• Nenhum resultado encontrado

Virus isolation and genotype identification of human respiratory syncytial virus in Guizhou Province, China

N/A
N/A
Protected

Academic year: 2021

Share "Virus isolation and genotype identification of human respiratory syncytial virus in Guizhou Province, China"

Copied!
8
0
0

Texto

(1)

w w w . e l s e v i e r . c o m / l o c a t e / b j i d

The

Brazilian

Journal

of

INFECTIOUS

DISEASES

Original

article

Virus

isolation

and

genotype

identification

of

human

respiratory

syncytial

virus

in

Guizhou

Province,

China

Ting

Zhao

a,b,∗

,

Zhixu

Ye

c,d

,

Binlin

Wang

e

,

Yuxia

Cui

c

,

Yingjie

Nie

b,d

,

Bin

Yang

b,d

,

Kun

Chen

b,d

,

Hua

Zhang

f

,

Fangfang

Hu

f

,

Fuxun

Yu

b,d aGuizhouUniversity,MedicalCollege,Guiyang,China

bGuizhouUniversity,GuizhouProvincialPeople’sHospital,DepartmentofCentralLaboratory,GuiyangChina cGuizhouUniversity,GuizhouProvincialPeople’sHospital,DepartmentofPediatrics,Guiyang,China

dGuizhouProvincialPeople’sHospital,NHCKeyLaboratoryofPulmonaryImmunologicalDiseases,Guiyang,China ePeople’sHospitalofQianNan,DepartmentofClinicalLabotatory,GuizhouProvince,China

fGuizhouUniversity,GuizhouProvincialPeople’sHospital,DepartmentofClinicalLaboratory,Guiyang,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received24June2019

Accepted6October2019

Availableonline14November2019

Keywords:

Humanrespiratorysyncytialvirus

Virusisolation RT-PCR HVR2 Phylogeneticanalysis Molecularepidemiology

a

b

s

t

r

a

c

t

ToinvestigatethegeneticvariationandmolecularepidemiologycharacteristicsofHuman

RespiratorySyncytialVirus(HRSV)inGuizhouProvince,nasopharyngealaspirateswere

col-lectedfrompatientswithacuterespiratoryinfection(ARI)inGuizhouProvincialPeople’s

Hospital,fromDecember2017toMarch2018,andinoculatedtoHep-2cellstoisolateHRSV.

Cellsthatshowedcytopathiceffect(CPE)werethenconfirmedbyindirect

immunofluores-cenceassayandreversetranscription.ThesequenceofthePCRproductswasdetermined

forHRSVisolates,andthegeneticvariationwasanalyzed.Outof196nasopharyngeal

aspi-ratesamples,HRSVwereisolatedin39.Thesecondhypervariableregionatthe3terminal

ofglycoprotein gene(HVR2)sequenceanalysisshowedthatsubgroupAwasdominant.

Seventy-ninepercentofthe isolatesbelongedto subgroupA, ON1genotype,and21 %

belongedtosubgroupB,BA9genotype,whichindicatesthatthedominantHRSVcirculating

inGuizhouProvincewassubgroupA,genotypeON1,co-circulatingwithalessprevalent

subgroupB,genotypeBA9.

©2019SociedadeBrasileiradeInfectologia.PublishedbyElsevierEspa ˜na,S.L.U.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Abbreviations: HRSV, Human respiratory syncytial virus;ARI, Acute respiratory infection; CPE,Cytopathic effect; IFA, Indirect

immunofluorescenceassay;RT-PCR,Reversetranscriptionpolymerasechainreaction;HVR2,Thesecondhypervariableregion.

Correspondingauthors.

E-mailaddress:1577065205@qq.com(T.Zhao).

https://doi.org/10.1016/j.bjid.2019.10.007

1413-8670/©2019SociedadeBrasileiradeInfectologia.PublishedbyElsevierEspa ˜na,S.L.U.ThisisanopenaccessarticleundertheCC

(2)

