• Nenhum resultado encontrado

Banco de sementes do solo da mata de galeria da Estação Ecológica do Panga, Uberlândia, MG

N/A
N/A
Protected

Academic year: 2021

Share "Banco de sementes do solo da mata de galeria da Estação Ecológica do Panga, Uberlândia, MG"

Copied!
45
0
0

Texto

(1)

UNIVERSIDADE FEDERALDE UBERLÃNDIA

CENTRODE CIÉNCIAS BIOMÉDICAS

CURSO DECIENCIASBIOLÓGICAS

BANCO

DE SEMENTES

DO SOLO

DA MATA

DE

GALERIA

DA

ESTAÇÃ

0

ECOLÓGICA

DO

PANGA, UBERLÃNDIA,

MG.

Sandra

Graciele

Pereira

Monografia apresentada à Coordenação do Curso de Ciências Biológicas, da Universidade Federal de Uberlândia,

para

a obtençãodo grau deBacharelem Ciências

Biológicas-Uberlândia—MG

(2)

UNIVERSIDADE FEDERALDE UBERLÃNDIA

CENTRODECIENCIASBIOMÉDICAS

CURSO DE CIENCIAS BIOLÓGICAS

BANCO

DE

SEMENTES DO SOLO

DA MATA

DE

GALERIA

DA

ESTA

ÇÃ

o

ECOLÓGICA

DO

PANGA, UBERLÃNDIA, MG.

Sandra Graciele Pereira

Marli

A.

Rana]

Monografia apresentada à Coordenação do Curso de Ciências Biológicas, da Universidade Federal de Uberlândia, para a obtençãodo grau de Bacharelem Ciências Biológicas.

Uberlândia— MG

(3)

UNIVERSIDADE FEDERALDE UBERLANDIA

CENTRODE CIÉNCIASBIOMÉDICAS

CURSO DECIENCIASBIOLÓGICAS

Banca

de sementes do solo

da mata

de

galeria da Estação

Ecológica do

Panga, Uberândia,

MG.

Sandra Graciele Pereira

APROVADA PELA BANCA EXAMINADORA

Emª/33441343

Nota '

ºº

'

ºº

É

k

'w—

º/

".

,

Profa.

Im.

MarliA.Rana] Orientadora

& ªlii.—'.Q—L

&

(AMAS—_ Ã xe“ "Nu-v.—

PrOf—DfrlvânSchiavini CO-Orientador N 'I . " foº“. » o *. & .“),('Sãºhóxºº&“$'

<;

'

º,

Ç AS Lizª.» 69900060!“

M

/ "* «

&LXX»

»)“ e “o «— _ _

“incª“Çoªºwª? Prof. Dr. Gleln Montelro

xº ºu . ªº .

aº º

Yªº *º C0- onentador

(* e 6

(,

”&, .o

»;

«ººº

(4)

!

A:

Deus,

minha família,

Renato

e

meus

amigos.

(5)

Agradecimentos

Há momentos na vida em que as palavras, por mais belas e significativas, não são capazes de expressar o que sentimos e desejamos a alguém. Gostaria de tero dom de um poeta parautilizar—me das palavras, para expressar minha gratidão a todos.

Obrigada a Deus por me carregar em seus braços, a cadadia em queeu pensava em

desistir. Á minha família, principalmente à minha mãe que confeccionou as telinhas de organza e as minhas irmãs por me ajudarem na instalação dos experimentos. Também ao

Renato, meu muito obrigada pelos finais de semana contandoetransplantando planta.

Á minha orientadora pela paciência, pelos ensinamentos acadêmicos, profissionais e

devida.

Ao Sr. Lázaro de Maria Peres pela construção da estufa e pela ajuda nos cuidados

com as plantas jovens.Ao Sr. Hélio Pereira, Lourenço Faria Costa, Flávio Rodrigues Oliveira,

André Oliveira Mota Júnior, Danilo Antônio Carvalho , pela ajuda nos trabalhos de campo.

Sem os braços de vocês,eunão conseguiria.

Ás amigas Grace de Lourdes Cardoso e Alice Fátima Amaral, por molharem as

minhas amostras quandoeunão podia vir de Araguari.

Aos Professores doutores Glein Monteiro Araújoe Paulo Eugênio de Oliveira pelas

preciosas sugestões. Ao Professor Dr, Ivan Schiavini pelas sugestões e identificação de

algumas famílias e espécies. Aos Professores Jimi Naoki Nakajima e Rosana Romero, pela identificação das Melastomataceae.

A Professora Ana Maria Coelho Carvalho, coordenadora do curso de Ciências Biológicas, Sirlene de Sousa Medrado Ferreirae Helena Maria Nunes da Silva Miranda pelos

esclarecimentosecompreensão. Adorovocês.

Ao CNPq pela bolsa concedida.

Enfim, a todos aqueles que direta ou indiretamente possibilitaram a conclusão deste trabalho.

Sinceramente,

(6)

BANCO DE SEMENTES DA MATA DE GALERIA DA ESTAÇÃO ECOLÓGICA DO PANGA, UBERLÃNDIA _ MG. SANDRA GRACIELE PEREIRA.

O banco de sementes do solo de uma área é de extrema importância para o conhecimento da sua capacidade regenerativa, bem como para trabalhos de conservação, manejo e recuperação de áreas perturbadas. Este trabalho foi desenvolvido na Estação Ecológica do Panga, situada

em Uberlândia, MG. Seu objetivo foi quantificar o banco de sementes do solo da mata de

galeria em três microambientes (dique, meio e borda), no inicio e final da estação seca. Foram coletadas75amostras desolo com um tubo de

PVC.

de5 cm de diâmetro, nas profundidades

0, 0-5, 10-15, 20-25,30-35 cm, em cinco covas de cada microambiente. As amostras foram subdivididas em duas subamostras, sendo 75 colocadas para germinar em potes plásticos,

transparentes de 250 ml com cerca de 2 cm de solo em cada. Estas foram mantidas em luz

contínua, sob lâmpadas fluorescentes de 20 W e umedecidas com água destilada. As demais 75 subamostras foram colocadas em potes plásticos brancos de 13,5 x 9,0cm na parte inferior

e 18,0 x 13,0 cm na parte superior, e colocadas para germinar no Jardim Experimental. O

critério de germinação foi aemergência da parte aérea das plântulas. Independente do local e

do período de coleta o número de sementes diminui com O aumento da profundidade. Não

houve variação considerável entre os microambientes, exceto para algumas amostras coletas em setembro de 1998 e abril de 1999. As espécies de maior ocorrência foram aquelas das

famílias Melastomataceae, Cyperaceae, Poaceae, Piperaceae, Onagraceae, além de outras ainda não identificadas, comuns em todos os períodos de coleta. Desta forma, o banco de

sementes da mata de galeria do ribeirão Panga parece não sofrer ação imediata da variação climática sazonal na área, sendo mantido basicamente uniforme.

(7)

LISTADE TABELAS

Tabela 1 — Temperaturas máximas e mínimas (média ir desvio padrão) registradas durante a

condução dos experimentos no laboratório...08

Tabela 2 — Temperaturas máximas e mínimas (média

i

desvio padrão) registradas durante a

condução dos experimentos no Jardim Experimental ...08

Tabela 3 — Banco de sementes de três microambientes da mata de galeria da Estação

Ecológica do Panga, Uberlândia — MG, em diferentes proíiindidades. Coleta de abril de 1998...13

Tabela 4 — Banco de sementes de três microambientes da mata de galeria da Estação

Ecológica do Panga, Uberlândia— MG, em diferentes profundidades. Coleta de setembro de 1998...14

Tabela 5 — Banco de sementes de três microambientes da mata de galeria da Estação

Ecológica do Panga, Uberlândia — MG, em diferentes proiímdidades. Coleta de abril de 1999...15

Tabela 6 — Banco de sementes de três microambientes da mata de galeria da Estação

Ecológica do Panga, Uberlândia— MG, em diferentes profundidades. Coleta de setembro de 1998. Dados do Jardim Experimental ...16

Tabela 7 — Banco de sementes de três microambientes da mata de galeria da Estação

Ecológica do Panga, Uberlândia— MG, em diferentes profundidades. Coleta de setembro de 1998. Dados do laboratório...17

Tabela 8 — Banco de sementes de três microambientes da mata de galeria da Estação

Ecológica do Panga, Uberlândia—MG, em diferentes profundidades. Coleta deabril de 1999.

Dados do laboratório...18

Tabela 9 — Banco de sementes de três microarnbientes da mata de galeria da Estação

Ecológica do Panga, Uberlândia—MG, em diferentes profundidades. Coleta deabril de 1999.

Dados do Jardim Experimental ...19

Tabela 10 — Composição do banco de sementes da mata de galeria da Estação Ecológica do

Panga, Uberlândia—MG, quanto à presença de monocotiledôneas e dicotiledôneas...20

Tabela 11 — Densidade média de sementes viáveis por centímetro quadrado de solo,

(8)

LISTADEFIGURAS

Figura 1 — Diagrama climatológico de Uberlândia

— Sº Distrito de Meteorologia! Estação

Uberlândia, no periodo de 1981 a 199%.

