• Nenhum resultado encontrado

Comput. Appl. Math. vol.29 número3

N/A
N/A
Protected

Academic year: 2018

Share "Comput. Appl. Math. vol.29 número3"

Copied!
19
0
0

Texto

(1)

ISSN 0101-8205 www.scielo.br/cam

Periodic boundary value problems for impulsive

neutral differential equations with

multi-deviation arguments

GUOBING YE1∗, JIANHUA SHEN2 and JIANLI LI3

1College of Science, Hunan University of Technology, Zhuzhou Hunan 412008, PR, China 2College of Science, Hangzhou Normal University, Hangzhou Zhejiang 310036, PR, China

3College of Mathematics and Computer Science, Hunan Normal University Changsha Hunan 410081, PR, China

E-mails: yeguobing19@sina.com / jhshen2ca@yahoo.com / ljianli@sina.com

Abstract. We develop the impulsive inequality and the classical lower and upper solutions, and establish the comparison principles. By using these results and the monotone iterative technique, we obtain the existence of solutions of periodic boundary value problems for a class of impulsive neutral differential equations with multi-deviation arguments. An example is given to demonstrate our main results.

Mathematical subject classification: Primary: 34A37; Secondary: 34k10.

Key words: Impulsive neutral differential equation, periodic boundary value, impulsive in-equality, lower and upper solutions, monotone iterative technique, extremal solution.

1 Introduction

Impulsive differential equations have become more important in recent years in some mathematical models of real phenomena, especially in control, bio-logical or medical domains (see, for example, [1-5]). As to periodic boundary value problems for impulsive differential equations, many authors have obtained

#CAM-136/09. Received: 02/X/09. Accepted: 18/V/10.

(2)

excellent existence results; see, for instance, [7-11] for impulsive differential equations, [15-18] for impulsive neutral functional differential equations, [19] for abstract impulsive neutral functional differential equations. In [15-19], the characters of their neutral types are

d

dt[x(t)−g(t,xt)], d

dt(u(t)+g(t,ut)), d

dt(u(t)+F(t,ut)), d

dt

x(t)g

t,xt, t R

0

a(t,s,xs)ds

and dtd22(x(t)−g(t,xt)),

respectively. In this paper, however, the character of its neutral type is (u(θ (t)))′. The character is different from the previous ones. Consider the following periodic boundary value problems for impulsive neutral differential equations with multi-deviation arguments of the form

     

    

(u(θ (t)))′ = f(t,u(t),u(ϕ

1(t)), . . . ,u(ϕq(t))),

t J = [0,T], t 6=ζk,

1u(tk)=Ik(u(tk)), k =1, . . . ,p,

u(0)=u(T),

(1.1)

where 0 = t0 < t1 < ∙ ∙ ∙ < tp < tp+1 = T;θ ∈ C1(J,R), θ is mono-tone increasing with 0 θ (t) t (t J), θ (0) = 0, θ (T) = T, and set θ (ζk)=tk (k=1, . . . ,p),J0= J\{t1, . . . ,tp}, J1= J\{ζ1, . . . , ζp}; f: J×

Rq+1 → R is continuous almost everywhere, and ϕi: J → R continuous

with ϕi(J) ⊆ J (i = 1, . . . ,q); and IkC(R,R), 1u(tk) = u(tk+) −

u(tk). Denote by PC(X,Y), where X ⊂ R,Y ⊂ R, the set of all

func-tions u: X Y which are piecewise continuous in X with points of dis-continuity of the first kind at the points tkX, i.e., there exist the limits

u(tk+) < andu(tk−) = u(tk) < ∞. PC1(X,Y)denotes the set of all

func-tionsu PC(X,Y), that are continuously differentiate fort X,t 6=tk. Let

= PC([0,T],R)T

PC1([0,T],R).

Definition. We say that the functionsα, β are lower and upper solutions of (1.1), respectively, if there existM >0 and 0 Lk <1 such that

(

(α(θ (t)))′ f(t, α(t), α(ϕ

1(t)), . . . , α(ϕq(t)))−a(t), tJ1,

(3)

where

a(t)=

 

 

0, α(0)α(T),

θ′(t)+Mt+

q P i=1

Niϕi(t)

T (α(0)−α(T)), α(0) > α(T),

(1.2)

ak =  

0, α(0)α(T),

tk

T(α(0)−α(T)), α(0) > α(T),

(1.3)

and

(β(θ (t)))′ f(t, β(t), β(ϕ1(t)), . . . , β(ϕ

q(t)))+b(t), tJ1,

1β(tk)≥ Ik(β(tk))+Lkbk, k =1, . . . ,p,

where

b(t)=

  

 

0, β(0)β(T),

θ′(t)+Mt+

q P i=1

Niϕi(t)

T (β(T)−β(0)), β(0) < β(T),

(1.4)

bk =  

0, β(0)β(T),

tk

T(β(T)−β(0)), β(0) < β(T).

