• Nenhum resultado encontrado

Int J Pharm

N/A
N/A
Protected

Academic year: 2018

Share " Int J Pharm"

Copied!
10
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

International

Journal

of

Pharmaceutics

j ou rn a l h om epa ge : w w w . e l s e v i e r . c o m / l o c a t e / i j p h a r m

Pharmaceutical

Nanotechnology

Design

of

cationic

lipid

nanoparticles

for

ocular

delivery:

Development,

characterization

and

cytotoxicity

Joana

F.

Fangueiro

a

,

Tatiana

Andreani

a,b,c

,

Maria

A.

Egea

d,e

,

Maria

L.

Garcia

d,e

,

Selma

B.

Souto

f

,

Amélia

M.

Silva

b,c

,

Eliana

B.

Souto

a,g,∗

aFacultyofHealthSciences,FernandoPessoaUniversity(UFP-FCS),RuaCarlosdaMaia,296,4200-150Porto,Portugal bCentreforResearchandTechnologyofAgro-EnvironmentalandBiologicalSciences(CITAB),VilaReal,Portugal cDepartmentofBiologyandEnvironment,UniversityofTrás-os-MonteseAltoDouro(UTAD),VilaReal,Portugal

dDepartmentofPhysicalChemistry,FacultyofPharmacy,UniversityofBarcelona,Av.JoanXXIIIs/n,08028Barcelona,Spain eInstituteofNanoscienceandNanotechnology,UniversityofBarcelona,Av.JoanXXIIIs/n,08028Barcelona,Spain fDivisionofEndocrinology,DiabetesandMetabolism,HospitaldeBraga,Braga,Portugal

gInstituteofBiotechnologyandBioengineering,CentreofGeneticsandBiotechnology,Trás-os-MontesandAltoDouroUniversity(IBB/CGB-UTAD),

VilaReal,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received11October2013 Receivedinrevisedform 10November2013 Accepted15November2013 Available online 23 November 2013

Keywords: Lipidnanoparticles Oculardelivery Multipleemulsion Cytotoxicity Turbiscan

Y-79humanretinoblastomacells

a

b

s

t

r

a

c

t

Inthepresentstudywehavedevelopedlipidnanoparticle(LN)dispersionsbasedonamultipleemulsion techniqueforencapsulationofhydrophilicdrugsor/andproteinsbyafullfactorialdesign.Inorderto increaseocularretentiontimeandmucoadhesionbyelectrostaticattraction,acationiclipid,namely cetyltrimethylammoniumbromide(CTAB),wasaddedinthelipidmatrixoftheoptimalLNdispersion obtainedfromthefactorialdesign.Therearealimitednumberofstudiesreportingtheidealconcentration ofcationicagentsinLNfordrugdelivery.Thispapersuggeststhatthechoiceoftheconcentrationofa cationicagentiscriticalwhenformulatingasafeandstableLN.CTABwasincludedinthelipidmatrix ofLN,testingfourdifferentconcentrations(0.25%,0.5%,0.75%,or1.0%wt)andhowcompositionaffects LNbehaviorregardingphysicalandchemicalparameters,lipidcrystallizationandpolymorphism,and stabilityofdispersionduringstorage.Inordertodevelopasafeandcompatiblesystemforoculardelivery, CTAB-LNdispersionswereexposedtoHumanretinoblastomacelllineY-79.Thetoxicitytestingofthe CTAB-LNdispersionswasafundamentaltooltofindthebestCTABconcentrationfordevelopmentof thesecationicLN,whichwasfoundtobe0.5wt%ofCTAB.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Lipidnanoparticles(LN)havegainedinterest inrecent years asdrugcarriersfor oculardelivery,aiminga betterpermeation and/orprolongeddrugreleaseontotheocularmucosaandallowing drugsreachingthepostsegmentoftheeye(PignatelloandPuglisi, 2011).Oculardrugdeliveryisextremelyaffectedbyeyeanatomy and physiology that leads often to mechanisms that decrease bioavailabilityofapplieddrugs.Thesemechanismsincludereflex processes,suchaslacrimationandblinkingwhichreduces drasti-callythedrugresidencetime,anddifficultytodiffusethoughthe conjunctivaandnasolacrimalduct.Inaddition,thelowvolumeof theconjunctivalsacalsoleadstoapoorcornealorsclera pene-trationofdrugs(DieboldandCalonge,2010).Sinceoculardelivery

Correspondingauthorat:FacultyofHealthSciencesofFernandoPessoa

Univer-sity,RuaCarlosdaMaia,296,OfficeS.1,P-4200-150Porto,Portugal. Tel.:+351225074630x3056;fax:+351225504637.

E-mailaddresses:eliana@ufp.edu.pt,souto.eliana@gmail.com(E.B.Souto).

becameaproblemwhentheultimatetargetisintraoculardelivery, duetotheineffectivedrugconcentrationsandtimeresidencereach theinnertissues,alternativesystemsfordrugdeliveryarerequired (PignatelloandPuglisi,2011;Sultanaetal.,2011).Newdrug deliv-erysystemsbasedonlipids,namelyliposomes,andothermaterials suchaspolymers(poly-d-l-lacticacid(PLA)nanopsheres)were abletodeliveranantiviraldrug,acyclovir,intheinnertissuesof theeyecomprisingtheinnovationofthesesystems(Frestaetal., 1999;Giannavolaetal.,2003).

Oculardrugdeliverystrategiesmaybeclassifiedinto3groups: noninvasivetechniques,implants,andcolloidalcarriers.Colloidal drugdeliverysystems,suchasLN,canbeeasilyadministeredin aliquidformandhavetheabilitytodiffuserapidlyandare bet-terinternalizedinoculartissues.Inaddition,theinteractionand adhesionofLNocularsurfacewiththeendotheliummakesthese drugdeliverysystemsinterestingasnewtherapeutictoolsinocular delivery(delPozo-Rodriguezetal.,2013).

LN based onw/o/w emulsion are versatile colloidal carriers fortheadministrationofpeptides/proteinsandhydrophilicdrugs (Fangueiroetal.,2012).Dropletsfromtheinneraqueousphase,

(2)

461 (2014) 64–73 65

wherethedrugisdissolvedor/andsolubilized,aresupportedby asolidlipidmatrixsurroundedbyanaqueoussurfactantphase. UsuallyLNarecomposedofphysiological solidlipids(mixtures ofmono-,di-ortriglycerides,fattyacidsorwaxes)stabilizedby surfactants. Inthecase of aw/o/w basedLN dispersion,a high hydrophilic–lipophilic balance (HLB) surfactant is added tothe externalaqueousphaseand,alowHLBsurfactantisaddedtothe lipidphase.Thetwosurfactantsareneededtostabilizethetwo existinginterfaces inthis typeofemulsion. Avarietyof surfac-tantscanbeapplied,suchasphospholipids,bilesalts,polysorbates, polyoxyethyleneethers (Gallarate etal., 2009; Fangueiroet al., 2012).MaterialsusedforLNproductionarelargelyusedin phar-maceuticalindustrywithprovedbiocompatibility(Severinoetal., 2012).

