aliquot(uninducedculture)wasusedasthecontrol.The sam-ples were collected after24hand analyzedfor theprotein expressionin12%sodiumdodecylsulfate-polyacrylamidegel electrophoresis(SDS-PAGE).Therecombinantproteinwas fur-therconfirmedbyWesternblotanalysis.

(3)

Westernblotanalysis

WesternblottingwasperformedtoexaminetheFliC secre-tion from E. coli BL21 (DE3). In order to prepare samples,

E.coliBL21 (DE3)strain wascultured overnightinLB broth at37◦C. Thecultured bacteriawere harvested by centrifu-gationat6000rpmfor15min.Thesecretedproteinsample wasseparatedon12%SDS-PAGE.Theseparatedproteinswere transferredelectrophoreticallyusing transferbuffer(39mM glycine, 48mM Tris-base, 0.037% SDS, and 20% methanol, Bio-Rad) onto a polyvinylidene fluoride membrane (PVDF, Immobilon, Millipore) for immunoblotting. The membrane wasblockedunderconstant shakingfor24hwith5%(w/v) skimmed milk in phosphate-buffered saline (PBS), 0.05% Tween-20(PBS/T),pH7.4at4◦C.Themembrane was incu-bated with a 1:3000 dilution of mice anti-His-tag specific antibodyinthePBScontaining0.05%Tween-20(PBS/T),with gentleshakingatroomtemperaturefor1h.Afterwashingthe membranethricewithPBS/T,it wasfurtherincubated with goatanti-mouseIgGhorseradishperoxidaseconjugate,1:1000 dilutedinPBS/T,atroomtemperaturefor1handthenwashed thricewithPBS/T.3,3,5,5-Tetramethylbenzidine(TMB) sub-stratewasusedtovisualizethemembrane.

Solubilityandpurificationoftherecombinantflagellin proteinwithHis-tag

Thesolubility ofthe expressedproteinwas determined by resuspendingthebacterialpellet(24hpostIPTGinduction)in PBS.Aftersonication,thelysatewascentrifugedat12,000×g

(15min)andthesupernatantrepresentingthesolublefraction wascollected.Thepelletcontainingtheinsolublematterwas againresuspendedin8Murea.Bothextractswereanalyzed byresolvingon12%SDS-PAGE.Thepoly-His-tagcontaining recombinantflagellinwaspurifiedusingnickeldivalentions (Ni-NTA chromatography) (Maryland, USA) under denatur-ationconditionsasperthemanufacturer’sinstructions.The proteinconcentrationwasestimatedbyBradford’smethod18 andthepositiveelutesconfirmedbySDS-PAGEwerepooled andstoredat−20◦Cuntilfutureuse.

Animalimmunization

FemaleBALB/cmice(18–22g)usedinthisstudywereobtained from Pasteur Institute of Iran, Tehran. The animals were housedandtreatedinaccordance withtheResearchEthics CommitteeaccordingtotheDeclarationofHelsinki.Themice were divided into test (n=5) and control groups (n=3). In thetestgroup,eachmousewasinjectedsubcutaneously,at the back ofthe neck, 10␮gof recombinant protein (rFliC) withcompleteFreund’sadjuvant.Subsequently,10␮gofrFliC proteinwasinjected asthefirst,second,and thirdbooster after0,14and28days,usingincompleteFreund’sadjuvant. The control group was injected with sterile PBS following the same protocol.Blood samples were collected from the mice one week after the second and third booster dose

(Table1).

Enzyme-linkedimmunosorbentassay(ELISA)forplasma IgG

Antigen-specificantibodyresponsesweredeterminedbythe enzyme-linkedimmunosorbentassay(ELISA).Polystyrene 8-well plates (MaxiSorp microtiter plates) were coated with 3␮gofrFliCdilutedin100␮Lcoatingbuffer(64mMNa2CO3,

136mMNaHCO3,pH9.8)andthenincubatedovernightat4◦C.