(1.5)

The definitions of classical lower and upper solutions make reference to the caseα(0)α(T)andβ(0)β(T).

2 Preliminaries

Lemma 1. Let s ∈ [0,T], ck ≥ 0, αk,k = 1, . . . ,p be constants, p,q

PC(J,R), x PC1(J,R) and θ be set by(1.1). If

(

(x(θ (t)))′ p(t)x(θ (t))+q(t), t ∈ [s,T),t 6=ζ k,

x(tk+)ckx(tk)+αk, tk ∈ [s,T),

then for t ∈ [s,T],

x(θ (t)) x(θ (s+)) Q sk<t

ck !

exp

t R

s

p(u)du

+

t R

s Q

uk<t ck

!

×exp

t R

u

p(τ )dτ

q(u)du+ P sk<t

Q

ζki<t ci

!

exp

t R

ζk

p(τ )dτ

!

(4)

This proof is similar to the one of [1], here we omit it.

Lemma 2. Let u , M > 0, Ni ≥ 0 (i = 1, . . . ,q),0 ≤ Lk < 1andθ

be set by(1.1), such that

(A1) (u(θ (t)))′+Mu(t)+

q P

i=1

Niu(ϕi(t))≤0, tJ1;

(A2) 1u(tk)≤ −Lku(tk), k =1, . . . ,p;

(A3) u(0)u(T); (A4)

M+

q P

i=1 Ni

T R

0

Q

sk<T

(1Lk)ds≤ p Q

k=1

(1Lk)2.

Then u0on J .

Proof. By (A1) and (A2), we have (u(θ (t)))′≤ −Mu(t)

q X

i=1

Niu(ϕi(t)), tJ1, (2.1)

du(τ ) dτ ∙

dt ≤ −Mu(t)

q X

i=1

Niu(ϕi(t)), tJ1, τ =θ (t), (2.2)

u tk+(1Lk)u(tk), k =1, . . . ,p. (2.3)

To proveu(t)0 on J, we shall consider the following two cases.

Case 1. u(t) 0 for all t J. In this case, by (2.2) and (2.3) and the properties of θ, we get u(t) 0 on J0 and u(t+

k ) ≤ u(tk), k = 1, . . . ,p.

Therefore u(t)is a non-increasing function on J. Thenu(0) u(T). Since u(0) u(T),u(t) con J (cis a non-negative constant), andu=0 on J0.

This and (A1) imply M+

q P

i=1 Ni

c0. Thenu0 onJ.

Case 2. There exists t J such thatu(t) > 0 andu(t) can take negative

values in J. Letθ (ζ∗) = t. Again let ζˉ = min{t J, inf

sJu(θ (s)) =

u(θ (t)) = −λ, λ > 0}. Since (A3),ζˉ ∈ [0,T). Without loss of generality, letζˉ 6= ζk, ζk+, k = 1, . . . ,p (Ifζˉ = ζk orζk+, the proof is similar, here we

(5)

Subcase 1. u(T) >0. From (2.1), we have (u(θ (t)))′ λ

M+

q P

i=1 Ni

, t J1. (2.4)

In view of (2.4), (2.3), and Lemma 1, we can get fort ∈ [ ˉζ ,T], u(θ (t)) u(θ (ζ ))ˉ Q

ˉ

ζ <ζk<t

(1Lk)+ t R

ˉ

ζ

Q

sk<t

(1Lk

M+

q P

i=1 Ni

ds

= −λ Q

ˉ

ζ <ζk<t

(1Lk)+λ

M+

q P

i=1 Ni t R ˉ ζ Q

sk<t

(1Lk)ds.

Lett=T. Then we have u(θ (T))≤ −λ Q

ˉ

ζ <ζk<T

(1Lk)+λ

M+

q P

i=1 Ni T R ˉ ζ Q

sk<T

(1Lk)ds,

(2.5)

u(T)λ

"

M+

q P

i=1 Ni

T R

0

Q

sk<T

(1Lk)ds− p Q

k=1

(1Lk) #

.

Sinceu(T) >0, we get

p Q

k=1

(1Lk) <

M+

q P

i=1 Ni

T R

0

Q

sk<T

(1Lk)ds,

p Q

k=1

(1Lk)2<

M+

q P

i=1 Ni

T R

0

Q

sk<T

(1Lk)ds,

which is contradictory to (A4).

Subcase 2. u(T)0. In this subcase, thenζ < ζˉ ∗orζ > ζˉ.

(i) ζ < ζˉ ∗. According to the same arguments as (2.5), we get u(θ (ζ))≤ −λ Q

ˉ

ζ <ζk<ζ∗

(1Lk)+λ

M+

q P

i=1 Ni × ζ∗ R ˉ ζ Q

sk<ζ∗

(6)

Multiplying both sides of the above inequality by Q

ζ∗ζk<T(1 − Lk) (Ifζ∗> ζ

p, this reduction is not needed.), we obtain

u(θ (ζ)) Q

ζ∗ζk<T

(1Lk)

≤ −λ Q

ˉ

ζ <ζk<T

(1Lk)+λ

M+

q P

i=1 Ni ζ∗ R ˉ ζ Q

sk<T

(1Lk)ds

≤ −λ

p Q

k=1

(1Lk)+λ

M+

q P

i=1 Ni

T R

0

Q

sk<T

(1Lk)ds

=λ " M+ q P

i=1 Ni

T R

0

Q

sk<T

(1Lk)ds− p Q

k=1

(1Lk) #

.

