• Nenhum resultado encontrado

Is the emergence of fungal resistance to medical triazoles related to their use in the agroecosystems? A mini review

N/A
N/A
Protected

Academic year: 2021

Share "Is the emergence of fungal resistance to medical triazoles related to their use in the agroecosystems? A mini review"

Copied!
7
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Review

Is

the

emergence

of

fungal

resistance

to

medical

triazoles

related

to

their

use

in

the

agroecosystems?

A

mini

review

Aícha

Daniela

Ribas

e

Ribas

a

,

Pierri

Spolti

b

,

Emerson

Medeiros

Del

Ponte

b

,

Katarzyna

Zawada

Donato

c

,

Henri

Schrekker

c

,

Alexandre

Meneghello

Fuentefria

a,∗ aUniversidadeFederaldoRioGrandedoSul-UFRGS,FaculdadedeFarmácia,DepartamentodeAnálises,PortoAlegre,RS,Brazil bUniversidadeFederaldeVic¸osa,Vic¸osa,MG,Brazil

cInstitutodeQuímica,UFRGS,PortoAlegre,RS,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received26November2014 Accepted4March2016 Availableonline7July2016 AssociateEditor:CarlosPelleschi Taborda

Keywords:

Cross-resistance

Emergingfungalpathogens Fungicidesensitivity Agriculture

Medicine

a

b

s

t

r

a

c

t

Triazolefungicidesareusedbroadlyforthecontrolofinfectiousdiseasesofbothhumans andplants.Thesurgeinresistancetotriazolesamongpathogenicpopulationsisan emer-gent issue both in agriculture and medicine. The non-rational use of fungicides with site-specific modesofaction, suchasthetriazoles,mayincreasetheriskofantifungal resistancedevelopment.Inthemedicalfield,thesurgeofresistantfungalisolateshasbeen relatedtotheintensiveandrecurrenttherapeuticuseofalimitednumberoftriazolesfor thetreatmentandprophylaxisofmanymycoses.Similaritiesinthemodeofactionof tri-azolefungicidesusedinthesetwofieldsmayleadtocross-resistance,thusexpandingthe spectrumofresistancetomultiplefungicidesandcontributingtotheperpetuationof resis-tantstrainsintheenvironment.Theemergenceoffungicide-resistantisolatesofhuman pathogenshasbeenrelatedtotheexposuretofungicidesusedinagroecosystems. Exam-plesincludespeciesofcosmopolitanoccurrence,suchasFusariumandAspergillus,which causediseasesinbothplantsandhumans.Thisreviewsummarizestheinformationabout themostimportanttriazolefungicidesthatarelargelyusedinhumanclinicaltherapyand agriculture.Weaimtodiscusstheissuesrelatedtofungicideresistanceandthe recom-mendedstrategiesforpreventingtheemergenceoftriazole-resistantfungalpopulations capableofspreadingacrossenvironments.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Correspondingauthorat:ProgramadePósGraduac¸ãoemMicrobiologiaAgrícolaedoAmbienteandProgramadePósGraduac¸ãoem

CiênciasFarmacêuticas,UniversidadeFederaldoRioGrandedoSul,PortoAlegre,Brazil. E-mail:alexandre.fuentefria@ufrgs.br(A.M.Fuentefria).

http://dx.doi.org/10.1016/j.bjm.2016.06.006

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Introduction

Fungicides are a key component in human therapy and thecontrolofplantdiseasescausedbyfungithatthreaten human health and crop production.1–5 Among the several

typesoffungicides,theazolegroup(triazoleand imidazole derivatives)was first introduced inthe 1970s.3 Sincethen,

azoles, especially the triazoles, have been widely used for thecontroloffungal diseasesofseveralplantsandhuman mycoses.6–8 As opposed to other systemic fungicides, the

specific site of action of triazoles is an inherent advan-tagethathasledtoimprovedcontrolefficacy ofthetarget fungus.9,10 However,experiencehasshownthatthese

com-poundsarepronetoresistanceinthepathogenicpopulation, especiallywithoutthe followingofrecommended practices that are aimed at prolonging the effectiveness of these fungicides.9,11,12

Inthiscontext,theefficacy oftriazolefungicidescanbe affected due to cross-resistance or when an isolate devel-ops resistance to all fungicides in a chemical group.13,14

Someauthorshavealsosuggestedthatcross-and multidrug-resistance may be driving forces in the development of resistanceinfungithatareattheinterfacesof agroecosys-tem,domestic,andhospitalenvironments.15,16 Forinstance, emergingfungiinclinicalenvironmentsincludesaprophytic orplantpathogenicfungithathavepreviouslyexposedto tri-azolefungicidesandendupspreadingintotheenvironment andinfectinghumans.6,17–19

Inthisminireview,wesummarizekeyaspectsofthe triaz-olesfortherapeuticuseanddiscussthepossiblelinkbetween triazole-resistantclinicalisolatesandthewidespreaduseof triazolefungicidesforthecontroloffungaldiseases,which wouldhaveamajorimpactinagriculture.

Basicaspectsandtherapeuticuseoftriazoles

Theazole fungicides are ofsynthetic origin and are char-acterized by the presence of an aromatic five-membered heterocycle.Theseincludetriazoles(twocarbon atomsand threenitrogenatoms),imidazoles(threecarbonatomsand twonitrogenatoms),andthiazoles(threecarbonatoms,one nitrogenatomandonesulfuratom).20Thecharacteristicsof

the azolerings, whichare distinguished bythe number of nitrogenandsulfuratoms, changethe physicaland chem-icalproperties, toxicity, and therapeuticefficacies of these compounds.21Therefore,theadditionofdifferentsubstitutes

tothepristine1,2,4-triazolemoleculeinfluencesitsfungicide orfungistaticeffect.

