• Nenhum resultado encontrado

Mineral stress affects the cell wall composition of grapevine (Vitis vinifera L.) callus

N/A
N/A
Protected

Academic year: 2021

Share "Mineral stress affects the cell wall composition of grapevine (Vitis vinifera L.) callus"

Copied!
10
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Plant

Science

j our na l h o me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / p l a n t s c i

Mineral

stress

affects

the

cell

wall

composition

of

grapevine

(Vitis

vinifera

L.)

callus

João

C.

Fernandes

a

,

Penélope

García-Angulo

b

,

Luis

F.

Goulao

c

,

José

L.

Acebes

b

,

Sara

Amâncio

a,∗

aDRAT/CBAA,InstitutoSuperiordeAgronomia,UniversidadeTécnicadeLisboa,TapadadaAjuda,1349-017Lisbon,Portugal bDepartamentodeBiologíaVegetal,ÁreadeFisiologíaVegetal,UniversidaddeLeón,E-24071León,Spain

cBioTropInstitutodeInvestigac¸ãoCientíficaTropical(IICT,IP),Av.daRepública,QuintadoMarquês,2784-505Oeiras,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received8October2012

Receivedinrevisedform15January2013 Accepted19January2013

Available online 6 February 2013 Keywords: Cellulose FT-IR Lignin Mineralstress Pectin

a

b

s

t

r

a

c

t

Grapevine(VitisviniferaL.)isoneofthemosteconomicallyimportantfruitcropsintheworld.Deficitin nitrogen,phosphorusandsulfurnutritionimpairsessentialmetabolicpathways.Theinfluenceofmineral stressinthecompositionoftheplantcellwall(CW)hasreceivedresidualattention.Usinggrapevine callusasamodelsystem,6weeksdeficiencyofthoseelementscausedasignificantdecreaseingrowth. CallusCWswereanalyzedbyFouriertransforminfraredspectroscopy(FT-IR),byquantificationofCW componentsandbyimmunolocalizationofCWepitopeswithmonoclonalantibodies.PCAanalysisof FT-IRdatasuggestedchangesinthemaincomponentsoftheCWinresponsetoindividualmineralstress. Decreasedcellulose,modificationsinpectinmethylesterificationandincreaseofstructuralproteinswere amongtheeventsdisclosedbyFT-IRanalysis.Chemicalanalysessupportedsomeoftheassumptionsand furtherdisclosedanincreaseinlignincontentundernitrogendeficiency,suggestingacompensationof cellulosebylignin.Moreover,polysaccharidesofcallusundermineraldeficiencyshowedtobemore tightlybondedtotheCW,probablyduetoamoreextensivecross-linkingofthecellulose–hemicellulose network.OurworkshowedthatmineralstressimpactstheCWatdifferentextentsaccordingtothe withdrawnmineralelement,andthatthemodificationsinagivenCWcomponentarecompensatedby thesynthesisand/oralternativelinkingbetweenpolymers.Theoverallresultsheredescribedforthefirst timepinpointtheCWofVitiscallusdifferentstrategiestoovercomemineralstress,dependingonhow essentialtheyaretocellgrowthandplantdevelopment.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Thestructuralandmechanicalsupportofplantsisprovidedby cellwalls(CWs),which areload-bearing,extensibleviscoelastic structuresthatsurroundthecells,actingasan“exoskeleton”.The CWplaysavitalroleintheregulationoftherateanddirectionof growthandthemorphologyofplantcellsandorgans[1].Theplant CWisadynamiccomplexwithfurtherfunctionssuchascontrol ofthediffusionthroughtheapoplast,signaling,regulationof cell-to-cellinteractions,storageofcarbohydrates,orprotectionagainst biotic[2]andabioticstressagents[3].

Abbreviations: 2.4-D,2,4-dichlorophenoxy-acetic acid; CDTA, cyclohexane-trans-1.2-diamine-N,N,N,N-tetraacetic acidsodium salt; CW, cell wall; FT-IR, Fourier-transforminfrared;GC,gaschromatography;HRP,horseradishperoxidase; MS,MurashigeandSkoogMedium;-N,nitrogendeficientcallus;-P,phosphorus deficientcallus;PBS,phosphatebufferedsaline;PCA,principalcomponent analy-sis;PVP-40T,polyvinylpyrrolidone;RG-I,rhamnogalacturonan-I;-S,sulfurdeficient callus;SD,standarddeviation;TFA,trifluoroaceticacid.

∗ Correspondingauthor.Tel.:+351213653418;fax:+35133653383. E-mailaddress:samport@isa.utl.pt(S.Amâncio).

IntheprimaryCW,celluloseisthemainload-bearing polysac-charide which interlinks with cross-linking matrix glycans, predominantlyxyloglucanindicots[4],toformanextensive frame-workthatprovidesmostofthetensilestrengthtotheCWmatrix. Thisnetworkisembeddedinasurroundingphaseconstitutedby pecticpolysaccharides,forminghydrophilicgelsthatdeterminethe regulationofthehydrationstatusandiontransport,thedefinition oftheporosity,stiffnessandcontrolofthewallpermeability[5]. Thesefeaturesare,inturn,definedbythechemicalstructureof pec-ticpolysaccharides,particularlythebranchingdegreeandpattern, thedecorationwithneutralsugarsandthedegreeandpatternof acetyl-andmethyl-esterification,whichcanleadtoeitherstiffening orlooseningoftheCW[6].Theoccurrenceofmicro-domainsinside thepecticpolysaccharidesmeansthelocalizationofpreciseareas withdistinctproperties,providingahighlyfine-tunedregulation ofthewallpropertiestocopewiththecellfunctioning.Inaddition topolysaccharides,athirdnetworkcomposedbystructural glyco-proteinscontributestothebiophysicalpropertiesoftheprimary CWandcelladhesion[7,8].Insometissues,aftercellgrowthhas ceased,asecondaryCWisformedwithhighercellulosecontentand adifferentorganizationofitsdeposition.Aftercellulose,ligninis 0168-9452/$–seefrontmatter © 2013 Elsevier Ireland Ltd. All rights reserved.

(2)

thesecondmostabundantplantpolymerinvascularplants[9].In secondaryCWs,ligninisdepositedwithin,aroundoramongthe cel-lulosemicrofibrilsestablishingcovalentbondswithcarbohydrates, providingadditional strengthand rigiditythat, along evolution, allowedplantstogrowupward[10].

Themostconsensual dicotprimary CWmodel hasbeenthe “tethered network”, a representation in which the hemicellu-losepolymerslinkcellulosethroughhydrogenbondstocreatea loadbearingtether,insertedinanamorphouscement-likepectin matrix [11]. However,recent results disclosed thepresence of covalentlinkagesbetweenrhamnogalacturonan-I(RG-I)-arabinan side-chainsandcellulosemicrofibrils[12]andcovalentlinkages betweenxyloglucanandpectinsinmuro,[13,14]providing struc-turallinksbetweentwomajorcellwalldomains.Moreover,since notallofthecellulosemicrofibrilsurfacesarecoveredwith xyloglu-cansandnotallxyloglucansareadsorbedtocellulose[15–17],the existenceofsuchotherlinkageswithintheCWisexpectedto main-tainitsstructure.

Duringdevelopment,thefinestructureoftheplantCWmatrix isextensivelymodified.Theamountandcompositionofspecific moleculesandtheirarrangementsdifferamongplants,organs,cell typesandevenindifferentmicro-domainsofthewallofagiven individualcell[18].