CationicLNhavebeenrecentlyinvestigatedfortargetingocular mucosa,namelytheposteriorsegmentoftheeye(e.g.retina).This isasmartstrategy thatcombinesthepositive surfacechargeof theparticlesandthenegativesurfacechargeofocularmucosaby meansofanelectrostaticattraction.Thisapproachcouldincrease thedrugsretentiontimeintheeyeaswellasimprovenanoparticles bioadhesion(Lallemandetal.,2012).

Intheoculardelivery, itis especiallyrelevant thecontrolof theparticlesizesinceitdirectlyinfluencethedrugrelease rate, bioavailability, and patient comfort and compliance (Shekunov etal.,2007;Soutoetal.,2010).Inaddition,itisknownthatthe smallertheparticlesize,thelongertheretentiontimeandeasier application(Araujoetal.,2009).

Physicochemicalcharacterizationandassessmentof nanotoxic-ityaremajorissuesfordevelopingandlarge-scalemanufacturingof nanocarriers.Furthermore,physicochemicalpropertiesofLNsuch asparticlesize,surfaceandcompositioncansignificantlyinfluence drugdeliveryonoculardelivery(Yingetal.,2013).

Inthepresentwork,thedevelopmentandcharacterizationof asystemofLNbasedonmultipleemulsionsusingablendof tri-acylglycerolsassolidlipid,wascarried out,in whichsonication methodwasemployed.Thefirstaimoftheworkwasthe appli-cation of a full factorial design todeterminewhich dependent variablescouldaffecttheLNdispersionproperties.Theanalyzed independentvariables,namelytheconcentrationofsolidlipidand bothhydrophilicandlipophilicsurfactants,werecheckedfortheir capacitytoinfluencethemeanparticlesize(Z-Ave),polydispersity index (PI) and zeta potential(ZP) of theproduced LNs disper-sions.Theoptimalformulationwasusedtoevaluatethetoxicity ofLN usingY-79 humanretinoblastoma cells employing differ-entcationiclipidconcentrationstoselectthebestformulationfor ocularinstillations.

2. Materialsandmethods

2.1. Materials

Softisan® 100(S100,ahydrogenatedcoco-glyceridesC

10–C18

fattyacidtriacylglycerol)used assolid lipid wasa free sample fromSasolGermanyGmbH(Witten,Germany),Lipoid®S75,75%

soybeanphosphatidylcholine,usedassurfactant,waspurchased fromLipoidGmbH(Ludwigshafen,Germany),Lutrol®F68or

Polox-amer188 (P188)was a free sample fromBASF (Ludwigshafen, Germany).Cetyltrimethylammoniumbromide(CTAB)anduranyl acetatewereacquiredfromSigma–Aldrich(Sintra,Portugal). Anhy-drousglycerolwaspurchasedfromAcopharma(Barcelona,Spain). Ultra-purifiedwaterwasobtainedfromaMiliQPlussystem (Mili-pore,Germany).Allreagentswereusedwithoutfurthertreatment. TheY-79humanretinoblastomacelllinewaspurchasedfromCell LinesService(CLS,Eppelheim,Germany).Reagentsforcellculture werefromGibco(Alfagene,Invitrogene,Portugal).

Table1

Initial3-levelfullfactorialdesign,providingthelower(−1),medium(0)andupper (+1)levelvaluesforeachvariable.

Variables Levels Lowlevel (−1) Medium level(0) Highlevel (+1)

S100(wt%) 2.5 5.0 7.5

Lecithin(wt%) 0.25 0.5 0.75

P188(wt%) 0.5 1.0 1.0

S100:Softisan®100;P188:Poloxamer188.

2.2. Experimentalfactorialdesign

Afactorialdesignapproachusinga33fullfactorialdesign

com-posedof3variableswhichweresetat3-levelseachwasapplied tomaximizetheexperimentalefficiencyrequiringaminimumof experiments.Forthispurposethreedifferentvariablesandtheir influenceonthephysicochemicalpropertiesoftheproducedLN wereanalyzed.Thedesignrequiredatotalof11experiments.The independentvariablesweretheconcentrationofsolidlipidS100, concentrationoflecithin(Lipoid® S75)andtheconcentrationof

hydrophilicsurfactantP188.Theestablisheddependentvariables werethemeanparticlesize(Z-Ave),polydispersityindex(PI)and zetapotential(ZP).Foreachfactor,thelower,mediumandhigher valuesofthelower,mediumandupperlevelswererepresentedby a(−1),a(0)anda(+1)sign,respectively(Table1).Thedatawere analyzedusingtheSTATISTICA7.0(Stafsoft,Inc.)software.

2.3. Lipidnanoparticlesproduction

LNdispersionswerepreparedusinganovelmultipleemulsion (w/o/w)technique(García-Fuentesetal.,2003).Briefly,aninner w/oemulsionwasinitiallyprepared.Avolumeof ultra-purified waterwasaddedtothelipidphase(5wt%)composedofglycerol, S100 and Lipoid® S75at sametemperature (5–10C above the

meltingpointofthesolidlipidSoftisan®100(T50C)and

homog-enized60swithasonicationprobe(6mmdiameter)bymeansofan UltrasonicprocessorVCX500(Sonics,Switzerland).Apower out-putwithamplitudeof40%wasapplied.AfewmillilitersofP188 solutionwasaddedandhomogenizedforadditional90s.This pre-emulsionwaspouredinthetotalvolumeofaP188cooledsolution undermagneticstirringfor15mintoallowtheformationoftheLN. TheobtainedLNdispersionswereusedforsubsequentstudies.The generalcompositionofLNdispersionsisdescribedinTable2.

2.4. Physicochemicalcharacterization

PhysicochemicalparameterssuchasZ-Ave,PIandZPwere ana-lyzedbydynamiclightscattering(DLS,ZetasizerNanoZS,Malvern Instruments,Malvern,UK).Allsamplesweredilutedwith ultra-purifiedwater andanalyzedintriplicate.ForanalysisoftheZP, ultra-purifiedwaterwithconductivityadjustedto−50␮S/cmwas

used.

Table2

CompositionofSLNdispersions(wt/wt%).