...09 Figura 2 — Coleta das amostrasde solo

utilizando um tubo de P.V.C. de 5 cm de diâmetro,

paralelamente em relação à superfície, na mata de galeria da Estação Ecológica do Panga,

Uberlândia—MG

...10 Figura 3 —Experimento instalado em estufa localizada no

Mm

Experimental, bloco 2D do Campus Umuarama, da Universidade Federal de Uberlândia...10

(9)

1.INTRODUÇÃO

O banco de sementes do solo é considerado como o depósito natural de unidades de dispersão sobre ou no interior do solo; capazes de se manterem viáveis ao longo do tempo (Simpson et al.; 1989). Esta é uma forma de recrutamento que garante a perpetuação das espécies, permitindo revelar a vulnerabilidade da comunidade vegetal a extinção (Willems,

1995;Bekker; et al.; 1998). Segundo Carroll& Ashton (1965) as sementes podem entrar no solo quando caem na terra fofa; ou por fendas abertasem épocassecas. Em geral, pertencem

a esse banco, espécies pioneiras que germinam e se estabelecem rapidamente; colonizando áreas perturbadas de floresta primária (Granstrom; 1982; Simpson et al.; 1989; Kageyama ez

of., 1989; Bertiller; 1992; Dalling et al., 1997; Leck & Leck; 1998; Grombone—Guarantini; 1999). A frequênciade distúrbios a que uma comunidade vegetalé submetidae a capacidade regenerativa das espécies que a compõem; determinam o potencial de regeneração dessa

comunidade (Linera, 1993). Esse potencial está intimamente relacionado com a estrutura genética da população, poisé esta que garante a alta ou abaixa diversidade de espécies numa

áreae;consequentemente, de sementes no banco (McCue&Holts; 1998; Crawford&Young, 1998; Staniforth et al,; 1998), afetando desta forma a composição e a estrutura da comunidade vegetal (Raffaele, 1996).

O estudo do banco de sementes assume inúmeros papéis de relevância. Dentre eles;

destaca-se como um importante indicador do potencial de regeneração de uma área

(Linera;1993; Garwood; 1989), possibilitando estabelecer estratégias de conservação ou manejo de comunidades vegetais (Chandrashekara & Ramakrishnan; 1993; Dupuy &

Chazdon, 1998; Le—Page et al., 1998). Na agricultura, o conhecimento sobre banco de sementes de ervas daninhas tem fornecido bases mais concretas que permitemo emprego de técnicas mais adequadas no controle da germinação(Naeem etal., 1995;Weber et al., 1995;

Dhanapal et al.; 1996; Albrecht& Pilgram; 1997; Treweek et al.; 1997). Além disso, fornece

um consistente embasamento teórico para restabelecer a riqueza de espécies em áreas degradadas, considerando que sua diversidade genética geralmente é maior que a vegetação

adulta estabelecida (Williges& Harris, 1995; Jensen, 1998). Além de fornecer subsídios para a compreensão dos efeitos de processos lentos de especiação populacional (McCue &

Holtsford, 1998;Cabinetal., 1998),representa também uma fonte de dados para determinara

variação da razãosexual em populações de plantas dióicas (Purrington& Schmitt; 1995).

Inúmeros fatores bióticos e abióticos podem interferir na formação e manutenção do banco de sementes (Houle; 1996). Dentreeles, pode—semencionar, a serapilheira produzida

(10)

pelas comunidades vegetais, queinclui restos vegetais e sementes, podendo variarao longo do

ano e se depositar de modo diferenciado dependendo da topografia do terreno (Carroll &

Ashton, 1965, Bertiller, 1992; Bertiller, 1996, Smallidge& Leopold, 1995, Jensen, 1998); o crescimento de musgos que retém a umidade do solo e protege as sementes da predação; a

atividade de animais no solo, como formigas, minhocas, roedores, besouros, tatus, quatis,

cupins, caranguejos terrestrese outros que podem ajudar no movimento vertical das sementes

para o interior do solo (Granstrõm, 1982; Garwood, 1989). Outro fator que pode contribuir

para a formação do banco de sementes e a própria árvore, ou seja, suas raízes, ao crescerem,

deslocam & terra para o fundo e consequentemente as sementes nela presentes (Garwood,

1989). Fatores edáíicos também podem afetar o banco de sementes. Estudos sobre a

composição química do solo mostraram que esta não parece afetar diretamente o banco

transitório de sementes, podendo, no entanto, atuar em bancos permanentes, além de ser

crucial para o estabelecimento de plântulas (Garwood, 1989; Bakker et al., 1998). A textura

do solo também e' uma outra característica que pode propiciar ou não condições adequadas

para a formação do banco, dependendo da granulometria de suas partículase de rachaduras

(Garwood, 1989; Dougall & Dodd, 1997). Fatores intrínsecos das espécies como a

longevidade das sementes (Bekker, et al., 1998, Qi—Meiqin, 1998), a forma de dispersão de

frutose sementese os mecanismos de dormência (Doucet& Cavers, 1997) que representam

adaptações ocorridas ao longo do processo evolutivo, também participam desses processos (Simpson et al., 1989).

Há ainda fatores que são responsáveis pela limitação do banco de sementes,

principalmente aqueles que levam à morte das sementes por meio da degradação,

principalmente pelo ataquedefungos decompositores quandoas sementes estâo enterradas no

solo (Masakiet al., 1998). A predação por diversos grupos animais como formigas( Haaseer

al., 1995; Harrington & Driver, 1995; Ireland & Andrews, 1995), moluscos (Paynter et al., 1998), pássaros (Marone et al., 1998), mamíferos herbívoros (Vaughton, 1998; Masaki et al., 1998), a ação da erosão (Garcia et al., 1995)e a germinação (Granstrõm, 1982, Simpsom, 1989, Bertiller, 1992), também são fatores que levamà diminuição do banco de sementes. A

ação do fogo também interfere no banco de sementes quando propicia () aparecimento de

condições semelhantesa clareiras, reduzindoo estrato herbáceoe subarbustivo do solo, o que

deixa as sementes mais susceptíveis a herbivoria, podendo também propiciar condições

adequadas para a germinação. Além disso, pode provocar dormência facultativa, devido ao

aumento da temperatura e luminosidade, facilitando a inclusão de sementes no banco,

(11)

A geminação também pode ser favorecida pelo direto aquecimento do solo e das sementes, conforme registraram Tyler (1995), Tyler (1996), Ferrandis et al. (1996), Roche et al. (1997) e Trabaud et al. (1997). A luminosidade e a temperatura são fatores que podem interferir no banco de sementes em ambos os sentidos, pois podem ser responsáveis pela

quebra ou promoção de dormência nas sementes (Baskin et al., 1995; Vazquez et al., 1996;

Yates et al., 1996), especialmente com alterações que ocorrem durante a formação de

clareiras. A lixiviação do solo é outro fator que pode interferir no banco, pois remove

inibidores das sementes ou ao redor dessas, como foi observado para sementes de Piper,

provocando assim a reduçãodobanco de sementes (Garwood, 1989).

0

grau de interferência desses fatores determina a existênciade pelo menos dois tipos

de banco de sementes. É sabido que os bancos de sementes de regiões temperadas e tropicais, diferem quanto à densidade de sementes e proporção de formas de vida. Nesse sentido, Thompson & Grime (1979) e Grime (1989) reconheceram como bancos transitórios de

sementes para regiões temperadas aqueles formados a partir de gramíneas anuais ou perenes

de habitats secos ou perturbados, capazesde germinar imediatamente apósa dispersão (tipo I)

ou formados por sementes de plantas herbáceas anuais ou perenes que colonizam clareiras na primavera (tipoII), sendo estes, portanto,anuais. Os bancos permanentes, segundo os autores,

seriam aqueles compostos por sementes de plantas herbáceas, anuais ou perenes, que germinam principalmente no outono, mas mantém um pequeno banco de sementes no solo

(tipo III), ou aqueles formados por sementes de plantas com ampla e persistente quantidade

de sementes no banco (tipo IV), permanecendo nele por mais de um ano. Garwood (1989)

em sua revisão aponta algumas estratégias diferenciadas para o bancode sementes de regiões

tropicais, ampliando assim a classificação dos autores anteriormente citados. Segundo ela,

potencialmente em regiões tropicais existem mais estratégias no banco de sementes, do que

em regiões temperadas. Isso porque a reprodução das espécies de regiões tropicais ocorre

praticamente o ano todo, enquanto que nas outras regiões, esta é sazonal. Garwood (1989)

aponta então a existência de cinco tipos de banco de sementes, sendo eles o transitório,

transitório sazonal, transitório demorado, permanente e pseudopermanente. A autora adota como critério para esta divisão, características de germinação, principalmente dormência,

padrão de dispersão de sementese caracteristicas fenológicas dos grupos que os constituem. O banco de sementes do solo pode refletir uma composição florística, total ou

parcialmente diferente da vegetação estabelecida, pelo fato de várias unidades nele incluídas serem oriundasde regiões vizinhas ou da comunidade vegetal que ocupou aquela área em um

(12)

Quintana et al., 1996; Raffaele, 1996; Eriksson & Eriksson; 1997; Grant & Kook, 1997;

Kalamee & Zobel, 1997; Trabaud el al., 1997; Brown, 1998; Crawford et al., 1998, Drake,

1998;Leck&Leek, 1998; Tu—Mandy etal., 1998).