The plates were washed threetimes withPBS/T (PBS con-taining0.05%,w/vTween-20).Nonspecificbindingsiteswere blockedwith100␮Lof3%(w/v)skimmedmilkinPBS/T(1h, 37◦C). Mouseserum sampleswere seriallydilutedto1:500 in PBS containing 0.03% Tween-20 and were added to the ELISA plates. Afterthreewashing steps, 100␮Lofthe goat anti-mouseIgGperoxidaseconjugate(Sigma)diluted1:5000 inPBS/Twasaddedtotheplates.Theplateswereincubated for1hat37◦CandthenwashedthriceinPBS/T.Toeachwell, 100␮LofTMBsubstrate(Sigma)wasaddedandincubatedat roomtemperaturefor15min.Thereactionwasstoppedwith 100␮Lof2MH2SO4andtheresultwasreadbyanELISAreader

atthe wavelengthof450nm(Bio-Rad, Berkeley,CA,United States).

PurificationofAnti-FliCIgGwithProteinGSepharose4B column

IgG antibodies were purifiedusing GSepharose4Bcolumn (Sigma).Atfirst,thecolumnwaswashedwith100mMTris–HCl buffer(pH=8)followedby10mMTris–HClbuffer(pH=8)until thecolumnwasreachedtoequilibrium.Theserumsamples wereloadedontothecolumnanditwaswashedwith100mM Tris–HCl buffer (pH=8) followed by 10mM Tris–HCl buffer (pH=8) untilallother proteinswereeluted. Theantibodies wereelutedfromthecolumnbypassing100mMglycinebuffer (pH=3).Attheend,thepurityofIgGwasconfirmedby SDS-PAGE(12%).

Thedeterminationofoptimumconcentrationsofthe antibodyandbacteria

ELISAwasperformedasdescribedaboveusingthedifferent concentrationsofthepurifiedanti-FliCIgGantibody(2,3,4, 5,10,20,30,40,50and60␮g)andaconstantconcentrationof theantigen(3␮g).Inanothersetofexperiment,ELISAwas per-formedwiththedifferentconcentrationsoftheantigen(0.625, 1.25,2.5,5,10,15and20␮g)andaconstantconcentrationof theantibody(10␮g).Subsequenttothis,whole-bacterial cell-ELISAwascarriedoutwiththestandardstrainofSalmonella enteritidisaccordingtoMcFarlandstandard(OD:0.257nm,cell density3×108CFU/mL).Inthisassay,theplateswerecoated

withthedifferentconcentrationsofbacterialcells(108,107,

106,105,104,103,102,and10CFU/mL)andwereexposedtoa

constantconcentration(10␮g)oftheantibody. Specificitytest

Thespecificityoftheindirect-ELISAwascheckedusinga vari-etyofotherbacteria,includingE.coli,Shigellasp.,Pseudomonas aeruginosa,Klebsiellasp.,StaphylococcusaureusandSalmonella

(4)

Table1–Summaryofimmunizationprotocols.

Groups Number InitialImmunization

componentsQuantity(␮l) Booster1components Quantity(␮l) Booster2components Quantity(␮l) Control 3 PBS 200␮1 PBS 200␮1 PBS 200␮1

rFliC 5 rFliC 10␮g rFliC 10␮g rFliC 10␮g

C.F.A 100␮1 I.F.A 100␮1 I.F.A 100␮1

C.F.A=CompleteFreund>sAdjuvant,I.F.A=IncompleteFreund>sAdjuvant.

againstSalmonellaEnteritidiswithadetectionsensitivityof 106CFU/mLandshowednocross-reactivitywithothertested

bacterialspecies.Thecut-offwasOD0.7asdeterminedonthe basisoftheaveragecontrolsamplesplustwo-foldstandard deviations.

Clinicalsamples

TheinfectiousdoseofSalmonellais106–107 cells.Therefore,

theELISAwasperformedusingclinicalspecimenscollected fromthepatientswithSalmonellosis(20samples).Theassay protocol was based onthe previousELISA, optimized by a standardstrainofSalmonellaEnteritidiswith106CFU/mLcells.

Statisticalanalysis

Allthedatapointswerethemean(±SD)ofthreeindependent setsofexperiments.SPSS andExcelsoftwarewere usedto determinemeansandstandarddeviations.Theresultswere subjected toStudent’st-test (Excel;Microsoft)for indepen-dentvariablesandthevalueswereconsideredsignificantat

p-values<0.05.