Components %(wt/wt)

Softisan®100 5.0

Glycerol 37.5

Lipoid®S75 0.5

Lutrol®F68 1.0

(3)

66 461 (2014) 64–73

2.5. EvaluationoftheconcentrationofCTAB

Inordertoincreaseeyeretentiontimeandmucoadhesiononto theocularmucosa,acationiclipidwasaddedtothelipidmatrix.For thispurpose,CTABwasusedascationiclipidmaintainingthe5% oflipidmatrixvaryingtheproportionsofS100andCTAB.Thus,in theproductionstage,fourdifferentconcentrations(0.25,0.5,0.75 and1.0wt%)ofcationiclipid(CTAB)wasaddedinthelipidphase composedofS100andLipoid®S75oftheoptimalformulation,

pre-viouslyobtainedfromthefactorialdesigntoevaluatetheinfluence inthephysicochemicalproperties.

2.6. StabilityanalysisofLNbyTurbiscanLab®

TheTurbiscanLab® isa techniqueusedtoobservereversible

(creamingandsedimentationduetofluctuationonparticlesize andvolume)andirreversible(coalescenceandsegregationdueto particlesizevariation)destabilizationphenomenainthesample withouttheneed of dilution.TurbiscanLab® is usefultodetect

destabilizationphenomena much earlier and also in a simpler waythanothermethods,sinceit isbasedonthemeasurement ofbackscattering(BS)andtransmission(T)signals(Araújoetal., 2009;Celiaetal.,2009;Marianeccietal.,2010;Liuetal.,2011).

ThephysicalstabilityofLNdispersionswasassessedwithan opticalanalyzerTurbiscanLab®(Formulaction,France).The

disper-sionswereplacedinacylindricalglasscell,atroomtemperature (25◦C).Theequipmentiscomposedofanear-infraredlightsource

(=880nm),and2synchronoustransmission(T)and backscatter-ing(BS)detectors.TheTdetectorreceivesthelightcrossingthe sample,whereastheBSdetectorreceivesthelightscattered back-wardsbythesample(Araújoetal.,2009).Thedetectionheadscans theentireheightofthesamplecell(20mmlongitude),acquiringT andBSeach40␮m,3timesduring10minatdifferenttimesafter

production(7,15and30days).

2.7. Thermalanalysis

ThecrystallinityprofileofLNwasassessedbydifferential scan-ningcalorimetry(DSC).Thistechniqueis usefultoevaluatethe physicalstate,whichdirectlyaffectsthephysicochemical proper-tiesandthermodynamicstabilityofLNdispersions.Avolumeof LNdispersioncorrespondingto1–2mgoflipidwasscannedusing aMettlerDSC823eSystem(MettlerToledo,Spain).Heatingand coolingrunswereperformedfrom25◦Cto90Candbackto25C

ataheatingrateof5◦C/min,insealed40

␮Laluminumpans.An

emptypanwasusedasareference.Indium(purity>99.95%;Fluka, Buchs,Switzerland)wasemployedforcalibrationpurposes.DSC thermogramswererecordedforthefourdifferentCTAB concen-trationformulationsandforthebulklipids(CTABandS100).The DSCparametersincludingonset,meltingpointandenthalpywere evaluatedusingSTAReSoftware(MettlerToledo,Switzerland).

2.8. X-Raystudies

X-raydiffractionpatternswereobtainedusingtheX-ray scat-tering(X’PertPRO,PANalytical)usingaX’Celeratorasadetector. Dataofthescatteredradiationweredetectedwithablend local-sensibledetectorusingananodevoltageof40kVandacurrentof 30mA.FortheanalysisofLNdispersionsandbulkmaterials,the samplesweremountedonastandardsampleholderbeingdriedat roomtemperaturewithoutanyprevioussampletreatment.

2.9. Alamarblueassayinhumanretinoblastomacellline

Y-79(Humanretinoblastomacellline)cellswereusedto per-formthecytotoxicityassay,inwhichfourLNdispersionscontaining

differentCTABconcentrationsweretested.Eachformulationwas testedat fourconcentrations (in␮gmL−1):10, 25,50 and 100.

Y-79 cells were maintained in RPMI-1640, supplemented with 10%(v/v)fetalbovineserum(FBS),2mMl-glutamine,and

antibi-otics(100UmL−1penicillinand100

␮gmL−1ofstreptomycin)in

anatmosphereof5%CO2 inairat37◦Cellswerecentrifuged,

re-suspendedinFBS-freeculturemedia,countedandseeded,after appropriatedilution,at1×105cellmL−1densityin96-wellplates

(100␮L/well).Thedifferentformulationsweredilutedwith

FBS-freeculturemediatoachievethefinalconcentrations,andadded tocells24hafterseeding(100␮L/well).Cellviabilitywasassayed

withAlamarBlue(Alfagene,Invitrogene,Portugal)byadding10% (v/v)toeachwell,andtheabsorbanceat570nm(reducedform) and620nm(oxidativeform)wasread24,48and72hafter expo-suretotest compounds, datawereanalyzed by calculatingthe percentageofAlamarbluereduction(accordingtothe manufac-tures recommendation)and expressedas percentageof control (untreatedcells).

2.10. Transmissionelectronicmicroscopyanalysis

Transmissionelectronicmicroscopy(TEM)isatechniqueuseful toanalyzetheshape andsizeofLN dispersions.ThechosenLN dispersioncorrespondingtoCTAB-LNdispersionwith0.5wt%CTAB wasmountedonagridandnegativestainedwitha2%(v/v)uranyl acetatesolution.Afterdryingatroomtemperature,thesamplewas examinedusingaTEM(TecnaiSpiritTEM,FEI)at80kV.

2.11. Statisticalanalysis

Statistical evaluation of data was performed using one-way analysisofvariance(ANOVA).TheBonferronimultiplecomparison testwasusedtocomparethesignificanceofthedifferencebetween thegroups,ap-value<0.05wasacceptedassignificant.Datawere expressed as the mean value±standard deviation (Mean±SD) (n=3).

3. Resultsanddiscussion

TheproductionandoptimizationofLNbasedonmultiple emul-sionrequirespre-formulationstudiesandliteratureresearch.The stabilityandcompatibilityoftheemulsifiersandthelipidmatrix areessentialtoprovideastableandfunctionalsystem(Fangueiro etal.,2012).Sincethechoiceofthecomponentsarevitalfor dis-persions formation, Lipoid® S75 (soybean phosphatidylcholine)

wastheselectedlipophilicemulsifierusedwitha HLBvalueof approximately7–9,andPoloxamer188wasselectedashydrophilic emulsifierwithaHLBvalueofapproximately22.