Nos últimos anos, vários estudos têm sido realizados no sentido de identificar o banco

de sementes dosolo como subsídio para entender melhor a dinâmica de comunidades vegetais

(Aziz&Khan, 1995;Martinez& Alvarez, 1995; Mueller, 1996; Grandin, 1996) inclusive em

áreas inóspitas como desertos ( Kinucan & Smeins, 1992; Al—Yemeni & Al— Farraj, 1995;

Cabin, 1996;Bertiller& Aloia, 1997;Boeken& Shachak, 1998; Goldberg etal., 1998; Meyer et al., 1998), regiões geladas (Conn et al., 1984; McGraw & Day, 1997; Levesque et al.,

1998; Staniforth et al., 1998) e regiões vulcânicas (Tsuyakaki,l994; Tu—Mandy et al., 1998).

Além disso, estudos sobre ariqueza de espécies, variação espaciale abundância em diversos

ecossistemas foram realizados (Butler & Chazdon, 1998). Poucos trabalhos apresentam informações sobre o banco de sementes das matas de galeria, principalmente relacionados à

sua conservação ou recuperação, bem como sobre relações de manejo nesta área (Grombone-Guarantini, 1993; Archibold etal.,1997).

Segundo Mantovani (1989), a mata de galeria é a mata mesoiitica que orla um ou os dois lados de um curso de água em uma região onde a vegetação do interllúvio nãoe floresta contínua. No cerrado, essa formação, mesmo representando pequena parcela deste, destaca-se pela sua diversidade genética e pelo seu papel na proteção dos recursos hídricos, edáficos, fauna silvestree aquática, atuando neste sentido, como barreira fisica, regulando os processos de troca entre os sistemas terrestreeaquático, desenvolvendo condições propícias à iniiltração de água (Lima, 1989). A sua presença reduz significativamente & possibilidade de

contaminação dos cursos dª água por sedimentos, resíduos de adubos e defensivos agrícolas

conduzidos pelo escoamento superficial da água no terreno, comportando-se então como um excelente consumidoretampão de nutrientes (Rezende, 1998). Segundo Rezende (1998), em geral, representam um ambiente bastante heterogêneo, com elevado número de espécies, intensa relação entreavegetaçãoe a fauna,e que mesmo diante de toda esta importância e da

sua proteção por lei como área de preservação permanente, nas últimas décadas, têm sido

extremamente degradados e perturbados pela ação antrópica, por meio de processos como desmatamentos, queimadas, mineração, o que leva a problemas decorrentes como o escoamento superficial de resíduos para o leito do rio, o rebaixamento do lençol freático, erosão, perda de fertilidade dosolo edesaparecimento dafauna.

A regeneração de clareiras originadas de distúrbios pelo processo de sucessão secundáriaéuma das maneirasde auto-renovação das matasde galeria (Eira & Netto, 1998).

(13)

Segundo Schiavini (1992), estudos sobre a constituição Etossocioiógica das matas de galeria mostram a existência de espécies que são as mesmas em diferentes matas. Neste sentido, o banco de sementes pode propiciar a obtenção de plântulas produzidas a partir dele, que

poderão ser utilizadas em projetos de recuperação de áreas perturbadas. Isto permite também um manejo para essas matase a sua exploração indireta, no sentido de garantir a preservação das fontes de água (Ribeiro, 1998).

Desta forma, o presente trabalho teve por objetivo quantificar o banco de sementes do

solo da mata de galeria da Estação Ecológica do Panga, no início e final da estação seca,

visando obter informações que permitam subsidiar a conservação e o manejo de áreas perturbadas que mantenham o mesmo padrão da matade galeria do ribeirãoPanga.

(14)

z. MATERIAL E MÉTODOS

2.1. Local de coleta

Amostras de solo foram coletadas na mata de galeria da Estação Ecológica do Panga, pertencente à Universidade Federal de Uberlândia e localizada no município de Uberlândia,

região do Triângulo Mineiro, Minas Gerais. A Estação ocupa uma área de 409,5 ha e está situadaa aproximadamente 30km aosul da sede do município. As coordenadas geográficas

são 19º097207ª-l9ºl1710” de latitude sul e 48º23ª20ªª-48º24ª35” de longitude oeste, a uma altitude de cerca de 800m.

0

clima é do tipoAW, segundo Kôppen (Figura 1), com inverno

seco no periodo de abril a setembro e verão chuvoso no período de outubro a março

(Schiavini, 1992).

As coletas foram realizadas em três microambientes da mata (dique, meioe borda), no inicio e final da estação seca. Esses microambientes foram definidos e descritos por

Schiavini (1992). Odiqueé uma faixa da mata de cerca de 10 mde largura, mais próxima ao

rio, elevadaenão sujeita a inundações sazonais, caracterizada por apresentar solo sedimentar,

aluvial, com menor grau de umidade próximo à superfície, mostrando também elevados

valoresem porcentagem de areia fina, sendo portanto não estruturado emineralizado. Omeio

é uma depressão localizada entre o dique e a borda que apresenta elevadas percentagens de silte, argila e matéria orgânica, com alto teor de alumínio, capacidade considerável de troca

catiônicae pH mais baixo em relação ao diquee àborda. O lençol freático é pouco proiimdo,

sendo o solo hidromórfico, estruturado pela constante saturação hídrica, retida pela

quantidade de partículas finase complexos coloidais oriundos da matéria orgânica presente. A

borda é a porção da mata que faz limite com a vegetação campestre, marcada numa faixa de

10 mde largura, quesecaracteriza pela presença de baixos teores de fósforoe potássio, lençol

freático pouco profundo ao longo do ano, porcentagem de siltee argila entre as do diquee do

meio, com boa luminosidadeeumidade do solo relativamentealta.

2.2.Coletadas amostrasde solo einstalaçãodos experimentos

As amostras de solo foram coletadas nos três microambientes descritos, em cinco

profundidades (0, 0-5, 10-15, 20—25, 30—35cm), totalizando 75 amostras. Em cada

microambiente foram abertas cinco covas com um enxadão, até & prolimdidade de 40 cm,

(15)

tubo deP. V. C. de 5 cm de diâmetro, de baixo para cima para evitar contaminação. O tubo

foi introduzido no solo, paralelamente em relação à superfície (Figura 2). Para a coleta na

superficie do solofoi utilizado um molde de ferro de 30 x 30 em, sendo retirada dessa área assim delimitada & serapilheira. Cada amostrafoi colocada em saco de plástico previamente

etiquetadoe lacrado no própriolocal de coleta para evitar contaminação.

Em laboratório as amostras foram homogeneizadas manualmente, dentro dos sacos plásticos, e divididas em duas subamostras. Metade delas foi colocada em recipiente de

plástico transparente, com capacidade para 250 ml. Da serapilheira foram separadas as

folhas, raízes e ramos maiores. O material restante, constituído por partículas menores de

material vegetal e partículas de solo, foi espalhado sobre uma camada de areia lavada, de

aproximadamente 2 cm, esterilizada em estufa à 12 ºC por 1 hora. Essas amostras

permaneceram em laboratório com ar condicionado, sob luz fluorescente continua, fornecida

por duas lâmpadas de 20 W, instaladas a 40 em das amostras. No local foi instalado um

termômetro de máxima e mínima para o registro diário das temperaturas (Tabela 1). Solo

esterilizado da própria matafoi mantido nas mesmas condições das amostras, para controle de

contaminação no laboratório. Todasas amostras foram mantidas úmidas com água destiladae

examinadas diariamente para acontagem das plântulas.

As 75 amostras restantes foram espalhadas sobre areia lavadae esterilizada em estufa

de 120

ªc

por 1 hora, em recipientes de plástico branco de 13,5 x 9,0 cm na parte inferior e

18 x 13 cm na parte superior, formando uma camada de aproximadamente 2 cm de altura de

solo sobre a areia. As amostras foram tampadas com organza de náilon (Figura 3). Para

controle de contaminação foram preparadas amostras com 5010 cstcrilizado em autoclave à

temperatura de lOOº C por2 horas. Essas amostras foram mantidas em estufa semi-aberta,

em Jardim Experimental, a meia sombra. No local foi instalado um termômetro de máximae

mínima para registro das temperaturas (Tabela 2). As amostras foram mantidas úmidas e

examinadas semanalmente.