Sinceu(θ (ζ∗)) >0, we have

p Q

k=1

(1Lk) <

M+

q P

i=1 Ni

T R

0

Q

sk<T

(1Lk)ds,

p Q

k=1

(1Lk)2<

M+

q P

i=1 Ni

T R

0

Q

sk<T

(1Lk)ds,

which is contradictory to (A4).

(ii) ζ > ζˉ ∗. By (A3), we haveu(0)0. This and the properties ofθ imply 0< ζ∗. According to the same arguments as (2.5), we get

u(θ (ζ∗)) u(θ (0)) Q

0<ζk<ζ∗

(1Lk)

M+

q P

i=1 Ni

ζ∗

R

0

Q

sk<ζ∗

(1Lk),

u(θ (ζ)) u(T) Q

0<ζk<ζ∗

(1Lk)

M+

q P

i=1 Ni

ζ∗

R

0

Q

sk<ζ∗

(1Lk)ds.

Sinceu(θ (ζ∗)) >0, we have u(T) Q

0<ζk<ζ∗

(1Lk)≥ −λ

M+

q P

i=1 Ni

ζ∗

R

0

Q

sk<ζ∗

(7)

By (2.5) and (2.6), we obtain

Q

0<ζk<ζ∗

(1Lk) Q

ˉ

ζ <ζk<T

(1Lk)≤

M+

q P

i=1 Ni × ζ∗ R 0 Q

sk<ζ∗

(1Lk)ds+ Q

0<ζk<ζ∗

(1Lk) T R

ˉ

ζ

Q

sk<T

(1Lk)ds

.

Multiplying both sides of the above inequality byQ

ζ∗ζk<T(1−Lk)(If ζ∗> ζ

p, this reduction is not needed.), we get Q

0<ζk<T

(1Lk) Q

ˉ

ζ <ζk<T

(1Lk)

M+

q P

i=1 Ni

Q

ζ∗ζk<T

(1Lk)

ζ∗

R

0

Q

sk<ζ∗

(1Lk)ds

+ Q

0<ζk<T

(1Lk) T R

ˉ

ζ

Q

sk<T

(1Lk)ds

,

p Q

k=1

(1Lk) Q

ˉ

ζ <ζk<T

(1Lk)

M+

q P

i=1 Ni

ζ∗

R

0

Q

sk<T

(1Lk)ds+ T R

ˉ

ζ

Q

sk<T

(1Lk)ds

,

p Q

k=1

(1Lk) Q

ˉ

ζ <ζk<T

(1Lk) <

M+

q P

i=1 Ni

T R

0

Q

sk<T

(1Lk)ds,

p Q

k=1

(1Lk)2<

M+

q P

i=1 Ni

T R

0

Q

sk<T

(1Lk)ds,

which is contradictory to (A4).

Thus, in either case u 0 on J. Therefore the proof of the Lemma is complete.

Lemma 3. Let u , M >0, Ni ≥0 (i =1, . . . ,q),0≤ Lk <1andθ be

(8)

(B1) (u(θ (t)))′+Mu(t)+ q P

i=1

Niu(ϕi(t))+

θ′(t)+Mt+

q P i=1

Niϕi(t)

T [u(0)u(T)] ≤

0, t J1;

(B2) 1u(tk)≤ −Lku(tk)−Lk×Ttk[u(0)u(T)], k =1, . . . ,p;

(B3) u(0) >u(T).

Also assume that(A4)holds. Then u 0on J .

Proof. Setm(t) = u(t)+t/T ∙ [u(0)u(T)]. Clearly, m(0) = m(T). It follows that fort J0,

(m(θ (t)))′+Mm(t)+

q P

i=1

Nim(ϕi(t))=(u(θ (t)))′+Mu(t)

+ q P

i=1

Niu(ϕi(t))+

θ′(t)+Mt+

q P i=1

Niϕi(t)

T [u(0)−u(T)] ≤0,

and for t=tk,

1m(tk)=1u(tk)≤ −Lku(tk)−Lk×tk/T ∙ [u(0)−u(T)] = −Lkm(tk).

By Lemma 2, we obtainm(t) 0 on J, and sou(t) 0 on J. Thus, we have completed the proof of the Lemma.