Triazoles affect the biosynthesis ofergosterol, a funda-mentalcomponent of the fungal cell plasma membrane.22

Themaintarget ofantifungalazole drugsislanosterol 14-␣ demethylase (Erg11 protein),a cytochrome P450 enzyme that is involved in the conversion of lanosterol to 4,4-dimethylcholesta-8(9),14,24-trien-3␤-ol.Theazoleagentslink tothisenzymeusingthearomaticfive-memberedheterocycle andtherebyinhibitthecytochromeP450catalyticactivity.9,23

Theabsence ofergosterol andthe increaseofintermediate compoundsalterfungal membraneintegrityaswellascell morphology,whichinhibitsfungalgrowth.24,25

Triazolesareamongthemostcommonsystemicfungicides usedinthecontrolofplantdiseases.Triazolesareabsorbed and translocated in the plant, wheretheyact preventively (beforeinfection)orcuratively(inthepresenceofsymptoms) byaffectinggermtubeandappressoriaformationor hausto-riadevelopmentand/ormycelialgrowth.26,27Bywideningthe

windowofprotectionbeyondprotectantfungicides,whichact onlypreventativelyandarenottranslocated,theadvantages oftriazolesrepresentabreakthroughinincreasingthe produc-tivityofvariouscropsaffectedbyfungaldiseases.2Arounda

thirdofallfungicidesusedfortheprotectionofcropyields includetriazoles,amongwhichmorethan99%areinhibitors ofdemethylation(DMI).28However,triazolefungicidesarealso

knowntopresentlong-termstability,allowingthemtoremain activeincertainecologicalniches,suchassoilandwater,for severalmonths.2,29

Thenumberofantifungalsavailableinthemedicalfieldfor thetreatmentofsystemicinfectionsisrelativelylimited com-paredtothoseusedforcontrollingdiseasesinplants,which ismainlyduetoproblemsrelatedtoerraticefficacy,drug tox-icity,andintrinsicresistance.30Thesecompoundsareusually

effectiveinbothtopicalandprophylactictreatmentsof inva-sivefungalinfections.31However,newtriazolesthatareless

toxic tohumans and withmorespecifictargets have been investigated.32–34Thefirstgenerationoftriazolesforhuman

therapy included itraconazoleand fluconazole.The second generationisrepresentedbyvoriconazoleandposaconazole, whichprovedtobelesstoxic,safer,andwithabroader spec-trum ofactivity, including activity against fungi that were resistanttothepreviousgeneration.35,36Presently,

isavucona-zole,ravuconazole,and albaconazolearebeinginvestigated inphaseIIIclinicaltrialsasextended-spectrumtriazoleswith fungicidalactivityagainstawidenumberofclinically impor-tantfungi.

Developmentandmonitoringoftriazoleresistance

Thedevelopmentofresistancetotriazolesasaresultof selec-tivepressurebythecontinueduseofregularorsub-regular dosagesoffungicideistypicallyquantitativeandexpressedby agradualchangeinthefrequencyofresistantisolates.10The

mainmechanisms involvedhave been reviewedandrelate to the overexpressionofthe CYP51gene duetomutations (insertions or duplications)in the promoter region and an increaseinmoleculareffluxbyABCtransporterscausedbythe overexpressionofgenescodingformembranetransport.9,37,38

Recently,a study that examinedA. fumigatusisolates from arangeofclinicalenvironmentssuggestedpointmutations ofCYP51andTR34/L98Hgenomicregionsinisolatesobtained

frompatientswithlongtermuseoftriazole-basedtherapyfor thetreatmentofchronicaspergillosis.16

Akey elementinthesustainableuse offungicidesisto monitorthesensitivityofthepathogenpopulationtoa cer-taincompound.39–41Thereareanumberofdirectandindirect

methodsrecommendedforspecificfungithatare aimedat estimatingtheEC50(effectiveconcentrationatwhich50%of

fungalgrowthisinhibited)andMIC(minimuminhibitory con-centration)values.10,42–45

In the medical field,the surveillance and preventionof resistance toantifungalagentshave been subjectto many

(3)

Table1–Pathogenicfungiwithintrinsicordevelopedresistancetotriazolesforhumantherapeuticuse.

Triazole Fungi References

Itraconazole Aspergillusfumigatus;Fusariumsolani;F.oxysporum;Zygomycetes;Candidaspp. 83–87,63

Fluconazole Candidaspp.;Saccharomycescerevisiae;Trichosporonspp.;Fusariumsolani;F.oxysporum; Scedosporiumspp.;Penicilliumspp.;Bipolarisaustraliensis;B.hawaiiensis;B.spicifera; Aspergillusspp.;Dermatophytes;Zygomycetes;dimorphicfungi;Cryptococcusneoformans

73,84,85,88–93

Voriconazole Aspergillusfumigatus;ZygomycetesTrichosporonspp.;Penicilliumspp. 86,87,94,95

Posaconazole Aspergillusfumigatus 96

Ravuconazole Fusariumsolani;F.oxysporum;Zygomycetes;Pseudallescheriaspp.;Scedosporiumspp.; Acremoniumspp.;Sporothrixschenckii;Scopulariopsisspp.;Paecilomycesspp.

20,34

Albaconazole Fusariumsolani;Zygomycetes 34

Isavuconazole Aspergillusfumigatus 97

restrictive actions in recent years. More specifically, the FDA (Food and Drug Administration) and the EMA (Euro-pean Medicines Agency) regulate and approve the use of antimicrobialsinNorthAmericaand Europe,respectively.46

Simultaneously,theClinicalandLaboratoryStandards Insti-tute(CLSI),together withthe Subcommittee on Antifungal SusceptibilityTesting(AFST)oftheEuropeanCommitteefor AntimicrobialSusceptibilityTesting(EUCAST),publishinvitro

testprotocolsperiodicallyformonitoringfungisensibilityto antifungalagentsofclinicalandveterinaryuse.Theseactions allowforthestandardizationofparametersfortheevaluation ofinvitroresistanceinthelaboratory.However,theseactions andprotocolsdonotinvolvethemonitoringofresistanceof plantpathogenicfungi,thuschallengingtheuseofantifungal agentsinclinicaltherapy.

