• Nenhum resultado encontrado

Solucao impares Calculo 6ed CAP.15

N/A
N/A
Protected

Academic year: 2021

Share "Solucao impares Calculo 6ed CAP.15"

Copied!
45
0
0

Texto

(1)

16

MULTIPLE INTEGRALS

ET 15

16.1

Double Integrals over Rectangles

ET 15.1

1. (a) The subrectangles are shown in the gure.

The surface is the graph ofi({> |) = {| and D = 4, so we estimate Y  S3

l = 1 2

S

m = 1i({l> |m) D

= i(2> 2) D + i(2> 4) D + i(4> 2) D + i(4> 4) D + i(6> 2) D + i(6> 4) D = 4(4) + 8(4) + 8(4) + 16(4) + 12(4) + 24(4) = 288 (b)Y  S3 l = 1 2 S m = 1i  {l> |m 

D = i(1> 1) D + i(1> 3) D + i(3> 1) D + i(3> 3) D + i(5> 1) D + i(5> 3) D = 1(4) + 3(4) + 3(4) + 9(4) + 5(4) + 15(4) = 144

3. (a) The subrectangles are shown in the gure. SinceD = 2@4, we estimate UU Usin({ + |) gD  2 S l=1 2 S m=1i  { lm> |lmD = i(0> 0) D + i0> 2  D + i 2> 0  D + i 2>2  D = 02 4  + 12 4  + 12 4  + 02 4  =2 2  4=935 (b) UUUsin({ + |) gD  S2 l=1 2 S m=1i({l> |m) D = i 4>4  D + i 4>34  D + i3 4>4  D + i3 4 >34  D = 12 4  + 02 4  + 02 4  + (1)2 4  = 0

5. (a) Each subrectangle and its midpoint are shown in the gure. The area of each subrectangle isD = 2, so we evaluate i at each midpoint and estimate UU Ui({> |) gD  2 S l = 1 2 S m = 1i  {l> |m  D = i(1=5> 1) D + i(1=5> 3) D + i(2=5> 1) D + i(2=5> 3) D = 1(2) + (8)(2) + 5(2) + (1)(2) = 6 223

TX.10

(2)

(b) The subrectangles are shown in the gure. In each subrectangle, the sample point farthest from the origin is the upper right corner, and the area of each subrectangle isD =12. Thus we estimate UU Ui({> |) gD  4 S l = 1 4 S m = 1i({l> |m) D

= i(1=5> 1) D + i(1=5> 2) D + i(1=5> 3) D + i(1=5> 4) D + i(2> 1) D + i(2> 2) D + i(2> 3) D + i(2> 4) D

+ i(2=5> 1) D + i(2=5> 2) D + i(2=5> 3) D + i(2=5> 4) D + i(3> 1) D + i(3> 2) D + i(3> 3) D + i(3> 4) D = 11 2  + (4)1 2  + (8)1 2  + (6)1 2  + 31 2  + 01 2  + (5)1 2  + (8)1 2  + 51 2  + 31 2  + (1)1 2  + (4)1 2  + 81 2  + 61 2  + 31 2  + 01 2  = 3=5

7. The values ofi({> |) =s52  {2 |2get smaller as we move farther from the origin, so on any of the subrectangles in the problem, the function will have its largest value at the lower left corner of the subrectangle and its smallest value at the upper right corner, and any other value will lie between these two. So using these subrectangles we haveX ? Y ? O. (Note that this is true no matter howU is divided into subrectangles.)

9. (a) Withp = q = 2, we have D = 4. Using the contour map to estimate the value of i at the center of each subrectangle, we have UU Ui({> |) gD  2 S l = 1 2 S m = 1i  {l> |m 

D = D[i(1> 1) + i(1> 3) + i(3> 1) + i(3> 3)]  4(27 + 4 + 14 + 17) = 248 (b)iave=D(U)1 UUUi({> |) gD  161(248) = 15=5

11. } = 3 A 0, so we can interpret the integral as the volume of the solid V that lies below the plane } = 3 and above the rectangle[2> 2] × [1> 6]. V is a rectangular solid, thusUUU3 gD = 4 · 5 · 3 = 60.

13. } = i({> |) = 4  2|  0 for 0  |  1. Thus the integral represents the volume of that part of the rectangular solid[0> 1] × [0> 1] × [0> 4] which lies below the plane } = 4  2|. So

UU

(3)

SECTION 16.2 ITERATED INTEGRALS ET SECTION 15.2 ¤ 225 15.To calculate the estimates using a programmable calculator, we can use an algorithm

similar to that of Exercise 5.1.7 [ET 5.1.7]. In Maple, we can dene the function i({> |) =1 + {h|(calling it f), load the student package, and then use the

command

middlesum(middlesum(f,x=0..1,m), y=0..1,m);

to get the estimate withq = p2squares of equal size. Mathematica has no special Riemann sum command, but we can dene f and then use nested Sum commands to calculate the estimates.

q estimate 1 1=141606 4 1=143191 16 1=143535 64 1=143617 256 1=143637 1024 1=143642

17.If we divideU into pq subrectangles,UUUn gD  Sp

l = 1 q S m = 1i  {

lm> |lmD for any choice of sample points{lm> |lm.

Buti{lm> |lm= n always and Sp

l = 1 q

S

m = 1D = area of U = (e  d)(g  f). Thus, no matter how we choose the sample

points, Sp l = 1 q S m = 1i  { lm> |lmD = n p S l = 1 q S m = 1D = n(e  d)(g  f) and so UU Un gD = limp>q p S l = 1 q S m = 1i  { lm> |lmD = limp>qn p S l = 1 q S

m = 1D = limp>qn(e  d)(g  f) = n(e  d)(g  f).

16.2

Iterated Integrals

ET 15.2

1.U0512{2|3g{ =  12 {33 |3{=5 {=0= 4{ 3|3{=5 {=0= 4(5)3|3 4(0)3|3= 500|3, U1 0 12{2|3g| =  12{2|4 4 |=1 |=0= 3{ 2|4|=1 |=0= 3{2(1)4 3{2(0)4= 3{2 3.U13U01(1 + 4{|) g{ g| =U13{ + 2{2|{=1 {=0g| = U3 1(1 + 2|) g| =  | + |23 1= (3 + 9)  (1 + 1) = 10

5.U02U0@2{ sin | g| g{ =U02{ g{U0@2sin | g| [as in Example 5] =  {2 2 2 0 k  cos |l@2 0 = (2  0)(0 + 1) = 2 7.U02U01(2{ + |)8g{ g| = ] 2 0  1 2(2{ + |) 9 9 {=1 {=0 g| [substitutex = 2{ + |  g{ =12gx] = 118] 2 0 [(2 + |) 9 (0 + |)9] g| = 1 18  (2 + |)10 10  | 10 10 2 0 = 1 180[(410 210)  (210 010)] =1,046,528180 = 261,63245 9. ] 4 1 ] 2 1  { | + |{  g| g{ =] 4 1  { ln ||| + 1{· 12|2|=2 |=1g{ = ] 4 1  { ln 2 + 32{  g{ =1 2{2ln 2 +32ln |{| 4 1 = 8 ln 2 +3 2ln 4 12ln 2 = 152 ln 2 + 3 ln 41@2= 212 ln 2

TX.10

(4)

11. U01U01(x  y)5gx gy =U0116(x  y)6x=1x=0gy = 16U01(1  y)6 (0  y)6gy =1 6 U1 0  (1  y)6 y6gy = 1 6  1 7(1  y)717y7 1 0 = 1 42[(0 + 1)  (1 + 0)] = 0

13. U02U0u sin2 g gu =U02u guU0sin2 g [as in Example 5] =U02u guU012(1  cos 2) g =1 2u2 2 0·12   1 2sin 2  0 = (2  0) ·12   1 2sin 2  0 1 2sin 0  = 2 ·1 2[(  0)  (0  0)] =  15. UUU(6{2|3 5|4) gD =U03U01(6{2|3 5|4) g| g{ =U0332{2|4 |5|=0|=1g{ =U0332{2 1g{ =1 2{3 { 3 0=272  3 = 212 17. ]] U {|2 {2+ 1gD = ] 1 0 ] 3 3 {|2 {2+ 1g| g{ = ] 1 0 { {2+ 1g{ ] 3 3| 2g| =1 2ln({2+ 1) 1 0  1 3|3 3 3 =1 2(ln 2  ln 1) ·13(27 + 27) = 9 ln 2 19. U0@6U0@3{ sin({ + |) g| g{ =U@6 0  { cos({ + |)| = @3| = 0 g{ =U@6 0  { cos {  { cos{ + 3  g{ = {sin {  sin{ + 3 @6 0  U@6 0  sin {  sin{ + 3 

g{ [by integrating by parts separately for each term] = 6 1 2  1   cos { + cos{ + 3 @6 0 = 12  k 3 2 + 0   1 +1 2 l = 31 2 12 21. UUU{|h{2|gD=U02U01{|h{2|g{ g| =U02k12h{2|l{=1 {=0 g| = 1 2 U2 0(h| 1) g| =12  h| |2 0 =1 2[(h2 2)  (1  0)] =12(h2 3)

23. } = i({> |) = 4  {  2|  0 for 0  {  1 and 0  |  1. So the solid is the region in the rst octant which lies below the plane} = 4  {  2| and above[0> 1] × [0> 1]. 25. Y =UUU(12  3{  2|) gD =U23 U01(12  3{  2|) g{ g| =U23 12{ 32{2 2{|{=1{=0g| =U3 2 21 2  2|  g| =21 2|  |2 3 2=952 27. Y =U22 U11 1 14{219|2g{ g| = 4U02U011 41{219|2g{ g| = 4U02{  1 12{319|2{ { = 1 { = 0g| = 4 U2 0 11 1219|2  g| = 411 12| 271|3 2 0= 4 · 8354= 16627

(5)

SECTION 16.3 DOUBLE INTEGRALS OVER GENERAL REGIONS ET SECTION 15.3 ¤ 227 29.Here we need the volume of the solid lying under the surface} = { sec2| and above the rectangle U = [0> 2] × [0> @4] in the

{|-plane. Y =U2 0 U@4 0 { sec2| g| g{ = U2 0 { g{ U@4 0 sec2| g| = 1 2{2 2 0  tan |@40 = (2  0)(tan 4  tan 0) = 2(1  0) = 2

31.The solid lies below the surface} = 2 + {2+ (|  2)2and above the plane} = 1 for 1  {  1, 0  |  4. The volume of the solid is the difference in volumes between the solid that lies under} = 2 + {2+ (|  2)2over the rectangle

U = [1> 1] × [0> 4] and the solid that lies under } = 1 over U. Y =U04U11 [2 + {2+ (|  2)2] g{ g| U4 0 U1 1(1) g{ g| = U4 0  2{ +1 3{3+ {(|  2)2 { = 1 { = 1g|  U1 1g{ U4 0g| =U04(2 +1 3+ (|  2)2)  (2 13 (|  2)2)  g|  [{]1 1[|]40 =U0414 3 + 2(|  2)2  g|  [1  (1)][4  0] =14 3| +23(|  2)3 4 0 (2)(4) =56 3 +163  0 16 3   8 =88 3  8 = 643

33.In Maple, we can calculate the integral by dening the integrand as f and then using the command int(int(f,x=0..1),y=0..1);. In Mathematica, we can use the command

Integrate[f,{x,0,1},{y,0,1}]

We nd thatUUU{5|3h{|gD = 21h  57  0=0839. We can use plot3d (in Maple) or Plot3D (in Mathematica) to graph the function.