Results

Amplificationandcloningoffilcgene

SalmonellaEnteritidisgenomewasextracted(Fig.1A)andthe

flicgenewasamplifiedbyPCRusingthespecificprimers.The PCRproduct(1500bp)isshowninFig.1B.Thefragmentwas clonedinpET-28a(+)vectorandthentransformedintoE.coli

DH5␣. pET28a-flicplasmids were extractedfrom E. coli and digestedbyEcoRI/HindIIIand analyzed byagarosegel elec-trophoresis (Fig. 1C). Therecombinant pET28a-fliC plasmid extractedfromE.coliDH5␣cellswaspurifiedandtransformed toE.coliBL21(DE3)cellsfortheexpressionofFliCprotein.

Expressionandpurificationofrecombinantprotein

Therecombinant FliC proteinwith N-terminalHis-tag was expressed inE.coliBL21-DE3 cells(Fig. 2A)and purifiedby Ni-NTAaffinitychromatography.TheSDS-PAGEofthe puri-fiedproductisdepictedinFig.2B.TheWesternblottingwith

1

M

M

1

1

2

3

4

5

M

FliC

FliC

1518bp

A

B

C

1518bp

1000bp

1000bp

Fig.1–GenomicDNAextraction,PCRproducts,andthedigestionanalysisonanagarosegel.(A)LaneM,DNAsizemarker; Lane1,Salmonellagenome.(B)LaneM,DNAsizemarker;Lane1,fliCgene.(C)LaneM,DNAsizemarker;Lanes1–5,digested constructsbyEcoRIandHindIIIrestrictionenzymes.

(5)

1

M

2

8 7 M

6 5 4 3

2

1

1

2

3

M

75KDa 75KDa FliC, 55KDa FliC, 55KDa FliC, 55KDa 75KDa

A

B

C

Fig.2–Expression,purification,andidentificationofrFliC,stainedwithCoomassieblueR-250.(A)ExpressionofrFliC.M, proteinsizemarker.Lane1non-inducedtransformed(pET28awithoutinsert)BL21DE3ascontrol;Lane2induced

transformed(pET28awithinsert).(B)PurificationstepsofrFliC.M,proteinsizemarker.Lane1,clearedlysatebeforeloading onthecolumn;Lane2,3,flowthrough;Lane4,5,washing;Lane6,7,8,elutionwith250mMimidazole.(C)Westernblotting ofrFliC.M,proteinsizemarker;Lane1,non-inducedtransformed(pET28awithoutinsert)BL21DE3ascontrol;Lane2,the supernatantofinducedtransformedBL21DE3;Lane3,purifiedrecombinantprotein.

3.5 3 2.5 2 1.5 1 0.5 0 100 200 400 800 Reciprocal dilution 1600 OD:450nm 3200 Without Without Ab Ag Control

rFlic after first injection rFlic after second injection rFlic after third injection

Fig.3–SerumantibodyresponseofBALB/cmice immunizedwithrecombinantFliCproteins.

theanti-His-tagantibodyconfirmedthepresenceofa55-kDa protein(Fig.2C).

ImmuneresponseelicitedwithrFliC

Thepatternsofantibodyproductionfollowedbythe immu-nization at three settings of the first, second and third injectionswere thesameexceptfortheincreasedantibody titeraftereachphaseoftheimmunization(Fig.3).This sug-geststhattheadjuvantedrecombinantflagellininjectedinto theBALB/cmicehasgoodimmunogenicproperties.Thesera obtainedfromthe controlmicethatwere injectedwiththe samepreparationwithoutflagellindidnotrevealany signifi-cantleveloftheanti-flagellinantibody.

Purificationofanti-FliCIgGwithProteinGSepharose4B column

Anti-FliC IgG was purified with Protein G Sepharose 4B column chromatography and achieved a concentration of 2.339mg/mL.Inthe12%SDS-PAGE,theproteinappearedas singlebandconfirmingitspurity(Fig.4A).