Inagriculture,theFungicideResistanceActionCommittee (FRAC),a technicalgroup maintainedby the industry, pro-videsguidelinesforthemanagementoffungicideresistance, suchastheneedtoestimateabaselineresistancelevelin iso-latessampledfromthepopulationpriortothecommercialuse ofafungicide.47 During commercialuse, reportsoffailures

indiseasecontrolanddetectionofresistantisolates(those withsensitivitylevelslowerthanthebaseline)areindicators oftheriskofdevelopingfungicideresistance.47Periodically,

informationisprovidedbytheFRACabouttheriskofplant pathogensthatrangesfromlowtohigh.Currently,many stud-ies are known that reportsteadily increasingresistance to triazolesinplantpathogenicfungi.48

Triazoleresistanceinclinicalisolatesandagriculturaluse

In the medicalfield, the first reportof DMI’sresistance in

A. fumigatus isolates dates back more than three decades ago. However, the resistance to itraconazole by Aspergillus

spp. from the clinical environment was first reported in 1997 for three isolates obtained from California in the late1980s.49 Theprescription oftriazoles as a preferential

choice for the treatment of patients with respiratory dis-easeshasbeenconsideredtocontributetothedevelopment of resistance to this group of fungicides.10,50,51

Multidrug-resistance (MDR)52 is considered to be the cause of the

failure of a wide range of antifungal agents available on the market.53,54 As an emergent fungus in clinical

envi-ronments, A. fumigatus holds a history of cross-resistance andmulti-resistancetoazoles.55Itisprobablethatmillions

of people are not effectively treated due to infections by

fungiexhibitingantifungalresistance,amongwhich4.8 mil-lion cases are related only to the species of Aspergillus.56

The triazole antifungals commonly used in the medical field for the treatment of fungal diseases and pathogens that have exhibited some level of resistance are listed in

Table1.

Ithasbeenshownthatexposureofenvironmentalfungi to triazolefungicides may cause shiftsfrom susceptibleto resistant populations,especiallyintheabsence ofadaptive costs which may facilitatethe spread of resistant popula-tions into diverse environments.57 Thesurge of“emerging

fungi”inthemedicalfieldorfungithatareotherwiseharmless tohumans,suchasthezygomycetesandotherhyaline fila-mentousfungi,2,57hasledsomeauthorstohypothesizethat

othermechanismsmaybeleadingtoresistance,suchasthe largeamountoffungicidesusedinagroecosystems.7,58,59This

hypothesiswasinitiallysuggestedbystudiesconductedinthe Netherlands13 and later corroboratedby studiesconducted

inSpain,60Belgium,13Norway,13GreatBritain,61Denmark,62

France,63China,64Italy,65Austria,65andIndia.28

A few studies have jointly examined the sensitivity of isolatesthat cause diseases inbothplantsand humans to triazoles.Thesestudiessuggestedthattheselectionof fungi-cideswithasimilarmodeofactionasthoseusedinhuman drug therapyfortriazole-resistantisolatescould contribute tothe developmentofmulti-resistantpopulations.66,67 The

developmentofcross-resistancetotriazolesandthelow num-beroftriazolesrecommendedforhumantherapyrelativeto thehighnumber oftriazolesusedinagriculturemayaffect triazoleefficacyforhumantherapy.6,10Forinstance,the

fun-gusColletotrichumgraminicolathatcausesanthracnoseofcorn plants is an emerging pathogen in humans. Resistance to tebuconazoleaswellastomultipleotherazoleantifungalshas beenreportedinplantpathogenicpopulationsusedin clini-calmedicine.68,69 Similarly,cross-resistancetotriazoleswas

observedinclinicalisolatesofCandidaalbicansandagricultural environmentalyeasts.70

Several otherfungihavebeenfoundinassociationwith human and animal diseases, including species of several genera such as Bipolaris, Macrophomina, Aspergillus, Fusa-rium,AlternariaandMucor18,71–73(Table2).Thepathogenicity

of clinical isolates of the Fusarium solani species complex was confirmed in plants of the Cucurbitacea family, which exhibitedsimilaraggressivenesstoisolatesoriginatingfrom diseasedplants.17Criptococcusneoformansisalsofoundin

(4)

Table2–Maingeneraoffungireportedasthecausativeagentsofdiseasesinplantsandinhumans.

Genus Species References

Fusarium F.dimerum;F.verticilliodies;F.solani;F.oxysporium;F.gramminearum;F.poae;F. sporotrichoides;F.culmorum

18,98,99

Alternaria A.alternate 100,101

Aspergillus A.flavus;A.par B.asiticus;A.terreus

18,98,102–104

Curvularia C.lunata 105

Cladosporium C.cladosporioides 106,107

Colletotrichum C.gloeosporioides,C.coccodes 68,108

Mucor M.piriforms 109,110

Absidia Absidiaspp. 18,109

Rhizopus R.arrizhus 109,111

Macrophomina M.phaseolina 72

Bipolaris B.australiensis;B.hawaiiensis;B.spicifera 73,112

Fluconazoleisthemostprevalentclinicalantifungalusedto treatcryptococcosis.75However,thecontinueduseofthis

anti-fungalisanincreasingconcernduetothefrequencyofisolates resistanttotriazolesusedinhumantherapeuticuse.76There isaneedforattentiontoazoleresistanceandoptimal ther-apyin regionswith high incidenceofcryptococcosis, such as the Asian-Pacific region (5.1–22.6%), Africa/Middle-East (7.0–33.3%),andEurope(4.2–7.1%).77Inadditiontofluconazole

resistanceintheseregions,thenewpointofmutationinthe

ERG11geneofC.neoformansaffordedresistanceto voricona-zole(VRC).78Inthesecases,thespreadofisolatesexhibiting

resistancetotriazolesintotheenvironmentandthosecapable ofcausinghumandiseasesmayaffecttheefficacyof therapeu-ticcontrolwithfungicidesofthesamegroup,especiallyinthe presenceofcross-resistance.79