Introduction

Human Respiratory Syncytial Virus (HRSV) is one of the

most important pathogens causing acute respiratory tract

Infections(ARI)ininfants,elderly,andimmunocompromised

peopleworldwide.1,2 HRSVinfectioniscommon,withmore

than 90 %ofchildreninfectedbefore the ageoftwo, with

0.5%–2% of cases requiring hospitalization due to severe

symptoms.3In2015,Shietal.4,5 estimatedthat33.1million

casesofHRSVARIoccurredinchildrenunderfive,including

3.2millionhospitalizationsand59,600in-hospitaldeaths.The

costsassociatedwiththeHRSVinfectionarehighduetolack

ofalicensedvaccineandspecifictreatment.6

HRSV is a single-negative-strand RNA virus belonging

to the Paramyxoviridae family genus pneumoviridae.7 The

genomicRNAofHRSVhasabout15,200nucleotidesinlength

containing10genes,whichareNS1,NS2,N,P,M,SH,G,F,M2,

andL,expressing11proteins.Amongthem,proteinGisone

oftheimportantantigensagainstwhichthehostoften

tar-getstoproduceprotectiveantibodies.However,theviruscan

escapehost’s immuneresponsethrough antigenmutation,

whichis animportantcause ofrecurrent HRSVinfection.8

HRSVisdividedintotwosubtypes,AandB;variabilityamong

thesesubtypesisconcentratedintwohighlyvariableregions

thatispartoftheextracellulardomainofproteinG.

Accord-ingtothesequenceofasecondhypervariableregion(HVR2)

withintheGgene,thetwogroupsofHRSVarefurtherdivided

intogenotypes.4,9 Inrecentyears,themostcommon

geno-typesworldwidehavebeentheON1genotypeofsubgroupA

andtheBAgenotypeofsubgroupB.1,10–13

Guizhou Provinceis locatedinthe southeastern part of

southwest China, with jurisdiction over nine prefectures,

amongthemthreearetheminorityautonomousprefectures,

andthecapitalcityisGuiyang.GuizhouProvinceisa

multi-ethnicprovincewithatotalof56ethnicgroupswithethnic

minoritiesaccountingfor39%oftheprovince’stotal

popu-lation.Someoftheminoritiesliveinisolatedtribes.Henceit

isimportanttostudythemolecularepidemiccharacterand

theevolutionofHRSVinGuizhouProvince.Someprovinces

inChinahavereportedthegeneticvariationcharacteristicsof

HRSV,butGuizhouProvincelackssuchbasicdata.14–20Inorder

tounderstandtheHRSVinfectionsituationandthe

molecu-larepidemiccharacteristicsofHRSVinGuizhouProvince,we

carriedoutHRSVisolationfrompatientswithARIagedless

thanfiveyearsoldinGuiyang,fromDecember2017toMarch

2018,andanalyzedtheHVR2sequenceoftheGgeneofthe

isolates.Thisstudyprovidesthebasicdatafortheprevention

andcontrolofHRSVinGuizhouProvince.

Methods

Clinicalsamples

Nasopharyngealaspirates were collected from hospitalized

children under five years old with ARI, mainly presenting

withbronchiolitisorpneumonia,inGuizhouProvincial

Peo-ple’sHospitalfromDecember2017toMarch2018.Thestudy

wasapprovedbytheEthicsCommitteesofGuizhouProvincial

People’sHospital(approvalnumber:2017105).

IsolationofHRSV

The nasopharyngeal aspirates were treated with penicillin

(100units/mL) and streptomycin (100␮g/mL) before being

inoculatedtoHep-2cells(ATCC)culturedinDulbecco’s

modi-fiedEagle’smedium(DMEM;GIBCO,CA)supplementedwith2

%fetalbovineserum(FBS;GIBCO).Thecytopathiceffect(CPE)

of inoculatedHep-2 cells was observedeveryday forseven

days.CPEnegativesamplesattheseventhdayafter

inocula-tionwereblindlyinoculatedfortwoconsecutivepassagesand

CPEpositivesamplesrecordedandstoredat−80◦Cforfuture

use.

Indirectimmunofluorescenceassay

CPEpositiveanduninfected(mock)Hep-2cellsweredigested

by 0.02 % EDTA, spotted to eightwell glass slide(MP

Bio-chemicals, CA, USA)separately. Theslideswere fixedwith

coldacetoneafterairdryingthecells.Afterblockingwith3%

BSAforonehouratroomtemperature,theslideswere

incu-batedwithsheepanti-HRSVIgGantibody(1:500,Millipore)at

37◦CforonehourfollowedbywashingthreetimeswithPBS,

the slideswere reacted with AlexaFluor 488labelled

anti-sheepIgG(1:500,Invitrogen)atroomtemperatureforonehour.

AfteradditionalthreewasheswithPBS,theslideswereair

dried,sealedwithmountingmediumforfluorescence(Vector

Laboratories,Inc.).Thesamplesweresubsequentlyexamined

usingafluorescencemicroscope.