Coletas foram feitas em três épocas, sendo duas no início da estação seca (abril de 1998 e abril de 1999) e uma no lina] da estação seca (setembro de 1998). O número de sementes viáveis do solofoi calculado com base no número de plântulas formadas em cada amostra.

Paraa coleta de abril/1998 foram obtidos somente os dados referentes aonúmero de sementes

viáveiscm'2 de superficie de solo cultivado. Para as duas outras coletas, além desse dado, também foi calculado o número de sementes viáveiscm'ª. Para as amostras mantidas no

Jardim Experimental foram obtidos apenas os dados por volume de solo coletado, mantidoem

(16)

No decorrer dos experimentos, a primeira estabilização da germinação ocorreu

aproximadamente 30 dias após a instalação dos mesmos, Todas as plântulas foram cuidadosamente retiradase transplantadas para sacosde polietileno preto, sendo mantidas no

Jardim Experimental atéaproduçãode flores. Posteriormente o solo foi revolvido e mantido

nas mesmas condições descritas anteriormente. A operação foi repetida três vezes, para

contagem do número total de sementes viáveis presentes nas amostras. Em média, cada experimentofoi mantido por quatro meses, até aestabilização da germinação.

Os espécimes floridos foram herborizados e incluídos no Herbarium Uberlandense

(HUFU) para posterior identificação.

O delineamento experimentalfoi o inteiramente casualizado, em esquema fatorial 5x

3, com cinco repetições. Os dados obtidos foram submetidos à análise estatística. O teste de

Shapiro-Wilkfoi feito para a normalidade dos erros e o de Bartlett para & homogeneidade

das variâncias. Como a normalidade e/ou a homogeneidade não foram corrigidas com a

transformação dos dados, foi utilizada a análise da variância da estatística não paramétrica

proposta por Scheirer et al., 1976( Zar, 1984) quee'uma extensão do teste deKruskal—Wallis,

para dois fatores. O teste de Mann—Whitney foi feito para comparação das médias obtidas,

duasa duas.

Tabela1—Temperaturas máximas emínimas(média 1—desviopadrão) registradas durante a

condução dosexperimentosnolaboratório.

Periodo de coleta T média máx (ºC) T média min (ºC)

Abril/ 1998 24,14 + 1,63 22,72 +0,81

Setembro/1998 23,80 + 1,98 22,25 + 2,15

Abril/1999 23,05 + 1,98 22,04 +0,85

Tabela2—Temperaturas máximas emínimas(média 1desviopadrão) registradas durante a condução dosexperimentosnoJardimExperimental.

Periodo de coleta T média máx(ºC) T média min (ºC )

Setembro/ 1998 31,1733,67 20,463 1,24

(17)

a b d Ubenãndia [750m) 22,17ºC [181 37,406 Temperatura (ºC) e 1599,64mm a—AOO -——350

Figura 1-

Diagrama

climatológico

de

Uberlândia- 50 Distrito

de

meteorologiã/

Estação

Uberlândia,

período

de

1981

à

1998

.

per

úmido úmido 1535353:

a

-

Estação meteorológica

b —Altitude

em

relação

ao

nível

do

mar

c

- Número

de

dias

de

observação

d

- Temperatura

média

anual

e

-

precipitação média anual

f—Temperatura

absoluta

mínima registrada

g

- Temperatura

absoluta máxima

registrada

SECO

Pluviosidade

em

(18)

10

Figura 2 — Cºleta das amostras de solo utilizando um tubo de RV. C de 5 cm de

diâmetrº,

paralelamente em relação à superfície, na mata de galeria da Estação

Ecológica do Panga, Uberlândia—MG.

Figura 3 — Experimento instalado em estufa localizada no Jardim Experimental,bloco

(19)

11

3. RESULTADOS

De modo geral, os resultados obtidos mostram que não há diferença significativa entre os três microambientes da mata (dique, meio e borda), considerando-se tanto as análises feitas para o número de sementes viáveis por centímetro quadrado, quanto para o número de

sementes viáveis por centímetro cúbico (Tabelas 3-5,7e9). Apenas para a coleta de setembro

de 1998 (Tabela 6) e para a coleta de abril de 1999 (Tabela 8) foi verificada diferença

significativa para local, sendo esta decorrente do maior número de sementes viáveis presentes

na borda da mata. Também foi verificado que há redução no número de sementes viáveis

com o aumento da profundidade, especialmente quando os cálculos são baseados no volume de solo (Tabelas 3-9). Não foi observada interação entre os fatores analisados, local e

profundidade (Tabelas 3-9),

Os resultados indicam ainda que não há diferença na quantidade de sementes viáveis

presentes no solo da mata de galeria do rio Panga para os três períodos de coleta,

independente do locale da proíiindidade (Tabelas 3-9). Os valores obtidos variaram dezero

a0,08sem"2 e dezero a 03432 sem"3.

Os valores gerais de assimetria mostram que as distribuições de frequência são

positivamente assimétricas, com valor modal à esquerda da média. Os valores de curtose mostram distribuições de frequência leptocúrticas, com muitos valores ao redor da média (Tabelas3-9).

A quantidadede dicotiledôneas presente nas amostras de solo foi bem maior do quea de monocotiledôneas, independente do microambiente, da proíimdidade e do período de coleta

(Tabela 10). Dentre as espécies identificadas até o momento que apresentaram maior quantidade de indivíduos, encontram-se Begonia sp. (Begoniaoeae), Cecropia pachysrachya Tree. (Cecropiaceae), ClidemiahirtaD. Don. (Melastomataceae),Ludwigr'a sp. (Onagraceae), Miconia calvescens Mart. & Schr. (Melastomataceae), Miconia theaezans Bonpl.

(Melastomataceae), Piperarborum Aubl. (Piperaceae), alémde sete espécies de Cyperaceae,

duas espécies de Poaceae e duas espécies de Rubiaceae. Além dessas espécies, ocorreram

mais cinco, cada uma delas com apenas um individuo. Dentre elas, somente Croton sp.

(Eurphorbiaceae) foi identificada. Calophyllum brasiliense Camb. (Clusiaceae) e Copaifera langsdorfíi Desf. (Caesalpiniaceae), com um e dois indivíduo respectivamente, apareceram

somente nas amostras desolo coletadas na serrapilheiraea0—5em de profundidade. Todas as

(20)

12

em todas elas. Dos 237 indivíduos identificados, 88 pertencem à Cyperaoeae, 85 à

Melatomataceae, 27à Onagraceae, 16à Piperaceae e 13 àPoaceae.

Durante o período de coleta de dados, muitas plântulas não conseguiram sobreviver por muito tempo, sendoa mortalidade de aproximadamente 50% em relação ao total de plântulas

(21)

m— .cSEo: nu «35582: 33.55va a 22— mwh o: ºmega % a cª o: ,me—333 cªma «Eu:—Ema % mono—Sw .?odhdíwâãôéãã me não“ Eua u—ÉEmEHaom—Hâmm Sºma—v em: "as:: «: usªm—.É": o «==—oo “: mªgmª-EE u_u—am nabº Em us$—aum 332 muay—cªcem“ » _82 35825 Eua Gama: 55 9.3 :? .a bao-Bm ou Euª " nãº??. E É a casos;»: * * daº—vêem && ÉS $$ É: .É a $$$ % Bê " É: É « cããsâa » 482 && $a 5% 32

& sãâ % ”É a Em cm,—vara.» ou BHE—voo " >.0 82:28 a _R. 250 53% AENN now.—Fai ..* Manresª—«> ms 8—5 uvanmoãwoão: 58:95 Sãº; Ea mªg? Jºgªm % aaª 0 ªª .moke mov uvª—asta: €€€—__ 830: Eu mo,—o_º, Ano,—TE “=S/5:35 % Emo.—k "

?

nosa—«...— 95 H Eua—5 383% 0395359 Ho...— am>£> ªcusªm " ? :B .m

ª:

cªnecªêm .;

_

& ªªa ao; ªm 83%

É

>_o ªê sã

»

ªmªm %%Eêâ ªtum :$ sd aê soªm :Bºi ªm.» :ãmã unªm % amª gone ªº» ªgo ªmd ªum nãº:—«mª

ª:

_ &? 23 ªgo 53 ”ª amd sao:—«mê %% &

3

3.533? ªsd .as—wood H wood -9% cd H od . É É H od mm 1 em wª % E tamem—8 5.3 53% H 08.0 : 05 ed H Qd 385 É 2% H mucho E : em 33 305 lªw? aaª ªssa H 2% E? umª 2% H ªd 53 % ecd H 8% S » E nª 53 ímãs“ %% ÉS? H ªd ª? má 8% H ªd ªê % Osa H asno

-0 93.5 ª.“ ian—da %% «somo—o H mão 52 % o_o—o H ªno ªno 5 ªno H 2% o » ".Eu .a » N.Eu .m » «: Eo .m 0355 5052 Huªn saem %2 035 Ea 359555on .wâ— cv :.:—a % aum—=D 5933—539:— 82235 Em .05 | Banªnª.: . ama.—m % «ame—cum cmgam“.— E. sta—aw % Sa:-3 8293533? am.: eu nua.—uªu, % cu.—Sm .. n 52.5.