ThemutagenesisinTR34/L98Hinazole-resistantAspergillus

mayhaveoriginatedduetotheuseoftriazolefungicidesin agroecosystems.14,28,80Suchmutationwasdetectedin89%of

A.fumigatus-resistantisolatesfromairsamples,flowers,and soilsfromhospitalareas.6Microsatellitesequencingof

clin-icaland environmentalisolatesthat leadtothe TR34/L98H

mutationrevealedhighgenetichomology,whichsuggestsa commonancestor.6,13

Futuredirections

Triazoleantifungalslargelyusedinplantprotectionarealso importantas antifungaltreatments inthe human medical fieldeventhoughtheypossessingstructuraldifferences. How-ever,sensitivepopulationsthatco-inhabitenvironmentsmay bereducedbytheselectionofisolatesresistanttofungicides. Fungiarisingfromagriculturalecosystemsasopportunistic pathogensmaycarrycross-resistancetotriazolesusedinthe medicalfield.Therestrictednumberofantifungalagentsfor clinicaluse,whichcontrastswiththelargenumberof agricul-turalfungicideswithsimilarmodesofaction,maybearisk factorthatlimitsthesuccessofthetherapeuticuseofthese drugs.

Currently, genome-wide studies, together with novel T-cell-based therapeutic approaches forthe prophylaxis and treatmentofopportunisticfungalinfections,havepromising avenuesofresearchinthedetectionofpotentiallynew anti-fungal targets.81,82 Thus, differentstrategies should bethe

maingoalsofthepharmaceuticalindustry.

Giventhatthesearchfornewantifungaldrugsisalengthy process, the combination of drugs to achieve synergistic effectsiscurrentlyadoptedasanalternative.Thisapproach includesthecombinationofdrugswithdistinctmechanisms ofactionthatmayenhanceefficacybycombininglow concen-trationsofbothantifungalagents,thusdiminishingtherisk ofdevelopingresistance.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

The authors are thankful to the Coordenac¸ão de Aperfeic¸oamento de Pessoal de nível superior – CAPES forfinancialsupport.A.M.FuentefriaandH.S.Schrekkerare gratefultoCNPqforthePQfellowships.

r

e

f

e

r

e

n

c

e

s

1.HorsfallJG.Fungiandfungicides.Thestoryofa

nonconformist.AnnuRevPhytopathol.1975;13:1–14.

2.HofH.Criticalannotationstotheuseofazoleantifungals

forplantprotection.AntimicrobAgentsChemother.

2001;45:2987–2990.

3.RusselPE.Acenturyoffungicideevolution.JAgricSci.

2005;143:11–25.

4.DehneHW,DeisingHB,GisiU,KuckKH,RussellPE,LyrH.

Modern.Fungicidesandantifungalcompounds.In:

InternationalReinhardsbrunnSymposiumFriedrichroda,Vol.15.

2007:45–51.

5.SalamKP,TomasJG,BeardC,LoughmanR,MacLeodWJ,

SalamMU.Applicationofmeta-analysisinplantpathology:

acasestudyexaminingtheimpactoffungicidesonwheat

yieldlossfromtheyellowspot-septorianodorumblotch

diseasecomplexinWesternAustralia.FoodSecur.

2013;5:319–325.

6.SneldersE,HuisIn’tVeldRA,RijsAJ,KemaGH,Melchers

WJ,VerweijPE.Possibleenvironmentaloriginofresistance

ofAspergillusfumigatustomedicaltriazoles.ApplEnviron Microbiol.2009;75:4053–4057.

7.BrownGD,DenningDW,LevitzSM.Tacklinghumanfungal

(5)

8. CoolsHJ,FraaijeBA.Updateonmechanismsofazole

resistanceinMycosphaerellagraminicolaandimplicationsfor

futurecontrol.PestManageSci.2013;69:150–155.

9. MaZ,MichailidesTJ.Advancesinunderstandingmolecular

mechanismsoffungicideresistanceandmolecular

detectionofresistantgenotypesinphytopathogenicfungi.

CropProt.2005;24:853–863.

10.DeisingHB,ReimannS,PascholatiSF.Mechanismsand

significanceoffungicideresistance.BrazJMicrobiol.

2008;39:286–295.

11.McGrathMT.Fungicideresistanceincucurbitpowdery

mildew:experiencesandchallenges.PlantDis.

2001;85:237–245.

12.DenningDW,ParkS,Lass-FlorlC,etal.High-frequency

triazoleresistancefoundinnonculturableAspergillus

fumigatusfromlungsofpatientswithchronicfungal

disease.ClinInfectDis.2011;52:1123–1129.

13.SneldersE,vanderLeeHA,KuijpersJ,RijsAJMM,VargaJ.

EmergenceofazoleresistanceinAspergillusfumigatusand

spreadofasingleresistancemechanism.PLOSMed.

2008;5:1629–1637.

14.SneldersE,CampsSM,KarawajczykA,etal.Triazole

fungicidescaninducecross-resistancetomedicaltriazoles

inAspergillusfumigatus.PLoSONE.2012;7:e31801.

15.BowyerP,DenningDW.Environmentalfungicidesand

triazoleresistanceinAspergillus.PestManageSci.