Reversetranscription,PCRandsequencinganalysis

Total RNA was extracted from 500␮L of the viral isolates

culturefluidwithTrizol(Invitrogen)accordingtothe

manu-facturer’sinstructions.21Reversetranscriptionwasperformed

at25◦Cfor10minand37◦Cfor60min,inareactionmixture

containing11␮LofRNA,4␮Lof5×FirstStrandBuffer

(Invit-rogen),1mLof100mMDTT,1␮Lof10mMdNTPMix,1␮Lof

RNaseinhibitor(TaKaRa),1␮Lofrandomprimersand1␮Lof

superscriptIII(Invitrogen)inafinalvolumeof20␮L.

NestedPCRwas carriedout withtwosetsofprimersto

amplifythethreeprimeendofHRSV10Ggeneforallthe

iso-lates.ForthefirstamplificationforwardSH1(5

CACAGTKACT-GACAAYAAAGGAGC) and reverse F164(5

GTTATGACACTG-GTATACCAACC) primers were used, followed by a second

amplification with ABG490 (5

ATGATTWYCAYTTTGAAGT-GTTC)andF9AB(5CAACTCCATKRTTATTTGCC)primerpair.6

One␮Lofthereversetranscriptionreactionmixturewasused

forthefirst amplification,whereas1␮Lofthefirst

amplifi-cationmixture wasused forthe second PCR. PCRreaction

mixturescontained10×LAPCRbuffer,1mMMgCL,2.5mM

ofeachdNTPMix,0.25␮MofeachprimerandfiveunitsofLA

Taqpolymerase(TaKaRa).PCRconditionsforthefirst

amplifi-cationwere:94◦Cfortwominutes,34cyclesof:94◦Cfor30s,

55◦Cfor30sand72◦Cforoneminuteand20s.One␮Lofthe

firstamplificationmixturewasusedforthesecondPCR,which

wasperformedusingthesamereactionmixtureat55◦Cbut

(3)

oneminute.Theamplificationproductswereseparatedona

1%agarosegel.

GelpurifiedPCRproductswereusedtosetupthe

sequenc-ingreactionsusingtheABG490andF9ABprimerstheBigDye

Terminator v3.1 Cycle Sequencing Kit (ThermoFisher

Sci-entific, USA) according to the manufacturer’s instructions.

Sequencingandsequenceanalysiswereperformedona3730

GeneticAnalyzer(ThermoFisherScientific,USA).

Homologyanalysis

The obtained sequence alignments were performed using

CLUSTALW. The nucleotide sequences of subgroup A

and B viruses were confirmed by using BioEdit software

(http://www.mbio.ncsu.edu/BioEdit/)and homologyanalysis

wasconductedusingDNASTARsoftware.22

Phylogeneticanalysis

Phylogenetic trees of the G protein were performed using

CLUSTALW.Thenucleotidesequences ofsubgroupAand B

viruseswereconfirmedusingBioEditsoftwareandhomology

analysiswasdoneusingDNASTAR.9 Bootstrap probabilities

werecalculatedafter1000iterationstoevaluateconfidence

estimatesand bootstrap valuesforviruseswere confirmed

usingBioEditsoftware.Homologybetweengenotypeswere

estimatedusingtheMEGAp-distancemethod,which

calcu-latesproportion(p)ofnucleotidesitesatwhichtwosequences

beingcomparedaredifferent.6

Analysisofdeducedaminoacidsequences

Deduced amino acid sequences were generated using

ORFfinder(https://www.ncbi.nlm.nih.gov/orffinder/)andthe

obtainedaminoacidsequenceswereanalyzedusing

DNAS-TARforhomologyanalysis.BioEditwasusedtocomparethe

aminoacidsequencesoftheHVR2withtheprototypestrain.

Results

HRSVisolationandidentification

FromDecember2017toMarch2018,wecollected196

nasopha-ryngealaspiratessamplesfrompatientswithARIsinGuizhou

Province,forHRSVvirusisolationbyHep-2cellinoculation.

HRSVpositiveisolatesshowedtypicalCPE.Theinfectedcells

becameroundandfusedtogetherforminggiantcells(Fig.1A

andB).Outofthe196samples,weobtained39(19.90%)HRSV

isolates.IFAresultsshowedthatalltheisolateswerereactive

toanti-HRSVantibody(Fig. 1Cand D). RT-PCRresults

con-firmedthatthese isolateswerepositive forHRSV.ThePCR

productsoftheseisolatesweresentforsequencingandthe

resultsshowed31strains(79%)ofsubgroupAandeightstrains

(21%)ofsubgroupB.

Homologyanalysis

ThegenesequencesobtainedbysequencingthePCRproducts

wereconfirmedwithBioEditandwerecomparedwithA2and

Fig.1–Cytopathiceffectandindirectimmunofluoresence testofHRSVisolatesonHep-2cells.A,MockHep-2cell;B, IsolateGZA17-01infectedHep-2cells;C,Indirect

immunofluoresencetestofmockHep-2cell;D,Indirect immunofluoresencetestofisolateGZA17-01infectedHep-2 cell.