Physicochemicalpropertiesandstabilityofthenewdrug deliv-erysystemsaremajorissuestobeconsideredintheformulation stage, especially those intended for ocular administration. The useof dispersionswithappropriate physicochemical properties ensuresadequatebioavailabilityofadministereddrugs and bio-compatibilitywithocular mucosa.The LN dispersions obtained fromthefactorialdesign,revealedadequatephysicochemical sta-bilityduringtheanalyticaltesting.In addition,themacroscopic stability ofthe particles,monitoredbyvisual analysis,DLSand Turbiscan® Labanalysis,didnot sufferanychanges. Separation

(4)

461 (2014) 64–73 67

Table3

Responsevalues(Z-Ave,PIandZP)ofthethreefactorsdepictedinTable1forthe11experimentformulations.

Run S100(wt%) Lecithin(wt%) P188(wt%) Z-Ave(nm)±SD PI±SD ZP(mV)

SLN1 2.5 0.25 0.5 256.40±1.20 0.181±0.02 −1.04

SLN2 7.5 0.25 0.5 268.50± 1.47 0.173± 0.04 −1.06

SLN3 2.5 0.75 0.5 165.85± 2.21 0.162± 0.01 −1.08

SLN4 7.5 0.75 0.5 171.24± 1.78 0.155± 0.03 −1.20

SLN5 2.5 0.25 1.5 241.30±2.54 0.182±0.05 −1.22

SLN6 7.5 0.25 1.5 235.40±1.87 0.192±0.02 −1.04

SLN7 2.5 0.75 1.5 189.75±1.99 0.163±0.08 −1.12

SLN8 7.5 0.75 1.5 164.50±1.14 0.158±0.03 −1.14

SLN9 5.0 0.5 1.0 165.90± 1.20 0.164± 0.04 −1.18

SLN10 5.0 0.5 1.0 164.50± 1.09 0.183± 0.05 −1.17

SLN11 5.0 0.5 1.0 164.70±1.01 0.177±0.02 −1.16

Table4

ANOVAstatisticalanalysisoftheZ-Ave.

Evaluatedfactorsandtheirinteractions Sumofsquares Degreesoffreedom Meansquare F-value p-Value

(1)S100concentration 23.32 1 23.32 0.01962 0.895380

(2)Lecithinconcentration 12032.66 1 12032.66 10.12031 0.033495

(3)P188concentration 120.44 1 120.44 0.10129 0.766206

1by2 84.89 1 84.89 0.07140 0.802522

1by3 295.73 1 295.73 0.24873 0.644149

2by3 533.99 1 533.99 0.44912 0.539455

Error 4755.85 4 1188.96

Total 17846.88 10

Thevaluesinboldarethestatiscallysignificantresults(p<0.5).

Table5

ANOVAstatisticalanalysisofthePI.

Evaluatedfactorsandtheirinteractions SumofSquares Degreesoffreedom Meansquare F-value p-Value

(1)S100concentration 0.000072 1 0.000072 1.02591 0.368411

(2)Lecithinconcentration 0.001352 1 0.001352 19.26425 0.011791

(3)P188concentration 0.000032 1 0.000032 0.45596 0.536541

1by2 0.000032 1 0.000032 0.45596 0.536541

1by3 0.000072 1 0.000072 1.02591 0.368411

2by3 0.000032 1 0.000032 0.45596 0.536541

Error 0.000281 4 0.000070

Total 0.001873 10

Thevaluesinboldarethestatiscallysignificantresults(p<0.5).

Theresultsforthe11producedformulationsisshowninTable3

andvariedfrom164.5±1.09nm(LN8orLN10)to268.50±1.47nm (LN2),whereasPIrangedfrom0.155±0.03(LN4)to0.192±0.02 (LN6).Theparticlesizedistributionwasverynarrowinallcases sincethePIwaslessthan0.2,correspondingtomonodispersed systems.Accordingtotheliterature(ZimmerandKreuter,1995,

Shekunovetal.,2007),theZ-aveforocularadministrationshould bebelow1␮mwithanassociatednarrowsizedistribution.Thus,all

formulationsrevealedaZ-AveandPIwithinacceptedrange(Fresta

etal.,1999;Giannavolaetal.,2003;Vegaetal.,2008;Soutoetal., 2010).Asexpected,theZPdidnotvary,since allusedreagents havenon-ionicnature.Foreachofthe3variables,analysisof vari-ance(ANOVA)wasperformed.FromTable4andFig.1,theonly factorthatwasshowntohaveasignificanteffect(p-value<0.05) onZ-Avewastheconcentrationoflecithin.Allotherevaluated fac-tors,werenotstatisticallysignificant(p-value>0.05),neitherthe interactionsbetweenthem.Thesameresultswereobservedforthe evaluationofthedependentvariablesonPI(Table5andFig.1).The

(5)

68 461 (2014) 64–73

Fig.2.SurfaceresponsechartoftheeffectoftheconcentrationofS100andlecithinontheZ-Ave(A)andPI(C)andtheeffectoftheconcentrationoflecithinandpoloxamer 188ontheZ-Ave(B)andPI(D).

concentration of lecithin was the only independent variable affecting the PI. The lecithin used is composed of 75% of phosphatidylcholine, which is composed by phospholipids that resemblethe cellularmembranes. Theuse of this emulsifier is reportedassafeandbiocompatibleforseveralpurposes,suchas skinproducts(Fiume,2001)andalsoforophthalmic/oculardrug delivery(Bhattaetal.,2012).TheiruseinthedevelopmentofLN dis-persionsisessentialtodecreasetheinterfacialtensionbetweenthe oilphaseandtheinternalandexternalaqueousphase,andalsoto facilitatetheemulsificationofthelipidmatrix.Lecithinisuseddue toitshigherpowerofemulsificationabletoprovideaverygood sta-bilizationoftheoil-in-waterinterfacesandhasalsobeenreported todecreaseparticlesizeinemulsionsthatismainlyexplainedby itsamphiphiliccharacter(Trottaetal.,2002;Schubertetal.,2006; Kawaguchietal.,2008).Thelipophilicportionoflecithindissolves thelipidphase, i.e. lecithin likes tobeat theedge of thelipid phasebeingitslipophilictailsdirectedtothelipidphaseuntilthe hydrophilicportionisdirectedtothewaterphase. Thus,theoil phaseistotallyrecoveredbythelecithinpromotinglongtime stabi-lizationintheinterfaceoftheemulsions(Trottaetal.,2002).From theobtainedresults, acorrelationbetweentheconcentrationof lecithinandmeanparticlesizeoftheparticleswerefound,since highestconcentrationsleadstoadecreaseinZ-Aveand PI.This dependencyofZ-Aveonthetypeofemulsifierisduetheneedfor thecompletecoverageoftheinterface,whichisaffectedbythe selectedconcentration(Fig.2).