2013;70:173–178.

16.LelièvreL,GrohM,AngebaultC,MaheraultAC,DidierE,

BougnouxME.AzoleresistantAspergillusfumigatus:an

emergingproblem.MedMalInfect.2013;43:139–145.

17.MehlHL,EpsteinL.Fusariumsolanispeciescomplexisolates

conspecificwithF.solanif.s:cucurbitaerace2fromnaturally

infectedhumanandplanttissueandenvironmental

sourcesareequallyvirulentonplants,growat37◦Candare

interfertile.EnvironMicrobiol.2007;9:2189–2199.

18.DeLuccaAJ.HarmfulfungiinbothAgricultureand

Medicine.RevIberoamMicol.2007;24:3–13.

19.KaurS,DhillonGS,BrarSK,ValladEG,ChandR,Chauhan

BV.EmergingphytopathogenMacrophominaphaseolina:

biology,economicimportanceandcurrentdiagnostic

trends.CritRevMicrobiol.2012;38:136–151.

20.CatalánM,MontejoJC.Antifúngicossistêmicos.

FarmacodinâmicaYFarmacocinética.RevIberoamMicol.

2006;23:39–49.

21.SheppardD,LampiresHW.Agentesantifúngicos.In:

KatzungBG,ed.FarmacologiaBásicaeCínica.RiodeJaneiro,

Brazil:McGrawHillInteramericanadoBrasil,Guanabara

Koogan;2008:707–714.

22.BrentKJ.FungicideResistanceinCropPathogens,HowCanitbe

Managed.Brussels:GlobalCropProtectionFederation;1995.

23.BecherR,WirselSGR.FungalcytochromeP450sterol

14␣-demethylase(CYP51)andazoleresistanceinplantand

humanpathogens.ApplMicrobiolBiotechnol.2012;95:

825–840.

24.BecherR,HettwerU,KarlovskyP,DeisingHB,WirselSGR.

AdaptationofFusariumgraminearumtotebuconazole

yieldeddescendantsdivergingforlevelsoffitness,

fungicideresistance,virulence,andmycotoxinproduction.

Phytopathology.2010;100:444–453.

25.SerflingS,OrdonF.Virulenceandtoxinsynthesisofan

azoleinsensitiveFusariumculmorumstraininwheat

cultivarswithdifferentlevelsofresistancetoFusarium

headblight(FHB).PlantPathol.2014;63:1230–1240.

26.BuchenauerH.Mechanismofactionoftriazolylfungicides

andrelatedcompounds.In:LyrH,ed.ModernSelective

Fungicides:Properties,Applications,MechanismsofAction.

Harlow,UnitedKingdom:LongmanScientificand

Technical;1987:205–231.

27.PontzenR,ScheinpflugH.Effectsoftriazolefungicideson

sterolbiosynthesisduringsporegerminationofBotrytis

cinerea,VenturiainaequalisandPucciniagraminisfs:tritici.

Netherlands.JPlantPathol.1989;95:151–160.

28.ChowdharyA,KathuriaS,RandhawaHS,GaurSN,Klaassen

CH.Isolationofmultiple-triazole-resistantAspergillus

fumigatusstrainscarryingtheTR/L98Hmutationsinthe

cyp51AgeneinIndia.JAntimicrobChemother.

2012;67:362–366.

29.HameyPY,HarrisCA.Thevariationofpesticideresiduesin

fruitsandvegetablesandtheassociatedassessmentofrisk.

RegulToxicolPharmacol.1999;30:34–41.

30.BergoldAM,GeorgiadisS.Novidadesemfármacos

antifúngicos:umarevisãonewantifungicdrugs:areview.

VisãoAcad.2004;5:159–172.

31.HayR.Antifungaldrugs.In:KatsambasA,LottiT,eds.

EuropeanHandbookofDermatologicalTreatments.Berlin,

Germany:Springer;2003:700–710.

32.Carrillo-MunõzAJ,GiusianoG,EzcurraPA,QuindózG.

Antifungalagents:modeofactionyeast’scell.RevEsp

Quimioter.2006;19:130–139.

33.GirmeniaC.Newgenerationazoleantifungalsinclinical

investigation.ExpertOpinInvestigDrugs.2009;18:1279–1295.

34.PasqualottoAC,ThieleKO,GoldaniLZ.Noveltriazole

antifungaldrugs:focusonisavuconazole,ravuconazoleand

albaconazole.CurrOpinInvestigDrugs.2010;11:165–174.

35.ThompsonGR,CadenaJ,PattersonTF.Overviewof

antifungalagents.ClinChestMed.2009;30:203–215.

36.VandeputteV,FerrariS,CosteAT.Antifungalresistanceand

newstrategiestocontrolfungalinfections.IntJMicrobiol.

2012;713687:1–26.

37.ColemanJJ,MylonakisE.Effluxinfungi:lapiècede

résistance.PLoSONE.2009;5:1–7.

38.AmmarGA,TryonoR,DoK,KarlovskyP,DeisingHB,Wirsel

SGR.IdentificationofABCtransportergenesofFusarium

graminearumwithrolesinazoletoleranceand/orvirulence.

PLoSONE.2013;8:2–13.

39.ParnellS,vandenBoschF,GilliganCA.Large-scale

fungicidesprayheterogeneityandtheregionalspreadof

resistantpathogenstrains.Phytopathology.2006;96:549–555.

40.SuzukiF,YamaguchiJ,KobaA,NakajimaT,AraiM.Changes

infungicideresistancefrequencyandpopulationstructure

ofPyriculariaoryzaeafterdiscontinuanceofMBI-D

fungicides.PlantDis.2010;94:329–334.

41.VanderHeydenH,DutilleulP,BrodeurL,CarisseO.Spatial

distributionofsinglenucleotidepolymorphismsrelatedto

fungicideresistanceandimplicationsforsampling.