BprototypestrainsCH18537byusingClustalWandBioEdit

software.ThesequencelengthsobtainedforsubgroupAand

subgroupBisolateswere516nucleotidesand505nucleotides,

respectively. The homology analysis was performed using

DNASTAR.

Between theprototypesstrain A2andthe Guizhou

sub-group A isolates, the rates of identity were 86.1%–87.9%

atthe nucleotide level and 79.6%–81.6% atthe amino acid

level. IdentitywithintheGuizhousubgroupAisolateswere

94.4%–100% and 87.7%–100%at thenucleotide leveland at

the aminoacid level, respectively(Figs. 2A,Band S1).The

ratesofidentitybetweentheGuizhouBisolatesandthe

pro-totypicgenotypeBstrainCH18537were 76.9%–83.8%atthe

nucleotideand61.1%–70.1%attheaminoacidlevel.Identity

withintheGuizhousubgroupBisolateswere88.7%–99.2%and

80.8%–98.2%atthenucleotidelevelandattheaminoacidlevel,

respectively(Figs.3A,BandS2).

Phylogeneticanalysis

ThesequencesoftheHVR2Ggenesfrom31subgroupAand

eightsubgroupBisolatesobtainedinthisstudyandsome

rep-resentativegenotypessequencesdownloadedfromGenBank

wereusedforphylogeneticanalysis.

The newly isolated 31 HRSV subgroup A strains were

discoveredbearinga 72-ntduplication whencomparedthe

sequence ofthe prototype virus (referencestrain M11486).

These resultsrevealed thatall 31 subgroupAviruseswere

clusteredintogenotypeON1,whichweremostcloselyrelated

to ON1 strains KX533701 KX533692, KX533588, KT765058,

JN257693,andKC731482fromChina(Beijing,Sichuan),Canada

andIndia,respectively(Fig.4A).

AllnewlyHRSVsubgroupBisolateswerefoundtocluster

intheBAgenotypeandhadthesignature60bpduplication

in the G proteinwhen aligned withprototype B reference

strain CH18537. The HRSV subgroup B isolates were most

(4)

Fig.2–ComparisonofhomologybetweentheGuizhou HRSVsubgroupAisolates3endofGgenenucleotideand aminoacidsequenceswiththatoftheprototypestrainA2 incoloredheatmap.A,comparisonofnucleotide

sequenceshomologyofsubgroupA;B,homology comparisonofaminoacidsequencesofsubgroupA.Red indicatesthemaximumidentity,blueindicatesthe minimumidentity,whiteindicatesthemiddlevalue,green indicatesthemaximumdivergence,redindicatesthe minimumdivergence,yellowindicatesthemiddlevalue.

KT765101, and HM459879 from China (Hunan, Shanghai,

SichuanandChongqing)andJapan,respectively(Fig.4B).

Analysisofdeducedaminoacids

The predicted amino acid sequences of HVR2 G gene

sequencesdeducedfromthe270nucleotidefragmentofthe

subgroupAandsubgroupBisolateswereusedtogenerate

a consensus sequence atamino acid level for each

geno-typeincomparisonwithprototypestrainsA2andCH18537,

respectively. When compared with A2 strain, the newly

isolatedHRSVsubgroupAstrainswere ON1genotype with

theinsertionof24aminoacidsinHVR2region(Fig.5A).The

newlyisolatedsubgroupBstrainsobtainedinthisstudyhada

Fig.3–ComparisonofhomologybetweenGuizhouHRSV subgroupBisolates3endofGgenenucleotideandamino acidsequenceswiththatoftheprototypestrainCH18537in coloredheatmap.A,comparisonofnucleotidesequences homologyofsubgroupB;B,homologycomparisonof aminoacidsequencesofsubgroupB.Redindicatesthe maximumidentity,blueindicatestheminimumidentity, whiteindicatesthemiddlevalue,greenindicatesthe maximumdivergence,redindicatestheminimum divergence,yellowindicatesthemiddlevalue.

duplicationof20aminoacidsinHVR2regionwhencompared

withCH18537strain(Fig.5B).

Discussion

To investigate HRSV molecular epidemic characteristics in

Guizhou Province, we isolated 39 HRSV strains from ARI

patientsinGuizhouProvincefromDecember2017toMarch

2018.Theseisolateswere confirmedtobeHRSVbyIFAand

RT-PCR. Thegenotypes oftheseisolates were identifiedby

sequenceanalysis.ThisisthefirstreportofHRSVvirus

iso-lationandgenotypinginGuizhouProvince,China.