Theaimofthisfactorialdesignwastooptimizeaformulation withappropriatephysicochemicalparametersforthe incorpora-tionofhydrophilicdrugsforoculardelivery.Forthispurpose,the limitingfactorsweretheZ-AveandPIandfromtheobtainedresults anoptimalLNdispersionwasfound.ThisLNdispersionwasused forthefollowingstudies.

InordertoimproveLNadhesiontoocularsurfaceandalsoto improvestabilityofthedispersions,acationiclipidwasused.The

approachofusingacationiclipidisinterestingsinceocularmucosa depictsslightlynegativechargeaboveitsisoelectricpointandalso couldimprovesomelimitationsrelatedtoocularadministration, suchaspreventtearwashout(duetoteardynamics),increase ocu-larbioavailabilityandprolongtheresidencetimeofdrugsinthe cul-de-sac(Araujoetal.,2009).

Thestudyreportstheuseofdifferentconcentrationsofacationic lipid(CTAB)inthelipidmatrixofLN.TheresultsoftheCTAB con-centrationontheZ-Ave,PIandZPoftheLNdispersionsoptimized inthefactorialdesign aredepictedin Table6.Asexpected,the parametermostaffectedbythevariationonCTABconcentration istheZP.TheincreaseoftheZPwasdirectlyproportionaltothe increaseonCTABconcentration.Statisticalanalysisofthe physi-cochemicalpropertiesofCTAB-LNdispersionswasnotsignificant (p>0.05),indicatingthattheconcentrationofCTABdidnotaffect drasticallytheZ-Ave,PIandZPoftheformulations.All formula-tionspropertieswereinagreementwiththerequiredparameters foroculardelivery.However,nostatisticaldifferenceswerefound, theconcentrationofCTABimprovedtheZPfollowingaproportional relationship.Thisbehaviorwasexpectedbecauseofthecationic propertiesofCTABandisalsoexpectedthathigherZPvalues con-tributetohigherstabilityoftheparticlesduetoelectronicrepulsion betweenthemmaintaininglongertimeinsuspension.

(6)

461 (2014) 64–73 69

Table6

PhysicochemicalparametersfromCTAB-LNdispersionsattheproductiondayandalong-termstabilityafter7,15and30dayafterproductionat25◦

C(Mean±SD)(n=3).

Formulation Parameters Productionday Day7 Day15 Day30

0.25%CTAB-LN

Z-Ave(nm) 230.70±6.71 239.5±0.61 244.9±1.17 255.2±1.32

PI 0.308± 0.09 0.267± 0.01 0.261± 0.03 0.266± 0.01

ZP(mV) +24.80± 2.69 +17.4± 0.65 +16.7± 0.56 +16.4± 0.36

0.5%CTAB-LN

Z-Ave(nm) 194.40±0.43 199.25±0.30 201.45±0.08 213.7±0.74

PI 0.185± 0.02 0.186± 0.01 0.224± 0.02 0.225± 0.01

ZP(mV) +37.20± 1.27 +33.8± 0.45 +32.1± 0.53 +30.5± 0.03

0.75%CTAB-LN

Z-Ave(nm) 172.10±12.64 166.25±1.20 223±0.59 236.8±1.45

PI 0.182± 0.02 0.246± 0.01 0.204± 0.01 0.225± 0.04

ZP(mV) +41.70± 0.71 +40.15± 0.63 +38.6± 0.41 +37.4± 1.21

1.0%CTAB-LN

Z-Ave(nm) 169.10±2.51 144.7±1.61 188.3±1.52 200.7±1.65

PI 0.222± 0.022 0.211± 0.01 0.236± 0.02 0.245± 0.04

ZP(mV) +48.00± 0.31 +44.58± 0.50 +42.0± 0.05 +40.2± 0.63

stabilityovertime.Theotherconcentrationsseemtobemore sta-blesincevariationsarelowerthan10%duringthetimeofanalysis. Thisanalysiscouldpredictthegoodstabilityoftheformulations withCTABconcentrationrangingbetween0.5and1.0wt%.These resultsareinagreementwiththeZPvaluesrecordedforthefour formulations(Table6),sincehigherZPvaluescouldalsopredict ahigherstabilityofLNdispersionsasmentionedbefore.Inorder tosupportTurbiscan®Labresultsandalsotomonitoredparticles

overaperiodoftime,zetasizermeasurementsweremadeatthe samedaysafterCTAB-LNdispersionsproductionduringstorageat 25◦C.Alldispersionsshowedamilkycolloidalappearancewhere

noaggregationphenomenaandnophaseseparationweredetected duringtheperiodofanalysisandstorage.Fromtheresultsdepicted

inTable6ispossibletodetectaslightlyincreasebothintheZ-Ave andinthePIafter30daysofstorage.Duringtheperiodof analy-sis,CTAB-LNdispersionsdepictedparticlesizesbelow300nmand PI≤0.3,whichareacceptablevaluesforoculardelivery(Vegaetal., 2008;Gonzalez-Miraetal.,2010;Soutoetal.,2010;Gonzalez-Mira etal.,2011).Thelong-termstabilitystudiesconfirmedthat concen-trationsofCTABupto0.5wt%couldprovideabetterelectrostatic repulsionbetweenparticlesinsuspensionandfromthis sugges-tionprovidebetterstabilityavoidingparticleaggregationand/or flocculation.

Theanalysisofthecristallinity andpolymorphism oftheLN dispersionsobtainedwasanalyzedbyDSCandX-Ray.The thermo-dynamicstabilityofLNdependsmainlyonthelipidmodification

(7)

70 461 (2014) 64–73

Fig.4. DSCthermogramsof(a)bulkCTAB,(b)bulkS100andCTAB-LNwithdifferent concentrations(c)0.25wt%,(d)0.50wt%,(e)0.75wt%and(f)1.0wt%.

thatoccursaftercrystallization.ThesolidlipidusedwasS100,a tri-acylglycerolblendofvegetablefattyacidswithC10–C18(Fangueiro

etal.,2013).Polymorphictransitionsaftercrystallizationof triacyl-glycerolbasedLNareslowerforlonger-chaintriacylglycerolsthan forshorter-chaintriacylglycerol(MetinandHartel,2005).Thetype ofemulsifierusedinLNdispersionsalsoaffectstheir thermody-namicbehavior,theirstoragetimeanddegradationvelocity(Han etal.,2008).