LocalizedchangesinCWcompositionandstructurealsoprovide thecellwithanotableabilitytotolerateabioticstresses,suchas osmotic[19]andchemical[20,21].

Deficiencies in mineral nutrition, particularly nitrogen (N), phosphorus(P),potassium(K)andsulfur(S),whicharerequired inrelativelylargeamountsbytheplant,stronglyaffecttheplant metabolismwithsubsequentimpact ontheplantgrowth,crop yieldandinbothnutritionalandorganolepticqualityofthe agro-nomicproduct[22–25].Essentialnutrientsaremajorregulatorsof plantgrowthanddevelopmentduetotheirinvolvementinprimary metabolicpathways,e.g.aminoacidandnucleotidebiosynthesis, proteinphosphorylationordisulfidebondsbetweencysteine.

Plant development and anatomy are impacted by abiotic stressesandacommon“stress-induced”setofresponseshavebeen reported:promptingoflocalizedcelldivision,arrestmentofcell elongation,andmodificationsincelldifferentiationstatus[26].

Limitedmineralnutrientavailabilityhasbeenreportedtoaffect organgrowthrates,throughinhibitionoftheproductionofnew cells and/or cell expansion [27] via reduction of CW plasticity [28,29].Ithasbeenproposedthatnutrient-inducedstressactby modifying xylem tension which then signals the onset of CW rearrangementsingrowingtissues[30,31].Thesecomponentsare determinedbythedynamicregulatorypropertiesoftheCW. Nev-ertheless,and eventhough theimportanceof mineralnutrition inplantdevelopmenthasbeenwidelyrecognized,onlyresidual attentionhasbeengiventoitsinfluenceontheCWdynamics.More recently,globaltranscriptomicstudiesinvolvingnutrientdepleted plants revealeddifferentialregulation of CW-relatedgenes and proteinsin variousspecies[32,33],emphasizingtheCWrole in survivalresponsemechanisms.

Despitethegrapevine(VitisviniferaL.)economicvalueand sci-entificrelevanceasamodelspecies,thereislittleinformationabout theCWstructureandpolysaccharidecompositioninthisspecies. Investigationhasbeenmainlyfocusedtotheeconomicimportant organ,thefruit,bothberrypulpandskin,reviewedin[34].

Theaimofthepresentworkwastoinvestigatetheresponse of the CW to mineral depletion of individual major nutrients, nitrogen,phosphorusandsulfur,usingVitiscallusasexperimental model.Here,anintegratedapproachemployingcomplementary methodologieswas followed.Fourier-transform infrared (FT-IR) spectroscopy coupled with chemometrics was used to detect changesinCWpolymersandputativecross-links[35,36]toretrieve themajorcandidateeventsoccurringintheCWinresponsetothe

imposedconditions.Candidateeventswerefurthertestedby chem-ical methods and immunochemical staining using monoclonal antibodies[37] and throughthe determinationof monosaccha-ridecompositionoffractionatedCWs.Thecombineduseofthese methodologiesalloweddraftingamapofCWresponsestospecific changesinthemineralhealthinVitiscallus.

2. Materialandmethods

2.1. Cellcultureandmineralstressimposition

V.viniferacvTourigaNacionalcallustissuewasmaintainedin thedarkat25◦C,asdescribedinJacksonet al.[38].Fourand a halfgramsofcallustissuewasusedasinitialexplantinmedium containingMSbasalsalts[39](DuchefaBiochemie,Haarlem,NL) supplemented with 2.5␮M 2.4-d (2,4-dichlorophenoxy-acetic acid); 1␮M kinetin; 5gl−1 PVP-40T; 20gl−1, sucrose; 2gl−1 Gelrite®,pH5.7.Thecallusesweresub-culturedevery3weeks.Four

treatmentswere applied:full nutrients(control),nitrogen defi-ciency(-N),phosphorusdeficiency(-P)andsulfurdeficiency(-S). CommercialMSwasusedtoobtaincontrolsampleswhile mod-ifiedMSmediainwhichnitrates,phosphatesandsulfateswere substitutedforchlorideswereconsidered-N,-Pand-Streatments respectively.Callusesweresub-culturedtotherespectivemedium after3weeksofgrowing.Aftereachculturecycleintherespective treatmentmediumeachsample,correspondingto10Petridishes (9cmØ)containingfourcalluses,wascollectedtomonitorgrowth. Basedontheresultsobtained,6weeksgrowncallus(2×3weeks) sampleswereusedforCWanalyses.

2.2. Cellwallisolation

Twentygramsofcallussampleswerehomogenizedinliquid nitrogenusing a mortar and pestle, washedwith cold 100mM potassium phosphatebufferpH7.0(2×),and treated overnight with2.5Uml−1 ␣-amylaseVIfromhogpancreas(Sigma–Aldrich Co.,St.Louis)at37◦C.Thesuspensionswerecentrifugedandthe pelletwassequentiallywashedwithdistilledwater(3×),acetone (3×),methanol:chloroform(1:1;v/v)(3×),diethylether(2×),and thenair-dried[40].

2.3. FT-IRspectroscopyandmultivariateanalysis

FT-IRanalysiswasperformed accordingtothemethodology describedinAlonso-Simónetal.[36].TabletsforFT-IRspectroscopy werepreparedinaGraseby-SpecacPress,using2mgofCW sam-plesmixed withpotassium bromide(KBr)(1:100,w/w) froma minimumof11biologicalreplicatespertreatment.Spectrawere obtainedon a Perkin-Elmer System 2000FT-IR at a resolution of1cm−1.InordertotackleCWstructuremodifications,a win-dow between 800 and 1800cm−1, which contains information ofpolysaccharidecharacteristiclinkages,wasselectedfor analy-sis.Normalizationandbaseline-correctionweremadeusingthe Perkin-ElmerIRDatamanagersoftwareandthedataexportedto MicrosoftExcelforareanormalization.Principalcomponent anal-ysis(PCA),usingPearsoncoefficientfordistanceestimation,was performedwithamaximumoffourprincipalcomponentsusing theStatistica6.0softwarepackage(StatSoft,Inc.,USA).

2.4. Cellulosequantification

CellulosewasquantifiedbytheUpdegraffmethod[41],using thehydrolyticconditionsdescribedbySaemanetal.[42]and quan-tifyingtheglucosereleasedbytheanthronemethod[43].

(3)

2.5. Ligninquantification

Klasonligninwasdeterminedusingthemethoddescribedby Hatfieldetal.[44].Briefly,60mgofCWmaterialwassolubilizedin 2mlof72%H2SO4at30◦Cfor60min.Thesolutionwasdilutedto

2.48%H2SO4priortosecondaryhydrolysisbyautoclavingat115◦C

for60min.Thenon-hydrolyzedresiduewascollectedbyfiltration anddriedat60◦Cuntilconstantweight.Theresultsareexpressed as␮glignin(mgCW)−1.