Thevirus isolation ratewas lowerin ourstudy (19.9%)

(5)

Fig.4–PhylogenetictreesofnucleotidesequencesfromthesecondvariableregionoftheGgeneofHRSVsubgroupA(A) andsubgroupB(B)isolates.TreesweregeneratedbyusingtheNeighbor-joiningmethods.Bootstrapvaluesgreaterthan70 %areshownatthebranchnotes.Thevaluerepresentsthebootstrapprobability.Thegenotypesobtainedbyisolatesinthis studyareindicatedbybracketsontherightside.Referencesequencesdescribingeachgenotype(ON1,NA1toNA4,GA1to GA7,SAA1,GB1toGB4,SAB1toSAB3,BA1toBA10)wereobtainedfromtheGenbankdatabaseandincludedinthetree. Prototypestrains(strainA2forsubgroupAandstrainCH18537forsubgroupB)wereusedastheoutgroupsequences.

thenasopharyngealaspiratesampleusedforvirusisolation

wasthe remainingfromclinical bacteriaculturetests. The

amountleft forvirus isolation wassometimesinsufficient.

Anotherreasonmaybebecauseweusedonlyonecellline

(Hep-2)forvirusisolation.Toimprovethevirusisolationrate

infuturestudies,usingseveralcelllinesforviruscultureand

freshclinicalsamplesmaybenecessary.Comparedwiththe

studiesofdirectPCRamplificationusingextractedRNAfrom

nasopharyngealsampleswithoutvirusisolation,thepositive

rateofdirectPCRwasmuchhigher,indicatingthatgene

detec-tionmethodsweremuchmoresensitive.24,25RussoMetal.24

reportedthatout of520 samples,238werepositivebyreal

timeRT-PCR(positiverate55.5%).ThepositiverateofHRSV

was46.11%in180clinicalsamplesusingRT-PCRinanother

report.25

TheepidemicpatternofHRSVsubtypevariesfromregion

to region. In a given year, subtype A and subtype B may

co-exist in a region, or one of them may be dominant,

althoughsubgroupAinfectionisdominantinmostpartsof

the world.26 For example, inthe six consecutive epidemic

seasonsfrom2000to2006inBeijingarea,subgroupA

domi-natedin2001–2004,subgroupBdominatedin2004–2005,and

co-dominancebytwosubgroupsinthe2005–2006epidemic

season.27Atotal5483childrenwithrespiratorydiseaseswere

tested inGuangzhou city forthreeyears.Both subgroupA

positivecases(51.2%,373/729)andsubgroupBpositivecases

(48.8 %,356/729) werefound. SubgroupBwasdominantin

2013,subgroupAwasdominantin2015,andsubgroupAand

subgroupBweretransmittedtogetherin2014.28In2010–2014,

therewere570casesofHRSVinfectioninMexico,ofwhich

407casesbelongedtosubgroupA,andonly27.54%were

sub-groupB6;InCroatia,between2011and2014,subgroupAwas

thedominanttype,accountingfor76%ofHRSVinfections.29

Between 2011and 2013,subgroup Awasreported tobe

dominantinsouthernBrazil,outof167detectedHRSVcases,

(6)

Fig.5–DeducedaminoacidalignmentofHVR2fromGuizhouHRSVisolatesshownrelativetothesequenceofprototype strains.A,deducedaminoacidalignmentofHVR2fromGuizhousubgroupAisolatesshownrelativetothesequenceof strainA2(acc.noM11486);B,deducedaminoacidalignmentofHVR2fromGuizhousubgroupBisolatesshownrelativeto thesequenceofstrainCH18537(Numberacc.noJX198143).Differentaminoacidsareshownindifferentcolors,identical residuesareindicatedbydots,dashesdesignategapscorrespondingtonucleotideinsertionsandasterisksindicatestop codons.

subgroupA accounted for76.7 % of the 73 casesof HRSV

infectioninSaoPaulo,Brazil.30

Inthis study,out ofthe total39 HRSVisolates,31 were

subgroupAandeightweresubgroupB.Indicatingthatboth

subgroupswereco-circulatinginGuizhouProvince,but

sub-groupApredominatedasseeninotherareasoftheworld.