35.U is the rectangle [1> 1] × [0> 5]. Thus, D(U) = 2 · 5 = 10 and iave= 1 D(U) UU Ui({> |) gD =101 U5 0 U1 1{2| g{ g| = 101 U5 0 1 3{3| { = 1 { = 1g| =101 U5 0 23| g| =101 1 3|2 5 0= 56. 37.Leti({> |) = {  |

({ + |)3. Then a CAS gives

U1 0 U1 0 i({> |) g| g{ =12 and U1 0 U1 0 i({> |) g{ g| = 12.

To explain the seeming violation of Fubini’s Theorem, note thati has an innite discontinuity at (0> 0) and thus does not satisfy the conditions of Fubini’s Theorem. In fact, both iterated integrals involve improper integrals which diverge at their lower limits of integration.

16.3

Double Integrals over General Regions

ET 15.3

1.U04U0|{|2g{ g| =U0421{2|2{=|{=0 g| =U0412|2[(s| )2 02]g| = 12U04|3g| = 1214|440=12(64  0) = 32 3.U01U{{2(1 + 2|)g| g{ =U01| + |2|={|={2g{ = U1 0  { + {2 {2 ({2)2g{ =U01({  {4)g{ =1 2{215{5 1 0= 1215 0 + 0 = 103

5.U0@2U0cos hsin gu g =U0@2uhsin u=cos u=0 g =U0@2(cos ) hsin g = hsin @20 = hsin(@2) h0= h  1 6.3.3 DOUDOU

(6)

7. UUG|2gD =U11 U|2| |2g{ g| =U11 {|2{=|{=|2g| =U11 |2[|  (|  2)] g| =U1 1(2|3+ 2|2)g| = 1 2|4+23|3 1 1= 12+2312+23 =43

9. UUG{ gD =U0U0sin {{ g| g{ =U0[{|]|=sin {|=0 g{ =U0{ sin { g{ 

integrate by parts withx = {> gy = sin { g{

 ={ cos { + sin {0 =  cos  + sin  + 0  sin 0 = 

11. UUG|2h{|gD =U04U0||2h{|g{ g| =U04|h{|{=|{=0g| =U04  |h|2 |g| =k1 2h| 2 1 2|2 l4 0= 1 2h16 8 12+ 0 = 12h16172 13. U01U0{2{ cos | g| g{ =U01{ sin || = {2 | = 0 g{ = U1 0 { sin {2g{ = 12cos {2 1 0=12(1  cos 1) 15. ] 2 1 ] 2|1 2| | 3g{ g| =] 2 1 k {|3l{=2|1 {=2| g| = ] 2 1 [(2|  1)  (2  |)] | 3g| =U12(3|4 3|3) g| =3 5|534|4 2 1 =96 5  12 35 +34 = 14720 17. ] 2 2 ] 4{2 4{2(2{  |) g| g{ =] 2 2 k 2{| 1 2|2 l|=4{2 |=4{2g{ =U22 2{4  {21 2  4  {2+ 2{4  {2+1 2  4  {2g{ =U22 4{4  {2g{ = 4 3  4  {23@2l2 2= 0

[Or, note that4{4  {2is an odd function, soU22 4{4  {2g{ = 0.]

19. Y =U01U{{4({ + 2|) g| g{ =U1 0  {| + |2|={ |={4 g{ = U1 0(2{2 {5 {8) g{ =2 3{316{619{9 1 0= 231619 =187 21. Y =U12U17  3|{| g{ g| =U1212{2|{ = 7  3|{ = 1 g| =1 2 U2 1(48|  42|2+ 9|3) g| =1 2  24|2 14|3+9 4|4 2 1= 318

(7)

SECTION 16.3 DOUBLE INTEGRALS OVER GENERAL REGIONS ET SECTION 15.3 ¤ 229 23. Y =U02U3 32{ 0 (6  3{  2|) g| g{ =U026|  3{|  |2| = 3 3 2{ | = 0 g{ =U2 0  6(3  3 2{)  3{(3  32{)  (3  32{)2  g{ =U029 4{2 9{ + 9  g{ =3 4{392{2+ 9{ 2 0= 6  0 = 6 25. Y =U22 U{42{2g| g{ =U22 {2||=4 |={2 g{ = U2 2(4{2 {4) g{ =4 3{315{5 2 2=323 325 +323 325 = 12815 27. Y =] 1 0 ] 1  {2 0 | g| g{ = ] 1 0  |2 2 | =1  {2 | = 0 g{ =] 1 0 1  {2 2 g{ =12  { 1 3{3 1 0= 13

29. From the graph, it appears that the two curves intersect at{ = 0 and

at{  1=213. Thus the desired integral is UU G{ gD  U1=213 0 U3{  {2 {4 { g| g{ = U1=213 0 k {|l| = 3{  {2 | = {4 g{ =U01=213(3{2 {3 {5) g{ ={31 4{416{6 1=213 0  0=713

31.The two bounding curves| = 1  {2and| = {2 1 intersect at (±1> 0) with 1  {2 {2 1 on [1> 1]. Within this region, the plane} = 2{ + 2| + 10 is above the plane } = 2  {  |, so

Y =U11 U{1{212(2{ + 2| + 10) g| g{  U1 1 U1{2 {21(2  {  |) g| g{ =U1 1 U1{2 {21(2{ + 2| + 10  (2  {  |)) g| g{ =U11 U{1{212(3{ + 3| + 8) g| g{ = U1 1 k 3{| +3 2|2+ 8| l|=1{2 |={21 g{ =U11 3{(1  {2) +3 2(1  {2)2+ 8(1  {2)  3{({2 1) 32({2 1)2 8({2 1)  g{ =U11 (6{3 16{2+ 6{ + 16) g{ =3 2{4163{3+ 3{2+ 16{ 1 1 = 3 2163 + 3 + 16 +32163  3 + 16 = 643

TX.10

6.3.3 DOUDOU

(8)

33. The solid lies below the plane} = 1  {  | or{ + | + } = 1 and above the region G = {({> |) | 0  {  1> 0  |  1  {} in the{|-plane. The solid is a tetrahedron.

35. The two bounding curves| = {3 { and | = {2+ { intersect at the origin and at { = 2, with {2+ { A {3 { on (0> 2). Using a CAS, we nd that the volume is

Y = ] 2 0 ]{2+ { {3 { } g| g{ = ] 2 0 ]{2+ { {3 { ({ 3|4+ {|2) g| g{ = 13,984,735,616 14,549,535

37. The two surfaces intersect in the circle{2+ |2= 1, } = 0 and the region of integration is the disk G: {2+ |2 1. Using a CAS, the volume is

]] G(1  { 2 |2) gD =] 1 1 ] 1{2 1{2(1  { 2 |2) g| g{ =  2.

39. Because the region of integration is

G = {({> |) | 0  | {> 0  {  4} = ({> |) | |2 {  4> 0  |  2

we haveU04U0{i({> |) g| g{ =UUG i({> |) gD =U02U|42 i({> |) g{ g|.

41. Because the region of integration is

G =q({> |) | s9  |2 { s9  |2> 0  |  3r = ({> |) | 0  | 9  {2> 3  {  3 we have ] 3 0 ] 9|2 9|2 i({> |) g{ g| = ]] Gi({> |) gD = ] 3 3 ] 9{2 0 i({> |) g| g{

43. Because the region of integration is

G = {({> |) | 0  |  ln {, 1  {  2} = {({> |) | h| {  2, 0  |  ln 2} we have ] 2 1 ] ln { 0 i({> |) g| g{ = ]] Gi({> |) gD = ]ln 2 0 ] 2 h|i({> |) g{ g| 45. ]1 0 ]3 3|h {2g{ g| =] 3 0 ] {@3 0 h {2g| g{ =] 3 0 k h{2|l|={@3 |=0 g{ =] 3 0 { 3  h{2 g{ =1 6 h{ 2l3 0= h 9 1 6

(9)

SECTION 16.3 DOUBLE INTEGRALS OVER GENERAL REGIONS ET SECTION 15.3 ¤ 231 47. ] 4 0 ] 2  { 1 |3+ 1g| g{ = ]2 0 ]|2 0 1 |3+ 1g{ g| =]2 0 1 |3+ 1  {{=|{=02g| =] 2 0 |2 |3+ 1g| = 1 3ln|3+ 1l 2 0= 1 3(ln 9  ln 1) =13ln 9 49. ] 1 0 ] @2 arcsin |cos { s 1 + cos2{ g{ g|

=U0@2U0sin {cos {1 + cos2{ g| g{

=U0@2cos {1 + cos2{||=sin { |=0 g{

=U0@2cos {1 + cos2{ sin { g{



Letx = cos {, gx =  sin { g{, g{ = gx@( sin {)  =U10x1 + x2gx = 1 3  1 + x23@2l0 1 =1 3  8  1=1 3  22  1 51.G = {({> |) | 0  {  1,  { + 1  |  1}  {({> |) | 1  {  0, { + 1  |  1}  {({> |) | 0  {  1,  1  |  {  1}  {({> |) | 1  {  0,  1  |  {  1}, all type I. ]] G{ 2gD =] 1 0 ] 1 1  {{ 2g| g{ +] 0 1 ] 1 { + 1{ 2g| g{ +] 1 0 ] {  1 1 { 2g| g{ +] 0 1 ] {  1 1 { 2g| g{ = 4] 1 0 ] 1 1  {{

2g| g{ [by symmetry of the regions and becausei({> |) = {2 0]

= 4U01{3g{ = 41 4{4 1 0= 1 53.HereT = ({> |) | {2+ |2 14> {  0> |  0 , and0  ({2+ |2)2142  161  ({2+ |2)2 0 so h1@16 h({2+|2)2

 h0= 1 since hwis an increasing function. We haveD(T) =1 4 1 2 2=  16, so by Property 11, h1@16D(T) UU Th({ 2+|2)2 gD  1 · D(T)   16h1@16 UU Th({ 2+|2)2 gD   16or we can say 0=1844 ?UUTh({2+|2)2

gD ? 0=1964. (We have rounded the lower bound down and the upper bound up to preserve the inequalities.)