Phytopathology.2014;104:604–613.

42.EdgingtonLV,KhnwKL,BarronGL.Fungitoxicspectrumof

benzimidazolecompounds.Phytopathology.1971;61:42–44.

43.LiuX,YinY,WuJ,JiangJ,MaZ.Identificationand

characterizationofcarbendazim-resistantisolatesof

Gibberellazeae.PlantDis.2010;94:1137–1142.

44.SpoltiP,JorgeBC,DelPonteEM.SensitivityofFusarium

graminearumcausingheadblightofwheatinBrazilto

tebuconazoleandmetconazolefungicides.TropPlantPathol.

2012;37:419–423.

45.SpoltiP,DelPonteEM,DongY,CummingsJA,BergstromGC.

Triazolesensitivityinacontemporarypopulationof

FusariumgraminearumfromNewYorkwheatand

competitivenessofatebuconazole-resistantisolate.Plant

Dis.2014;98:607–613.

46.AparicioJF,MendesMV,AntónN,RecioE,MartínJF.

Polyenemacrolideantiobioticbiosynthesis.CurrMedChem.

2004;1:645–1656.

47.BrentKJ,HollomonDW.Fungicideresistanceincrop

pathogens:howcanitbemanaged?FRACMonographn.1.

(6)

48.FRAC.FRACcodlist.FRACinformation:listofresistance. Availablein:http://www.frac.brasil.org.br(accessed 05.05.15).

49.DenningDW,VenkateswarluK,OakleyKL,AndersonMJ,

ManningPJ,StevensDA.Itraconazoleresistancein

Aspergillusfumigatus.AntimicrobAgents.1997;41:1364–1368.

50.ShaoPL,HuangLM,HsuehPR.Recentadvancesand

challengesinthetreatmentofinvasivefungalinfections.

IntJAntimicrobAgents.2007;6:487–495.

51.GoreRB.Theutilityofantifungalagentsasthma.CurrOpin

PulmMed.2010;16:36–41.

52.GulshanK,Moye-RowleyWS.Multidrugresistanceinfungi.

EukaryotCell.2007;6:1933–1942.

53.FischbachMA,WalshCT.Antibioticsforemerging

pathogens.Science.2009;325:1089–1093.

54.PfallerMA,DiekemaDJ.Progressinantifungal

susceptibilitytestingofCandidasp.:byuseofclinicaland

laboratorystandardsinstitutebrothmicrodilution

methods,2010to2012.JClinMicrobiol.2012;50:2846–2856.

55.HowardSJ,WebsterI,MooreCB,GardinerRE,ParkS,Perlin

DS.Multi-azoleresistanceinAspergillusfumigatus.IntJ

AntimicrobAgents.2006;28:450–453.

56.DenningD,PleuvryA,ColeD.GlobalburdenofABPAin

adultswithasthmaanditscomplicationchronic

pulmonaryaspergillosisinadults.MedMycol.

2013;51:361–370.

57.VerweijE,KemaGH,ZwaanB,MelchersWJ.Triazole

fungicidesandtheselectionofresistancetomedical

triazolesintheopportunisticmouldAspergillusfumigatus.

PestManageSci.2013;69:165–170.

58.RupingMJGT,VehreschilJJ,CornelyOA.Patientsathighrisk

ofinvasivefungalinfections:whenandhowtotreat.Drugs.

2008;68:1941–1962.

59.TobudicS,KratzerC,PresterlE.Azole-resistantCandidasp.:

emergingpathogens.Mycoses.2012;55:24–32.

60.Rodriguez-TudelaJL,Alcazar-FuoliL,MelladoE,

Alastruey-IzquierdoA,MonzonA,Cuenca-EstrellaM.

Epidemiologicalcutoffsandcross-resistancetoazoledrugs

inAspergillusfumigates.AntimicrobAgentsChemother.

2008;52:2468–2472.

61.HowardSJ,PasqualottoAC,DenningDW.Azoleresistance

inallergicbronchopulmonaryaspergillosisandAspergillus

bronchitis.ClinMicrobiolInfect.2010;16:683–688.

62.MortensenKL,MelladoE,Lass-FlörlC,Rodriguez-TudelaJL,

JohansenHK.Environmentalstudyofazole-resistant

AspergillusfumigatusandotheraspergilliinAustria,

Denmark,andSpain.AntimicrobAgentsChemother.

2010;54:4545–4549.

63.BurgelPR,BaixenchMT,AmsellemM,AudureauE,Chapron

J,KanaanR.Highprevalenceofazole-resistantAspergillus

fumigatusinadultswithcysticfibrosisexposedto

itraconazole.AntimicrobAgentsChemother.2012;56:869–874.

64.LockhartSR,FradeJP,EtienneKA,PfallerMA,DiekemaDJ,

BalajeeSA.AzoleresistanceinAspergillusfumigatusisolates

fromtheARTEMISglobalsurveillancestudyisprimarily

duetotheTR/L98Hmutationinthecyp51Agene.Antimicrob

AgentsChemother.2011;55:4465–4468.

65.VanderLindenJW,ArendrupMC,VerweijPE.

SCARE-Network.ProspectiveInternationalSurveillanceofAzole ResistanceinAspergillusfumigatus(SCARE-Network).Chicago,

USA:ICAAC;2011.

66.MeneauI,SanglardD.Azoleandfungicideresistancein

clinicalandenvironmentalAspergillusfumigatusisolates.

MedMycol.2005;43:307–311.

67.DrummondDE,ReimãoJQ,DiasALT,SiqueiraAM.

Comportamentodemostrasambientaiseclínicasde

Cryptococcusneoformansfrenteafungicidasdeuso

agronômicoeaofluconazol.RevSocBrasMedTrop.