3 Existence for linear problem

In this section, we consider the linear problem of (1.1)

   

   

(u(θ (t)))′+Mu(t)+ q P

i=1

Niu(ϕi(t))=σ (t), tJ1,

1u(tk)= −Lku(tk)+γk, k =1, . . . ,p,

u(0)=u(T),

(3.1)

where σ (t) PC(J,R), γk ∈ R, k = 1, . . . ,p, M > 0, Ni ≥ 0(i =

(9)

Theorem 1. Suppose that there existα, βsuch that (C1) αβ on J;

(C2) (α(θ (t)))′+Mα(t)+ q P

i=1

Niα(ϕi(t))≤σ (t)−a(t), tJ1,

1α(tk)≤ −Lkα(tk)+γkak, k =1, . . . ,p;

(β(θ (t)))′+Mβ(t)+ q P

i=1

Niβ(ϕi(t))≥σ (t)+b(t), tJ1,

1β(tk)≥ −Lkβ(tk)+γk+bk, k =1, . . . ,p,

where a(t),b(t),ak,bkare defined by(1.2)-(1.5). Also assume that(A4)holds.

Then there exists a unique solution u for(3.1)with u ∈ [α, β].

Proof. We shall prove the Theorem in the following three steps.

Step 1. Ifu1,u2are solutions of (3.1), setv1=u1u2andv2=u2u1, then

   

   

(v1(θ (t)))′+Mv1(t)+

q P

i=1

Niv1(ϕi(t))=0, tJ1,

1v1(tk)= −Lkv1(tk), k=1, . . . ,p,

v1(0)=v1(T), and

    

   

(v2(θ (t)))′+Mv2(t)+

q P

i=1

Niv2(ϕi(t))=0, tJ1,

1v2(tk)= −Lkv2(tk), k=1, . . . ,p,

v2(0)=v2(T).

By Lemma 2, we obtainv1=u1u2≤0 andv2=u2u1≤0. Thusu1=u2. Then there exists a unique solutionufor (3.1).

Step 2. We prove that ifω, γ are classical lower and upper solutions, respec-tively, for (3.1) withωγ, then (3.1) has a solutionu∈ [ω, γ].

Letu(,a)denote the unique solution of the following equation

   

   

(u(θ (t)))′+Mu(t)+ q P

i=1

Niu(ϕi(t))=σ (t), tJ1,

1u(tk)= −Lku(tk)+γk, k =1, . . . ,p,

u(0)=a.

(10)

Firstly, we show ω(0) u(T, ω(0)) and γ (0) u(T, γ (0)). Assume ω(0) >u(T, ω(0)). Letv(t)=ω(t)u(t, ω(0)). Then the functionvsatisfies

   

   

(v(θ (t)))′+Mv(t)+ q P

i=1

Niv(ϕi(t))≤0, tJ1,

1v(tk)= −Lkv(tk), k =1, . . . ,p,

v(0)=ω(0)ω(0) < ω(T)u(T, ω(0))=v(T).

By Lemma 2, we havev(t)0 onJ. This impliesv(T)=ω(T)u(T, ω(0)) 0. Thus ω(0) ω(T) u(T, ω(0)), which is contradictory to the above assumption. Thenω(0)u(T, ω(0)). Similarly, we haveγ (0)u(T, γ (0)).

Next, we prove that there existsc∈ [ω(0), γ (0)]such thatu(0,c)=u(T,c). Now, we consider two cases.

Case 1. ω(0)=γ (0). In this case, we getω(0)u(T, γ (0))γ (0)=ω(0). Thusu(T, γ (0)) = ω(0). Then we choosec = ω(0), and so u = u(,c)is a solution of(3.1).

Case 2. ω(0) < γ (0). In this case, we define the mapF: [ω(0), γ (0)] → R

byF(s)=su(T,s). ClearlyFis continuous. SinceF(ω(0))0 F(γ (0)), there must exist one pointc∈ [ω(0), γ (0)]such thatF(c)=0. Thenu =u(,c) is a solution of (3.1).

Finally, we claim u ∈ [ω, γ]. Let m1(t) = ω(t) u(t,c) and m2(t) = u(t,c)γ (t). It is evident thatm1,m2, and

    

   

(m1(θ (t)))′+Mm1(t)+ q P

i=1

Nim1i(t))≤0, tJ1,

1m1(tk)≤ −Lkm1(tk), k =1, . . . ,p,

m1(0)=ω(0)u(0,c)ω(T)u(T,c)=m1(T), and

   

   

(m2(θ (t)))′+Mm2(t)+

q P

i=1

Nim2i(t))≤0, tJ1,

1m2(tk)≤ −Lkm2(tk), k =1, . . . ,p,

m2(0)=u(0,c)γ (0)u(T,c)γ (T)=m(T).

(11)

Step 3. We prove that α(t),ˉ β(t)ˉ are classical lower and upper solutions, re-spectively, for (3.1) withαˉ ≤ ˉβ, moreover[ ˉα,βˉ] ⊆ [α, β], where

ˉ

α(t)=

(

α(t), α(0)α(T),

α(t)+t/T ∙ [α(0)α(T)], α(0) > α(T), (3.3)

and

ˉ

β(t)=

(

β(t), β(0)β(T),

β(t)t/T ∙ [β(T)β(0)], β(0) < β(T). (3.4) It is evident that α ≤ ˉα and βˉ β on J. Thus α(0)ˉ = α(0) ≤ ˉα(T) and

ˉ

β(0)=β(0)≥ ˉβ(T).