55.The average value of a functioni of two variables dened on a rectangle U was dened in Section 16.1 [ET 15.1] asiave= D(U)1

UU

Ui({> |)gD. Extending

this denition to general regionsG, we have iave=D(G)1

UU Gi({> |)gD. HereG = {({> |) | 0  {  1> 0  |  3{}, so D(G) =12(1)(3) = 32 and iave= D(G)1 UU Gi({> |)gD =3@21 U1 0 U3{ 0 {| g| g{ = 2 3 U1 0 1 2{|2 |=3{ |=0 g{ =13 U1 0 9{3g{ = 34{4 1 0=34

57.Sincep  i({> |)  P,UUGp gD UUGi({> |) gD UUGPgD by (8) 

pUUG1 gD UUGi({> |) gD  PUUG1 gD by (7)  pD(G) UUGi({> |) gD  PD(G) by (10). 6.3.3 DOUDOU

(10)

59. UUG({2tan { + |3+ 4) gD =UUG{2tan { gD +UUG|3gD +UUG4 gD. But {2tan { is an odd function of { and G is symmetric with respect to the|-axis, soUUG{2tan { gD = 0. Similarly, |3is an odd function of| and G is symmetric with respect to the{-axis, soUUG|3gD = 0. Thus

UU G({2tan { + |3+ 4) gD = 4 UU G gD = 4(area of G) = 4 ·   22 = 8

61. Sinces1  {2 |2 0, we can interpretUUGs1  {2 |2gD as the volume of the solid that lies below the graph of } =s1  {2 |2and above the regionG in the {|-plane. } =s1  {2 |2is equivalent to{2+ |2+ }2= 1, }  0

which meets the{|-plane in the circle {2+ |2= 1, the boundary of G. Thus, the solid is an upper hemisphere of radius 1 which has volume1243(1)3=23.

16.4

Double Integrals in Polar Coordinates

ET 15.4

1. The regionU is more easily described by polar coordinates: U = (u> ) | 0  u  4, 0    32 . ThusUUUi({> |) gD =U03@2U04i(u cos > u sin ) u gu g.

3. The regionU is more easily described by rectangular coordinates: U = ({> |) | 1  {  1, 0  | 12{ +12 . ThusUUUi({> |) gD =U11 U0({+1)@2i({> |) g| g{.

5. The integralU2U47 u gu g represents the area of the region U = {(u> ) | 4  u  7,     2}, the lower half of a ring.

U2  U7 4 u gu g = U2  g U7 4 u gu  =2 1 2u2 7 4=  ·12(49  16) =332

7. The diskG can be described in polar coordinates as G = {(u> ) | 0  u  3, 0    2}. Then UU

G {| gD =

U2 0

U3

0 (u cos )(u sin ) u gu g =

U2 0 sin  cos  g U3 0 u3gu  =1 2sin2 2 0 1 4u4 3 0= 0.

9. UUUcos({2+ |2) gD =U0U03cos(u2) u gu g =U0gU03 u cos(u2) gu  =0 1

2sin(u2)

3

0=  ·12(sin 9  sin 0) =2sin 9

11. UUGh{2|2gD =U@2@2 U02hu2u gu g =U@2@2 gU02uhu2gu  =@2@2k1 2hu 2l2 0=   1 2  (h4 h0) =  2(1  h4)

13. U is the region shown in the gure, and can be described byU = {(u> ) | 0    @4> 1  u  2}. Thus UU Uarctan(|@{) gD = U@4 0 U2

1 arctan(tan ) u gu g since |@{ = tan .

Also, arctan(tan ) =  for 0    @4, so the integral becomes U@4 0 U2 1  u gu g = U@4 0  g U2 1 u gu = 1 22 @4 0 1 2u2 2 1= 2 32 ·32 =6432.

(11)

SECTION 16.4 DOUBLE INTEGRALS IN POLAR COORDINATES ET SECTION 15.4 ¤ 233 15.One loop is given by the region

G = {(u> ) |@6    @6, 0  u  cos 3 }, so the area is ]] GgD = ] @6 @6 ]cos 3 0 u gu g = ]@6 @6  1 2u2 u=cos 3 u=0 g =] @6 @6 1 2cos23 g = 2 ] @6 0 1 2  1 + cos 6 2  g = 12   + 16sin 6 @6 0 = 12 17.By symmetry, D = 2U0@4U0sin u gu g = 2U0@41 2u2 u=sin  u=0 g =U0@4sin2 g =U@4 0 12(1  cos 2) g = 1 2   1 2sin 2 @4 0 = 1 2  4 12sin2  0 +12sin 0  =1 8(  2) 19.Y =UU{2+ |24s{2+ |2gD =U02U02u2u gu g =U02gU02u2gu =20 13u320= 283=163

21.The hyperboloid of two sheets{2 |2+ }2= 1 intersects the plane } = 2 when {2 |2+ 4 = 1 or {2+ |2= 3. So the solid region lies above the surface} =s1 + {2+ |2and below the plane} = 2 for {2+ |2 3, and its volume is

Y = ]] {2+ |2 3  2 s1 + {2+ |2gD = ] 2 0 ]  3 0 (2  s 1 + u2) u gu g =U02gU03(2u  u1 + u2)gu =2 0 k u21 3(1 + u2)3@2 l 3 0 = 23 8 3 0 +13  = 4 3 23.By symmetry, Y = 2 ]] {2+ |2 d2 s d2 {2 |2gD = 2 ] 2 0 ] d 0 s d2 u2u gu g = 2 ] 2 0 g ]d 0 u s d2 u2gu = 220 k1 3(d2 u2)3@2 ld 0 = 2(2)  0 +1 3d3  = 4 3 d3

25.The cone} =s{2+ |2intersects the sphere{2+ |2+ }2= 1 when {2+ |2+s{2+ |22= 1 or {2+ |2=12. So

Y = ]] {2+ |2 1@2 s 1  {2 |2s{2+ |2gD = ] 2 0 ] 1@2 0 s 1  u2 uu gu g =U02gU01@2u1  u2 u2gu =2 0 k 1 3(1  u2)3@213u3 l1@2 0 = 2  1 3  1  2 1  =  3  2 2

TX.10

16.46.4 DODO

(12)

27. The given solid is the region inside the cylinder{2+ |2= 4 between the surfaces } =s64  4{2 4|2 and} = s64  4{2 4|2. So Y = ]] {2+ |2 4 ks 64  4{2 4|2s64  4{2 4|2lgD = ]] {2+|2 4 2s64  4{2 4|2gD = 4U02U0216  u2u gu g = 4U2 0 g U2 0 u  16  u2gu = 42 0 k 1 3(16  u2)3@2 l2 0 = 81 3  (123@2 162@3) =8 3  64  243 29. ] 3 3 ] 9{2 0 sin({ 2+ |2)g| g{ =]  0 ] 3 0 sin  u2u gu g =U0gU03u sinu2gu = [] 0  1 2cos  u23 0 = 1 2  (cos 9  1) =  2 (1  cos 9) 31. U0@4U  2 0 (u cos  + u sin ) u gu g = U@4 0 (cos  + sin ) g U 2 0 u2gu = [sin   cos ]@4 0 1 3u3  2 0 =k2 2   2 2  0 + 1 l ·1 3  22  0=22 3

33. The surface of the water in the pool is a circular diskG with radius 20 ft. If we place G on coordinate axes with the origin at the center ofG and dene i({> |) to be the depth of the water at ({> |), then the volume of water in the pool is the volume of the solid that lies aboveG = ({> |) | {2+ |2 400 and below the graph ofi({> |). We can associate north with the positive|-direction, so we are given that the depth is constant in the {-direction and the depth increases linearly in the |-direction from i(0> 20) = 2 to i(0> 20) = 7. The trace in the |}-plane is a line segment from (0> 20> 2) to (0> 20> 7). The slope of this line is20  (20)7  2 =18, so an equation of the line is}  7 =81(|  20)  } = 18| +92. Sincei({> |) is independent of{, i({> |) = 18| +92. Thus the volume is given byUUGi({> |) gD, which is most conveniently evaluated using polar coordinates. ThenG = {(u> ) | 0  u  20, 0    2} and substituting { = u cos , | = u sin  the integral becomes U2 0 U20 0 1 8u sin  +92  u gu g =U021 24u3sin  +94u2 u = 20 u = 0 g = U2 0 1000 3 sin  + 900  g =1000 3 cos  + 900 2 0 = 1800

Thus the pool contains1800  5655 ft3of water.