2.6. Quantificationofpectinmethyl-esterification

Theextentofesterificationofpectinswasassessedby quan-tificationofthereleasedmethanolusingthemethoddescribedby WoodandSiddiqui[45].Toeach10mgCWsample,0.75ml dis-tilledwaterand0.25ml1.5MNaOHwereadded.Thesampleswere incubatedatroomtemperaturefor30min,chilledoniceandadded with0.25ml4.5MH2SO4.Aftercentrifugation,0.5mlofthe

super-natantwasmixedwith0.5ml0.5MH2SO4,chilledoniceand0.2ml

2%KMnO4(w/v)wereadded.Thesampleswereallowedtostandin

anicebathfor15minandaddedwith0.2ml0.5Msodiumarsenite in0.06MH2SO4.Thesampleswerethoroughlymixedandleftfor

1hatroomtemperature.Finally,2mlacetylacetone–ammonium acetatereagentwasadded,tubeswerevortexed,closedandheated to59◦Cfor15min.Aftercoolingtoroomtemperature,absorbance wasreadat412nmandtheresultswereexpressedasmlCH3OH

(mgCW)−1,usingmethanolasstandard.

2.7. Cellwallfractionation

CWfractionationwasdoneaccordingtoSelvendranandO‘Neill [46] with minor modifications. Dried CW were extracted at room temperature with 50mM cyclohexane-trans-1.2-diamine-N,N,N,N-tetraaceticacidsodiumsalt (CDTA)adjusted topH6.5 withKOH,for8h(2×),collectedbycentrifugation,washedwith distilledwaterandthecombinedsupernatantsreferredtoasthe CDTA-solublefraction. Theresidue wasincubatedfor18hwith 0.1MKOH containing20mM NaBH4 centrifugedand thepellet

washedwithdistilledwater.Thecombinedalkaliandwater super-natantswereadjustedtopH5.0withaceticacid.Thisfractionwas referredtoasthe0.1MKOH-solublefraction.Then,theresiduewas incubatedfor18hin6MKOHcontaining20mMNaBH4,processed

as described for the 0.1M KOH-soluble fraction, to obtainthe 6MKOH-solublefraction.Allfractionsweredialyzedagainst dis-tilledwaterwitha dialysismembraneof12–14kDacut-off and lyophilized.

2.8. Totalsugarandmonosaccharidequantification

Total sugars and uronic acids were determined using the phenol-sulfuricacidassay[47]andthem-hydroxybiphenylassay [48]respectively,usingglucoseandgalacturonicacidasstandards. NeutralsugarswerequantifiedasdescribedbyAlbersheimetal. [49].Lyophilized samplesof eachCW fractionwerehydrolysed with2Ntrifluoroaceticacid(TFA)at121◦Cfor1handthesugars werederivatizedtoalditolacetatesandanalyzedbygas chromatog-raphy (GC) using a Supelco SP-2330 30m×0.25mm×0.20␮m capillarycolumninaPerkinElmerAutosystemgaschromatograph fittedwithaflame-ionizationdetector.Helium(2mlmin−1)was usedasthecarriergas.Sugarquantificationwascarriedoutafter determinationofeachsugarresponsefactorusingpurerhamnose, fucose,arabinose,xylose,mannose,galactoseandglucoseas stan-dards.Inositolwasusedasinternalstandard.

2.9. Immunodotblotassays

Forimmunodotassays,1␮laliquotsfromCDTA-,0.1M KOH-and6MKOH-solublefractionsinthreereplicateddilutionseries (1:5dilutions)asdescribedbyGarcía-Anguloetal.[50]were spot-tedontoanitrocellulosemembrane (Scheicher&Schull,Dassel, Germany).Themembraneswereblockedfor2hwith0.1M Phos-phatebufferedsaline(PBS)containing4%fat-freemilkpowderand eachprimaryantibody(2F4,LM1,LM5andLM6)ata1:5dilution. AfterwashingwithPBS,themembraneswereincubatedfor1hwith a1:1000dilutionofananti-ratIgG1secondaryantibodylinkedto horseradishperoxidase(HRP).Forsignaldetection,themembranes wereincubatedwith25mlofdeionizedwater,5mlmethanol con-taining10mgml−1 4-chloro-1-naphtol and30␮l6%(v/v)H2O2,

andphotographedwithadigitalcamera. 2.10. Statisticalanalysis

Dataispresentedasmeanvalues±standarddeviation(SD).The resultswerestatisticallyevaluatedbyvarianceanalysis(ANOVA) andBonferronitestasposthoctestswithap=0.05significance,to comparethetreatmenteffect.TheSigmaPlot(SystatSoftwareInc.) statisticalpackagewasusedintheanalyses.

3. Results

3.1. Effectofmineralstressoncallusgrowth

Ourmainaimwastoanalyzetheeffectofnitrogen, phospho-rusorsulfurnutrientdepletioningrapevineCWcompositionand structure.Theeffectoftheimposedindividualmineralstresseson thefunctioningofthebiologicalexperimentalsystemusedwas firstlyassessedbymeasuringthegrowthofcallusalongtime.The absolutegrowthofVitiscallusinfullMSculturemedium(control) andinmodifiedMSmediawithoutnitrogen(-N),phosphorus(-P) orsulfur(-S)alongtwocyclesof3weekseachisshowedinFig.1. Afterwithdrawingofnutrients,theabsolutegrowthofthe cal-luswassignificantlyaffectedinbothcycleswhencomparedtothe control.Duringthefirst3weeks,phosphorusandsulfurdepleted mediaaffectedgrowthinamorepronouncedwaythanunder nitro-genabsence.Afterasecondgrowingcycleundernutrientdepletion, amoreseverereductioningrowthwasnoticedinallindividual

Fig.1.Absolutegrowth(AG)ofVitiscallusgrowingundernitrogendeficient(-N), phosphorusdeficient(-P),sulfurdeficient(-S)andwithfullnutrients(Control)for threeand6weeks.BarsrepresentmeansoftheAGofVitiscallusfrom10Petridishes (n=10)±SD.Ineachsubgraph,differentlettersindicatesignificantdifferencesat p=0.05.

(4)

stresses,withareductioningrowthofca.80%incomparisonwith thecontrol.Thistimescale(2cyclesof3weeks)wasselectedto producetemplatematerialtobeusedinthesubsequentanalyses. 3.2. FT-IRspectroscopydetermination

PutativechangesinCWrelative compositionduringnutrient deprivationweremonitoredbyFT-IRspectroscopybyanalysisof atleast11FT-IRCWspectrapertreatment.

ForaclearanalysisoftheFT-IRspectraamultivariateanalysis (PrincipalComponentAnalysis;PCA)wasperformed(Fig.2). Prin-cipalcomponents1and2(PC1andPC2),whichexplain71.9%of thetotalvariation,wereusefultoseparatethesamples.PC1clearly

differentiatesthecontrolsamplesfromtreatments-Nand-P,while PC2separates thesamplesaccordingtoeach individualmineral stress.Samplesfromthe-Streatmentalsotendtobediscriminated fromthecontrol,consideringtheirdistributionacrossthegradient fromthenegativetothepositiveareasofthePC1andPC2axes (Fig.2a).PC1loadingfactorplot(Fig.2b)showedseveralnegative peaksassociatedwithcellulose,suchas1160cm−1,assignedtothe C OandC Cvibration[51],1120cm−1,associatedwiththe gly-cosidicC O Cvibration[52]or988cm−1,associatedwithbonds sharedbycello-triose,-tetraoseand-pentose[53],indicatingthat sampleslocatedinthenegativepartofPC1(allcontrolandsome -Ssamples)shouldhaveahighercontentofcellulose.Inthesame samples,analterationintheesterificationpatternsofpectinsisalso