2007;2:209–211.

68.O’QuinnRP,HoffmanJL,BoydAS.Colletotrichumspeciesas

emergingopportunisticfungalpathogens:areportof3

casesofphaeohyphomycosisandreview.JAmAcad

Dermatol.2001;l45:56–61.

69.SerflingA,WohlrabJ,DeisingHB.Treatmentofaclinically

relevantplantpathogenicfunguswithanagriculturalazole

causescross-resistancetomedicalazolesandpotentiates

caspofunginefficacy.AntimicrobAgentsChemother.

2007;51:3672–3676.

70.MüllerFM,StaudigelA,SalvenmoserS,TredupA,

MiltenbergerR,HerrmannJV.Cross-resistancetomedical

andagriculturalazoledrugsinyeastsfromtheoropharynx

ofhumanimmunodeficiencyviruspatientsandfrom

environmentalBavarianvinegrapes.AntimicrobAgents

Chemother.2007;51:3014–3016.

71.MehannaHM,KuoT,ChaplinJ,TaylorG,MortonRP.Fungal

laryngitisinimmunocompetentpatients.JLaryngolOtol.

2004;118:379–381.

72.SrinivasanA,WickesBL,RomanelliAM,DebelenkoL,

RubnitzJE.CutaneousInfectioncausedbyMacrophomina

phaseolinainachildwithacutemyeloidleukemia.JClin Microbiol.2009;47:1969–1972.

73.CunhaKC,SuttonDA,FothergillAW,etal.Diversityof

BipolarisspeciesinclinicalsamplesintheUnitedStatesand

theirantifungalsusceptibilityprofiles.JClinMicrobiol.

2012;50:4061–4066.

74.ChowdharyA,RandhawaHS,SundarG,etal.Invitro

antifungalsusceptibilityprofilesandgenotypesof308

clinicalandenvironmentalisolatesofCryptococcus

neoformansvar.grubiiandCryptococcusgattiiserotypeBfrom

north-westernIndia.JMedMicrobiol.2011;60:961–967.

75.GulloFP,RossiSA,SardiJdeC,TeodoroVL,

Mendes-GianniniMJ,Fusco-AlmeidaAM.Cryptococcosis:

epidemiology,fungalresistance,andnewalternativesfor

treatment.EurJClinMicrobiolInfectDis.2013;32:1377–1391.

76.PaulS,DoeringTL,Moye-RowleyWS.Cryptococcus

neoformansYap1isrequiredfornormalfluconazoleand

oxidativestressresistance.FungalGenetBiol.2015;74:

1–9.

77.PfallerMA,DiekemaDJ,GibbsDL,etal.Resultsfromthe

ARTEMISDISKGlobalAntifungalSurveillanceStudy,1997

to2007:10-yearanalysisofsusceptibilitiesofnoncandidal

yeastspeciestofluconazoleandvoriconazoledetermined

byCLSIstandardizeddiskdiffusiontesting.JClinMicrobiol.

2009;47:117–123.

78.SionovE,LeeH,ChangYC,Kwon-ChungKJ.Cryptococcus

neoformansovercomesstressofazoledrugsbyformationof

disomyinspecificmultiplechromosomes.PLoSPathog.

2010;6:1–13.

79.WilliamsDA,LemkeTL.Foye’sPrinciplesofMedicinal

Chemistry.5aed.NewJersey,USA:Philadelphia,Lippincot

WilliamsandWilkins;2002.

80.SinghPK,GaurSN,HagenF,etal.Possibleenvironmental

originofresistanceofAspergillusfumigatustomedical

triazoles.ApplEnvironMicrobiol.2009;75:4053–4057.

81.BarreraA,Alastruey-IzquierdoA,MartínMJ,CuestaI,

VizcaínoJA.Analysisoftheproteindomainanddomain

architecturecontentinfungianditsapplicationinthe

searchofnewantifungaltargets.PLoSComputBiol.

2014;10:1–16.

82.ManciniN,MarroneL,ClementiN,SauttoGA,ClementiM,

BurioniR.AdoptiveT-celltherapyinthetreatmentofviral

andopportunisticfungalinfections.FutureMicrobiol.

2015;10:665–682.

83.Alastruey-IzquierdoA,Cuenca-EstrellaM,Monzón,Emilia

MelladoA,Rodríguez-TudelaJL.Antifungalsusceptibility

profileofclinicalFusariumspp.isolatesidentifiedby

molecularmethods.JAntimicrobChemother.2008;61:

(7)

84.HowardSJ,CerarD,AndersonMJ,AlbarragA,FisherMC.

FrequencyandevolutionofazoleresistanceinAspergillus

fumigatusassociatedwithtreatmentfailure.EmergInfectDis.

2009;15:1068–1076.

85.AlmeidaLMM,SouzaEAF,BianchinDB,SvidzinskiTIE.

Respostainvitrodefungosagentesdemicosescutâneas

frenteaosantifúngicossistêmicosmaisutilizadosna

dermatologia.AnBrasDermatol.2009;84:249–255.

86.BeernaertLA,PasmansF,VanWaeyenbergheL,etal.Avian

Aspergillusfumigatusstrainsresistanttobothitraconazole

andvoriconazole.AntimicrobAgentsChemother.

2009;53:2199–2201.

87.DotaKFD,FreitasAR,ConsolaroMEL,SvidzinskiTIE.A

challengeforclinicallaboratories:detectionofantifungal

resistanceinCandidaspeciescausingvulvovaginal

candidiasis.LabMed.2011;42:87–93.

88.SanguinettiM,PosteraroB,FioriB,RannoS,TorelliR,Fadda

G.Mechanismsofazoleresistanceinclinicalisolatesof

Candidaglabratacollectedduringahospitalsurveyof

antifungalresistance.AntimicrobAgentsChemother.