35. ] 1 1@2 ]{  1  {2 {| g| g{ + ]  2 1 ] { 0 {| g| g{ + ] 2  2 ] 4  {2 0 {| g| g{ = ] @4 0 ] 2 1 u 3cos  sin  gu g =] @4 0  u4 4 cos  sin  u = 2 u = 1g = 15 4 ] @4 0 sin  cos  g = 154  sin2 2 @4 0 = 1516

(13)

SECTION 16.5 APPLICATIONS OF DOUBLE INTEGRALS ET SECTION 15.5 ¤ 235 37. (a) We integrate by parts withx = { and gy = {h{2g{. Then gx = g{ and y = 12h{2, so

U 0 {2h{ 2 g{ = lim w Uw 0{2h{ 2 g{ = lim w  1 2{h{ 2lw 0+ Uw 0 12h{ 2 g{  = limw1 2whw 2 +1 2 U 0 h{ 2 g{ = 0 +1 2 U 0 h{ 2

g{ [by l’Hospital’s Rule] =1

4

U

h{

2

g{ [sinceh{2is an even function] =1 4   [by Exercise 36(c)] (b) Letx ={. Then x2= {  g{ = 2x gx  U 0  {h{g{ = lim w Uw 0  { h{g{ = lim w U w 0 xhx 2 2x gx = 2U0x2hx2 gx = 21 4   [by part(a)] =12.

16.5

Applications of Double Integrals

ET 15.5

1.T =UUG({> |) gD =U13U02(2{| + |2) g| g{ =U13{|2+13|3|=2|=0 g{ =U134{ +8 3  g{ =2{2+8 3{ 3 1= 16 +163 =643 C 3.p =UUG({> |) gD =U02U11 {|2g| g{ =U02 { g{U11 |2g| =12{22013|311= 2 · 23 =43, { = 1 p UU G {({> |) gD = 34 U2 0 U1 1{2|2g| g{ =34 U2 0 {2g{ U1 1|2g| =34 1 3{3 2 0 1 3|3 1 1=34·83 ·23 = 43, | = 1 p UU G |({> |) gD =34 U2 0 U1 1{|3g| g{ =34 U2 0 { g{ U1 1|3g| = 34 1 2{2 2 0 1 4|4 1 1= 34· 2 · 0 = 0. Hence,({> |) =43> 0. 5.p =U02U{@23{({ + |) g| g{ =U02{| +12|2|=3{|={@2g{ =U02{3 32{+12(3  {)218{2g{ =U029 8{2+92  g{ =9 8 1 3{3  +9 2{ 2 0= 6, P|=U02U{@23{({2+ {|) g| g{ =U02{2| +12{|2|=3{|={@2 g{ =U0229{ 98{3g{ =92, P{=U02U{@23|({| + |2) g| g{ =U0212{|2+13|3|=3{|={@2 g{ =U029 92{g{ = 9. Hencep = 6, ({> |) =  P| p > Pp{  =  3 4> 32  . 7.p =U01U0h{| g| g{ =U0112|2|=h|=0{g{ =12U01h2{g{ = 14h2{10=14(h2 1), P|=U01Uh { 0 {| g| g{ =12 U1 0 {h2{g{ =12 1 2{h2{14h2{ 1 0= 18(h2+ 1), P{=U01Uh { 0 |2g| g{ = U1 0 1 3|3 |=h{ |=0 g{ =13 U1 0 h3{g{ =13 1 3h3{ 1 0=19(h3 1). Hencep = 14(h2 1), ({> |) = #1 8(h2+ 1) 1 4(h2 1) > 19(h3 1) 1 4(h2 1) $ =  h2+ 1 2(h2 1)> 4(h 3 1) 9(h2 1)  .

TX 10

CTION 16TION 16.

(14)

9. Note thatsin({@O)  0 for 0  {  O. p =U0OU0sin({@O)| g| g{ =U0O1 2sin2({@O) g{ = 12 1 2{ 4O sin(2{@O) O 0 =14O,

P|=U0OU0sin({@O){ · | g| g{ =12U0O{ sin2({@O) g{



integrate by parts with x = {> gy = sin2({@O) g{  = 1 2 · { 1 2{ 4O sin(2{@O) O 0 12 UO 0 1 2{ 4O sin(2{@O)  g{ =1 4O212 k 1 4{2+ O 2 42cos(2{@O) lO 0 = 1 4O212  1 4O2+ O 2 42  O 2 42  = 1 8O2>

P{=U0OU0sin({@O)| · | g| g{ =U0O31sin3({@O) g{ = 13U0O1  cos2({@O)sin({@O) g{

[substitutex = cos ({@O)]  gx = Osin({@O)] = 1 3  O   cos({@O) 1 3cos3({@O) O 0 = 3O  1 +1 3  1 +13  = 4 9O. Hencep = O 4,({> |) =  O2@8

O@4> 4O@(9)O@4  =  O 2> 169  .

11. ({> |) = n| = nu sin , p =U0@2U01nu2sin  gu g =13nU0@2sin  g =13n cos @20 = 13n, P|=U0@2U01nu3sin  cos  gu g =14nU0@2sin  cos  g = 18n cos 2@20 = 18n,

P{=U0@2U01nu3sin2 gu g =14nU0@2sin2 g =18n + sin 2@20 = 16n.

Hence({> |) =38>316. 13. ({> |) = ns{2+ |2= nu, p =UUG({> |)gD =U0U12nu · u gu g = nU0gU12u2gu = n()1 3u3 2 1=73n,

P|=UUG{({> |)gD =U0U12(u cos )(nu) u gu g = nU0cos  gU12u3gu

= nsin 0 1 4u4 2 1= n(0) 15 4 

= 0 [this is to be expected as the region and density

function are symmetric about they-axis] P{=UUG|({> |)gD =U0U12(u sin )(nu) u gu g = nU0sin  gU12u3gu

= n cos 0 1 4u4 2 1= n(1 + 1) 15 4  =15 2n= Hence({> |) =0>7n@315n@2=0>1445.

15. Placing the vertex opposite the hypotenuse at(0> 0), ({> |) = n({2+ |2). Then p =Ud 0 Ud  { 0 n  {2+ |2g| g{ = nUd 0  d{2 {3+1 3(d  {)3  g{ = n1 3d{314{4121 (d  {)4 d 0 =16nd4. By symmetry, P|= P{ =U0dU0d  {n|({2+ |2) g| g{ = nU0d12(d  {)2{2+14(d  {)4g{ = n1 6d2{314d{4+101{5201(d  {)5 d 0 =151nd5 Hence({> |) =25d>25d.

(15)

SECTION 16.5 APPLICATIONS OF DOUBLE INTEGRALS ET SECTION 15.5 ¤ 237 17.L{ =UUG|2({> |)gD =U01U0h{|2· | g| g{ =U0114|4|=0|=h{g{ = 14U01h4{g{ =1414h4{10= 161(h4 1), L| =UUG{2({> |) gD =U01Uh { 0 {2| g| g{ = U1 0 {2 1 2|2 |=h{ |=0 g{ =12 U1 0 {2h2{g{ =1 2 1 2{212{ +14  h2{1

0 [integrate by parts twice] = 18(h2 1),

andL0= L{+ L|= 161(h4 1) +18(h2 1) =161(h4+ 2h2 3).

19.As in Exercise 15, we place the vertex opposite the hypotenuse at(0> 0) and the equal sides along the positive axes. L{=U0dU0d{|2n({2+ |2) g| g{ = nU0dU0d{({2|2+ |4) g| g{ = nU0d13{2|3+15|5|=d{|=0 g{ = nU0d1 3{2(d  {)3+15(d  {)5  g{ = n1 3 1 3d3{334d2{4+35d{516{6   1 30(d  {)6 d 0 =1807 nd6, L|=U0dU0d{{2n({2+ |2) g| g{ = nU0dU0d{({4+ {2|2) g| g{ = nU0d{4| +13{2|3|=d{|=0 g{ = nU0d{4(d  {) +1 3{2(d  {)3  g{ = n1 5d{516{6+13 1 3d3{334d2{4+35d{516{6 d 0 =1807 nd6, andL0= L{+ L|= 907nd6.

21.Using a CAS, we ndp =UUG({> |) gD =U0U0sin {{| g| g{ = 

2 8 . Then { = 1p ]] G{({> |) gD = 82 ]  0 ] sin { 0 { 2| g| g{ = 2 3  1 and | = 1p ]] G|({> |) gD = 82 ] 0 ] sin { 0 {| 2g| g{ = 16 9, so({> |) =  2 3  1> 169  .

The moments of inertia areL{ =UUG|2({> |) gD =U0U0sin {{|3g| g{ = 3 2 64 , L|=UUG{2({> |) gD =U0U0sin {{3| g| g{ =  2 16(2 3), and L0= L{+ L|=  2 64(42 9). 23.L{ =UUG|2({> |)gD =U0kU0e|2g{ g| = U0eg{U0k|2g| = {e0 13|3k0 = e13k3= 13ek3, L|=UUG{2({> |)gD =U0kU0e{2g{ g| = U0e{2g{U0kg| = 13{3e0 [|]k0 = 13e3k,

andp =  (area of rectangle) = ek since the lamina is homogeneous. Hence {2= L|

p = 1 3e3k ek = e 2 3  { = e3 and|2= L{ p = 1 3ek3 ek = k 2 3  | = k3.

25.In polar coordinates, the region isG = (u> ) | 0  u  d> 0   2 , so L{=UUG|2 gD =U0@2U0d(u sin )2u gu g = U0@2sin2gU0du3gu

= 1 2 14sin 2 @2 0 1 4u4 d 0 =   4  1 4d4  = 1 16d4,

L|=UUG{2 gD =U0@2U0d(u cos )2u gu g = U0@2cos2gU0du3gu

= 1 2 +14sin 2 @2 0 1 4u4 d 0 =   4  1 4d4  = 1 16d4,

andp =  · D(G) =  ·14d2since the lamina is homogeneous. Hence{2= |2=

1 16d4 1 4d2 = d42  { = | = d2.

TX 10

CTION 16TION 16.