Fig.2.Principalcomponentanalysis(PCA)ofallcallusspectra.(a)PlotofthefirstandsecondPCsbasedontheFTIRspectraobtainedfrom6weekscallusgrowninthe absenceofnitrogen(-N),phosphorus(-P),sulfur(-S)andunderfullnutrients(Control)(n>11).(b)LoadingfactorplotforPC1( )andPC2( )explaining PCAclustering.Arrowspointtomeaningfulwavenumbers(1–1650cm−1;21630cm−1;31430cm−1;41160cm−1;51120cm−1;61041cm−1;7988cm−1;and

(5)

Fig.3.Differencesbetweennormalizedandbaseline-correctedFT-IRspectraofCWobtainedfromcallusintheabsenceofnitrogen(-N)(a),phosphorus(-P)(b),orsulfur (-S)(c)relativetocontrol(n>11).VerticallinesrepresentwavenumbersassignedtoCWpolymers.

suggested,asreveledbythecontributionofthe950cm−1peak[54], indicatingthattheabsenceofnutrientsalterspectinbiochemistry. PC2loadingfactorplot(Fig.2b)showednegativepeaksassociated withxyloglucan (1041cm−1,relatedto␤-glucan)[52]and with proteins(1650cm−1,related toC OamideIlinkage). This evi-dencepointstodecreasedconcentrationsoftheseCWcomponents upon-Nand-Pconditions.PC2positivepeakswerealsoobserved, mainlyrelatedtophenoliccompounds(1630and1430cm−1)[55], suggestinganincrease ofthesecomponentsinCWunder some mineralstresses.Otherpositivepeakswerealsoobserved,mainly at840,1295,1565and1700cm−1,forfactor1and885,1180,1250 and1390cm−1forfactor2,butnoinformationisavailableabout thenatureofthelinkagesandwallcomponentsassociatedwith thesepeaks.It shouldbenoted that-N and,in aminorextent, -P callussamples tend tocluster more compactlyin the plots, whilecontrolsamplesappearasamoredispersedgroup(Fig.2a) suggestinglowervariabilityinsamplesexposedtohigherstresses. Toacquireadditionalinformationonthesignificanceofspectral differencesbetweenthecontrolandthemineralstressedcallus,a subtractionofthespectrawasalsoperformed(Fig.3).Usingthis approach,thedifferencesin-Nspectraobservedweremorestriking asnegativepeaksinwavenumbers1033cm−1characteristicof cel-lulose,relatedtodeformationsofC OHgroups[52]and1650cm−1,

assignedtoproteins,asstatedabove.Thesenegativepeakspoints toaminoramountofcelluloseandproteinsin-Ncondition.They wereaccompaniedbypositivepeaksat950and1740cm−1,both relatedtoahigheramountofpectins.Thesetrendswerenot main-tainedin-Por-Sconditions.In-S,alterationsincelluloseassigned tothevibrationsassociatedwiththeCH2group,asrevealedbythe

1265cm−1wavenumberpeak[53],werealsoobserved(Fig.3).A positivepeakat1180cm−1 wasalsoobservedinallcasesbutit hasnotbeenassociatedwithanyknownwallcomponentorgroup linkage.Acleardifferenceintheabsorbancepeaksforcellulose betweenthethreetreatmentswasobservedinagreementwiththe PC1separations(Fig.2a).Theoverallresultspinpointcelluloseand pectinsasmajorcandidatestobeaffectedbymineralstress,what promptedustoamoredetailedinvestigation.

3.3. Celluloseandlignincontent

Cellulose is themain constituent of the CW. Fig. 4a shows thevariation in cellulose amountin responsetomineralstress imposition.A significantreduction in cellulosewasobservedat theextentofca.43%intheabsenceofnitrogenand,toalessextent ofca.12%,intheabsenceofphosphorus(Fig.4a),whencompared to the control. Sulfur depletiondid not affect significantly the

(6)

Fig.4.(a)Cellulosecontent,(b)lignincontentand(c)totalmethyl-esterification extentof6weeksCWcallusgrowninnitrogendeficient(-N),phosphorusdeficient (-P),sulfurdeficient(-S)andfullnutrientmedia(Control).Barsrepresentmeansof 6Vitiscallus±SD(n=10).Differentlettersindicatesignificantdifferencesatp=0.05 significance.

synthesisordepositionofcellulose.AlthoughligninKlasonlevels weresmallcomparedwithcelluloseorothercellwallcomponents, ligninquantificationin controland stressedcallusesreveledan increaseofca.36%relativetothecontrolwhennitrogenisremoved fromthegrowingmedium(Fig.4b).Theabsenceofphosphorus andsulfurdidnotaffecttheamountofligninintheCWofVitis callusafter6weeksgrowth.

3.4. Degreeofpectinmethyl-esterification

Tofurtherexaminetheputativemodificationsinpectin ester-ificationsuggestedbyFT-IRanalysis,theextentofpectinmethyl

esterification wasdetermined by quantification of thereleased methanol.Thedecreaseinthemethanolreleasedobservedin sam-plesfromcallusgrowingunderabsenceofnitrogenintheculture medium,indicatesalowerdegreeofmethylesterificationin com-parisonwiththecontrol(Fig.4c),confirmingtheFT-IRresultsfor thisstress.Neitherphosphorusnorsulfurabsenceaffectedthetotal degreeofpectinesterification.

3.5. Immunodot-blotofcellwallpolysaccharidespecific antibodies

TheresultsofimmunodotassaysarepresentedinFig.5.The abundanceof pectins witha degreeof esterificationup to40% wastestedbyimmunodetectionusing2F4monoclonalantibody [56].Asexpected,labelingwasonlydetectedintheCDTAand,to alessextent,inthe0.1MKOH-solublefraction.Astrongersignal wasdetectedunder-Nand-Sconditions(Fig.5).TheLM1 anti-body,specifictoanextensinepitope[57],showedahigherlabeling understressconditionsinallsolublefractions,indicatingthat min-eralstressincreasesthedepositionofthisstructuralprotein.This ismorestrikingin-Nand-Sconditions,theformermoretightly attachedto theCW. LM5 and LM6antibodies recognize 1,4- ␤-galactanand1,5-␣-arabinanepitopes,respectively[58,59].Under -N,the amountof1,5-␣-arabinanand 1,4-␤-galactan decreases relativetothecontrolintheCDTA-solublefraction. Areduction of labeling was observed in the 0.1M KOH-soluble fraction in allstressesforbothantibodies.Conversely,anincreasein1,5- ␣-arabinanissuggestedtooccurunder-Sconditions,bothinweakly and tightlyCWattachedpolysaccharides (CDTA-and 6M KOH-solublefractions,respectively).

3.6. SugaranalysisinCWfractions

CWfractionationshowedthatthemajorityofpolysaccharides were extracted from the CW by the strongalkaline treatment (Fig. 6).Allmineralstress treatmentsdecreased theamountof polysaccharidessolubilizedinCDTAand0.1MKOH.Converselyin 6MKOH-solublefractions,theyweremoreabundantlydetectedin the-Nand-Ptreatments(Fig.6).

Asexpected,themajorityofpectins(quantifiedasuronicacids, UA)wereextractedbytheCDTAand0.1MKOH(Fig.7aandb).GC analysisofCWfractionsshowedthatthemoresignificantneutral monosaccharidepresentinallfractionswasarabinosefollowedby galactose,xyloseandglucose(Fig.7a–c).Theamountofuronicacids decreasedinalkalinesolublefractionsuponthethreemineralstress treatmentsimposed(Fig.7bandc).