Theevaluationoftheoptimumconcentrationsofantibody andSalmonellaEnteritidisforspecificELISA

AspecificELISAwasdesignedwithaconstantconcentration ofantigen(3␮g)andvaryingantibodyconcentrations(2,3,4, 5,10,20,30,40,50 and60␮g)forthedeterminationofthe optimumconcentrationofantibody.Aconcentrationof10␮g antibodywasfoundtobetheoptimum(Fig.4B).AnotherELISA wasperformedforthedeterminationofantigenwitha seri-allydilutedconcentrationofrecombinantflagellin(0.625,1.25, 2.5,5,10,15and20␮g)andaconstantconcentrationof anti-body(10␮g).Onthebasisofthisresult,3␮gwasconsidered forantigencoating(Fig.4C). Forthe detectionofSalmonella

Enteritidisinfection,bacterial-ELISA wasdesignedwiththe standardstrainofSalmonella(106CFU/mLcells)(Fig.4D).

Specificitytest

The specificity ofthe indirect-ELISA was establishedusing a variety of other microbial strains and showed no cross-reactivity with other tested bacteria. Based on the control samplesthecut-offwasdeterminedtobe0.7andtheELISA testassayedon106CFU/mLbacteria.TheresultsoftheELISA

areshowninFig.5. Samplesresults

TheclinicalsamplesweretestedwithELISAforthedetection ofSalmonellaantigen.TheresultsofELISAareshowninFig.6.

Discussion

Non-typhoidalSalmonellaentericaserovarscausemostofthe casesofbacterialfood-bornediseasesworldwide.Salmonella

Enteritidis,whichisoneofthemostcommoncausesoffood poisoninginhumans,cancausediseasessuchas gastroen-teritis,bacteremia,fever,intestinal,andfecalinfection.19Over

(6)

1 M 2

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Control

Control Log 10 CFU/mL Purified Anti-Flic antibody

Control

10µg Anti-Flic antibody

Antigen concentration (µg) Bacterial count log 10

60 50 40 20 10 5 4 3 2 Without Ag Without Ab Without Ag 1 2 3 4 5 6 7 8 Without Ab Concentration (µg) OD:450nm OD:450nm OD:450nm

A

C

B

20 3 2.5 2 1.5 1 0.5 0 3 2.5 2 1.5 1 0.5 0 –0.5 15 10 5 2.5 1.25 0.625 Without Ag Without Ab

Fig.4–ThepurificationofIgGantibodyandestablishingELISAusingtherecombinantFliCantigen.(A)PurificationofIgG antibodybyGSepharose4Bcolumn.Lane1,SDS-PAGEofpurifiedIgGwith2ME;M,proteinsizemarker.Lane2,SDS-PAGE ofpurifiedIgGwithout2ME.(B)DevelopmentofELISAafterIgGpurification.(C)Developmentofantigenwiththe

determinationofpurifiedantibody.(D)BacterialELISA.

increasingincidenceofnon-typhoidSalmonellabacteremia.20

Therefore,arapidandproperdetectionofthisbacteriumis importantforfoodsafety.Thebacterialculturebasedmethods forthe identificationofSalmonellaaretime-consuming(5–7 days)andrequireenrichmentoftheculture.21Assuch,

sev-eralscreeningmethodssuchasnucleicacid-basedassaysand immunology-basedassayshave been examinedfora rapid detectionofSalmonellaintherecent decades.20,22–24 In ear-lierstudies,lipopolysaccharides(LPS)presentonthebacterial surface were used in the ELISA-assay for the detection of

Salmonella,but theproblem withlipopolysaccharidesisthe cross-reactivitywithothergram-negativebacteria.25–27

There-fore, flagellin (FliC) was sought as an alternative for rapid diagnosisofSalmonellaand,duringthe lastdecade,several studieshaveuseditforthedetectionofSalmonella.Forthe productionofrecombinantFliC(rFlic),inthisstudy,astandard strainofSalmonellaentericaserovarEnteritidiswasusedthat producesanantigenwithhighimmunogenicity.28ADNA

frag-ment ofthe expectedsize (near 1518bp) wasamplified by PCRandexpressedusingchemicallyinducible T7promoter (pET28a).ThebestconditionfortherecombinantrFliC expres-sionwasachievedat1mMIPTG concentration,the culture temperatureof37◦Candwithovernightinduction.However,

theproteinexpressionshowedanincreasewiththe incuba-tiontimeupto18h.rFliCwasseparatedonSDS-PAGEandits biochemicalnaturewasconfirmedbyimmunoblottingusing miceanti-His-tagspecificantibody.rFliCwaspurifiedbased on6XHis-tagusingtheNi-NTAcolumn.ThepurifiedrFliCwas used forthe immunizationofmice. TheELISA testresults showed that all immunized miceproduced a high titerof

2.5 2 1.5 1 0.5 0 –0.5 Salmonella Shigella Pseudo mo nas E.coli Staph Klebsiella Witho ut Ag Witho ut Ab

Bacterial cells:106 CFU/mL

OD:450nm

Fig.5–Cross-reactivityofmouseanti-S.enteritidisIgGwith othermicrobialstrains.Assayswereconductedintriplicate.