(22)

,os—Eo: nv «25385 owâãgã » Ea %: o: amet—_o ou » obs o: 3333 05% mªgma» % mªo—«> Amo—onª humanª.—v&a—z um Emma Bom ueããgêommcwã sªn,—€ em: “É:: É magma—:S o «::—8 É “232.35 23.3 m㺠.Em maº—aum mam㺗2 aguªs—mo...— u _82 amas—ug && AEK— ãNv 3.2 “É E «mann—om uv 2%; n 35313. 3 É; « $$$—bai : “€€€—amnha EE ?m2 55 cr$ .É É Hou—usem % 3%— n Ef ._82 && aaa ,“st mª É a 3qu % 33 “ Em emu—wc? oc ªçº.—ooo n »O ona—330 " Eo 228 3%«x AEHR «DE—ªm : mmªº—atª na 055 gªrªge—=o: ES:—=: não: Eu 3.6?» ,vc—Hªm u_u 33— o Sam .moke mov nesgª—=o: Eso—vã São". Eu mago—«> Amodug iªra—Essa on 239 n 3 Acªuã chu H 5925 ovª—vaza SBE—Eco .Em 20%? mªi-=o» “ ". Eo .m BNQHN 8855—29—82 E 5305 gâââm &: 3 m Q.»:

É

>.o moºd Ea » 335.2 %%eâã gozam 8%.» _82 gºzam :mwâá .... 53: ªs,» sacam % sê Não—w _Ém 3056 meca %% %%%& 23 %% 33 89.50

ª:

Nã; &? %%%& 33 É “_ :wvmqâ eok—o $ :? H Sono 53 ªs :$ H :$ ªca % 8% H :? mm : em :? 08; 223.3 “83 58% H 2% 1 % od H cd 53 % 8% H 8% mm; em $$. 5a ímã: :S % 085 H não $$$ 9a wood H :$ 385 $ 8% H 55

:

«

2

$$ &? :Gãã $ano % 8% H «85 35. «e 53 H %% Eno % 8% H "mono m. .. o «ª; 93.0 233: 5% da 205 H %% cÉu: <a esd H God ªma.: < Soho H cmo—o o » ",a—o..,“ 3 “.Eu .m » «, Eo .m umoãõ ªuê? gºzam saem %2 035 Ass %%%&?— 432 % En:—32 % .ªo—ou .ao—.sãecãcã ªno.—8% Se .02 ! «Ena..—25 . sacam E. suª.—cun.— cmuãem .:. ata-sm &. San. % ªzo—__Enãuã &: % 32952 ºu 355

-v

Ev.-uh

:

(23)

mm .Que—=o: uv mâêooâã ema—.agâ « && uma o: amou—.o em. a Sou o: mamãº:— oªmu arm—Emma &. mªo—«> Amoduõvmuâãàãã 3 Em“: 23 3555239533 Sena:. ou: “E:: É 330358 e «::—8 «: mi_õmâmã a_n—É ma.—É 8a msxsmom msm—vªz %êwêã » _82 383: && 52 55 É:

& saº—om % sê n 3253 = .É « %%%&; ,; 63338,— sã $a ».st É: É E 5:23 % 2? " Em ._83 && ãe SS 33

a 6:33 % o? " Em amour? uu vªzam—ooo " >_0 82:28 " :B 225 rs..? Aãnx sºb-ai É âomx A—snx mª.—Emi _. 52053? 3 058 uuwvõãmoãâ «SEEE ou,—ão: Em “225 “uu-gm ou 953 o «.Em .mobo mov «vagão: 5865 São: Eo mªo—«> Amo—ong É?.Eiâm % 339 un » Tªnª 95 H 3353 882% causar—Evo .sa— âo>3> mªcªco“ " ? Eu .a Omán 33632932 É 38.2 ”530%

ª

É

:

833 cê >.o ªd ªum? 1:35 ovª—Éden zªg .: 353 aos %Ém &&": :amomf Iªn: sugam % em? Em: uma 3250 É.“ as» “Evga? mªs 33 E? 3850 R% 8th :S gagª %% % & 358.3 %%no 5 8% H zoa : % qo H É | 5 cd H qo mm : em %% SÉ $$$?“ :”de «& 805 H %% ªmd magoa H mood 53 É 8% H Soho mw , 8 33 em? tºmªm 5%... <a %% H %% «uma... má 2% H sono amººo % 8% H :$ & | E mªm É; :mwwmdm Em? «a 086 H 8% R$... 53% H 53 ªê & zoa H 205 m : o 33 em E 3033.“ É? <“ 056 H mod 53 má mmod H mod eng.: % soa H _85 o » ”.Eu .a » N.Eu .m » N.Eu .m omega “Evgª %Ém saem %2 ªgº 23 %%%ãâ .aº 2. =.— n» «e 3290 .Se:E—Eããa $anº—ou:. Eu 62 .. mªnº.-25 _ anna."— 8 S&a—cum cmºs—nm u_u ato—sw % 32: % meu:».EEgoHEE mm.: oc ªna:—2 % Scam .. m «_º—ap.

(24)

É AGE—o: uv comi—0308 omaãâêã « && mwb o: amo:-8 ov o &? oc mom—ânus 053 mªgmª % mªo—«> Amo—ong humªnª.—Es? 2. não“ Boa BEEaBH—õâãi Emb?“ om: si:: É 38355 u 2.28 «: ma_som⪠aªª mnhª Hou “SE?» nªum—z %%%âoa « aos aªª—__ && 52 às 22

a ªsª % %s .. ª..; m dà & ªguª,—ms

:

vagª:—moa && S㺠umª 2.2 da .a 5.5va eu ªmº u «Em éon » gªbª—aª ,.. 482. && Quª “&an 2.2 da & “chocam % «88 “505 emana? ou ousam—voo # >.O 85339 u_ã 21.8 955%“ &“ng «om—Ea: .. .., 333%? me 055 «vã—05320: Eno—vã São: Eo mªo—? Jºw—sm ou vão.— o suam .moke aoc anna:—Écº— 8865 25% Eu 8813 Anodnôv É?-Éaâw oe 83h " » Aew—vã 05 H 234.5 353 055.550 Sm $$$, mach㺻 “ m,. 50 .m GR,» ª???

:

135“ ªªa: :mmmªw nª E 55 cê >.o São sã » toca“? %%eâã gozam 2»? aª coçam 53 8%.” ª»? soªm % umª 5% 3% gogo 53 nª sªgª. $$$ ª? 802 aêõ && “E; moema ªªa? ª? É? imã—cm mªs % 885 H 385 892. uma 02% Homos mªs ao“ 386 H mmao mm . em mamã É? 23%th 52. % ªsd H 225 53 % 38,0 Haas ªm.: moª ªsd H 285 mm .. em 32

a

as? two—H.: Em»... ããmoa H Éã $$$ 0% 33% Haga %% 0%& 830 H ªos 2 | & Ba.». Em: :Nwºãm 25.9 É. É: “e H 5.3 ª»? 5385 H Ema :=? 33385 H Ezd m : o Rºxa São 539.3 Em? ªmamºs H mªd às? mªnca H 285 «ªs 093 585 H mªd o >» T Eu .a » N, ão _m

»

“.Eu .m ação gugª ªnã guem %: 035 23308635 _Enus_..omum .:::—:. cz Sean .umª % 55529. ºu aªa—co 33325on “BEE—% Eu 52 .. ===—«tºª . aai—m &. Sã...—Sm emo.—«ua &. ato—aw % 5.2: se “3535523:— nm... e“. 5:25“ 2. 855 | » «_º—ah

(25)

= dª.—=o: nv ãícuomuE omg—Eta:— m 83 mm: o: 3350 3o 23 o: 868,25 cªo 350533 um mm.—2.3 Amoduõynuââàãã % Emo— Bã «HSEaZH—uoãcmã Soba-u ou: “as:: «: mªgmª—EE a «==—oo «: 33832: 25.3 mêm-Sn mâmâam miva—z ç⺗vêem » 52 cªsª && 35 às É: .? & Égua % uma“ a ªs...»... m .É « %%%&;

:

€€€—aca && 33 umª 22

& sªem &. ªs » Em ._83 && 32 nª 22

a 223 % ªº a .Em cause? % 25530 " >.U cum-528 «16 028 :âax Aªªa som—Emi ** wazª—«> % 0,55 uvªs—amºng 58%5 São: É 8—2? Jªw—sm uw ªº» c 25 Ébm 26 %%%&—o: 58%5. são: ªo mão—.É Anch—VMS varão—ESE ou Emo.—L u ? Acªuã cho H Sem—5 8.qu 935550 Sm 2953 mouse—sm % T Eu .a awe — ,o— onãaâoªãoo— H.—

:

55“ ”53an wma—m É E “n㺠Qx.:/.o ªno Em“

?