Genotypeshifting ofHRSViscommon.From 2003–2008,

studieshaveshownthatthedominantgenotypeofsubgroupA

wasGA2insomeprovincesofChinawhilethedominant

geno-typeofGA2wasreplacedbygenotypeNA1.NA1genotypewas

firstreportedinBeijingfrom2008to2013.31Similarly,theON1

genotypewasfirstfoundinCanadain2010andhassincebeen

reportedintheUnitedStates,Latvia,SouthKorea,Thailand,

Japan, Kenya, West India, and other countries.32 In China,

theON1genotypewasfirstdetectedinShanghaiinFebruary

2011.33Sincethen,ON1genotypeshavebecomeincreasingly

common,replacingNA1genotypesasthedominantgenotype

inChina.31,33 In Brazil,the newHRSV-A genotype ON1was

introducedin2012andbecameprevalentin2013.11Globally,

differentON1genotypeshavebeenreportedin21countries

andhaverapidlyspreadaroundtheworld.32Asforsubgroup

B,theBAgenotypewasfirstreportedinTrentoin1999,then

detectedinJapanin2003,andsubsequentlyinSouthAfrica,

China,Brazil,andThailand,becomingthedominantsubgroup

Bgenotypeworldwide.34InChina,theBAstrainwasfirst

iden-tified inBeijing in 2004and rapidly became the dominant

one.22

AlthoughON1andBAstrainsappeartohavebeenmore

successfulin replacing other genotypic strains, the reason

for their dominance is not clear. Some authors reported

thatthereisnoindicationthatON1and BAstrainsleadto

more serious disease,6,22 while others reported that ON1

genotype showedan increasedtendency todevelopsevere

disease.11,35 Among the 72 nucleotide duplication in ON1

genotype ofsubgroup A and the 60 nucleotideduplication

in BA9 genotype of subgroup B,some minor substitutions

at the nucleotide level and amino acid level were found.

Whethertheseminormutationscausethediversityreported

bydifferentresearchgroupsisnotclear.Moredetailedstudies

focusingonthevirologyandimmunologycharacteristicsof

differentgenotypesareneededtoillustratethemechanism

ofgenotypeshiftandthepathogenicityofthevirus.

Phylogenetic analysis revealed that all isolates of

sub-groupAinGuizhouProvincewereclassifiedasON1witha72

nucleotideduplicationintheHVR2gene,whileallsubgroup

BisolateswereclusteredtoBA9withtypicalduplicationof60

nucleotidesintheHVR2domain.Thisfindingindicatesthat

ON1genotypeinsubgroupAandBA9genotypeinsubgroup

B were predominantin Guizhou Province asseen in other

places.

Inconclusion,wereportedforthefirsttimetheisolation

and identificationofHRSVinGuizhouProvince.The3 end

ofGgeneofthe39isolateswassequencedandanalyzed.In

GuizhouProvince,bothsubgroupAandBwerecirculatingin

2017–2018,butthemajorityofclinicalisolateswassubgroup

A,ON1genotype.AllsubgroupBisolateswereofBA9

geno-type.FurthersurveillanceofHRSVgeneticvariationisneeded

forpreventingandcontrollingofHRSVinfectioninGuizhou

Province.

Author

contributions

FY, YC, ZY and YN designed the study. TZ, BW, WH, LL,

ZL, BY, QX, KC, FH, HZ and FY performed the

experi-ments. TZ, ZY and FY analyzed the data. TZ and FY

wrote the paper. All authors read and approved the final

(7)

Funding

ThisstudywassupportedbyFundoftheScienceand

Technol-ogyDepartmentofGuizhouProvince([2018]2785,[2015]4015,

[2017]5781,[2018]5706,[2018]5801),theNationalNatural

Sci-enceFoundationofChina(2018)81860003,(2019)81960001.

Ethics

approval

and

consent

to

participate

Thestudy was approved by the Ethics Committeesof the

ChinaGuizhouProvincialpeople’sHospital(Approvenumber

2017105).

Conflict

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

Theauthors wish to thankthe staff ofGuizhou Provincial

People’sHospitalfortheassistanceofsamplecollectionand

researchcooperation.WethankDr.KlarkeM.Samplefromthe

GuizhouProvincialPeople’sHospitalforeditingtheEnglishof

ourmanuscript.

Appendix

A.

Supplementary

data

Supplementary material related to this article can be

found, in the online version, atdoi:https://doi.org/10.1016/

j.bjid.2019.10.007.

r

e

f

e

r

e

n

c

e

s

1. MalasaoR,OkamotoM,ChaimongkolN,etal.Molecular characterizationofhumanrespiratorysyncytialvirusinthe Philippines,2012–2013.PloSOne.2015;10:e0142192.

2. CuiG,ZhuR,DengJ,etal.Rapidreplacementofprevailing genotypeofhumanrespiratorysyncytialvirusbygenotype ON1inBeijing,2012–2014.InfectGenetEvol.2015;33:163–8.