Triacylglycerols usually occur in three major polymorphic forms,namelya,ˇ′andˇ(inorderofincreasingthermodynamic

stability)whicharecharacterizedbydifferentsubcellpackingof thelipidchains.Theˇ′modificationisfrequentlyobservedin

com-plextriacylglycerolssuchasS100(BunjesandUnruh,2007). ThermalanalysisofthebulklipidS100(Fig.4)showsasingle endothermicpeakuponheatingwithaminimumof39.12◦Cand

anenthalpyof−44.76Jg−1(Table7).Ourresultsareinagreement

withthose reportedbyotherauthors(Thomaand Serno,1983; SchubertandMüller-Goymann,2003)foraˇ′modificationof

com-plextriacylglycerolsmixtures.ForCTABbulk,asmallmeltingevent wasobservedbetween40and50◦C,thatcanbeassociatedtothe

meltingofacylchainsandamaintransitionataround106.34◦C

correspondingtocompletemeltingofCTABandattributedtothe meltingofhead-groups(Doktorovovaetal.,2011).

With respect to CTAB-LN dispersions (Fig. 4), a very small endothermiceventwasreportedcomparedtotheother thermo-gramsofthebulklipidandbulkmatrix.Thistransitionisrelatively smallduetothelowestvaluesofenthalpypresentedbytheLN dis-persionscomparedtothebulklipid(Table7).Thepeaktemperature slightlydecreasedforallCTAB-LNdispersionsconfirmingthat poly-morphismofS100.InLNdispersions,aslightdecreaseofenthalpy isusuallyobserved,aswellasadecreaseonthepeaktemperature comparingtothebulkcounterpart,howeversincethislipidhasa

Fig.5. X-raydiffractionpatternsof(a)bulkCTAB,(b)bulkS100andCTAB-LNwith differentconcentrations(c)0.25wt%,(d)0.50wt%,(e)0.75wt%and(f)1.0wt%.

verylowmeltingpoint,itispossibletoformsupercooledmelts. ApossibleexplanationforthereductionofcrystallinityoftheLN dispersionisthecoexistenceoflipidbeingpresentinthea modifi-cationandalsoduetothecolloidalparticlesizeofferinginsufficient numberofdiffractionlevels.Thesedifferencescanbeattributedto thehighsurfacetovolumeratioofLNdispersions(Schubertand Müller-Goymann,2003).

TheX-rayresultsdepictedinFig.5 alsorevealthepresence oftwo signals oneat 0.42nm (2=21.1◦)and otherat 0.38nm

(2=23.2◦) which are both characteristic of the orthorhombic

perpendicularsubcell,i.e.,ˇ′modification(Schubertand Müller-Goymann,2003).TheseresultsareinagreementwithDSCstudies, sinceallformulationsrevealedadecreasedcrystallinity compar-ingwithbulklipidsS100and CTAB.Also, themelting enthalpy ofCTAB-LNdispersionsis increasingwithincreasingCTAB con-tent, indicating higher crystallinity of the matrices containing 0.5–1.0wt%ofCTAB.Thus,theconcentrationofCTABinthelipid matrixisabletoprovidehighercrystallinitytothelipidmatrix; however,otherfeaturessuchasstability andtoxicitywere ana-lyzedtoprovide a full studyin order tochoosethe bestCTAB concentration.

(8)

461 (2014) 64–73 71

Table7

Differentialscanningcalorimetry(DSC)analysisoftheSLNformulationswithdifferentCTABconcentrations.

Formulation Onsettemperature(◦C) Meltingpoint(C) Integral(mJ) Enthalpy(Jg−1)

Softisan100bulk 36.68 39.12 −3111.15 −44.76

CTABbulk 100.88 106.34 −677.30 −12.72

CTAB-LN0.25wt% 29.58 34.12 −17.50 −0.23

CTAB-LN0.5wt% 31.26 35.03 −116.43 −1.47

CTAB-LN0.75wt% 31.12 34.73 −110.44 −1.41

CTAB-LN1.0wt% 31.65 34.94 −129.98 −1.59

for furtherin vivo studies.Thisassay couldpredictif formula-tionscausecellulardamagewhichconsequentlyresultsinlossof themetaboliccellfunction.Alamarblueisasensitive fluoromet-ric/colorimetricgrowthindicatorusedtodetectmetabolicactivity of cells. Specifically, cells incorporate an oxidation-reduction (REDOX) indicator that, when in a reducing environment of o metabolicallyactivecell,isreduced.Whenreduced,Alamarblue becomes fluorescent and changes color from blueto pink.The reductionofAlamarblueisbelievedtobemediatedby mitochon-drialenzymes(Hamidetal.,2004).However,someauthorsalso suggestthatcytosolicandmicrosomalenzymesalsocontributeto thereductionofAlamarblue(GonzalezandTarloff,2001).

The evaluation of the Alamar blue assaywas based onthe percentviabilityoffourconcentrationsforeachCTAB concentra-tionin thedispersion.Thisassay isimportant topoint outthe importanceof theCTAB quantityin theformulation that could beadministeredforoculardelivery,avoiding celldamage.From

Fig. 6, we can observe that 10␮gmL−1 of all CTAB-LN

formu-lations is non-toxic to cells as cell viability is not statistically differentfromcontrol (untreatedcells)along the3 time-points of exposure. The concentrationof 50␮gmL−1 of CTAB-LNonly

reducedsignificantlycellviabilityintheCTAB-LNdispersions con-taining 0.75 and 1.0wt% of CTAB, along the 3 time-points of

exposure.Theconcentrationof100␮gmL−1ofCTAB-LNreduced

significantlycellviabilityinallCTABpercentages.CTAB-LN formu-lationcontaining0.25%(w/w)ofCTABisnon-toxicfortherangeof 10–50␮gmL−1(Fig.6a),butreducessignificantlycellviability,in

about50–75%ofcontrol(p<0.05).Theconcentrationrangewhere cellviabilityiskeptsimilartocontrolvaluesisreducedincreasing CTABconcentrationintheformulations.InFig.6b(0.5%ofCTAB, concentrationtwice that usedfor Fig.6a)we can observethat 50␮gmL−1 offormulationreducescellviabilityfrom40 to60%

ofthecontrolwhile100␮gmL−1practicallyabolishescell

viabil-ityforthe3timepointsofexposure.RaisingCTABconcentration intheformulationto0.75%(Fig.6c)andto1.0%(Fig.6d)reduces celltolerancetotheformulationasweobservethatwith increas-ing%ofCTABintheformulationreducestheconcentrationthat maintainscellviability.TheseresultssuggestthatahigherCTAB concentrationimplieshighercytotoxicitywhichisexpectedsince theeffectofcationic agentsonthehumanhealthis concentra-tiondependent.Inaddition,higherCTAB-LNconcentrationsalso implymorecytotoxicity.Fromourresults,asafeand biocompat-ibleLNsystemshouldbecomposedof,atmaximum,0.5wt%of CTAB.