$$$? %ãaâã %Ém xªmã sê %Ém 283.3 tããã— iâai suªm % ªmª 88d sã gogo 835 Euu ªªa?“ 3wa S㺠mamª: acaso nª; 53 822 shº—aê 53..— 35 383% 2.35 % good H ªos 53 % 385 H 285 ms? macacos H Eca mm : em ª?. mmm? *.ãmmsm 5.2? % 386 H aceno amd mªgoa H maca mªs mãâood H 686 E . om mamã ªsa iªe“? 33.5 mágoa H ªcho ªs % “8% H E? as? % Nºca H :85

2

; E am“: R$,“ imã—nov ªa.: & são H $ªno São 5 ªos H maca ªa.: 43805 H 385 m -o É? 28; 328“? ª? mªgoa H São ªa.: mê 2 Ed H R$a mga % “mood H Roca o 3 mas .m » m. Eu .a 3 v㺠.a Um 0:50 agº—amªm co—Cmm Eu.—om 23)— QDEQ AEQV 03635595 diga.-cás-c—u u_u—vaº aº: % En:-B?. 2. 5299 $$$—E&P:— maEEÉ—u Eu 52 | «%.-«125 . nana—.— ev aç㺗cum savªna £. Euu—sm % 35: se maio:—55835 &: ou 32552 % Saam— .. > 5.33.

(26)

ãº:—o: nu mumu—3038 cavª—Emma « 83 mm.: o: 233 ºu a Bom o: meng㺠cºmo afagª? ov m㺗“> .Qodnôv _ADEWÉéã—z % 0.13 2% caãEEE—õmmãa Emb—zu em: “É:: É mus—8355 » «==—oo «.= mªssª?—: 3%? 352 Em 32%? 3532 aêaãem » _82 ªs»? && 32 .as $a

a 5:03 % uma a ªê...; m .É acªsos—aa

:

gªvi㺠&& 33 eª 2.3 ...E a 5:03 % SÉ « Em .É & Éguª—a; » “._82 sã 3% 53 É: É a 323 % aê n Em omg—$> ou 35508 » >.U ova—328 não mªs 33%“ AENx 85%; _, ... ausêtã % Pªn ovãsãwoêo: Euª—É São: Eo mªo—? aum—«Em % ªmº 0 ªª dota mov «EE—250: Sagui Sãº: Eo mºa—? Amchouã É?.ohmaã ou 38h u » how—vã 95 H EPs—5 833 chu-Elsª ._on 293». mou—55% " T Eo .m ÉS É?ã=3 & 38me ªªa: $$$. 3 m $$: aê >.o ª? Em» 3 :a sem %%%âã nuªm Saxe. aºs rezam 35:35 ._.—oª": ª»... €£$ % amª

ª

na _Ém nagô 33. as» “Evgª $$$ ªmi caga acªo 605 Em,“. agro. «_,—mªmã & R$ aªa 3825 53 <a Boone «são -% od

ea 53 mªgoa #83 mm -em

:

;;

mªd tªmª. cºmo % «8% H good mªs mágoa H É? 52 mªgoa

“mood mm : om mmª mªd #89th “uma... É %85 Heªd na»... mê 885 H asa mamã mãâood

«

385 E 1

2

ªma &? .;âãé mªs % 385

585 mãº.: % 355

385 ª? má: Sd

385 m .. o 933 385 5,33% 825 5585 H 385 ªno má 33% H 935 330 É 385 H 385 o » 480 .m » m. Eo .m 3 MEU .m gogo %%%& soªm gsm 222 são Gê %%%âpã acessª: % 3a nº .a?“ % =S; &. aÉcQ .naewEE—ãeª “B.—95.5. Eu 52 | sªum-$a: . um:—& os S&a-eum eau—EH % ata-ã ou 32: % âmaEEaEuã um.: aº “855% ou 855 | & ªªah m—

(27)

ARES: uv soª—6038 amº:—Eªu « && ªs a: 3350 um o eu“ o: movªm—£ 05% «505.55 ow 6.83, .Ronondv mas.—55.534 ºu 2%: Boa ªque—3:85:35 Eus—=“ em: aªa: É mºscª.—EE » 5:28 É 525328: mªa— mãÉ ..on maEãem 533,2 Quânâoa » _82 cªge && íª aê 2.2 É a 5:93 % a? n 3,53 m .É Szãsãm

:

6895585 sã ?ª nª 32

& &:qu % ªê ªm 432 && $a sã 22 ,E a 553% % 㺠Em emu—É? ou 35:88 u" >.0 63328 ino 028 €de AEK «qE—ªm .:., wªzª“? me ubi 93395353 58:53 São: 95 522? fºcªm 013%— c Em.» .mobo mou oºã:£€o: 8865 cªma: Em ups—«> Ancduõv ÉBAZEÉw % 38h. " .? Aew—vã 95 H Eva—5 85.8 A..—35350 Em EPS? no:—9.5» « T Eu .m 5805 ”5533355 ªªi Éaâef vão,.“ 3 m ªl:

ª

>.u 555 3553 las“? €€€—%% gozam 25355 583 suªm 1555" 15835

:

5555 suªm % ªmª ªki eaw ação SRN %% “«Eu—Emª

:

54: 353 5535 acªo 583 as) 583 “Bªgª 533 m 655 553555“ 355 oa 385 “285 5555 mm 5255 H 385 335 % 255 “885 mm . em É? R$; zâmá nª... 0% 5085 H 885 5555 mã 885 H 3505 ª»... mªmão—5

885 R : em 555 593 255555 335 mã 355 à: _ _5 5555 má 555 “35 msm.: nã 855

285 E |

e

335 885 :$th «É.: É E _5 “535 535 <% 355 H :35 555 «55855

«

385 m . o PSH 885 3535 585 55585

325 285 nª 2555 H 225 835 mm 355

285 o » mão 5 » m, Eu .a 3 ".Eu 5 amou.—=O «Euªdmmáq «wu—Emm— guom 202 UBES AEUV vªmu—Hªohm— Awunoªiâxm— «===—uh. eº “5.5 .ªº 2. :.:? ou sua-ou .aº—EEÉEEQ mau-.ºªe Ee 62 | «Gam—Lªs . sana.— ee suª.—cum cm.—:$“— sc sta—sm % 32: .=. 5853anqu na..“ 2. “3558 nº Sªn ..

a

Ega,—_ %

(28)

omg—vã oh» H mês—EQ mªs:—ºg % &me aewww—achou " o_oâd mad—ão,? ªurea 33.0 onoâho 0535 mm -em 358,8 odurono odâd ãnwwooam 338,8 cânone mm nom adão? ano—Hoc? gªmão? 8538? 338.2 2582 E ..

2

0.035 adão»; :d—qumm %Ãwãodo 3,383 mad—“83 m ..

o

“35436 %Wmammí «mªgºª educa ãhwãodm mad—“85

0

ªi? o_oãd ano—“1.850 358,3 536 ãhmãqow 335 mm : om ªmarga“ &Sãqã 0,036 0635 0,036 ãwãoam mm . em 338% 3385 32303 3735 ªmªva :áumwmm

2

:

2

0.306 odâdã mamâof 863.33 538.8 258% m ..

o

“MÃES Simm“? && «8,8 :.Swmwmm mamã? ªo ão,?

o

3355an educa ãâmãouã o_o Mod od às 0,935 335 mm : em Safad— ãíooã 0536 053,0 ªçãoã gªmão“?

ª

. om 0536 ªo ªcode ªo ªo? ãnwãoda oaãa 338de

2

'

2

ãaãodm mahoâcohê 33me “3305 0.0 não 32339 W |

o

% Hed “º_o—Moose os Hed &» Hood” od U“o_o a_wwooam

o

mªtª

2

o

2

Q

2

o

são» 398 352 _oãã Gê %%%&on % acesa ânus

É

ââszaoê »

É

Éâªêããe % sun—avó.:—

ª

352% .DE .. «Eca-han:— áuãa ov «cmg—ogn— omguª % ato—aw aº Eu:— at 32058 u_u 353 ou carmen—Eau

-3

Sons,—.

(29)

21

4.

DISCUSSÃO

Os três microambientes da mata de galeria estudada apresentam características distintas

quanto ao tipo de solo, profundidade do lençol freático e interferência do vento (Schiavini, 1992). Durante o periodo de maior intensidade de chuvas, que vai de outubro a março, o solo

do dique sofre intensa lavagem, especialmente nos meses de dezembro e janeiro, quando o nivel da água do ribeirão sobe, transbordando para o meio da mata. Nessas condições, grande quantidade de sementes pode ser carregada parao ribeirão, ou levada para omeio. O meioé

uma área com lençol freático raso, podendo permanecer com o solo saturado de água, principalmente na estação chuvosa. Essa condição exige que as sementes que compõem o banco possuam adaptações morfológicas e fisiológicas muito específicas, pois condições de anoxia podem acelerar o processo de decomposição das sementes, 0 que poderia ser um fator limitante para espécies não adaptadas atais condições. A borda da mata de galeria do ribeirão

Pangaé uma área pouco sujeitaainundações, sofrendo mais intensamente a ação dos ventos. Este último pode trazer sementes de áreas vizinhas, além de influenciar na própria dispersão das sementes das espécies localizadas nesse microambiente, o que provavelmente resultou na diferença significativa para as coletas de setembro de 1998eabril de 1999.