(16)

27. (a)i({> |) is a joint density function, so we knowUUR2i({> |) gD = 1. Since i({> |) = 0 outside the rectangle[0> 1] × [0> 2], we can say

UU R2i({> |) gD = U  U i({> |) g| g{ = U1 0 U2 0 F{(1 + |) g| g{ = FU01{| +1 2|2 |=2 |=0g{ = F U1 0 4{ g{ = F  2{21 0= 2F Then2F = 1  F = 12. (b)S ([  1> \  1) =U1 U1 i({> |) g| g{ =U01U0112{(1 + |) g| g{ =U01 1 2{  | +1 2|2 | = 1 | = 0g{ = U1 0 12{ 3 2  g{ =3 4 1 2{2 1 0= 38or0=375

(c)S ([ + \  1) = S (([> \ ) G) where G is the triangular region shown in the gure. Thus

S ([ + \  1) =UUGi({> |) gD =U1 0 U1  { 0 12{(1 + |) g| g{ =U011 2{  | +1 2|2 | = 1{ | = 0 g{ = U1 0 12{ 1 2{2 2{ +32  g{ =1 4 U1 0  {3 4{2+ 3{g{ =1 4 k {4 4  4{ 3 3 + 3{ 2 2 l1 0 = 5 48  0=1042

29. (a)i({> |)  0, so i is a joint density function ifUUR2i({> |) gD = 1. Here, i({> |) = 0 outside the rst quadrant, so UU R2i({> |) gD = U 0 U 0 0=1h(0=5{ + 0=2|)g| g{ = 0=1 U 0 U 0 h0=5{h0=2|g| g{ = 0=1 U 0 h0=5{g{ U 0 h0=2|g| = 0=1 limwU0wh0=5{g{ lim w Uw 0h0=2|g| = 0=1 limw  2h0=5{w 0wlim  5h0=2|w 0 = 0=1 lim w  2(h0=5w 1)lim w  5(h0=2w 1)= (0=1) · (2)(0  1) · (5)(0  1) = 1

Thusi({> |) is a joint density function. (b) (i) No restriction is placed on[, so

S (\  1) =U U1i({> |) g| g{ =U0U10=1h(0=5{+0=2|)g| g{ = 0=1U 0 h0=5{g{ U 1 h0=2|g| = 0=1 limw Uw 0h0=5{g{ limw Uw 1h0=2|g| = 0=1 limw2h0=5{w 0 wlim  5h0=2|w 1 = 0=1 limw  2(h0=5w 1) lim w  5(h0=2w h0=2) (0=1) · (2)(0  1) · (5)(0  h0=2) = h0=2 0=8187 (ii)S ([  2> \  4) =U2 U4 i({> |) g| g{ =U02U040=1h(0=5{+0=2|)g| g{ = 0=1U02h0=5{g{U4 0 h0=2|g| = 0=1  2h0=5{2 0  5h0=2|4 0 = (0=1) · (2)(h1 1) · (5)(h0=8 1) = (h1 1)(h0=8 1) = 1 + h1=8 h0=8 h1 0=3481

(c) The expected value of[ is given by 1=UUR2{ i({> |) gD = U 0 U 0 { k 0=1h(0=5{+0=2|)lg| g{ = 0=1U0{h0=5{g{U 0 h0=2|g| = 0=1 limw Uw 0{h0=5{g{ limw Uw 0h0=2|g|

(17)

SECTION 16.5 APPLICATIONS OF DOUBLE INTEGRALS ET SECTION 15.5 ¤ 239 in the Table of Integrals):U{h0=5{g{ = 2{h0=5{U2h0=5{g{ = 2{h0=5{ 4h0=5{= 2({ + 2)h0=5{. Thus 1= 0=1 limw  2({ + 2)h0=5{w 0wlim  5h0=2|w 0 = 0=1 lim w(2)  (w + 2)h0=5w 2 lim w(5)  h0=2w 1 = 0=1(2)  lim w w + 2 h0=5w  2 

(5)(1) = 2 [by l’Hospital’s Rule] The expected value of\ is given by

2= UU R2| i({> |) gD = U 0 U 0 | k 0=1h(0=5 +0=2|)lg| g{ = 0=1U0h0=5{g{U 0 |h0=2|g| = 0=1 limw Uw 0h0=5{g{ limw Uw 0|h0=2|g|

To evaluate the second integral, we integrate by parts withx = | and gy = h0=2|g| (or again we can use Formula 96 in the Table of Integrals) which givesU|h0=2|g| = 5|h0=2|+U5h0=2|g| = 5(| + 5)h0=2|. Then

2= 0=1 limw2h0=5{w0 wlim  5(| + 5)h0=2|w 0 = 0=1 lim w  2(h0=5w 1) lim w  5(w + 5)h0=2w 5 = 0=1(2)(1) · (5)  lim w w + 5 h0=2w  5 

= 5 [by l’Hospital’s Rule] 31. (a) The random variables[ and \ are normally distributed with 1= 45, 2= 20, 1= 0=5, and 2= 0=1.

The individual density functions for[ and \ , then, are i1({) = 1

0=52h({45) 2@0=5 and i2(|) = 1 0=12h (|20)2@0=02

. Since[ and \ are independent, the joint density function is the product i({> |) = i1({)i2(|) = 1 0=52h({45) 2@0=5 1 0=12h(|20) 2@0=02 = 10 h2({45) 250(|20)2 = ThenS (40  [  50, 20  \  25) =U4050U2025i({> |) g| g{ =10 U4050U2025h2({45)250(|20)2g| g{. Using a CAS or calculator to evaluate the integral, we getS (40  [  50, 20  \  25)  0=500.

(b)S (4([  45)2+ 100(\  20)2 2) =UUG 10h2({45)250(|20)2gD, where G is the region enclosed by the ellipse 4({  45)2+ 100(|  20)2= 2. Solving for | gives | = 20 ± 1

10

s

2  4({  45)2, the upper and lower halves of the

ellipse, and these two halves meet where| = 20 [since the ellipse is centered at (45> 20)]  4({  45)2= 2  { = 45 ±1 2. Thus ]] G 10 h2({45) 250(|20)2 gD = 10  ]45+1@2 451@2 ] 20+1 102  4({45)2 201 10  2  4({45)2 h 2({45)250(|20)2 g| g{. Using a CAS or calculator to evaluate the integral, we getS (4([  45)2+ 100(\  20)2 2)  0=632.

33. (a) Ifi(S> D) is the probability that an individual at D will be infected by an individual at S , and n gD is the number of infected individuals in an element of areagD, then i(S> D)n gD is the number of infections that should result from exposure of the individual atD to infected people in the element of area gD. Integration over G gives the number of infections of the person atD due to all the infected people in G. In rectangular coordinates (with the origin at the city’s

TX 10

(18)

center), the exposure of a person atD is H = ]] Gni(S> D) gD = n ]] G 20  g(S> D) 20 gD = n ]] G % 1  s ({  {0)2+ (|  |0)2 20 & g{ g| (b) IfD = (0> 0), then H = n ]] G  1  120s{2+ |2  g{ g| = n ] 2 0 ] 10 0  1  u20u gu g = 2n  u2 2  u 3 60 10 0 = 2n50 50 3  =200 3 n  209n

ForD at the edge of the city, it is convenient to use a polar coordinate system centered at D. Then the polar equation for the circular boundary of the city becomesu = 20 cos  instead of u = 10, and the distance from D to a point S in the city is againu (see the gure). So

H = n] @2 @2 ] 20 cos  0  1  u 20  u gu g = n] @2 @2  u2 2  u 3 60 u=20 cos  u=0 g = nU@2@2 200 cos2 400 3 cos3  g = 200nU@2@2 1 2 +12cos 2 23  1  sin2cos g = 200n1

2 +14sin 2 23sin  +23·13sin3

@2 @2= 200n  4 + 0 23 +29 +4 + 0 23 +29  = 200n 2 89   136n

Therefore the risk of infection is much lower at the edge of the city than in the middle, so it is better to live at the edge.

16.6

Triple Integrals

ET 15.6

1. UUUE{|}2gY =U01U03 U12 {|}2g| g} g{ =U01U0312{|2}2|=2|=1g} g{ =U01U0332{}2g} g{ =U011 2{}3 }=3 }=0g{ = U1 0 272 { g{ = 274{2 1 0=274 3. U01U0}U0{+}6{} g| g{ g} =U01U0}6{|}|={+}|=0 g{ g} =U01U0}6{}({ + }) g{ g} =U012{3} + 3{2}2{=} {=0g} = U1 0(2}4+ 3}4) g} = U1 0 5}4g} = }5 1 0= 1 5. U03U01U 0 1}2}h|g{ g} g| =U03U01{}h|{=  1}2 {=0 g} g| = U3 0 U1 0 }h|  1  }2g} g| =U03k1 3(1  }2)3@2h| l}=1 }=0g| = U3 0 13h|g| = 13h| 3 0=13(h3 1) 7. U0@2U0|U0{cos({ + | + })g} g{ g| =U0@2U0|sin({ + | + })}={}=0g{ g| =U@2 0 U| 0 [sin(2{ + |)  sin({ + |)] g{ g| =U0@21 2cos(2{ + |) + cos({ + |) {=| {=0g| =U@2 0  1

2cos 3| + cos 2| +12cos |  cos |

 g| =1

6sin 3| +12sin 2|  12sin |

@2 0 =16 12 = 13 9. UUUH 2{ gY =U02U 0 4|2U0|2{ g} g{ g| =U02U 0 4|22{}}=|}=0g{ g| =U02U 0 4|22{| g{ g| =U02{2|{=4|2 {=0 g| = U2 0(4  |2)| g| =  2|21 4|4 2 0 = 4

(19)

SECTION 16.6 TRIPLE INTEGRALS ET SECTION 15.6 ¤ 241 11.HereH = {({> |> }) | 0  {  1> 0  | {> 0  }  1 + { + |}, so UUU H 6{| gY = U1 0 U{ 0 U1+{+| 0 6{| g} g| g{ = U1 0 U{ 0  6{|}}=1+{+|}=0 g| g{ =U01U0{ 6{|(1 + { + |) g| g{ =U013{|2+ 3{2|2+ 2{|3|={ |=0 g{ = U1 0 (3{2+ 3{3+ 2{5@2) g{ = k {3+3 4{4+47{7@2 l1 0= 65 28