Arabinose-containing polysaccharides responded to -N by decreasing its amount in weak alkaline-soluble fraction but increasingsignificantlyin6MKOH-solubleone.Adifferenttrend was observed for xylose- and galactose-containing polysaccha-rides,withadecreaseinbothalkaline-solublefractions.Regarding xylose,anincreaseinthe6MKOH-solublefractionwasnoticed in the-Streatment. Finally,glucose-containing polysaccharides showedincreasedextractionbybothalkaline solutionsfrom-P CWs.

Theincreaseinneutralsugarsobservedinthe6MKOH solu-blefraction,undernitrogenstarvation(Fig.7c),isonlyduetothe increaseinarabinose,sinceallothermonosaccharidesdecreased ormaintainthesamelevelsrelativetocontrolwhennitrogenis withdrawnfromtheculturemedia.

4. Discussion

Plantmodelsystemsanalyzedincontrolledexperimental condi-tionsareusefultoolstoassesslimitingnutrientsituations.Usingthe

(7)

Fig.5. ImmunodotassaysofCW-solublefractionsfromcallusgrowninnitrogendeficient(-N),phosphorusdeficient(-P),sulfurdeficient(-S)andfullnutrients (Con-trol),probedwithmonoclonalantibodieswithspecificityforhomogalacturonanwithadegreeofmethylesterificationupto40%(2F4),forextensinhydroxyproline-rich glycoproteins(LM1),for1,4-␤-galactan(LM5)and1,5-␣-arabinan(LM6).Ineachrowtheantibodywasusedtoprobesamplesata1:5sequentialdilution.

modeldescribed,weobservedthatduringthefirst3weeksof devel-opment,callusgrowthwasimpairedbytheabsenceofphosphates andsulfates(Fig.1).Callusfromplatesdepletedinnitrateswasless affected,probablyduetopreviousnitrogenaccumulation,sincethe nitrateconcentrationintheMSmediumismuchhigherthanthose ofphosphateorsulfate.Bythesixthweek,inthesecondculture cycle,thecallusgrowthwasdrasticallyreducedtolevels signifi-cantlylowerthanthoseobservedat-Pandsimilarto-S(Fig.1). Thecollectiveresultsconfirmtheessentialroleoftheseelements andvalidatetheexperimentmodelemployedtoaccesstheeffectof mineralnutritioninCWconstituentsanddynamics.Previous stud-iesalsoreporttheeffectofmineraldepletionongrowth[24,60], includingofVitiscallus[23].

OurgoalwastoaddresschangesinCWcompositiontriggered bymineraldeficiency.FT-IRprovedtobeareadilyemployedand efficientmethodforsimultaneouslyidentifyingabroadrangeof structuraldifferencesinCWs[36].TheoverallFT-IRresults sug-gestchangesinallofthemaincomponentsoftheCWascandidate events,suchasmodificationsinthebiosynthesisorrearrangements ofcellulosemicrofibrilsandofmatrixlinkedglycans,inpectin

bio-Fig.6. TotalsugarsquantifiedinCWfractionsobtainedfromcallusgrownfor6 weeksintheabsenceofnitrogen(-N),phosphorus(-P),sulfur(-S)andinfull nutri-entmedia(Control).Unitsare␮gofglucoseequivalents(mgCW)−1.Barsrepresent meansof6replicates±SD.Ineachsub-graph,differentletterswithineachfourbar blockindicatesignificantdifferencesatp=0.05.

chemistryandintheamountsofstructuralproteins(Figs.2band3). Moreover,PCAanalysis(Fig.2a)showedthatCWisdifferentially affected,accordingtothespecific stressimposed.These results promptedustopursueamoredetailedbiochemicalanalysisofthe stressedmaterial.

The statistically significant reduction in cellulose content observed under -N and -P (Fig.4a) couldcompromise the CW integrityand,probably,theviabilityofthecellstosurvive.Dueto theparamountimportanceoftheCWinsurvivalandenvironment adaptation, plants are equippedwith compensatoryalternative mechanismstoreinforcetheirCWswhenthebiosynthesisor depo-sitionofagivencomponentisimpaired[61,62].Ourresultsagree withsuchmodel. In fact, CWsfrom callusgrowingin medium exhaustedinnitratesrespondtolowlevelsofcellulose(Fig.4a) byslightlyincreasingtheirlignincontent(Fig.4b)andreducing their degree of pectin methyl esterification (Fig. 4c). If occur-ringinlongstretchesofthegalacturonicacidchainsassuggested byimmunodotdetectionwiththe2F4antibody(Fig.5),itcould leadtoreinforcethewallviatheformation ofcalciumbridges, e.g. “egg-box” structures [63] and supramolecular pectic gels, bothimportantincontrollingtheporosityandmechanical prop-erties of CW and maintenance of intercellular adhesion [4,64]. Moreover,anexpectedloosercellulosenetworkprods arabinan-containingpolysaccharides tobecomemore cross-linked tothe cellulose–hemicellulosenetwork(Fig.7bandc),providingthewall withadditionalmechanicalsupportandinstigatestheformation ofextensinnetworks(Fig.5).Likewise,thelowercellulose quanti-fiedin-Pcallusisaccompaniedbyanincreaseinneutralsugars enrichedin arabinosepolysaccharides (Fig.7b)including1,5- ␣-arabinans(Fig.5)detectedinpolysaccharidestightlybondedtothe CW(Fig.6).

AlterationsinthebiosynthesisofindividualCW constituents canaffectthesynthesisand/ordepositionofotheCWpolymers. Infact,changesinthecellulosecontentareknowntobe compen-satedbyanincreaseinligninpolymers.Itwasdemonstratedthat cinnamoyl-CoA reductase (CCR) down-regulation in transgenic tobacco(NicotianatabacumL.)linesleadtoa24.7%reductionof itsKlasonligninwithaconcomitantincreaseof15%incellulose content [65].Similarly, different worksreport that highnitrate availabilityreducestheligninintheCW[66–68],sotheopposite

(8)

Fig.7. MonosaccharidecompositionofCWCDTA-solublefraction(a),0.1MKOH-solublefraction(b)and6MKOH-solublefraction(c)obtainedbyGCanalysisanduronic acidslevelsmeasuredbythem-hydroxybiphenylassayofcallusgrowninnitrogendeficient(-N),phosphorusdeficient(-P),sulfurdeficient(-S)andfullnutrients(Control) media.Unitsare␮gofeachmonosaccharideandgalacturonicacidequivalentsforuronicacids(UA)(mgCW)−1.Barsrepresentmeansof6replicates±SD.Differentletters withineachfourbarblockindicatesignificantdifferencesatp=0.05.

trendisexpectedtohappen.Infact,amutationinCesA3,oneofthe genesencodingcellulosesynthases,wasprovedtoleadtoCW rein-forcementthroughligninsynthesis[69].Ithasalsobeensuggested that,underconditionswherecellulosesynthesisisinhibited, com-pensationwithahigherquantityofhemicellulosicpolysaccharides occurs[26].Severalother linesof evidence have demonstrated alterations in the CW architecture of the kor1-1 Arabidopsis mutant[70,71],inwhichadeficiencyinanendo-1,4-␤-glucanase that is not directlyimplicated in pectin metabolism, induces a 150%increaseofpectinsintheprimaryCW[72].Moreover,other cellulose synthase Arabidopsis mutant, MUR10/CesA7, showed anincreaseinpecticarabinan contentsinresponsetoimpaired cellulosebiosynthesis [73].On theotherhand, augmented ara-binoselevels may indicate a higher substitution by arabinosyl residuesintherhamnogalacturonan-I(RGI)sidechainsofpectic polysaccharides.RGIarabinosylsidechainscanworkas plasticiz-ersinCWsthatundergolargephysicalremodelingunderabiotic stressessuchasextremewaterdeficientconditions[74].Ulvskov etal.[75]analyzedthemechanicalpropertiesoftheCWofpotato

(Solanum tuberosum) tubers from wild-type and transformed plantswithdecreasedcontentsofarabinanandcertifiedthatthe forceneededtoinducefailureoftheCWdecreasedintransgenic tubers.