TEManalysishasbeenperformedtoevaluatetheparticleshape andmorphologyofCTAB-LNdispersion.TEMimage(Fig.7)shows

(9)

72 461 (2014) 64–73

Fig.7.TEMmicrographof0.5%CTAB-LN.

particlesmainlywithsphericalmorphology.From thisanalysis, theabsenceofaggregationphenomenaofCTAB-LNdispersionwas alsoconfirmed.TheseresultsareinagreementwithTurbiscan®Lab

results.Itispossibletodetectaslightpolydispersityhoweverallthe particlesremainwithinthenanometerrange.Allparticlesshowed ameandiameterthatvariedbetween190and280nm,whichis alsoinagreementwiththezetasizermeasurements.TEManalysis suggestedthatimmediatelyafterproductionCTAB-LNdispersion with0.5wt%CTABcontainedparticlesnohigherthan1␮m,which

isusefulforoculardeliverypurposes.

4. Conclusions

ThedevelopmentofLNdispersionsforoculardeliveryshould becarriedoutregardingocularmorphologyandbiology.Afull fac-torialdesignwascarriedoutinordertofindoutwhichparameters couldinfluenceLNdispersionsbasedonmultipleemulsion tech-nique.ThesizeandPIofLNdispersionsarehighlydependenton thelecithinconcentrationmainlyduetoitshigheremulsification propertiesandamphiphiliccharacterabletodecreaseparticlesize inemulsions.Inordertoimproveocularmucoadhesion,acationic lipidwasaddedinthelipidmatrix.Theinsufficientinformationand lackofstudiesregardingnanotoxicityofcationicagentsforocular ordrugdeliveryleadsustostudydifferentCTABconcentrations onlipidmatrixanditseffectsonthephysicochemicalparameters andcelltoxicityofCTAB-LNdispersions.Thisstudydemonstrated thatthebetterCTABconcentrationforthedispersionpreviously optimizedbythefactorialdesignwas0.5%,providingbetter stabil-ityandbiocompatibility.Furtherstudiesencapsulatinghydrophilic drugsandevaluatingtheexvivoandinvivoperformanceofthe developedCTAB-LNdispersionarerequiredtoconfirmthese pre-liminaryresults.

Acknowledgements

Ms. Joana Fangueiro and Ms. Tatiana Andreani wish to acknowledge Fundac¸ão para a Ciência e Tecnologia do Min-istério da Ciência e Tecnologia (FCT, Portugal) under the refer-ences SFRH/BD/80335/2011 and SFRH/BD/60640/2009, respec-tively. FCT is also acknowledged under the research project PTDC/SAU-FAR/113100/2009andFCOMP-01-0124-FEDER-022696 (PEst-C/AGR/UI4033/2011).

References

Araujo,J.,Gonzalez,E.,Egea,M.A.,Garcia,M.L.,Souto,E.B.,2009.Nanomedicinesfor ocularNSAIDs:safetyondrugdelivery.Nanomedicine5,394–401.

Araújo,J.,Vega,E.,Lopes,C.,Egea,M.A.,Garcia,M.L.,Souto,E.B.,2009.Effectof polymerviscosityonphysicochemicalpropertiesandoculartoleranceof FB-loadedPLGAnanospheres.ColloidsSurf.B72,48–56.

Bhatta,R.S.,Chandasana,H.,Chhonker,Y.S.,Rathi,C.,Kumar,D.,Mitra,K.,Shukla,P.K., 2012.Mucoadhesivenanoparticlesforprolongedoculardeliveryofnatamycin: invitroandpharmacokineticsstudies.Int.J.Pharm.432,105–112.

Bunjes,H.,Unruh,T.,2007.Characterizationoflipidnanoparticlesbydifferential scanningcalorimetry,X-rayandneutronscattering.Adv.DrugDeliveryRev.59, 379–402.

Celia,C.,Trapasso,E.,Cosco,D.,Paolino,D.,Fresta,M.,2009.Turbiscanlabexpert analysisofthestabilityofethosomesandultradeformableliposomescontaining abilayerfluidizingagent.ColloidsSurf.B72,155–160.

delPozo-Rodriguez,A.,Delgado,D.,Gascon,A.R.,Solinis,M.A.,2013.Lipid nanopar-ticlesasdrug/genedeliverysystemstotheretina.J.Ocul.Pharmacol.Ther.29, 173–188.

Diebold,Y.,Calonge,M.,2010.Applicationsofnanoparticlesinophthalmology.Prog. Retin.EyeRes.29,596–609.

Doktorovova,S.,Shegokar,R.,Rakovsky,E.,Gonzalez-Mira,E.,Lopes,C.M.,Silva,A.M., Martins-Lopes,P.,Muller,R.H.,Souto,E.B.,2011.Cationicsolidlipid nanoparti-cles(cSLN):structure,stabilityandDNAbindingcapacitycorrelationstudies. Int.J.Pharm.420,341–349.

Fangueiro,J.F.,Andreani,T.,Egea,M.A.,Garcia,M.L.,Souto,S.B.,Souto,E.B.,2012. Experimentalfactorialdesignappliedtomucoadhesivelipidnanoparticlesvia multipleemulsionprocess.ColloidsSurf.B100,84–89.

Fangueiro, J.F., Gonzalez-Mira, E., Martins-Lopes, P., Egea, M.A., Garcia, M.L., Souto,S.B.,Souto,E.B.,2013.Anovellipidnanocarrierforinsulindelivery: production,characterization andtoxicitytesting.Pharm.Dev. Technol.18, 545–549.

Fiume,Z.,2001.Finalreportonthesafetyassessmentoflecithinandhydrogenated lecithin.Int.J.Toxicol.20,21–45.

Fresta,M.,Panico,A.M.,Bucolo,C.,Giannavola,C.,Puglisi,G.,1999. Characteriza-tionandin-vivoocularabsorptionofliposome-encapsulatedacyclovir.J.Pharm. Pharmacol.51,565–576.

Gallarate,M.,Trotta,M.,Battaglia,L.,Chirio,D.,2009.Preparationofsolidlipid nanoparticlesfromW/O/Wemulsions:preliminarystudiesoninsulin encap-sulation.J.Microencapsul.26,394–402.

García-Fuentes,M.,Torres,D.,Alonso,M.J.,2003.Designoflipidnanoparticlesfor theoraldeliveryofhydrophilicmacromolecules.ColloidsSurf.B27,159–168. Giannavola,C.,Bucolo,C.,Maltese,A.,Paolino,D.,Vandelli,M.A.,Puglisi,G.,Lee,

V.H.,Fresta,M.,2003.Influenceofpreparationconditionsonacyclovir-loaded poly-d,l-lactic acidnanospheres andeffectofPEGcoatingonoculardrug bioavailability.Pharm.Res.20,584–590.

Gonzalez-Mira,E.,Egea,M.A.,Garcia,M.L.,Souto,E.B.,2010.Designandocular tol-eranceofflurbiprofenloadedultrasound-engineeredNLC.ColloidsSurf.B81, 412–421.