3. YoungS,O’KeeffePT,ArnottJ,LandauLI.Lungfunction, airwayresponsiveness,andrespiratorysymptomsbeforeand afterbronchiolitis.ArchDisChildhood.1995;72:16–24.

4. OkamotoM,DapatCP,SandagonAMD,etal.Molecular characterizationofrespiratorysyncytialvirusinchildren withrepeatedinfectionswithsubgroupBinthePhilippines.J InfectDis.2018;218:1045–53.

5. ShiT,McAllisterDA,O’BrienKL,etal.Global,regionaland nationaldiseaseburdenestimatesofacutelowerrespiratory infectionsduetorespiratorysyncytialvirusinyoungchildren in2015:asystematicreviewandmodellingstudy.Lancet (London,England).2017;390:946–58.

6. SlovicA,Ivancic-JeleckiJ,Ljubin-SternakS,GalinovicGM, ForcicD.Amolecularepidemiologicalstudyof

humanrespiratorysyncytialvirusinCroatia,2011–2014. InfectGenetEvol.2016;44:76–84.

7. TrentoA,CasasI,CalderonA,etal.Tenyearsofglobal evolutionofthehumanrespiratorysyncytialvirusBA

genotypewitha60-nucleotideduplicationintheGprotein gene.JVirol.2010;84:7500–12.

8.FaghihlooE,SalimiV,RezaeiF,etal.GeneticdiversityintheG proteingeneofhumanrespiratorysyncytialvirusamong Iranianchildrenwithacuterespiratorysymptoms.IranJ Pediatr.2011;21:58–64.

9.HibinoA,SaitoR,TaniguchiK,etal.Molecularepidemiology ofhumanrespiratorysyncytialvirusamongchildreninJapan duringthreeseasonsandhospitalizationriskofgenotype ON1.PloSOne.2018;13:e0192085.

10.OtienoJR,KamauEM,AgotiCN,etal.Spreadandevolutionof respiratorysyncytialvirusAgenotypeON1,coastalKenya, 2010–2015.EmergInfectDis.2017;23:264–71.

11.MoreiraFB,RosarioCS,SantosJS,etal.Molecular characterizationandclinicalepidemiologyofhuman respiratorysyncytialvirus(HRSV)AandBinhospitalized children,SouthernBrazil.JMedVirol.2017;89:1489–93.

12.HuP,ZhengT,ChenJ,etal.Alternatecirculationandgenetic variationofhumanrespiratorysyncytialvirusgenotypesin Chengdu,WestChina,2009–2014.JMedVirol.2017;89: 32–40.

13.BashirU,NisarN,MahmoodN,AlamMM,SadiaH,ZaidiSS. Moleculardetectionandcharacterizationofrespiratory syncytialvirusBgenotypescirculatinginPakistanichildren. InfectGenetEvol.2017;47:125–31.

14.FanR,FanC,ZhangJ,etal.Respiratorysyncytialvirussubtype ON1/NA1/BA9predominatesinhospitalizedchildrenwith lowerrespiratorytractinfections.JMedVirol.2017;89:213–21.

15.DengJ,ZhuRN,QianY,etal.Preliminaryanalysison respiratorysyncytialvirusidentifiedinchildrenwithacute respiratoryinfectionsinTibetAutonomousRegion,China. ChinJVirol.2012;28:97–102.

16.HuB,JiangJ,ZhanJ,etal.Developmentofareversegenetics systemforrespiratorysyncytialviruslongstrainandan immunogenicitystudyoftherecombinantvirus.VirolJ. 2014;11:142.

17.YuanY,HeJS,FuYH,etal.Constructionandidentificationof replicationdeficientrecombinantadenovirusencodingF geneofsubgroupAhumanrespiratorysyncytialvirus.ChinJ ExpClinVirol.2008;22:428–30.

18.RenL,XiaQ,XiaoQ,etal.Thegeneticvariabilityof

glycoproteinsamongrespiratorysyncytialvirussubtypeAin Chinabetween2009and2013.InfectGenetEvol.

2014;27:339–47.

19.SunL,JiaoL,WangC,etal.Molecularepidemiologyof respiratorysyncytialvirusinfectionininfants.ChinJExpClin Virol.1999;13:380–2.

20.CuiG,ZhuR,QianY,etal.Geneticvariationinattachment glycoproteingenesofhumanrespiratorysyncytialvirus subgroupsaandBinchildreninrecentfiveconsecutive years.PloSOne.2013;8:e75020.

21.ZhouH,ChenS,QiY,etal.IdentificationoftypeIIinterferon receptorsingeese:genestructure,phylogeneticanalysis,and expressionpatterns.BioMedResInt.2015;2015:537637.