Absenceof sulfates in the media impairedcallus growth in levelssimilartothoseobservedundernitratedeficiency(Fig.1), but no significant reduction in cellulose wasnoticed (Fig. 4a). Nonetheless,amongtheassaysconductedinourwork,increases inweaklyandtightlybondedextensins(Fig.5)andincreasesin arabinose-andxylose-containingpolysaccharidesinalkali-soluble fractions(Fig.7bandc)weredetected,unveilingCWmodifications. ExtensinsareabundantconstituentsoftheprimaryCW[7],known toincrease inresponsetoseveralstresses[76–78].These struc-turalproteinshavebeenimplicatedinthecontrolofCWextension andstrengtheningbytheformationofperoxidase-mediated inter-molecularcross-links[38].

Insummary,grapevinecallusessubmittedtoindividualmineral stressesareimpairedonspecificCWcomponentsorsuffer reorga-nizationoftheirdeposition.OurresultshighlightthatV.vinifera

(9)

callusfolloweddifferentstrategiestoovercometheadverseeffects inducedintheCWbytheimposedmineralstressaccordingtothe severityperceivedanditsprimarybiologicalrole,confirming previ-ousassumptionsthatplantshaveevolvedfine-tunedmechanisms toturnondifferentpathwaysrelatedwithspecificwall compo-nents,inresponsetodifferentstimulus.

Acknowledgements

The research was funded by Fundac¸ão para a Ciência e Tecnologia (FCT) Grant SFRH/BD/64047/2009 to JCF and CBAA (PestOE/AGR/UI0240/2011).

References

[1] S.C. Fry, Cross-linkingof matrix polymers in the growing cell walls of angiosperms,Ann.Rev.PlantPhysiol.37(1986)165–186.

[2] S.Vorwerk,S.Somerville,C.Somerville,Theroleofplantcellwall polysaccha-ridecompositionindiseaseresistance,TrendsPlantSci.9(2004)203–209. [3]R.Zhong,Z.-H.Ye,Regulationofcellwallbiosynthesis,Curr.Opin.PlantBiol.

10(2007)564–572.

[4] N.C.Carpita,D.M.Gibeaut,Structuralmodelsofprimarycellwallsinflowering plants:consistencyofmolecularstructurewiththephysicalpropertiesofthe wallsduringgrowth,PlantJ.3(1993)1–30.

[5]W.G.Willats,L.McCartney,W.Mackie,J.P.Knox,Pectin:cellbiologyand prospectsforfunctionalanalysis,PlantMol.Biol.47(2001)9–27.

[6]L.F.Goulao,Pectinde-esterificationandfruitsoftening:revisitingaclassical hypothesis,StewartPostharvestRev.6(2010)1–12.

[7]A.M.Showalter,Structureandfunctionofplantcellwallproteins,PlantCell5 (1993)9–23.

[8]D.J.Cosgrove,Assemblyandenlargementoftheprimarycellwallinplants, Annu.Rev.CellDev.Biol.13(1997)171–201.

[9]W.Boerjan,J.Ralph,M.Baucher,Ligninbiosynthesis,Annu.Rev.PlantBiol.54 (1993)519–546.

[10]R.Vanholme,K.Morreel,J.Ralph,W.Boerjan,Ligninengineering,Curr.Opin. PlantBiol.11(2008)278–285.

[11]D.J.Cosgrove,Wallstructureandwallloosening.Alookbackwardsand for-wards,PlantPhysiol.125(2001)131–134.

[12] A.Zykwinska,J.F.Thibault,M.C.Ralet,Organizationofpecticarabinanand galactansidechainsinassociationwithcellulosemicrofibrilsinprimarycell wallsandrelatedmodelsenvisaged,J.Exp.Bot.58(2007)1795–1802. [13] Z.A.Popper,S.C.Fry,Widespreadoccurrenceofacovalentlinkagebetween

xyloglucan andacidicpolysaccharidesinsuspension-culturedangiosperm cells,Ann.Bot.96(2005)91–99.

[14]S.E.Marcus,Y.Verhertbruggen,C.Hervé,J.J.Ordaz-Ortiz,V.Farkas,H.L. Peder-sen,W.G.T.Willats,J.P.Knox,Pectichomogalacturonanmasksabundantsets ofxyloglucanepitopesinplantcellwalls,BMCPlantBiol.8(2008)60. [15]T.J. Bootten,P.J.Harris,L.D.Melton,R.H.Newman,Solid-stateNMR

spec-troscopy showsthat thexyloglucans in theprimary cellwalls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan–cellulose interactions inthe cell wall, J. Exp. Bot. 55(2004) 571–583.

[16]J.Hanus,K.Mazeau,Thexyloglucan–celluloseassemblyattheatomicscale, Biopolymers81(2006)59–73.

[17]Y.B.Park,D.J.Cosgrove,Arevisedarchitectureofprimarycellwallsbasedon biomechanicalchangesinducedbysubstrate-specificendoglucanases,Plant Physiol.158(2012)1933–1943.

[18]G. Freshour,R.P.Clay,M.S.Fuller,P.Albersheim,A.G.Darvill,M.G.Hahn, Developmental and tissue-specific structural alterations of the cell-wall polysaccharides of Arabidopsis thaliana roots, Plant Physiol. 110 (1996) 1413–1429.

[19]N.M.Iraki,R.A.Bressan,P.M.Hasegawa,N.C.Carpita,Alterationofthephysical andchemicalstructureoftheprimarycellwallofgrowth-limitedplantcells adaptedtoosmoticstress,PlantPhysiol.91(1989)39–47.

[20]E. Shedletzky, M. Shmuel, T. Trainin, S. Kalman, D. Delmer, Cell wall structureincellsadaptedtogrowthonthecellulose-synthesisinhibitor 2,6-dichlorobenzonitrile:acomparisonbetweentwodicotyledonousplantsanda GraminaceousMonocot,PlantPhysiol.100(1992)120–130.

[21]H.Mélida,P.García-Angulo,A.Alonso-Simón,A.Encina,J.Alvarez,J.L.Acebes, NoveltypeIIcellwallarchitectureindichlobenil-habituatedmaizecalluses, Planta229(2009)617–631.

[22]A.Amtmann,P.Armengaud,EffectsofN,P,KandSonmetabolism:new knowledgegainedfrommulti-levelanalysis,Curr.Opin.PlantBiol.12(2009) 275–283.

[23]J.Fernandes,S.Tavares,S.Amâncio,Identificationandexprexssionofcytokinin signaling andmeristemidentitygenes insulfurdeficientgrapevine(Vitis viniferaL.),PlantSignal.Behav.4(2009)1128–1135.

[24] H.Tschoep,Y.Gibon,P.Carillo,P.Armengaud,M.Szecowka,A.Nunes-Nesi, A.R.Fernie,K.Koehl,M.Stitt,Adjustmentofgrowthandcentralmetabolismto amildbutsustainednitrogenlimitationinArabidopsis,PlantCellEnviron.32 (2009)300–318.