(7)

2.5 2 1.5 1 0.5 0

Bacterial cells: 106 CFU/mL

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 Control

OD:450nm

Fig.6–ELISAofclinicalsamplesforthedetectionofSalmonellaEnteritidis.Negativecontrolsarealsoindicated.Assay cut-offwascalculatedbyreplicateanalysisofnegativesamples.

anti-FliCantibodyuponinjectingrFliCthreetimes.Thenan ELISA system was designedfor the detectionof Salmonella

Enteritidis,which isanimportantpathogenofhumanand poultry.Accurateandquicktestsareessentialtoensurefood safety by the governments.29 The availability of sufficient

quantitiesofrecombinant antigens forthe rapiddetection ofSalmonellacanbe achievedinserum samplesina short time.30Thus,newmethodsforquickdetectionofSalmonella

havebeendevelopedinthepastdecade.Amongthe molec-ulartechniques,PCRisacommonandaccuratemethodand canalsobeusedforthedetectionoflowlevelsofpathogenic bacteria.31ELISAcanbeusedtoscreenavarietyofsamples

andcomponentsinthepresenceofSalmonellaspp.

TheELISAtest,designedinthisstudy,didnotshowany cross-reactionwithotherbacteria.Sensitivityanalysisofthis testshowedthatitcoulddetect103bacteriainclinical

sam-ples,giventhattheinfectiousdoseofSalmonellaisabout106

approximately.

Besidesours,thestudiesofMinicozzi(2013),5Jindal(2012)13

andBang(2012)21havealsoreportedtheproductionof recom-binantflagellarantigen(r-FliC)anddevelopmentofELISAfor thedetectionofSalmonella.Inpreviousworks,the investiga-tionswerecarriedoutmainlywithseraobtainedfrominfected flocksandbirdsbut,inthisstudy,weusedmiceforthe pro-ductionofantibodyandProteinGSepharose4Bcolumnfor the purification. Theflic gene ofSalmonella Enteritidiswas amplified, cloned successfully using pET-28a(+) expression vectorand wasintroduced intoE. coliBL21 (DE3)asa suit-ablehost.Therecombinantflagellinwaspurifiedsuccessfully anddemonstratedgoodimmunogenicpropertiesbasedonthe immunizationofBALB/cmiceanditsabilitytoinducea sig-nificantserumflagellin-specificIgGimmuneresponse,which wasmeasuredbyELISA.Weprovidefurtherevidencethatthe recombinantflagellincanbeoneoftheexcellentindicators forthedetectionofSalmonellaEnteritidis.

Conflicts

of

interest

Theauthorsdeclarethattheyhavenocompetinginterest.

Acknowledgments

This article is a part a Ph.D. thesis being prepared by Ali Mirhosseini. The study was supported by the grants from AppliedMicrobiologyResearchCenterBaqiyatallahUniversity ofMedicalSciences.

r

e

f

e

r

e

n

c

e

s

1.HyeonJ-Y,ChonJ-W,ChoiI-S,ParkC,KimD-E,SeoK-H.

DevelopmentofRNAaptamersfordetectionofSalmonella

Enteritidis.JMicrobiolMethods.2012;89(1):79–82.

2.KilicA,BedirO,KocakN,etal.Analysisofanoutbreakof

Salmonellaenteritidisbyrepetitive-sequence-basedPCRand

pulsed-fieldgelelectrophoresis.InternMed.2009;49(1):31–36.

3.RanjbarR,GiammancoGM,FarshadS,OwliaP,AleoA,

MamminaC.Serotypes,antibioticresistance,andclass1

integronsinSalmonellaisolatesfrompediatriccasesof

enteritisinTehran,Iran.FoodbornePathogDis.