(i) Ifα(0)α(T), then (α(θ (t)))ˉ+Mαˉ +

q P

i=1

Niα(ϕˉ i(t))=(α(θ (t)))′

+Mα(t)+

q P

i=1

Niα(ϕi(t))≤σ (t), tJ1,

1α(tˉ k)=1α(tk)≤ −Lkα(tk)+γkak ≤ −Lkα(tk)+γkLkak = −Lk[α(tk)+ak] +γk = −Lkα(tˉ k)+γk, k =1, . . . ,p,

and add toα(0)ˉ ≤ ˉα(T). (ii) Ifα(0) > α(T), then

(α(θ (t)))ˉ+Mα(t)ˉ + q P

i=1

Niα(ϕˉ i(t))=(α(θ (t)))′+Mα(t)

+ q P

i=1

Niα(ϕi(t))+

θ′(t)+Mt+

q P i=1

Niϕi(t)

T (α(0)−α(T))

≤σ (t), t J1,

1α(tˉ k)=1α(tk)≤ −Lkα(tˉ k)+γk, k =1, . . . ,p,

and add toα(0)ˉ ≤ ˉα(T).

(12)

Now, we consider the functionm= ˉα− ˉβ. (m(θ (t)))′+Mm(t)+

q P

i=1

Nim(ϕi(t))

=

(α(θ (t)))ˉ+Mα(t)ˉ + q P

i=1

Niα(ϕˉ i(t))

(β(θ (t)))ˉ ′+Mβ(t)ˉ +

q P

i=1

Niβ(ϕˉ i(t))

≤σ (t)σ (t)=0, t J1,

1m(tk)=1α(tˉ k)−1β(tˉ k)≤ [−Lkα(tˉ k)+γk] − [−Lkβ(tˉ k)+γk]

= −Lkm(tk), k =1, . . . ,p,

m(0)= ˉα(0)− ˉβ(0)≤ ˉα(T)− ˉβ(T)=m(T). Using Lemma 2, we get m0 on J, i.e., αˉ ≤ ˉβ on J.

Thus, we have completed the proof of Theorem 1.

4 Existence for nonlinear problem

In this section, we establish the existence criteria for solutions of (1.1) by the lower and upper solutions and the monotone iterative technique.

Theorem 2. Suppose that there existα, βsuch that

(D1) α and βare lower and upper solutions for(1.1)withα β; (D2) f(t,x2,y12, . . . ,yq2)− f(t,x1,y11, . . . ,yq1)≥ −M(x2x1)

q P

i=1

Ni(yi2−yi1) for every tJ1, α ≤x1x2≤β, α(ϕi(t))≤ yi1(ϕi(t))≤ yi2(ϕi(t))≤β(ϕi(t)) (i =1, . . . ,q);

(D3) Ik(x)−Ik(y)≥ −Lk(x −y) for α(tk)≤ y(tk)≤x(tk)≤β(tk),

k =1, . . . ,p.

Also assume that(A4) holds. Then there exist monotone sequence{ ˉαn(t)}, { ˉβn(t)}withα0ˉ = ˉα,β0ˉ = ˉβ, whereα,ˉ βˉ are defined by(3.3)and(3.4), such

that limn→∞αˉn(t) = ρ(t) and limn→∞βˉn(t) = ψ (t) uniformly hold on J ,

(13)

Proof. We shall prove the Theorem in the following three steps.

Step 1. It is evident thatα ≤ ˉα andβ ≤ ˉβ on J. Thusα(0)= ˉα(0)≤ ˉα(T) andβ(0)ˉ =β(0)≥ ˉβ(T).

Let the functionm = ˉα− ˉβ, then m(0) = ˉα(0)− ˉβ(0) ≤ ˉα(T)− ˉβ(T) = m(T). Next, we consider two cases.

Case 1. α(0) > α(T) and β(0) < β(T). Firstly, by (D2), we get

(m(θ (t)))′+Mm(t)+

q

P

i=1

Nim(ϕi(t))

=

 

(α(θ (t)))

+Mα(t)+Pq

i=1

Niα(ϕi(t))+

θ′(t)+Mt+

q P i=1

Niϕi(t)

T (α(0)−α(T))

  

 

(β(θ (t)))

+Mβ(t)+Pq

i=1

Niβ(ϕi(t))−

θ′(t)+Mt+

q P i=1

Niϕi(t)

T (β(T)−β(0))

  

f(t, α(t), α(ϕ1(t)), . . . , α(ϕq(t)))− f(t, β(t), β(ϕ1(t)), . . . , β(ϕq(t)))

M(β(t)−α(t))+

q

P

i=1

Ni(β(ϕi(t))−α(ϕi(t)))

≤0, t J1.