[25]X.F.Zhu,G.J.Lei,T.Jiang,Y.Liu,G.X.Li,S.J.Zheng,Cellwallpolysaccharidesare involvedinP-deficiency-inducedCdexclusioninArabidopsisthaliana,Planta 236(2012)989–997.

[26]G.Potters,T.P.Pasternak,Y.Guisez,K.J.Palme,M.A.Jansen,Stress-induced morphogenicresponses:growingoutoftrouble,TrendsPlantSci.12(2007) 98–105.

[27]S.J.Palmer,D.M.Berridge,A.J.S.McDonald,W.J.Davies,Controlofleafexpansion insunflower(HelianthusannuusL.)bynitrogennutrition,J.Exp.Bot.47(1996) 359–368.

[28] G.Taylor,A.J.S.McDonald,I.Stadenberg,P.H.EreerSmith, Nitratesupply andthebiophysicsofleafgrowthinSalixviminalis,J.Exp.Bot.44(1993) 155–164.

[29]N.Snir,P.M.Neumann,Mineralnutrientsupply,cellwalladjustmentandthe controlofleafgrowth,PlantCellEnviron.20(1997)239–246.

[30]J.W.Radin,M.P.Eidenbock,Hydraulicconductanceasafactorlimitingleaf expansionofphosphorusdeficientcotton plants,PlantPhysiol. 75(1984) 372–377.

[31] E.S.Chapin,C.H.S.Walter,D.T.Clarkson,Growthresponseofbarleyandtomato tonitrogenstressanditscontrolbyabscisicacid,waterrelationsand photo-synthesis,Planta173(1988)352–366.

[32] W.Guo,L.Zhang,J.Zhao,H.Liao,C.Zhuang,X.Yan,Identificationoftemporally andspatiallyphosphate-starvationresponsivegenesinGlycinemax,PlantSci. 175(2008)574–584.

[33]H.Takahashi,C.E.Braby,A.R.Grossman,Sulfureconomyandcellwall biosyn-thesisduringsulfurlimitationofChlamydomonasreinhardtii,PlantPhysiol.127 (2001)665–673.

[34]L.F.Goulao,J.C.Fernandes,P.Lopes,S.Amâncio,TacklingtheCellWallofthe GrapeBerry,in:H.Gerós,M.ManuelaChaves,S.Delrot(Eds.),The Biochem-istryoftheGrapeBerry,BenthameBooks,2012,ISBN978-1-60805-360-5,pp. 172–193.

[35]G.Mouille,S.Robin,M.Lecomte,S.Pagant,H.Hofte,Classificationand identifi-cationofArabidopsiscellwallmutantsusingFourier-transforminfrared(FT-IR) microspectroscopy,PlantJ.35(2003)393–404.

[36]A.Alonso-Simón,A.E.Encina,P.García-Angulo,J.M.Álvarez,J.L.Acebes,FTIR spectroscopymonitoringofcellwallmodificationsduringthehabituationof bean(PhaseolusvulgarisL.)callusculturestodichlobenil,PlantSci.167(2004) 1273–1281.

[37]J.Knox,Revealingthestructuralandfunctionaldiversityofplantcellwalls, Curr.Opin.PlantBiol.11(2008)308–313.

[38] P.Jackson,C.Galinha,C.Pereira,A.Fortunato,N.Soares,S.Amâncio,C.Pinto Ricardo,Rapiddepositionofextensinduringtheelicitationofgrapevine cal-lusculturesisspecificallycatalysedbya40kDaperoxidase,PlantPhysiol.127 (2001)1065–1076.

[39] T.Murashige,F.Skoog,Arevisedmediumforrapidgrowthandbioassayswith tobaccotissue,Physiol.Plant.15(1962)493–497.

[40]K.W.Talmadge,K.Keegstra,W.D.Bauer,P.Albersheim,Thestructureofplant cellwallsI. Themacromolecularcomponentsofthewallsof suspension-culturedsycamorecellswithadetailedanalysisofthepecticpolysaccharides, PlantPhysiol.51(1973)158–173.

[41]D.M.Updegraff,Semi-microdeterminationofcelluloseinbiologicalmaterials, Anal.Biochem.32(1969)420–424.

[42] J.F.Saeman,W.E.Moore,M.A.Millet,Sugarunitspresent.Hydrolysisand quan-titativepaperchromatography,in:R.L.Whistler(Ed.),MethodsinCarbohydrate Chemistry,Vol.3,Cellulose,AcademicPress,NewYork,1963,pp.54–69. [43]Z.Dische,Generalcolorreactions,in:R.L.Whistler,M.L.Wolfran(Eds.),

Carbo-hydrateChemistry,Academic,NewYork,1962,pp.477–512.

[44]R.D.Hatfield,H.G.Jung,J.Ralph,D.R.Buxton,P.J.Weimer,Acomparisonof theinsolubleresiduesproducedbytheKlasonligninandaciddetergentlignin procedures,J.Sci.FoodAgric.65(1994)51–58.

[45]P.J.Wood,I.R.Siddiqui,Determinationofmethanolanditsapplicationto mea-surementofpectinmethylestercontentandpectinmethylesteraseactivity, Anal.Biochem.39(1971)418–428.

[46]R.R.Selvendran,M.A.O‘Neill,Isolationandanalysisofcellwallsfromplant material,MethodsBiochem.Anal.32(1987)25–153.

[47]M.Dubois,K.A.Gilles,J.K.Hamilton,P.A.Rebers,F.Smith,Colorimetricmethod fordeterminationofsugarsandrelatedsubstances,Anal.Chem.28(1956) 350–356.

[48]N.Blumenkrantz,G.Asboe-Hansen,Newmethodforquantitative determina-tionofuronicacids,Anal.Biochem.54(1973)484–489.

[49]P.Albersheim,P.D.Nevins,P.D.English,A.Karr,Amethodfortheanalysisof sugarinplantcellwallpolysaccharidesbygasliquidchromatography, Carbo-hydr.Res.5(1967)340–345.

[50]P.García-Angulo,W.G.T.Willats,A.E.Encina,A.Alonso-Simon,J.M.Alvarez, J.L.Acebes,Immunocytochemicalcharacterizationofthecellwallofbeancell suspenioncuturesduringhabituationanddehabituationtodoclobenil,Physiol. Plant.127(2006)87–99.

[51] R.H.Wilson,A.C.Smith,M.Kaˇcuráková,P.K.Saunders,N.Wellner,K.W. Wal-dron,Themechanicalpropertiesandmoleculardynamicsofplantcellwall polysaccharidesstudiedby Fourier-transforminfraredspectroscopy, Plant Physiol.124(2000)397–405.

[52]M.Kaˇcuráková,P.Capek,V.Sasinková,N.Wellner,A.Ebringerová,FT-IRstudyof plantcellwallmodelcompounds:pecticpolysaccharidesandhemicelluloses, Carbohydr.Polym.43(2000)195–203.

[53] M.Sekkal,V.Dincq,P.Legrand,J.P.Huvenne,Investigationofthelinkagesin sev-eraloligosaccharidesusingFT-IRandFTRamanspectroscopies,J.Mol.Struct. 349(1995)349–352.

(10)

[54]M.A.Coimbra,A.Barros,D.N.Rutledge,I.Delgadillo,FTIRspectroscopyasatool fortheanalysisofolivepulpcell-wallpolysaccharideextracts,Carbohydr.Res. 317(1999)145–154.