13. H is the region below the parabolic cylinder } = 1  |2and above the

square[1> 1] × [1> 1] in the {|-plane. UUU H{2h|gY = U1 1 U1 1 U1|2 0 {2h|g} g| g{ =U11 U11 {2h|(1  |2) g| g{ =U11 {2g{U1 1(h| |2h|) g| =1 3{3 1 1  h| (|2 2| + 2)h|1 1  integrate by parts twice  =1 3(2)[h  h  h1+ 5h1] =3h8 15. HereW = {({> |> }) | 0  {  1> 0  |  1  {> 0  }  1  {  |}, so UUU W {2gY = U1 0 U1{ 0 U1{| 0 {2g} g| g{ = U1 0 U1{ 0 {2(1  {  |)g| g{ =U01U01{({2 {3 {2|)g| g{ =U1 0  {2|  {3| 1 2{2|2 |=1{ |=0 g{ =U01{2(1  {)  {3(1  {) 1 2{2(1  {)2  g{ =U011 2{4 {3+12{2  g{ =1 10{514{4+16{3 1 0 = 1 1014 +16 = 601

17. The projectionH on the |}-plane is the disk |2+ }2  1. Using polar

coordinates| = u cos  and } = u sin , we get UUU H{ gY = UU G kU4 4|2+ 4}2{ g{ l gD =1 2 UU G  42 (4|2+ 4}2)2gD = 8U02U01(1  u4) u gu g = 8U2 0 g U1 0(u  u5) gu = 8(2)1 2u216u6 1 0 =163

19.The plane2{ + | + } = 4 intersects the {|-plane when 2{ + | + 0 = 4  | = 4  2{, so H = {({> |> }) | 0  {  2, 0  |  4  2{, 0  }  4  2{  |} and Y =U2 0 U42{ 0 U42{| 0 g} g| g{ = U2 0 U42{ 0 (4  2{  |) g| g{ =U024|  2{| 1 2|2 |=42{ |=0 g{ =U024(4  2{)  2{(4  2{) 1 2(4  2{)2  g{ =U2 0 (2{2 8{ + 8) g{ = 2 3{3 4{2+ 8{ 2 0=163

TX.10

(20)

21. Y = ] 3 3 ] 9{2 9{2 ] 5| 1 g} g| g{ = ] 3 3 ] 9{2 9{2(5  |  1) g| g{ = ] 3 3 k 4| 1 2|2 l|=9{2 |=9{2 g{ =U33 89  {2g{ = 8{ 2  9  {2+9 2sin1 { 3 3 3 

using trigonometric substitution or Formula 30 in the Table of Integrals

 = 89 2sin1(1) 92sin1(1)  = 36 2    2  = 36 Alternatively, use polar coordinates to evaluate the double integral: ] 3 3 ] 9{2 9{2(4  |) g| g{ = ] 2 0 ]3 0 (4  u sin ) u gu g =U022u21 3u3sin  u=3 u=0 g =U02(18  9 sin ) g = 18 + 9 cos l2 0 = 36

23. (a) The wedge can be described as the region

G = ({> |> }) | |2+ }2 1, 0  {  1, 0  |  {

=q({> |> }) | 0  {  1, 0  |  {, 0  } s1  |2r

So the integral expressing the volume of the wedge is UUU G gY = U1 0 U{ 0 U 1  |2 0 g} g| g{. (b) A CAS givesU01U0{U 0 1  |2 g} g| g{ = 4 13. (Or use Formulas 30 and 87 from the Table of Integrals.)

25. Herei({> |> }) = 1

ln(1 + { + | + })andY = 2 · 4 · 2 = 16, so the Midpoint Rule gives UUU E i({> |> }) gY  o S l=1 p S m=1 q S n=1i  {l> |m> }nY

= 16[i(1> 2> 1) + i(1> 2> 3) + i(1> 6> 1) + i(1> 6> 3) + i(3> 2> 1) + i(3> 2> 3) + i(3> 6> 1) + i(3> 6> 3)] = 16 1

ln 5+ln 71 +ln 91 +ln 111 +ln 71 +ln 91 +ln 111 +ln 131



 60=533 27. H = {({> |> }) | 0  {  1, 0  }  1  {, 0  |  2  2}},

the solid bounded by the three coordinate planes and the planes } = 1  {, | = 2  2}.

(21)

SECTION 16.6 TRIPLE INTEGRALS ET SECTION 15.6 ¤ 243 29.

IfG1,G2,G3are the projections ofH on the {|-, |}-, and {}-planes, then

G1= ({> |) | 2  {  2, 0  |  4  {2 = ({> |) | 0  |  4, 4  |  { 4  | G2= (|> }) | 0  |  4, 124  |  } 124  | = (|> }) | 1  }  1, 0  |  4  4}2 G3= ({> }) | {2+ 4}2 4 Therefore H =q({> |> }) | 2  {  2, 0  |  4  {2, 1 2 s 4  {2 |  }  1 2 s 4  {2 |r =q({> |> }) | 0  |  4, 4  |  { 4  |, 1 2 s 4  {2 |  }  1 2 s 4  {2 |r =q({> |> }) | 1  }  1, 0  |  4  4}2, s4  |  4}2 { s4  |  4}2r =q({> |> }) | 0  |  4, 1 2  4  |  } 1 2  4  |, s4  |  4}2 { s4  |  4}2r =q({> |> }) | 2  {  2, 1 2  4  {2 }  1 2  4  {2,0  |  4  {2 4}2r =q({> |> }) | 1  }  1, 4  4}2 { 4  4}2,0  |  4  {2 4}2r Then UUU Hi({> |> }) gY = U2 2 U4{2 0 U 4{2|@2 4{2|@2i({> |> }) g} g| g{ = U4 0 U4| 4| U 4{2|@2 4{2|@2i({> |> }) g} g{ g| =U11 U044}2U 4|4}2 4|4}2i({> |> }) g{ g| g} = U4 0 U 4|@2 4|@2 U 4|4}2 4|4}2i({> |> }) g{ g} g| =U22 U 4{2@2 4{2@2 U4{24}2 0 i({> |> }) g| g} g{ = U1 1 U 44}2 44}2 U4{24}2 0 i({> |> }) g| g{ g}

TX.10

(22)

31.

IfG1,G2, andG3are the projections ofH on the {|-, |}-, and {}-planes, then G1= q ({> |) | 2  {  2> {2 |  4r=q({> |) | 0  |  4> s|  { s|r, G2= q (|> }) | 0  |  4> 0  }  2 1 2| r =q(|> }) | 0  }  2> 0  |  4  2}r, and G3= q ({> }) | 2  {  2> 0  }  2 1 2{2 r =q({> }) | 0  }  2> 4  2}  { 4  2}r Therefore H =q({> |> }) | 2  {  2, {2 |  4, 0  }  2 1 2| r =q({> |> }) | 0  |  4, s|  { s|, 0  }  2 1 2| r =q({> |> }) | 0  |  4, 0  }  2 1 2|,  s |  { s|r =q({> |> }) | 0  }  2, 0  |  4  2}, s|  { s|r =q({> |> }) | 2  {  2, 0  }  2 1 2{2,{2 |  4  2} r =q({> |> }) | 0  }  2, 4  2}  { 4  2}, {2 |  4  2}r Then UUU Hi({> |> }) gY = U2 2 U4 {2U02|@2i({> |> }) g} g| g{ =U04U|| U02|@2i({> |> }) g} g{ g| =U4 0 U2|@2 0 U| |i({> |> }) g{ g} g| = U2 0 U42} 0 U| |i({> |> }) g{ g| g} =U22 U02  {2@2U{42}2 i({> |> }) g| g} g{ = U2 0 U 42} 42} U42} {2 i({> |> }) g| g{ g}

(23)

SECTION 16.6 TRIPLE INTEGRALS ET SECTION 15.6 ¤ 245 33.

The diagrams show the projections ofH on the {|-, |}-, and {}-planes. Therefore U1 0 U1 { U1  | 0 i({> |> }) g} g| g{ = U1 0 U|2 0 U1| 0 i({> |> }) g} g{ g| = U1 0 U1} 0 U|2 0 i({> |> }) g{ g| g} =U1 0 U1| 0 U|2 0 i({> |> }) g{ g} g| = U1 0 U1 { 0 U1}  { i({> |> }) g| g} g{ =U1 0 U(1})2 0 U1} { i({> |> }) g| g{ g} 35. U1 0 U1 | U| 0 i({> |> }) g} g{ g| = UUU Hi({> |> }) gY where H = {({> |> }) | 0  }  |, |  {  1, 0  |  1}.

IfG1,G2, andG3are the projections ofH on the {|-, |}- and {}-planes then G1= {({> |) | 0  |  1, |  {  1} = {({> |) | 0  {  1, 0  |  {},

G2= {(|> }) | 0  |  1, 0  }  |} = {(|> }) | 0  }  1, }  |  1}, and

G3= {({> }) | 0  {  1, 0  }  {} = {({> }) | 0  }  1, }  {  1}.