Again, by (D3), we obtain

1m(tk)=1α(tˉ k)−1β(tˉ k)=1α(tk)−1β(tk)

≤ [Ik(α(tk))−Lkak] − [Ik(β(tk))+Lkbk]

≤ −Lk[α(tk)−β(tk)] −LkakLkbk ≤ −Lkm(tk), k =1, . . . ,p.

Finally, add tom(0) m(T). Using Lemma 2, m(t) 0 on J, i.e.,αˉ ≤ ˉβ on J.

It follows that

(α(θ (t)))ˉ=(α(θ (t)))′+θ′T(t)[α(0)α(T)]

f(t, α(t), α(ϕ1(t)), . . . , α(ϕq(t)))− Mt+

q P i=1

Niϕi(t)

(14)

Sinceα ≤ ˉαβ, by (D2), we get

f(t,α(t),ˉ α(ϕ1(t)), . . . ,ˉ α(ϕˉ q(t)))− f(t, α(t), α(ϕ1(t)), . . . , α(ϕq(t)))

≥ −M[ ˉα(t)α(t)] −

q P

i=1

Ni[ ˉα(ϕi(t))−α(ϕi(t))].

Then

(α(θ (t)))ˉ f(t,α(t),ˉ α(ϕˉ 1(t)), . . . ,α(ϕˉ q(t)))+M[ ˉα(t)−α(t)]

+ q P

i=1

Ni[ ˉα(ϕi(t))−α(ϕi(t))] − Mt+

q P i=1

Niϕi(t)

T [α(0)−α(T)]

= f(t,α(t),ˉ α(ϕˉ 1(t)), . . . ,α(ϕˉ q(t)))

+ Mt+

q P i=1

Niϕi(t)

T [α(0)−α(T)] −

Mt+

q P i=1

Niϕi(t)

T [α(0)−α(T)]

= f(t,α(t),ˉ α(ϕˉ 1(t)), . . . ,α(ϕˉ q(t))).

(4.1)

From (D3), we get

1α(tˉ k)= 1α(tk)≤ Ik(α(tk))− LTktk[α(0)−α(T)]

Ik(α(tˉ k))+Lk[ ˉα(tk)−α(tk)] − LTktk[α(0)−α(T)] (4.2) = Ik(α(tˉ k)).

Case 2. α(0)α(T) and β(0)β(T). In this case, it is trivial that we get (4.1) and (4.2).

Thus, in either case,αˉ is a classical lower solution. Similarly,βˉis a classical upper solution. Moreover[ ˉα,βˉ] ⊆ [α, β].

Step 2. For anyη∈ [ ˉα,βˉ], we consider

       

      

(u(θ (t)))′+Mu(t)+ q P

i=1

Niu(ϕi(t))=Mη(t)+ q P

i=1

Niη(ϕi(t)) + f(t, η(t), η(ϕ1(t)), . . . , η(ϕq(t))), tJ1,

1u(tk)+Lku(tk)= Ik(η(tk))+Lkη(tk), k =1, . . . ,p,

u(0)=u(T).

(15)

Then, by Theorem 1, (4.3) has a unique solutionu.

Define operator Abyu =Aη. ThenApossesses the following properties: (E1) αˉ Aα,ˉ βˉ Aβ;ˉ

(E2) 1≤ 2forη1, η2∈ [ ˉα,βˉ]withη1≤η2.

Firstly, letm= ˉα− ˉα1, whereαˉ1= Aα. Then we getˉ (m(θ (t)))′=(α(θ (t)))ˉ(αˉ

1(θ (t)))′

f(t,α(t),ˉ α(ϕˉ 1(t)), . . . ,α(ϕˉ q(t)))+Mαˉ1(t)+

q P

i=1

Niαˉ1(ϕi(t))

Mα(t)ˉ

q P

i=1

Niα(ϕˉ i(t))− f(t,α(t),ˉ α(ϕˉ 1(t)), . . . ,α(ϕˉ q(t)))

= −M[ ˉα(t)− ˉα1(t)] −

q P

i=1

Ni[ ˉα1(ϕi(t))− ˉα(ϕi(t))] = −Mm(t)

q P

i=1

Nim(ϕi(t)), tJ1,

1m(tk)=1α(tˉ k)−1α1(tˉ k)

Ik(α(tˉ k))−Ik(α(tˉ k))−Lkα(tˉ k)+Lkα1(tˉ k) = −Lkm(tk),k =1, . . . ,p,

m(0)= ˉα(0)− ˉα1(0)≤ ˉα(T)− ˉα1(T)=m(T).