[55]C.F.B. Séné, M.C. McCann, R.H. Wilson, R. Grinter, Fourier-transform RamanandFourier-transforminfraredspectroscopyaninvestigationoffive higher plantcell wallsand their components,Plant Physiol. 106 (1994) 1623–1631.

[56] F.Liners,J.J.Letesson,C.Didembourg,P.VanCutsem,Monoclonalantibodies againstpectin.Recognitionofaconformationinducedbycalcium,PlantPhysiol. 91(1989)1419–1424.

[57]M. Smallwood, H. Martin, J.P. Knox, An epitope of rice threonine-and hydroxyproline-rich glycoprotein is common to cell wall and hydrophobic plasma-membrane glycoproteins, Planta 196 (1995) 510–522.

[58]L.Jones,G.B.Seymour,J.P.Knox,Localizationofpecticgalactanintomatocell wallsusingamonoclonalantibodyspecificto(1[→]4)-[beta]-d-galactan,Plant Physiol.113(1997)1405–1412.

[59] W.G.Willats,S.E.Marcus,J.P.Knox,Generationofmonoclonalantibodyspecific to(1→5)-alpha-l-arabinan,Carbohydr.Res.308(1998)149–152.

[60] P.Wu,L.Ma,X.Hou,M.Wang,Y.Wu,F.Liu,X.W.Deng,Phosphate starva-tiontriggersdistinctalterationsofgenomeexpressioninArabidopsisroots andleaves,PlantPhysiol.132(2003)1260–1271.

[61]E.Pilling,H.Höfte,Feedbackfromthewall,Curr.Opin.PlantBiol.6(2003) 611–616.

[62]S.Wolf,K.Hématy,H.Höfte,Growthcontrolandcellwallsignalinginplants, Annu.Rev.PlantBiol.63(2012)381–407.

[63]M.C.Jarvis,Structureandpropertiesofpectingelsinplantcellwalls,PlantCell Environ.7(1984)153–164.

[64]J.P.Knox,Celladhesion,cellseparationandplantmorphogenesis,PlantJ.2 (1992)137–141.

[65]S.Prashant,M.SrilakshmiSunita,S.Pramod,R.K.Gupta,S.AnilKumar,S.Rao Karumanchi,S.K.Rawal,P.B.KaviKishor,Down-regulationofLeucaena leuco-cephalacinnamoylCoAreductase(LlCCR)geneinducessignificantchangesin phenotype,solublephenolicpoolsandligninintransgenictobacco,PlantCell Rep.30(2011)2215–2231.

[66] J.A.Entry,G.B.Runion,S.A.Prior,R.J.Mitchell,H.H.Rogers,InfluenceofCO2

enrichmentandnitrogenfertilizationontissuechemistryandcarbonallocation inlongleafpineseedlings,PlantSoil200(1998)3–11.

[67]J.T.Blodgett,D.A.Herms,P.Bonello,Effectsoffertilizationonredpinedefense chemistryandresistancetoSphaeropsissapinea,For.Ecol.Manage.208(2005) 373–382.

[68]F.E.Pitre,B.Pollet,F.Lafarguette,J.E.Cooke,J.J.MacKay,C.Lapierre,Effectsof increasednitrogensupplyonthelignificationofpoplarwood,J.Agric.Food Chem.55(2007)10306–10314.

[69]A.Ca ˜no-Delgado,S.Penfield,C.Smith,M.Catley,M.Bevan,Reducedcellulose synthesisinvokeslignificationanddefenseresponsesinArabidopsisthaliana, PlantJ.34(2003)351–362.

[70] F.Nicol,I.His,A.Jauneau,S.Vernhettes,H.Canut,H.Höfte,Aplasma membrane-boundputativeendo-1,4-␤-d-glucanaseisrequiredfornormalwallassembly andcellelongationinArabidopsis,EMBOJ.17(1998)5563–5576.

[71]S. Sato,T. Kato, K.Kakegawa, T.Ishii,Y.G. Liu, T.Awano, K.Takabe, Y. Nishiyama,S.Kuga,S.Sato,Y.Nakamura,S.Tabata,D.Shibata,Roleofthe puta-tivemembrane-boundendo-1,4-beta-glucanaseKORRIGANincellelongation andcellulosesynthesisinArabidopsisthaliana,PlantCellPhysiol.42(2001) 251–263.

[72] I.His,A.Driouich,F.Nicol,A.Jauneau,H.Höfte,Alteredpectincomposition inprimarycellwallsofkorrigan,adwarfmutantofArabidopsisdeficientina membrane-boundendo-1,4-␤-glucanase,Planta212(2001)348–358. [73] S.Bosca,C.J.Barton,N.G.Taylor,P.Ryden,L.Neumetzler,M.Pauly,K.Roberts,

G.J.Seifert,InteractionsbetweenMUR10/CesA7-dependentsecondary cellu-losebiosynthesisandprimarycellwallstructure,PlantPhysiol.142(2006) 1353–1363.

[74]J. Harholt,A.Suttangkakul,H.VibeScheller,Biosynthesis ofpectin,Plant Physiol.153(2010)384–395.

[75]P.Ulvskov,H.Wium,D.Bruce,B.Jorgensen,K.B.Qvist,M.Skjot,D.Hepworth,B. Borkhardt,S.O.Sorensen,Biophysicalconsequencesofremodelingtheneutral sidechainsofrhamnogalacturonanIintubersoftransgenicpotatoes,Planta 220(2005)609–620.

[76]A.M.Showalter,A.D.Butt,S.Kim,Moleculardetailsoftomatoextensinand glycine-richproteingeneexpression,PlantMol.Biol.19(1992)205–215. [77]C.Hirsinger,Y.Parmentier,A.Durr,J.Fleck,E.Jamet,Characterizationofa

tobaccoextensingeneandregulationofitsgenefamilyinhealthyplantsand undervariousstressconditions,PlantMol.Biol.33(1997)279–289. [78] A.Ueda,Y.Yamamoto-Yamane,T.Takabe,Saltstressenhancesproline

utiliza-tionintheapicalregionofbarleyroots,Biochem.Biophys.Res.Commun.355 (2007)61–66.

Referências

Documentos relacionados

Eu tenho que tentar transmitir à criança que ela não deve fazer e não é porque é feio ou mau é porque… Às vezes acontece, por exemplo, os miúdos introduzirem objectos e o que

Obviamente, para Geertz, tal como em Latour, o facto de o antropólogo pertencer predominantemente a um sistema cultural expansivo e de recobrimento ‘universal’ não

Modelos candidatos para a análise de ocupação de duas espécies (onça-pintada e onça-parda) no Parque Nacional Serra da Capivara-PI em 2009, considerando

É de grande importância que o sistema de produção de água quente já seja definido na fase de projeto devido às necessidades de instalação dos mesmos que podem interferir

A similar pattern of total PAs (free + conjugated) was observed for the callus of diploid and haploid plants maintained in the light, and for the haploid callus in the

content of grapevine leaves ( Vitis labrusca var. Bordo) and its neuroprotective effect against peroxide damage. Phenolic content and antioxidant activities of white and purple

Effect of humic acid foliar application on leaf development in grapevine during the 2014 and 2015 seasons ( Vitis vinifera L. Feteasca Regala and cv. Riesling Italian) grown in

The objective of this study is to evaluate the forage mass, chemical composition, mineral content and mineral absorption at different growth ages of signal grass grown in the center