22.QinX,ZhangC,ZhaoY,ZhaoX.Geneticvariabilityof subgroupAandBrespiratorysyncytialvirusstrains circulatinginsouthwesternChinafrom2009to2011.Arch Virol.2013;158:1487–95.

23.DengJ,QianY,ZhuRN,FangWang,ZhaoLinQ.Surveillance ofrespiratorysyncytialvirusinchildrenwithacute respiratorytractinfectionfromwinter2000tospring2006in Beijingarea.ChinJPediatr.2006;44:924–7.

24.RussoMM,AvaroA,CzechE,etal.Epidemiologyand molecularcharacterizationofrespiratorysyncytialvirusin Argentina2017.IntJInfectDis.2018;73.

25.SomayehSM,ShaghayeghR,YazdanS,etal.Molecular characterizationoftheglycoproteinandfusionproteinin humanrespiratorysyncytialvirussubgroupA:emergenceof ON-1genotypeinIran.InfectGenetEvol.2019;71.

(8)

26.XieJ,ChangR.Epidemicseasonofrespiratorysyncytialvirus inChina.ChinJClin.1999:47.

27.LiuW,ChenD,TanW,etal.Epidemiologyandclinical presentationsofrespiratorysyncytialvirussubgroupsAand Bdetectedwithmultiplexreal-timePCR.PloSOne.

2016;11:e0165108.

28.Gamino-ArroyoAE,Moreno-EspinosaS,Llamosas-GallardoB, etal.Epidemiologyandclinicalcharacteristicsofrespiratory syncytialvirusinfectionsamongchildrenandadultsin Mexico.InfluenzaOtherRespirVirus.2017;11(1):48–56.

29.SongJ,ZhangY,WangH,etal.EmergenceofON1genotypeof humanrespiratorysyncytialvirussubgroupAinChina between2011and2015.SciRep.2017;7:5501.

30.VieiraSE,ThomazelliLM,dePaulisM,etal.Infectionscaused byHRSVAON1arepredominantamonghospitalizedinfants withbronchiolitisinSaoPauloCity.BioMedResInt.

2017:3459785.

31.DuvvuriVR,GranadosA,RosenfeldP,BahlJ,EshaghiA, GubbayJB.Geneticdiversityandevolutionaryinsightsof

respiratorysyncytialvirusAON1genotype:globalandlocal transmissiondynamics.SciRep.2015;5:14268.

32.LiuJ,MuY,DongW,etal.Geneticvariationofhuman respiratorysyncytialvirusamongchildrenwithfeverand respiratorysymptomsinShanghai,China,from2009to2012. InfectGenetEvol.2014;27:131–6.

33.GaymardA,Bouscambert-DuchampM,PichonM,etal. Geneticcharacterizationofrespiratorysyncytialvirus highlightsanewBAgenotypeandemergenceoftheON1 genotypeinLyon,France,between2010and2014.JClinVirol. 2018;102:12–8.

34.SongJ,WangH,ShiJ,etal.EmergenceofBA9genotypeof humanrespiratorysyncytialvirussubgroupBinChinafrom 2006to2014.SciRep.2017;7:16765.

35.YoshiharaK,LeMN,OkamotoM,etal.AssociationofRSV-A ON1genotypewithincreasedpediatricacutelower respiratorytractinfectioninVietnam.SciRep.2016;6:27856.

Referências

Documentos relacionados

Os objetivos dessa dissertação são: descrever o processo de produção das siderúrgicas a carvão vegetal; levantar a natureza dos gases gerados no topo do alto

Objective: To evaluate the prevalence and seasonality of human respiratory syncytial virus (HRSV) in children aged 0 to 6 years, hospitalized with acute lower respiratory

the hMPV occurrence and dissemination in southern Brazil and compares the frequency of occurrence of this virus and the human respiratory syncytial virus (hRSV) in the

Comparison of human metapneumovirus, respiratory syncytial virus and influenza A virus lower respiratory tract infections in hospitalized young children.. Detection

6: alignment of deduced amino acid sequences of the C-terminal third of group B human respiratory syncytial virus G glycoprotein (Montevideo, Uruguay).. (*) denotes the stop codon

Para tanto, foi avaliada a influência de diversos fatores, como pH, temperatura, altura do leito e vazão sobre a remoção da cor do efluente, parâmetro este utilizado como

(B) Mean aa divergence (based on p-distance) found between the major clades HRSV-A and HRSV-B and the outgroup sequences from bovine respiratory syncytial virus (Bov RSV) and

Comparison of Human Metapneumovirus, Respiratory Syncytial Virus and Influenza A Viurs Lower Respiratory Tract Infections in Hospitalized Young Children. World Health