Essas diferenças, mesmo sendo consideráveis, não foram suficientes para provocar uma diferença significativa na quantidade de sementes viáveis encontradas no banco de sementes desses. Desse modo, pode-se inferir que a lavagem do dique não foi suficiente para carregar

as sementes depositadas no solo. Isso ocorreu, provavelmente devido à baixa pluviosidade no

período de coleta das amostras de solo. Consequentemente, o meio não deve ter recebido

sementes oriundas do diquee aquelas que foram encontradas no banco desse microambiente,

estão bem adaptadas às condições de anoxiaaque o local está submetido. Bekkeretal. (1998)

observaram que em florestas temperadas, condições anóxicas asseguraram a sobrevivência das espécies do banco de sementes daquelaárea.

A redução significativa no número de sementes viáveis com o aumento da

profundidade, verificada para a mata de galeria do ribeirão Panga, tambémfoi observada em outros locais. Pode-se destacar o trabalho de Fuhlendorf & Smeins (1998) para o banco de

sementes de gramíneas de uma savana semi-árida. Esta mesma distribuição vertical foi

observada ainda para os bancos de sementes estudados por Qi-Meiqin (1998) em uma floresta boreal em Ontario, por Marone et al. (1998) em um deserto da América do Sul e por

Staniforth et al. (1998) num ecossistema subártico. Os resultados obtidos para diferentes

(30)

22

profundidade do solo, decrescendo gradualmente com o aumento desta (Demel, 1998; Guo-Qinfeng et al., 1998). Na revisão feita por Garwood (1989), a autora observou que, dos 15

perfis de solo analisados para florestas da região tropical, 13 apresentaram redução no número

de sementes viáveis com o aumento da protímdidade. Segundo a autora, essas diferenças dentro e entre os sítios têm sido atribuídas a diferenças na textura do solo, na história de cultivo e mudanças sucessionais na chuva de sementes. Neste sentido, provavelmente a

renovação do banco de sementes não é suficiente para abastecer as camadas profundas do solo entre uma estação e outra de produção de sementes.As sementes depositadas nas primeiras

camadas do solo podem germinar, serem predadas ou mortas. As sementes restantes ficam

sujeitasà ação da água da chuvae à atividade de pequenos animais que atuam na distribuição

vertical das mesmas (Brown, 1998;Maroneetal., 1998), podendo então constituir o banco de sementes localizadoem profundidades maiores dosolo.

A sazonalidade climática que caracteriza a região de Uberlândia parece nãoterexercido influência no tamanho do banco de sementes da mata de galeria do ribeirão Panga.

Informações obtidas por Putz & Appanah, 1987; Dalling et al., 1997, Ward et al., 1997;

Butler& Chazdon, 1998; também não mostraram diferença na densidadede sementes viáveis entreas estações doano. Outros autores observaram os efeitos da sazonalidade no tamanho do

banco de sementes,podendo—se destacarGrombone—Guarantini (1999), estudando o banco de

sementes de mata ripária localizada em região sazonalmente seca do Estado de São Paulo, Chandrashekara& Ramakrishnan (1993) em floresta tropical da Índia, Young et al. (1987),

Dupuy & Chazdon (1998) uma floresta tropical da CostaRica. Segundo os autores, o efeito

da sazonalidadeé perceptível na redução do tamanho do banco de sementes na estação seca,

redução esta que pode ser amenizada pela chuva de sementes que substitui aquelas que

perderam sua viabilidadeemorreram.

Os resultados apresentados neste trabalho são similares, quanto à quantidade de sementes viáveis por centímetro quadrado, à maioria dos trabalhos citados por Garwood

(1989) em sua revisão. Nesta revisão, específica para florestas tropicais, os dados são

apresentadosem números de sementes viáveis por metro quadrado. Esses dados, bem como

aqueles referentes aos trabalhos publicados recentemente, foram convertidos para centímetro quadrado para facilitaracomparação com os obtidos na execução deste trabalho (Tabela 11).

Os dados obtidos para o número de sementes viáveis por centímetro cúbico não

puderam ser comparados, devido basicamente a inexistência de resultados mencionados por

volume, embora, segundo a maioria dos autores citados na literatura, o solo das amostras

(31)

23

Vários estudos sobre banco de sementes também registraram a predominância de dicotiledôneas em relação às monocotiledôneas, como os de Levesque & Svoboda (1997) e

Iutila (1998). Dentre as espécies arbóreas que foram identificadas no banco de sementes da mata de galeria do ribeirão Panga, todas apresentam indivíduos adultos na população atual, de acordo com o levantamento frtossociológico para espécies arbóreas feito para a mesma mata por Sehiavini (1992). O autor registrou 57 espécies arbóreas para a área, distribuídas em 34

famílias. Dentre as espécies arbustivas constituintes do banco de sementes da matade galeria

estudada, todas as Melastomataceae foram registradas na mesma área, no levantamento feito por Romero (1996). Para as Cyperaceae, Poaceae, Rubiaceae, Onagraceae, Begoniaceae, Moraceae e Piperaceae, ainda não há um levantamento que possibilite comparação dosdados.

Algumas espécies das famílias Melastomataceae, Piperaceae, Moraceae, Cyperaceae e Poaceae, encontradas no banco de sementes da mata de galeria do ribeirão Panga, apresentam sementes pequenas. Essas, provavelmente sofreram mais intensamente a ação das chuvas e

de pequenos animais como as minhocas, o que favoreceu o movimento vertical das mesmas,e

consequentementea sua manutenção no banco de sementes.

Três espécies da família Melastomataceae tiveram alguns de seus aspectos ecológicos abordados por Romero (1996), para a mata de galeria do ribeirão Panga. Segundo a autora, Clidemia hirta e

Mcania

theaezans são bastante frequentes na borda da mata de galeria estudada. A primeira ocorre em locais sombreados, floresce deabril a setembroefrutifica de

agosto a novembro; a segunda floresce e Butifica de fevereiro a maio.

Mconia

calvescens é

encontrada em toda a mata de galeria, florescendo nos meses de marçoa abril e frutificando

de maio a junho, formando grandes populações, algumas vezes, em clareiras abertas no interior da mata (Romero, 1996). Estas informações, associadas à ocorrência de sementes

viáveis dessas espécies a 20-25e 30-35cm de profundidade em todos os períodos de coleta, e a baixa pluviosidade registrada no periodo de frutificação das mesmas, permite inferir que

essas espécies são capazes de formar um banco de sementes no solo. Por outro lado, para

Copaijeralangsdoryíiie Calophyllum brasiliense, cujas sementes viáveis foram encontradas

na superficie do solo e no período de dispersão destas, não se sabe se essas são capazes de

formar banco.

Os estudos relativos a bancos de sementes são consideravelmente antigos. Desde 1859

Darwin se preocupava em estuda-los (Fenner, 1995). Entretanto, ainda há uma grande

heterogeneidade entre os resultados obtidos sobre o mesmo. Um dos pontos relativamente

conflitantes se refere à classificação do banco de sementes. Atualmente, uma tendência,

(32)

))))

)))

)

24

como transitórios ou permanentes. Nesse sentido, vários trabalhos foram realizados para verificar a existência de bancos transitórios ou permanentes, tanto para regiões temperadas,

como tropicais (Carroll&Ashton, 1965“, Granstrõm, 1982;Bertiller, 1992, Chandrashekara&

Ramakrishan, 1993 eButler& Chandon, 1998). A maioria deles relataa presençade bancos transitórios de sementes, provavelmente devido a predominância de análises feitas apenas

para a superfície do solo. Entretanto, vários autores observaram & persistência de sementes

viáveis no solo por mais de um ano (Iankowska et al. 1998, Al-Shawaheneh et al. 1998,

Jauhiainen, 1998 e McFarland & Rogers, 1998), Segundo esses autores, a maioria das

espécies que apareceram nesse tipo de banco de sementes, pertence ao grupo das pioneiras,

embora esse grupo tenha geralmente um período de vida muito curto nos bancos. Essas espécies pioneiras têm a capacidade de colonizar locais abertos, como Afficonia calvescens,

relatada neste trabalho. Como a maioria das espécies que ocorreram no banco não

apresentaram um padrão típicode distribuição vertical,não é possivel caracterizaro banco de

sementes da mata de galeria do ribeirão Panga, neste momento, como transitório ou permanente.