By Lemma 2, we havem(t)0 onJ, i.e.,αˉ Aα. Similarly, we getˉ βˉ Aβ.ˉ Next, setv1 = 1andv2 = 2, whereη1, η2 ∈ [ ˉα,βˉ]withη1 ≤ η2. Let m=v1−v2. By (D2), (D3) and (4.3), we get

(m(θ (t)))′=(v

1(θ (t)))′−(v2(θ (t)))′

=

Mv1(t)−

q P

i=1

Niv1(ϕi(t))+ f(t, η1(t), η1(ϕ1(t)), . . . , η1(ϕq(t))) +Mη1(t)+

q P

i=1

Niη1(ϕi(t))

Mv2(t)

q P

i=1

Niv2(ϕi(t))

+ f(t, η2(t), η2(ϕ1(t)), . . . , η2(ϕq(t)))+2(t)+

q P

i=1

Niη2(ϕi(t))

= −Mm(t)

q P

i=1

Nim(ϕi(t))+ [f(t, η1(t), η1(ϕ1(t)), . . . , η1(ϕq(t))) − f(t, η2(t), η2(ϕ1(t)), . . . , η2(ϕq(t)))]

M(η2(t)−η1(t))+

q P

i=1

(16)

≤ −Mm(t)

q P

i=1

Nim(ϕi(t)), tJ1,

1m(tk)=1v1(tk)−1v2(tk)

= [−Lkv1(tk)+Ik(η1(tk))+Lkη1(tk)] − [−Lkv2(tk)+Ik(η2(tk))+Lkη2(tk)] ≤ −Lkm(tk), k =1, . . . ,p,

m(0)=m(T).

By Lemma 2, we getm(t)0 on J, i.e.,v1≤ v2on J. Then 1≤ 2for

η1, η2∈ [ ˉα,βˉ]withη1≤η2.

Step 3. Define the sequence{ ˉαn(t)},{ ˉβn(t)}by αˉn+1 = Aαˉn, βˉn+1 = Aβˉn, ˉ

α0= ˉα,β0ˉ = ˉβ. From (E1) and (E2), we get

ˉ

α0≤ ˉα1. . .≤ ˉαn ≤ ˉβn≤. . .≤ ˉβ1= ˉβ0, ∀nN.

Thus it is immediate to verify that lim

n→∞αˉn(t)=ρ(t) and nlim→∞βˉn(t)=ψ (t)

uniformly hold onJ. We consider the equation

       

       

ˉn+1(θ (t)))′+Mαˉn+1(t)+ q P

i=1

Niαˉn+1(ϕi(t))= Mαˉn(t) +

q P

i=1

Niαˉni(t))+ f(t,αˉn(t),αˉn(ϕ1(t)), . . . ,αˉnq(t))),tJ1,

ˉn+1(tk)+Lkαˉn+1(tk)=Ik(αˉn(tk))+Lkαˉn(tk), k =1, . . . ,p, ˉ

αn+1(0)= ˉαn+1(T),

and pass to the limit whenntends to. Thus we obtain thatρis a solution of (1.1). Analogously,ψis also a solution of (1.1).

Finally, letu be any solution of (1.1) on [ ˉα,βˉ]. Clearly α0ˉ u. Assume

ˉ

(17)

5 An example

Now we consider the equation

       

      

(u(t2))= −1 24u

2(t)

−361

u 13t

+u(t)+u 23t

+241t, t∈ [0,1],t6=ζ1=

1 2, 1u(t1)= −12u(t1), t1= 14,

u(0)=u(1).

(5.1)

Firstly, it is obvious thatα =0 is a classical lower solution for (5.1). Certainly α = 0 is a lower solution. Similarly β = 1 is an upper solution. Moreover αβ on J = [0,1]. Next,

f(t,x2,y12,y22,y32) f(t,x1,y11,y21,y31)

= −241(x

2 2−x

2 1)−

1 36

3

P

i=1

(yi2−yi1) = −241(x2+x1)(x2x1)

1 36

3

P

i=1

(yi2−yi1)

≥ −121(x2−x1)

1 36

3

P

i=1

(yi2−yi1),

for α x1 x2 β, α 13t

y11 13t

y12 13t

≤ β 13t

, α √t) y21(√t) y22(√t) β(√t), α 23t

y31 23t

y32 23t

≤ β 23t

, where M = 121, N1 = N2 = N3 = 361. Further, I1(x) I1(y) = −12x + 12y

−12(x −y), forα 1 4

y 14

x 14

≤β 14

, where 0L1= 12 <1. Finally,

M+ 3

P

i=1 Ni

T R

0

Q

sk<T

(1Lk)ds= 16

1

R

0

Q

sk<T

(1Lk)ds

= 16

"

1/2

R

0 1 2ds+

1

R

1/2 ds

#

= 18 ≤

1 4 =

p Q

k=1

(1Lk)2.

Then all the conditions of Theorem 2 are satisfied. Thus (5.1) has minimal and maximal solutions in[α, β].