2011;8(4):547–553.

4.ChashniS,HassanzadehM,FardM,MirzaieS.

CharacterizationoftheSalmonellaisolatesfrombackyard

chickensinnorthofIran,byserotyping,multiplexPCRand

antibioticresistanceanalysis.ArchRaziInst.2009;64(2):

77–83.

5.NosratyS,FallahF,SabokbarA,DezfoolyanM,AdabianS,

EsmaeilnejadN.DetectionofSalmonellaenteritidis,typhi

andtyphimuriuminfoodsbymultiplexPCRinchildren

hospital.BMCInfectDis.2012;12(suppl1):P95.

6.DallalMMS.PrevalenceofSalmonellaspp.inpackedand

unpackedredmeatandchickeninsouthofTehran.

JundishapurJMicrobiol.2014;7(4).

7.FiererJ,GuineyDG.Diversevirulencetraitsunderlying

differentclinicaloutcomesofSalmonellainfection.JClin

Invest.2001;107(7):775–780.

8.MinicozziJ,SanchezS,LeeMD,HoltPS,HofacreCL,Maurer

JJ.Developmentofrecombinantflagellarantigensfor

serologicaldetectionofSalmonellaentericaserotypes

Enteritidis,Hadar,Heidelberg,andTyphimuriuminpoultry.

Agriculture.2013;3(3):381–397.

9.DesinTS,KösterW,PotterAA.Salmonellavaccinesinpoultry:

(8)

10.OraczG,FeleszkoW,GolickaD,MaksymiukJ,KlonowskaA,

SzajewskaH.RapiddiagnosisofacuteSalmonella

gastrointestinalinfection.ClinInfectDis.2003;36(1):112–115.

11.SiregarTH,EllimanJ,OwensL.Developmentofrealtime

polymerasechainreactionfordetectionofSalmonella

typhimuriumandSalmonellaenteritidisinfish.Squalen.

2013;7(2):51–58.

12.AmaniJ,AhmadpourA,FooladiAAI,NazarianS.Detectionof

E.coliO157:H7andShigelladysenteriaetoxinsinclinical

samplesbyPCR-ELISA.BrazJInfectDis.2015;19(3):278–284.

13.JindalG,TewariR,GautamA,PandeySK,RishiP.

ImmunologicalcharacterizationofrecombinantSalmonella

entericaserovarTyphiFliCproteinexpressedinEscherichia

coli.AMBExpress.2012;2(1):1–9.

14.BergmanMA,CummingsLA,BarrettSLR,etal.CD4+Tcells

andtoll-likereceptorsrecognizeSalmonellaantigens

expressedinbacterialsurfaceorganelles.InfectImmun.

2005;73(3):1350–1356.

15.HajamIA,DarPA,SekarSC,etal.Expression,purification,

andfunctionalcharacterisationofflagellin,aTLR5-ligand.

VetItal.2013;49(2):181–186.

16.CummingsLA,WilkersonWD,BergsbakenT,CooksonBT.In

vivo,fliCexpressionbySalmonellaentericaserovar

Typhimuriumisheterogeneous,regulatedbyClpX,and

anatomicallyrestricted.MolMicrobiol.2006;61(3):795–809.

17.HaikoJ,Westerlund-WikströmB.Theroleofthebacterial

flagelluminadhesionandvirulence.Biology.

2013;2(4):1242–1267.

18.BollagD,MichaelD,StuartJ.ProteinMethods.2nded.New

York:JohnWileyandSons,IncPub;1996.

19.DehghaniB,RasooliI,GargariSLM,NadooshanMRJ,OwliaP,

NazarianS.ImmunogenicityofSalmonellaentericaserovar

Enteritidisvirulenceprotein,InvH,andcross-reactivityofits

antiserawithSalmonellastrains.MicrobiolRes.

2013;168(2):84–90.

20.KuhnKG,FalkenhorstG,CeperTH,etal.Detecting

non-typhoidSalmonellainhumansbyELISAs:aliterature

review.JMedMicrobiol.2012;61(1):1–7.

21.BangJ,ShuklaS,KimY,KimM.Developmentofindirect

competitiveELISAforthedetectionofSalmonella

Typhimurium.RomBiotecholLett.2012;17:7194–7204.