O papel do banco de sementes, independente do seu tipo, seja transitório ou

permanente, é indispensável para a manutenção da dinâmica das comunidades vegetais,

garantindo inclusive a existência das espécies que o constituem. Neste sentido, as espécies encontradas até o momento no banco de sementes da mata de galeria do ribeirão Panga,

representam um potencial considerável de colonização de áreas perturbadas, principalmente na manutenção da própria mata de galeria. Entretanto, a compreensão da dinâmica de um

banco de sementes em todos os seus aspectos, dependente de estudos específicos sobre as

espécies que () constituem, sendo portanto a sua quantilicação o passo inicial para estudos

tiituros que permitam conhece-lo e emprega-lo no manejo e conservação de comunidades

(33)

25

Tabela—ll-Densidade médiade sementes viáveis porcentímetro quadrado de solo,encontrada em bancos de sementes de regiões tropicais.

Referêncial Tipo de vegetação Local Profundidade (cm)

5. em”2

Alexandre, 1971? Floresta úmida

(Tm

sp.) África

5 0,0300

Bell, 1970* Floresta Porto Rico

12 0,0587

Bell, 1970* Mata ciliar Porto Rico

12 0,01%

Chekeetal, 1979“ Floresta demontanha Tailândia 5 0,0243

Dallingetal., 1997 Floresta tropical Panamá

-0933301090

De Foresta & Prévosl, 1986* Floresta sempreverde GuianaFrancesa

0,0331 DeForests& Prévost, 1986* Floresta sempre verdeabaixode Guiana francesa 2

0,0372—0,2008

luonehasaduhas

Demel, 1997 Floresta tropical Etiópia

- 0,94

Enright, 1985* Matade araucária PapuaNovaGuiné 8

O,1325

Ewcl & Conde, 1979* Floresta subtropical Flórida

3 0,0081

G, Willians-lineira , 1993 Flormtade montanha Panamá 5 0,0937

Guarantini—Grombone, 1999 Florestaripária Brasil 3 0,0032—0,0049

Guevara& Gómez—pompa,1972* Floresta sempreverde México 12

0,0344—0,0862

Guevara & Gómez—pompa,1972' Floresta sempre verde México 12 0,0175—0,0689

Hall & Swaine, msm Floresta semidecidua seca África 4

0,06%

Holthuijzen &Bocrbwm,1982* Floresta( Cecropíasp. ) Suriname 2 0,0009-0,0046

Hopkins & Graham, 1983ª' Floresta sempreverde Queensland 5

0,0588

Hopkins & Graham, 1983'“ Floresta semidecidua Queensland 5

0,1069

Hopkins&.Graham, 1984t Floresta semidecidua

Queensland 3 0,083

Keay, 1961? Floresta Nigéria 6

0,01 82

Lawton & Putz, 1988* Floresta CostaRica 10

0,04%

Liew, 1973* Floresta úmida Malásia

15 0,0058

Prévost, 1981* Floresta sempreverde GuianaFrancesa

15 0,006()

Putz & Appnah (1987? Floresta Malásia 20 0.0148

10 0,0131

Putz, ]98? Floresta semidecidua Panamá

10 0,0742

Saulei & Swaine*2 Floresta Valley Godd 5

0,03%

Smith, 1987* Floresta semidecidua Panamá 2

0,0318

Soderstrom,1986* Floresta sempre verde Costa Rica 5

0,2340

Uhl & Clark, l983* Caminga Venezuela 5

0,0200

Uhlet al,1981 * Floresta deterrafirme Venezuela

5 0,0752

Uhl et al, 1982&Uhl & Clark, Florestadeterrafmue Venezuela 5 0,0177 1983*

l=Autor e ano

sem”2= sementes viáveis por centímetro quadrado

-=não mencionadas "=in Garwood,1989.

(34)

26

5.

LITERATURA

CITADA

ALBRECHT, H. & PILGRAM,M. 1997. The weedseed bank

of

soilsin a landscape segment in Southern Bavaria: Il.

Relation to environmental variables and to the surface

vegetation. Plant Ecology 131 (1): 31-43.

AL-SHAWAHENEH, N; KAFANIN,

o;

ABUZANAT, M. &

HADIDI; N. 1998. Effect

of

land use on the seed banks

of

rangeland soils in arid environments. Dirasat

Agricultural Sciences25 (3): 380-392.

AL-YEMENI, M& AL-FARRAJ,M. M. 1995. Theseed bank

of

desert soil in Central Saudi

Arabia. Pakistan Journal ofBotany27 (2); 309—3

19.

ARCHIBOLD; 0. W;BROOKS, D. &DELANOY, L. 1997. An

investigation

of

the invasive shrub European Buckthorn, Rhamnus calha/“ticaL., near Saskatoon; Saskatchewan. CanadianField Naturalist 11 (4): 617-621_

AZIZ, S. & KHAN,M. A. 1996. Seed bank dynamics

of

& semi—arid coastal shrub community

in Pakistan. Journal

of

Arid Environments

34 (1): 81—87.

BASKIN, C. C; BASKIN, J. M. & CHESTER, E. W.

1995. Role of temperature in the

germination ecology

of

the summer annual Bidens polylepis Blake (Asteraceae).

Bulletin

of

the Torrey Botanical Club 122 (4): 275—

281.

BEKKER, R. M; KNEVEL, I. C; TALLOWIN, J. B. R; TROOST,

E. M. L. & BAKKER, J.

P. 1998. Soil nutrient input effects on

seed longevity: A burial experiment whit fen—

meadowspecies. Functional Ecology 12(4): 673-682.

BEKKER, R. M; GOMES, M. J. M. &

BAKKER, J. P. 1998. The impact

of

groundwater level on soil seed bank survival. Seed Science Research 8(3): 399-404.

(35)

27

BEKKEILR. M; SCHAMTNEE, J. H. J; BAKKER, J. P. &

THOMPSON, T. 1998 Seed bank characteristics

of

Dutch plant communities. Acta Botanica Neerlandica 47

(1)

15—26.

BERTILLER, M. B. 1992. Seasonal variation in the seed bank

of

a Patagonian grassland in

relationto grazingand topography. Journal

of

Vegetation Science3 (1): 47-54.

BERTILLER, M. B. 1996. Grazing effects on sustainable semiarid rangelands in

Patagonia. The state and dynamics ofthe soil seed bank. Environmental Management 20

(1):

123—132.

BERTILLER, MB. & ALOIA, D. A. 1997. Seed bank strategies in

Patagonian semi-arid grasslands in relation to their management and conservation. Biodiversity

and

Conservation6 (4): 639-650.

BOEKEN, B. & SHACHAK, M. 1998. Colonization by annual plants

ofan experimentally

altered desert landscape : Source—sink relation ships.

Journal

of

Ecology 86 (5): 804—

814.

BROWN, S. C. 1998. Remnant seed banks and vegetation as predictors

of

restored marsh vegetation. Canadian Journal

of

Botany 76 (4): 620-629.

BUTLER, B. J. & CHAZDON, R. L. 1998. Species Richness,

Spatial Variation and

Abundance ofthe soil seed bank

of

a secondary tropical Rain Forest. Biotropica 30 (2); 214-222.

CABIN, R. J. 1996. Genetic comparisons

of

seed bank and seedling populations

of perenial desert mustard, Lesquerella fendleri. Evolution 50 (5): 1830-1841 .

CABIN,R. J; MITCHELL, R. J. & MARSHALL,D. L. 1998. Do surface plantand soil seed

bank population differ genetically? A multipopulation study

of

the desert mustard Lesquerellafend/eri(Brassicaceae). American Journal

of

Botany 85 (8): 1098-1 109.

Referências

Documentos relacionados

Conforme Plaisance (2005), podemos observar que, ao analisarmos as questões relacionadas com a criança com deficiência, esse sujeito é visto, em primeiro lugar, pelo fato

O pesquisador, licenciado em Estudos Sociais com Habilitação Plena em História, pelo Centro de Ensino Superior de Juiz de Fora (CES/JF), concluiu, ainda, o curso de

Dentre as espécies arbóreas que foram identificadas no banco de sementes da mata de galeria do ribeirão Panga, todas apresentam indivíduos adultos na população atual, de acordo com

(2003) estudando o efeito de diferentes tempos entre a pulverização do regulador a base de cloreto de mepiquat na dose de 12,5 g ha -1 do ingrediente ativo e a ocorrência de

O 6º ano do Mestrado Integrado em Medicina (MIM) é um estágio profissionalizante (EP) que inclui os estágios parcelares de Medicina Interna, Cirurgia Geral,

Contemplando 6 estágios com índole profissionalizante, assentes num modelo de ensino tutelado, visando a aquisição progressiva de competências e autonomia no que concerne

DISSERTAÇÃO SUBMETIDA Â UNIVERSIDADE FEDERAL DE SANTA CATARINA PARA OBTENÇÃO D O GRAU DE MESTRE EM ENGENHARIA MECÂNICA.. PAULO ANTÔNIO

Assim como Lucas (2010), Di Piero (2011) desenvolveu a parte empírica da sua dissertação de mestrado (Um ambiente virtual de aprendizagem suporte para o estudo de funções