(18)

M= 121, N1=N2= N3= 361. From 0 ≥ −241

h t−1 100

2

+98001002 +

99 50 −t

i

= −241

h t

100

2

−50t ×

1 100 +

1 1002 +

9800

1002 −t+2× 99 100

i

= −241

h t

100

2

+50t ×

99 100 + 99 100 2

t50t +2×10099i

= −241

1 100t+

99 100

2

−361 ×3×

99 100 +

1 24t+

t

1200,

t

50 ≥ − 1 24β

2 1(t)−

1 36 h 1 100 × 1 3t+

99 100

+1001 ×

t+10099

+

1 100×

2 3t+

99 100

i

+241t+

h t 1200+ 1 3600 1 3t+

t+23t

+50t

i

,

we have(β1(t2))≥ −1 24β

2 1(t)−

1 36

h

β1 13t

+β1(√t)+β1 23ti

+241t+b(t). From 0≥ −12 1001 ×14+10099+ 12×4001 , we get1β1 14

I1 β1 14

+L1b1. These show thatβ1(t) is an upper solution for (5.1). Moreover α ≤ β1 on J. Similarly, we get the existence of monotone sequence that approximate the extremal solutions for (5.1) in[α, β1].

Acknowledgements. The authors are very grateful to the referee for useful remarks and interesting comments.

REFERENCES

[1] D.D. Bainov and P.S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications.Longman Scientific and Technical, Harlow (1993).

[2] V. Lakshmikantham, D. Bainov and P. Simeonov,Theory of Impulsive Differential Equations.

World Scientific, Singapore (1989).

[3] A. Halanay and D. Wexler, Qualitative Theory of Impulse Systems. Editura Academic Republic Socialiste Romania, Bucuresti (1968).

[4] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations[M]. World Scien-tific, Singapore (1995).

[5] X.L. Fu, B.Q. Yan and Y.S. Liu, Theory of impulsive differential system. Science Press, Beijing (2005).

(19)

[7] M. Yao, A. Zhao and J. Yan, Periodic boundary value problems for second-order impulsive differential equations.Nonlinear Anal.,70(2009), 262–273.

[8] Y. Liu,Further results on periodic boundary value problems for nonlinear first order impul-sive functional differential equations.J. Math. Anal. Appl.,327(2007), 435–452.

[9] J. Li and J. Shen, Periodic boundary value problems for delay differential equations with impulses.J. Comput. Appl. Math.,193(2006), 563–573.

[10] J. Li and J. Shen, Periodic boundary value problems for impulsive integro-differential equations of mixed type. J. Appl. Math. Comput.,183(2006), 890–902.

[11] J. Li and J. Shen, Periodic boundary value problems for impulsive differential-difference equations.Indian J. Pure Appl. Math.,35(2004), 1265–1277.

[12] Z. He and X. Ze,Monotone iterative technique for impulsive integro-differential equations with periodic boundary conditions.Comput. Math. Appl.,48(2004), 73–84.

[13] J. Shen, New maximum principles for first-order impulsive periodic boundary value prob-lems.Appl. Math. Lett.,16(2003), 105–112.

[14] G. Song and X. Zhu,Extremal solutions of periodic boundary value problems for first order integro-differential equations of mixed type.J. Math. Anal. Appl.,300(2004), 1–11. [15] Y.-K. Chang, A. Anguraj and M. Mallika Arjunan, Existence results for impulsive neutral

functional differential equations with infinite delay. Nonlinear Analysis: Hybrid Systems, 2(2008), 209–218.

[16] A. Anguraj and K. Karthikeyan, Existence of solutions for impulsive neutral functional differential equations with nonlocal conditions.Nonlinear Anal.,70(2009), 2717–2721. [17] C. Cuevas, E. Hernández and M. Rabelo, The existence of solutions for impulsive neutral

functional differential equations.Comput. Math. Appl.,58(2009), 744–757.

[18] J.Y. Park, K. Balachandran and N. Annapoorani, Existence results for impulsive neu-tral functional integrodifferential equations with infinite delay. Nonlinear Anal.,71(2009), 3152–3162.

Referências

Documentos relacionados

Conforme Ribeiro (2003), alfabetização é o processo pelo qual se adquire o domínio de um código e das habilidades de utilizá-o para ler e escrever, já o letramento,

Tendo como objetivos principais o desenvolvimento do pensamento algébrico dos alunos participantes e a exploração das potencialidades do App Inventor, designer de

Durante este período, ao lado dos trabalhos «extraordinários» para A Editora e com o declinar da sua ligação ao jornal O Século e à Empresa da História de Portugal, Roque

Desde 2008 o nosso grupo de investigação tem-se dedicado à síntese e transformação de quinolin-4(1H)-onas e acridin-9(10H)-onas, [23-25] com o objetivo de desenvolver novas

In this section, after a brief characterization of the sample (i.e. employed graduate respondents) in terms of gender, age and level of academic degree, the

Constata-se que as partes estruturais mais danificadas na ponte da Estrada Velha de Água Fria estão localizadas em áreas de maior umidade e variação de nível da água do canal,

These societies sang (and still sing) not only Serbian and oth- er Orthodox church music, but classics from the Western choral repertoire, and were fundamental in the establishment

Ambos tratam sobre a confidencialidade localizando-a na fase negocial, ou seja, sobre aquelas informações reputadas confidenciais que são transmitidas entre as