2015;49:668–679.

89.QuinteroCHG.ResistenciadelevadurasdelgéneroCandida

alfluconazolCandidayeast’sresistancetofluconazol.

Infectio.2010;14:172–180.

90.CheongJW,McCormackJ.Fluconazoleresistancein

cryptococcaldisease:emergingorintrinsic.MedMycol.

2013;51:261–269.

91.AdimiP,HashemiSJ,MahmoudiM,etal.In-vitroactivityof

10antifungalagentsagainst320dermatophytestrains

usingmicrodilutionmethodinTehran.IJPR.

2013;12:537–545.

92.WangJF,XueY,ZhuXB,FanH.Efficacyandsafetyof

echinocandinsversustriazolesfortheprophylaxisand

treatmentoffungalinfections:ameta-analysisofRCTs.Eur

JClinMicrobiolInfectDis.2015;34:651–659.

93.HashemiSM,BadaliH,FaramarziMA,etal.Noveltriazole

alcoholantifungalsderivedfromfluconazole:design,

synthesis,andbiologicalactivity.MolDivers.2015;19:15–27.

94.VanderLindenJW,JansenRR,BrestersD,etal.

Azole-resistantcentralnervoussystemaspergillosis.Clin

InfectDis.2009;48:1111–1113.

95.ChowdharyA,KathuriaS,AgarwalK,etal.

Voriconazole-resistantPenicilliumoxalicum:anemerging

pathogeninimmunocompromisedhosts.OpenForumInfect

Dis.2014;1:1–7.

96.ChoukriF,BotterelF,SitterléE,etal.Prospectiveevaluation

ofazoleresistanceinAspergillusfumigatusclinicalisolates

inFrance.MedMycol.2015;53:593–596.

97.GregsonL,GoodwinJ,JohnsonA,etal.Invitrosusceptibility

ofAspergillusfumigatustoisavuconazole:correlationwith

itraconazole,voriconazole,andposaconazole.Antimicrob

AgentsChemother.2013;57:5778–5780.

98.NaikerS,OdhavB.Mycotickeratitis:profileofFusarium

speciesandtheirmycotoxins.Mycoses.2004;47:50–56.

99.MehlHL,EpsteinL.Sewageandcommunityshowerdrains

areenvironmentalreservoirsofFusariumsolanispecies

complexgroup1,ahumanandplantpathogen.Environ

Microbiol.2008;10:219–227.

100.BrandtME,WarnockDW.Epidemiology,clinical

manifestations,andtherapyofinfectionscausedby

dematiaceousfungi.JChemother.2003;2:36–47.

101.ChhabraV,RastogiS,BaruaM,KumarS.Alternaria

alternatainfectionassociatedosteomyelitisofmaxilla:a

rarediseaseentity.IndianJDentRes.2013;24:639–641.

102.DienerUL,ColeRJ,SandersTH,PayneGA,LeeLS,KlichMA.

EpidemiologyofaflatoxinformationbyAspergillusflavus.

AnnuRevPhytopathol.1987;25:249–270.

103.AbbasHK,WilliamsWP,WindhamGL,PringleCH,XieW,

ShierWT.Aflatoxinandfumonisincontaminationof

commercialcorn(Zeamays)hybridsinMississippi.JAgric

FoodChem.2002;50:5246–5254.

104.Lass-FlorlC,MayrA,PerkhoferS,etal.Activitiesof

antifungalagentsagainstyeastsandfilamentousfungi:

assessmentaccordingtothemethodologyoftheEuropean

CommitteeonAntimicrobialSusceptibilityTesting.

AntimicrobAgentsChemother.2008;52:3637–3641.

105.NaviSS,BandyopadhyayR,ReddyRK,ThakurRP,YangXB.

Effectsofwetnessdurationandgraindevelopmentstages

onsorghumgrainmoldinfection.PlantDis.2005;89:872–878.

106.TournasVH.Spoliageofthevegetablecropsbybacteriaand

fungiandrelatedhealthhazards.CritRevMicrobiol.

2005;31:33–44.

107.WeiklF,RadlV,MunchJC,PritschK.Targetingallergenic

fungiinagriculturalenvironmentsaidstheidentificationof

majorsourcesandpotentialrisksforhumanhealth.Sci

TotalEnviron.2015;25:223–230.

108.CanoJ,GuarroJ,MolecularGenéJ.Morphological

identificationofColletotrichumspeciesofclinicalinterest.J

ClinMicrobiol.2004;42:2450–2454.

109.KobayashiM,HirumaM,MatsushitaA,KawaiM,OgawaH,

UdagawaS.Cutaneouszygomycosis:acasereportand

reviewofJapanesereports.Mycoses.2001;44:311–315.

110.MiceliMH,LeeSA.Emergingmoulds:epidemiological

trendsandantifungalresistance.Mycoses.2011;54:666–678.

111.CornelyOA.AspergillustoZygomycetes:causes,risk

factors,prevention,andtreatmentofinvasivefungal

infections.Infection.2008;6:296–313.

112.ElKhizziN,BakheshwainS,BipolarisParvezS.Aplant

pathogencausinghumaninfections:anemergingproblem

Referências

Documentos relacionados

Os consultores externos se destacaram como atores na promoção da inovação, um consultor é responsável pela captação de matéria-prima; o segundo consultor é

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

24. O Estado exportador de capitais pode regulamentar a liquidação dos investimentos de seus nacionais em território estrangeiro, mas a competência para a sua efetivação

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Para tanto foi realizada uma pesquisa descritiva, utilizando-se da pesquisa documental, na Secretaria Nacional de Esporte de Alto Rendimento do Ministério do Esporte

social assistance. The protection of jobs within some enterprises, cooperatives, forms of economical associations, constitute an efficient social policy, totally different from