Gonzalez-Mira,E.,Egea,M.A.,Souto,E.B.,Calpena,A.C.,Garcia,M.L.,2011. Opti-mizingflurbiprofen-loadedNLCbycentralcompositefactorialdesignforocular delivery.Nanotechnology22,045101.

Gonzalez,R.J.,Tarloff,J.B.,2001.Evaluationofhepaticsubcellularfractionsfor Ala-marblueandMTTreductaseactivity.Toxicol.InVitro15,257–259.

Hamid,R.,Rotshteyn,Y.,Rabadi,L.,Parikh,R.,Bullock,P.,2004.Comparisonof ala-marblueandMTTassaysforhighthrough-putscreening.Toxicol.InVitro18, 703–710.

Han,F.,Li,S.,Yin,R.,Liu,H.,Xu,L.,2008.Effectofsurfactantsontheformationand characterizationofanewtypeofcolloidaldrugdeliverysystem:nanostructured lipidcarriers.ColloidsSurf.A315,210–216.

Kawaguchi,E.,Shimokawa,K.-i.,Ishii,F.,2008.Physicochemicalpropertiesof struc-turedphosphatidylcholineindrugcarrierlipidemulsionsfordrugdelivery systems.ColloidsSurf.B62,130–135.

Lallemand,F.,Daull,P.,Benita,S.,Buggage,R.,Garrigue,J.S.,2012.Successfully improvingoculardrugdeliveryusingthecationicnanoemulsion,novasorb.J. DrugDeliv.,604204.

Liu,J.,Huang,X.-f.,Lu,L.-j.,Li,M.-x.,Xu,J.-c.,Deng,H.-p.,2011.TurbiscanLab®

Expertanalysisofthebiologicaldemulsificationofawater-in-oilemulsionby twobiodemulsifiers.J.Hazard.Mater.190,214–221.

Marianecci,C.,Paolino,D.,Celia,C.,Fresta,M.,Carafa,M.,Alhaique,F.,2010. Non-ionicsurfactantvesiclesinpulmonaryglucocorticoiddelivery:characterization andinteractionwithhumanlungfibroblasts.J.Control.Release147,127–135. Metin,S.,Hartel,R.W.,2005.Crystallizationoffatsandoils.In:Bailey’sIndustrialOil

andFatProducts.JohnWiley&Sons,Inc.,NewJersey,USA.

Pignatello,R.,Puglisi,G.,2011.Nanotechnologyinophthalmicdrugdelivery:a sur-veyofrecentdevelopmentsandpatentingactivity.RecentPatentsNanomed.1, 42–54.

Schubert,M.A.,Harms,M.,Müller-Goymann,C.C.,2006.Structuralinvestigations onlipidnanoparticlescontaininghighamountsoflecithin.Eur.J.Pharm.Sci.27, 226–236.

Schubert,M.A.,Müller-Goymann,C.C.,2003.Solventinjectionasanewapproach formanufacturinglipidnanoparticles–evaluationofthemethodandprocess parameters.Eur.J.Pharm.Sci.55,125–131.

(10)

461 (2014) 64–73 73

lipid nanoparticles (SLN and NLC) for oral drug delivery.J. Drug Deliv., http://dx.doi.org/10.1155/2012/750891.

Shekunov,B.Y.,Chattopadhyay,P.,Tong,H.Y.,Chow,A.H.L.,2007.Particlesize anal-ysisinpharmaceutics:principles,methodsandapplications.PharmRes.24, 203–227.

Souto,E.B.,Doktorovova,S.,Gonzalez-Mira,E.,Egea,M.A.,Garcia,M.L.,2010. Feasi-bilityoflipidnanoparticlesforoculardeliveryofanti-inflammatorydrugs.Curr. EyeRes.35,537–552.

Sultana,Y.,Maurya,D.P.,Iqbal,Z.,Aqil,M.,2011.Nanotechnologyinoculardelivery: currentandfuturedirections.DrugsToday(Barc)47,441–455.

Thoma,K.,Serno,P.,1983.ThermoanalytischerNachweisderPolymorphieder Sup-positoriengrundlageHartfett.Pharm.Ind.45,990–994.

Trotta, M., Pattarino, F., Ignoni, T., 2002. Stability of drug-carrier emulsions containing phosphatidylcholine mixtures. Eur. J. Pharm. Biopharm. 53, 203–208.

Vega,E.,Gamisans,F.,García,M.L.,Chauvet,A.,Lacoulonche,F.,Egea,M.A.,2008. PLGAnanospheresfortheoculardeliveryofflurbiprofen:drugreleaseand interactions.J.Pharm.Sci.97,5306–5317.

Ying,L.,Tahara,K.,Takeuchi,H.,2013.Drugdeliverytotheocularposteriorsegment usinglipidemulsionviaeyedropadministration:effectofemulsion formula-tionsandsurfacemodification.Int.J.Pharm.453,329–335.

Imagem

Fig. 1. Pareto chart of the analyzed effects for the Z-Ave (A) and for the PI (B).
Fig. 2. Surface response chart of the effect of the concentration of S100 and lecithin on the Z-Ave (A) and PI (C) and the effect of the concentration of lecithin and poloxamer 188 on the Z-Ave (B) and PI (D).
Fig. 3. BS profiles of SLN dispersions with different CTAB concentrations, (a) 0.25%, (b) 0.50%, (c) 0.75% and (d) 1.00%
Fig. 5. X-ray diffraction patterns of (a) bulk CTAB, (b) bulk S100 and CTAB-LN with different concentrations (c) 0.25 wt%, (d) 0.50 wt%, (e) 0.75 wt% and (f) 1.0 wt%.
+3

Referências

Documentos relacionados

This report is part of MAPLE Project, ERC – European Research Council Grant, 682125, which aims to study the Politicisation of the EU before and after the

Para a variável valor não se demonstraram ser relevantes as relações que se estabeleceram com o curso e IES frequentados (Tabela 8). e as IES privadas obtiveram a média mais

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to

Dessa maneira, observa-se o quão importante é o discurso de segurança humana para o Estado japonês, enquanto elemento discursivo e estratégico, possibilitando a ligação do país

Considering the peculiarities and the lack of limnological information on these ecosystems, the proposal of this study was to analyze the structure and diversity of the

ericoides, ecological features and the scarcity of palynological and physiological studies concerning this species; and further the lack of studies to evaluate

Given the above information, and considering the lack of information on the germination and growth of native caatinga cacti, this study aimed to evaluate the germinative behavior of

In this context, and considering the lack of studies which investigate the application of solid lipid particles in dairy products, the objective of this study was to evaluate