22.RodpaiaE,MoongkarndiaP,TungrugsasutbW,

PhisannoradejaR,KanaratcS.Comparisonofmultiplex

polymerasechainreactionandimmunoassaytodetect

Salmonellaspp.,S.Typhimurium,andS.EnteritidisinThai

chickenmeat.ScienceAsia.2013;39(2):150–159.

23.MajeedLJ,ZnadKH,ThamirMK,BaqirHI.StudyofELISAand

antibioticsensitivitytestforSalmonellaenteritidisas

experimentalinfectioninmice.Um-SalamaSciJ.

2009;6(1):114–122.

24.MandalJ,AkhterMZ,KabirMS,AhsanS.Developmentofa

multiplexpolymerasechainreactionprotocolforthe

simultaneousdetectionofSalmonellaentericaserovarTyphi

andClass1integron.AsianPacJTropDis.2014;4:S808–S812.

25.IsomakiO,VuentoR,GranforsK.Serologicaldiagnosisof

Salmonellainfectionsbyenzymeimmunoassay.Lancet.

1989;333(8652):1411–1414.

26.DalbyT,StridMA,BeyerNH,BlomJ,MølbakK,KrogfeltKA.

RapiddecayofSalmonellaflagellaantibodiesduringhuman

gastroenteritis:afollowupstudy.JMicrobiolMethods.

2005;62(2):233–243.

27.StridMA,DalbyT,MølbakK,KrogfeltKA.Kineticsofthe

humanantibodyresponseagainstSalmonellaenterica

serovarsEnteritidisandTyphimuriumdeterminedby

lipopolysaccharideenzyme-linkedimmunosorbentassay.

ClinVaccineImmunol.2007;14(6):741–747.

28.CrayfordG,CoombesJL,HumphreyTJ,WigleyP.Monophasic

expressionofFliCbySalmonella4,[5],12:i:-DT193doesnot

alteritspathogenicityduringinfectionofporcineintestinal

epithelialcells.Microbiology.2014;160(Pt11):2507–2516.

29.LeeK-M,RunyonM,HerrmanTJ,PhillipsR,HsiehJ.Reviewof

Salmonelladetectionandidentificationmethods:aspectsof

rapidemergencyresponseandfoodsafety.FoodControl.

2015;47:264–276.

30.KremerC,O’MearaK,LaytonS,HargisB,ColeK.Evaluation

ofrecombinantSalmonellaexpressingtheflagellarprotein

fliCforpersistenceandenhancedantibodyresponsein

commercialturkeys.PoultSci.2011;90(4):752–758.

31.RickeS,PillaiS,NortonR,MaciorowskiK,JonesF.

ApplicabilityofrapidmethodsfordetectionofSalmonella

spp.inpoultryfeeds:areview.JRapidMethodsAutom

Referências

Documentos relacionados

Salmonella enterica serovar Enteritidis produces several types of fimbrial adhesins, including SEF14, SEF17, SEF21, long polar fimbriae (LPF) and plasmid-encoded fimbriae (PEF)

In this work, an indirect ELISA based on a monoclonal antibody (MAb) specific for an outer membrane protein of Salmonella enterica serovar Enteritidis was used for detection of

Reversion to virulence evaluation of a 9R vaccine strain of Salmonella enterica serovar Gallinarum in commercial Brown Layers. The contribution of genes required for anaerobic

The presence of Salmonella panama (14.3%) in fresh broiler carcasses and the high rate of Salmonella enteritidis and Salmonella newport in refrigerated broiler carcasses indicates

The main infections that affect commercial poultry production are salmonellosis (Salmonella pullorum, Salmonella gallinarum, Salmonella typhimurium, Salmonella enteritidis)

The study examined (1) the immune response in broiler chickens after oral immu - nization with recombinant flagellin (rFliC) from Salmonella Typhimurium conjugated with

The efficacy of 28 individual or blended disinfectants against avian Salmonella enterica serovar Enteritidis and Escherichia coli strains was determined.. An in vitro test

A economia brasileira apresenta características que incentivam a procura por incentivos fiscais: a busca de recursos junto às instituições financeiras tem custos elevados; a