Thus we also have

H = {({> |> }) | 0  {  1, 0  |  {, 0  }  |} = {({> |> }) | 0  |  1, 0  }  |, |  {  1} = {({> |> }) | 0  }  1, }  |  1, |  {  1} = {({> |> }) | 0  {  1, 0  }  {, }  |  {} = {({> |> }) | 0  }  1, }  {  1, }  |  {} . Then U1 0 U1 | U| 0 i({> |> }) g} g{ g| = U1 0 U{ 0 U| 0 i({> |> }) g} g| g{ = U1 0 U| 0 U1 | i({> |> }) g{ g} g| =U1 0 U1 } U1 |i({> |> }) g{ g| g} = U1 0 U{ 0 U{ } i({> |> }) g| g} g{ =U01U}1U}{i({> |> }) g| g{ g}

TX.10

(24)

37. p =UUUH ({> |> }) gY =U01U  { 0 U1+{+| 0 2 g} g| g{ = U1 0 U { 0 2(1 + { + |) g| g{ =U012| + 2{| + |2|={ |=0 g{ = U1 0  2{ + 2{3@2+ {g{ =k4 3{3@2+45{5@2+12{2 l1 0= 79 30 P|} =UUUH {({> |> }) gY =U01U  { 0 U1+{+| 0 2{ g} g| g{ = U1 0 U { 0 2{(1 + { + |) g| g{ =U012{| + 2{2| + {|2|={ |=0 g{ = U1 0(2{3@2+ 2{5@2+ {2) g{ = k 4 5{5@2+47{7@2+13{3 l1 0= 179 105 P{}=UUUH |({> |> }) gY =U01U  { 0 U1+{+| 0 2| g} g| g{ = U1 0 U { 0 2|(1 + { + |) g| g{ =U01|2+ {|2+2 3|3 |={ |=0 g{ = U1 0  { + {2+2 3{3@2  g{ =k1 2{2+13{3+154{5@2 l1 0= 11 10 P{| =UUUH}({> |> }) gY =U01U { 0 U1+{+| 0 2} g} g| g{ = U1 0 U{ 0  }2}=1+{+| }=0 g| g{ = U1 0 U{ 0 (1 + { + |)2g| g{ =U01U0{(1 + 2{ + 2| + 2{| + {2+ |2) g| g{ =U1 0  | + 2{| + |2+ {|2+ {2| +1 3|3 |={ |=0 g{ =U1 0 { +7 3{3@2+ { + {2+ {5@2  g{ =k2 3{3@2+1415{5@2+12{2+13{3+27{7@2 l1 0= 571 210

Thus the mass is7930and the center of mass is({> |> }) =  P|} p > Pp{}> Pp{|  =  358 553> 3379> 571553  . 39. p =U0dU0dU0d({2+ |2+ }2) g{ g| g} =U0dU0d13{3+ {|2+ {}2{=d{=0 g| g} =U0dU0d13d3+ d|2+ d}2g| g} =U0d1 3d3| +13d|3+ d|}2 |=d |=0g} = Ud 0 2 3d4+ d2}2  g} =2 3d4} +13d2}3 d 0 =23d5+13d5= d5 P|} =U0dU0dU0d{3+ {(|2+ }2)g{ g| g} =U0dU0d14d4+12d2(|2+ }2)g| g} =U0d1 4d5+16d5+12d3}2  g} = 1 4d6+13d6=127d6= P{}= P{|by symmetry ofH and ({> |> }) Hence({> |> }) =127d>127d>127d. 41. L{=U0OU0OU0On(|2+ }2) g} g| g{ = nU0OU0OO|2+13O3g| g{ = nU0O23O4g{ =23nO5. By symmetry,L{= L|= L}= 23nO5. 43. L} =UUUH({2+ |2) ({> |> }) gY = UU {2+|2d2 kUk 0 n({2+ |2) g} l gD = UU {2+|2d2n({ 2+ |2)k gD = nkU02U0d(u2) u gu g = nkU2 0 g Ud 0 u3gu = nk(2) 1 4u4 d 0 = 2nk ·14d4=12nkd4 45. (a)p =U33 U 9{2 9{2 U5| 1 s {2+ |2g} g| g{ (b)({> |> }) =  P|} p > Pp{}> Pp{|  where P|} =U33 U 9{2 9{2 U5| 1 { s {2+ |2g} g| g{, P{}=U3 3 U 9{2 9{2 U5| 1 | s {2+ |2g} g| g{, and P{|=U33 U 9{ 2 9{2 U5| 1 } s {2+ |2g} g| g{. (c)L}=U33 U 9{2 9{2 U5| 1 ({2+ |2) s {2+ |2g} g| g{ =U3 3 U 9{2 9{2 U5| 1 ({2+ |2)3@2g} g| g{

(25)

SECTION 16.6 TRIPLE INTEGRALS ET SECTION 15.6 ¤ 247 47. (a)p =U01U 0 1{2U0|(1 + { + | + }) g} g| g{ = 332 +1124 (b) ({> |> }) =  p1U1 0 U 1{2 0 U| 0 {(1 + { + | + }) g} g| g{> p1U1 0 U 1{2 0 U| 0 |(1 + { + | + }) g} g| g{> p1U1 0 U 1{2 0 U| 0 }(1 + { + | + }) g} g| g{  =  28 9 + 44> 30 + 12845 + 220> 45 + 208135 + 660  (c)L}= ]1 0 ] 1{2 0 ] | 0 ({ 2+ |2)(1 + { + | + }) g} g| g{ = 68 + 15 240

49. (a)i({> |> }) is a joint density function, so we knowUUUR3i({> |> }) gY = 1. Here we have UUU R3i({> |> }) gY = U  U  U i({> |> }) g} g| g{ = U2 0 U2 0 U2 0 F{|} g} g| g{ = FU2 0 { g{ U2 0 | g| U2 0 } g} = F 1 2{2 2 0 1 2|2 2 0 1 2}2 2 0= 8F

Then we must have8F = 1  F = 18.

(b)S ([  1> \  1> ]  1) =U1 U1 U1 i({> |> }) g} g| g{ =U01U01U0118{|} g} g| g{ =1 8 U1 0 { g{ U1 0 | g| U1 0 } g} = 18 1 2{2 1 0 1 2|2 1 0 1 2}2 1 0= 18 1 2 3= 1 64

(c)S ([ + \ + ]  1) = S (([> \> ]) H) where H is the solid region in the rst octant bounded by the coordinate planes and the plane{ + | + } = 1. The plane { + | + } = 1 meets the {|-plane in the line { + | = 1, so we have

S ([ + \ + ]  1) =UUUHi({> |> }) gY =U01U01{U01{|1 8{|} g} g| g{ = 1 8 U1 0 U1{ 0 {| 1 2}2 }=1{| }=0 g| g{ =161 U1 0 U1{ 0 {|(1  {  |)2g| g{ = 1 16 U1 0 U1{ 0 [({3 2{2+ {)| + (2{2 2{)|2+ {|3] g| g{ = 1 16 U1 0  ({3 2{2+ {)1 2|2+ (2{2 2{)13|3+ { 1 4|4 |=1{ |=0 g{ = 1 192 U1 0({  4{2+ 6{3 4{4+ {5) g{ = 1921 1 30  = 1 5760 51.Y (H) = O3  iave= 1 O3 ] O 0 ] O 0 ]O 0 {|} g{ g| g} = 1O3 ]O 0 { g{ ] O 0 | g| ] O 0 } g} = 1O3  {2 2 O 0  |2 2 O 0  }2 2 O 0 = 1O3 O2 2 O 2 2 O 2 2 = O 3 8

53.The triple integral will attain its maximum when the integrand1  {2 2|2 3}2is positive in the regionH and negative everywhere else. For ifH contains some region I where the integrand is negative, the integral could be increased by excluding I from H, and if H fails to contain some part J of the region where the integrand is positive, the integral could be increased by includingJ in H. So we require that {2+ 2|2+ 3}2  1. This describes the region bounded by the ellipsoid

(26)

16.7

Triple Integrals in Cylindrical Coordinates

ET 15.7

1. (a)

{ = 2 cos 4 =2, | = 2 sin 4 =2, } = 1, so the point is2>2> 1in rectangular coordinates.

(b) { = 4 cos 3  = 2, | = 4 sin 3  = 23, and} = 5, so the point is2> 23> 5in rectangular coordinates.

3. (a)u2= {2+ |2= 12+ (1)2= 2 so u =2; tan  = |

{= 11 = 1 and the point (1> 1) is in the fourth quadrant of the{|-plane, so  = 74 + 2q; } = 4. Thus, one set of cylindrical coordinates is2>74 > 4.

(b)u2= (1)2+32= 4 so u = 2; tan  = 13 =3 and the point1> 3is in the third quadrant of the {|-plane, so  = 4

3 + 2q; } = 2. Thus, one set of cylindrical coordinates is

 2>4

3> 2

 .

5. Since =4 butu and } may vary, the surface is a vertical half-plane including the }-axis and intersecting the {|-plane in the half-line| = {, {  0.

7. } = 4  u2= 4  ({2+ |2) or 4  {2 |2, so the surface is a circular paraboloid with vertex(0> 0> 4), axis the }-axis, and opening downward.

9. (a){2+ |2= u2, so the equation becomes} = u2=

(b) Substituting{2+ |2= u2and| = u sin , the equation {2+ |2= 2| becomes u2= 2u sin  or u = 2 sin .

11. 0  u  2 and 0  }  1 describe a solid circular cylinder with

radius2, axis the }-axis, and height 1, but @2    @2 restricts the solid to the rst and fourth quadrants of the{|-plane, so we have a half-cylinder.

13. We can position the cylindrical shell vertically so that its axis coincides with the}-axis and its base lies in the {|-plane. If we use centimeters as the unit of measurement, then cylindrical coordinates conveniently describe the shell as6  u  7, 0    2, 0  }  20.

(27)

SECTION 16.7 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES ET SECTION 15.7 ¤ 249

15. The region of integration is given in cylindrical coordinates by

H = {(u> > }) | 0    2, 0  u  4, u  }  4}. This represents the solid region bounded below by the cone} = u and above by the horizontal plane } = 4.

U4 0 U2 0 U4 u u g} g gu = U4 0 U2 0  u}}=4}=u g gu =U04U02u(4  u) g gu =U04(4u  u2) guU2 0 g =  2u21 3u3 4 0  20 =32 64 3  (2) =64 3

17.In cylindrical coordinates,H is given by {(u> > }) | 0    2> 0  u  4> 5  }  4}. So UUU H s {2+ |2gY =U2 0 U4 0 U4 5  u2u g} gu g =U2 0 g U4 0 u2gu U4 5g} =20 1 3u3 4 0  }45= (2)64 3  (9) = 384

19.In cylindrical coordinatesH is bounded by the paraboloid } = 1 + u2, the cylinderu2= 5 or u =5, and the {|-plane, soH is given by (u> > }) | 0    2> 0  u 5> 0  }  1 + u2 . Thus

UUU H h}gY = U2 0 U 5 0 U1+u2 0 h}u g} gu g = U2 0 U 5 0 u  h}}=1+u2 }=0 gu g = U2 0 U 5 0 u(h1+u 2  1) gu g =U02 gU05uh1+u2  ugu = 2k1 2h1+u 2 1 2u2 l 5 0 = (h 6 h  5)

21.In cylindrical coordinates,H is bounded by the cylinder u = 1, the plane } = 0, and the cone } = 2u. So H = {(u> > }) | 0    2> 0  u  1> 0  }  2u} and

UUU H{2gY = U2 0 U1 0 U2u 0 u2cos2 u g} gu g = U2 0 U1 0  u3cos2 }}=2u }=0 gu g = U2 0 U1 0 2u4cos2 gu g =U2 0 2 5u5cos2 u=1 u=0g = 25 U2 0 cos2 g = 25 ] 2 0 1 + cos 2 2 g = 15   + 12sin 2 2 0 = 25

23. (a) The paraboloids intersect when{2+ |2= 36  3{2 3|2  {2+ |2= 9, so the region of integration isG = ({> |) | {2+ |2 9 . Then, in cylindrical coordinates,

H = (u> > }) | u2 }  36  3u2,0  u  3, 0    2 and Y =U02U03Uu36  3u2 2u g} gu g = U2 0 U3 0  36u  4u3gu g =U2 0  18u2 u4u=3 u=0g = U2 0 81 g = 162.

(b) For constant densityN, p = NY = 162N from part (a). Since the region is homogeneous and symmetric, P|}= P{}= 0 and P{|=U02U03U363u 2 u2 (}N) u g} gu g = N U2 0 U3 0 u 1 2}2 }=363u2 }=u2 gu g = N 2 U2 0 U3 0 u((36  3u2)2 u4) gu g =N2 U2 0 g U3

0(8u5 216u3+ 1296u) gu

= N 2(2) 8 6u62164 u4+12962 u2 3 0= N(2430) = 2430N Thus({> |> }) =  P|} p > Pp{}> Pp{|  =0> 0>2430N 162N  = (0> 0> 15).

TX.10

TRIPLETRIPLE

(28)

25. The paraboloid} = 4{2+ 4|2intersects the plane} = d when d = 4{2+ 4|2or{2+ |2 =14d. So, in cylindrical coordinates,H = (u> > }) | 0  u 12d> 0    2> 4u2 }  d . Thus

p =]2 0 ] d@2 0 ] d 4u2Nu g} gu g = N ] 2 0 ] d@2 0 (du  4u 3) gu g = N]2 0 1 2du2 u4 u=d@2 u=0 g = N ] 2 0 1 16d2g = 18d2N

Since the region is homogeneous and symmetric,P|} = P{}= 0 and

P{|= ] 2 0 ] d@2 0 ] d 4u2Nu} g} gu g = N ] 2 0 ] d@2 0 1 2d2u  8u5  gu g = N] 2 0 1 4d2u243u6 u=d@2 u=0 g = N ] 2 0 1 24d3g =121d3N Hence({> |> }) =0> 0>23d.

27. The region of integration is the region above the cone} =s{2+ |2, or} = u, and below the plane } = 2. Also, we have 2  |  2 with s4  |2 { s4  |2which describes a circle of radius 2 in the{|-plane centered at (0> 0). Thus,

] 2 2 ] 4|2 4|2 ]2  {2+|2{} g} g{ g| = ] 2 0 ] 2 0 ] 2 u (u cos ) } u g} gu g = ] 2 0 ] 2 0 ] 2 u u 2(cos ) } g} gu g =U02U02u2(cos )1 2}2 }=2 }=u gu g =12 U2 0 U2 0 u2(cos )  4  u2gu g =1 2 U2 0 cos  g U2 0  4u2 u4gu = 1 2[sin ]20 4 3u315u5 2 0= 0

29. (a) The mountain comprises a solid conical regionF. The work done in lifting a small volume of material Y with density j(S ) to a height k(S ) above sea level is k(S )j(S ) Y . Summing over the whole mountain we get

Z =UUUFk(S )j(S ) gY .

(b) HereF is a solid right circular cone with radius U = 62,000 ft, height K = 12,400 ft, and densityj(S ) = 200 lb@ft3at all pointsS in F. We use cylindrical coordinates: Z =U02U0KU0U(1}@K)} · 200u gu g} g = 2U0K200}1 2u2 u=U(1}@K) u=0 g} = 400 ] K 0 } U 2 2  1  }K2 g} = 200U2] K 0  }  2}K2 + }K32  g} = 200U2}2 2  2} 3 3K + } 4 4K2 K 0 = 200U 2K2 2  2K 2 3 + K 2 4  = 50 3U2K2= 503(62,000)2(12,400)2 3=1 × 1019ft-lb u U= K  }K = 1  }K

(29)

SECTION 16.8 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ET SECTION 15.8 ¤ 251

16.8

Triple Integrals in Spherical Coordinates

ET 15.8

1. (a)

{ =  sin ! cos  = (1) sin 0 cos 0 = 0, | =  sin ! sin  = (1) sin 0 sin 0 = 0, and } =  cos ! = (1) cos 0 = 1 so the point is (0> 0> 1) in rectangular coordinates. (b) { = 2 sin 4cos3 =  2 2 ,| = 2 sin4sin3 =  6 2 , } = 2 cos 4 =  2 so the point is2 2 >  6 2 >  2in rectangular coordinates. 3. (a) =s{2+ |2+ }2 =1 + 3 + 12 = 4, cos ! = }  = 2  3 4 =  3 2  ! = 6, and cos  = sin !{ =4 sin(@6)1 = 12   = 3 [since| A 0]. Thus spherical coordinates are



4> 3> 6. (b) =0 + 1 + 1 =2, cos ! = 1

2  ! = 34 , andcos  = 2 sin(3@4)0 = 0   = 32 [since| ? 0]. Thus spherical coordinates are2> 3

2 > 34 

.

5.Since! =3, the surface is the top half of the right circular cone with vertex at the origin and axis the positive}-axis. 7. = sin  sin !  2 =  sin  sin ! {2+ |2+ }2= | {2+ |2 | +14 + }2 =14

{2+ (| 1

2)2+ }2=14. Therefore, the surface is a sphere of radius12 centered at

 0>1

2> 0

 . 9. (a){ =  sin ! cos , | =  sin ! sin , and } =  cos !, so the equation }2 = {2+ |2becomes

( cos !)2= ( sin ! cos )2+ ( sin ! sin )2or2cos2! = 2sin2!. If  6= 0, this becomes cos2! = sin2!. ( = 0

corresponds to the origin which is included in the surface.) There are many equivalent equations in spherical coordinates, such astan2! = 1, 2 cos2! = 1, cos 2! = 0, or even ! = 4,! = 34 .

(b){2+ }2= 9 ( sin ! cos )2+ ( cos !)2 = 9 2sin2! cos2 + 2cos2! = 9 or 2sin2! cos2 + cos2!= 9.

11. = 2 represents a sphere of radius 2, centered at the origin, so   2 is this sphere and its interior. 0  !  2 restricts the solid to that portion of the region that lies on or above the{|-plane, and 0   2 further restricts the solid to the rst octant. Thus the solid is the portion in the rst octant of the solid ball centered at the origin with radius 2.

(30)

13.   1 represents the solid sphere of radius 1 centered at the origin.

3

4  !   restricts the solid to that portion on or below the cone ! = 34 .

15. } s{2+ |2because the solid lies above the cone. Squaring both sides of this inequality gives}2 {2+ |2  2}2 {2+ |2+ }2= 2  }2 = 2cos2! 1

22  cos2! 12. The cone opens upward so that the inequality is

cos ! 1

2, or equivalently0  !  4. In spherical coordinates the sphere} = {2+ |2+ }2is cos ! = 2 

 = cos !. 0    cos ! because the solid lies below the sphere. The solid can therefore be described as the region in spherical coordinates satisfying0    cos !, 0  ! 4.

17. The region of integration is given in spherical coordinates by

H = {(> > !) | 0    3> 0    @2> 0  !  @6}. This represents the solid region in the rst octant bounded above by the sphere = 3 and below by the cone ! = @6. U@6 0 U@2 0 U3 0 2sin ! g g g! = U@6 0 sin ! g! U@2 0 g U3 0 2g = cos !@60 @20 1 33 3 0 =  1   3 2 2  (9) = 94 2 3 19. The solidH is most conveniently described if we use cylindrical coordinates:

H = (u> > }) | 0     2> 0  u  3> 0  }  2 . Then UUU Hi({> |> }) gY = U@2 0 U3 0 U2

0 i(u cos > u sin > }) u g} gu g.

21. In spherical coordinates,E is represented by {(> > !) | 0    5> 0    2> 0  !   }. Thus UUU E({2+ |2+ }2)2gY = U 0 U2 0 U5 0(2)22sin ! g g g! = U 0 sin ! g! U2 0 g U5 0 6g = cos !0 20 1 77 5 0= (2)(2) 78,125 7  =312,500 7   140,249=7

23. In spherical coordinates,H is represented by (> > !)1    2>0    2> 0  !  2 . Thus UUU H} gY = U@2 0 U@2 0 U2 1( cos !) 2sin ! g g g! = U@2 0 cos ! sin ! g! U@2 0 g U2 1 3g =1 2sin2! @2 0  @20 1 44 2 1= 1 2  2 15 4  =15 16

(31)

SECTION 16.8 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ET SECTION 15.8 ¤ 253 25.UUUH {2gY =U0U0U34( sin ! cos )22sin ! g g! g =U0cos2 gU0sin3! g!U344g

=1 2 +14sin 2  0  1 3(2 + sin2!) cos !  0 1 55 4 3 =  2 2 3 +23 1 5(45 35) =156215 

27.The solid region is given byH = (> > !) | 0    d> 0    2>6  !  3 and its volume is Y =UUUHgY =U@6@3U02U0d2sin ! g g g! =U@3 @6 sin ! g! U2 0 g Ud 0 2g = [ cos !]@3 @6[]20 1 33 d 0=  1 2+  3 2  (2)1 3d3  =31 3 d3

29. (a) Since = 4 cos ! implies 2= 4 cos !, the equation is that of a sphere of radius 2 with center at (0> 0> 2). Thus Y =U02U0@3U04 cos !2sin ! g g! g =U2 0 U@3 0 1 33 =4 cos ! =0 sin ! g! g = U2 0 U@3 0 64 3 cos3!  sin ! g! g =U0216 3 cos4! !=@3 !=0 g = U2 0 163 1 16 1  g = 5l2 0 = 10

(b) By the symmetry of the problemP|}= P{}= 0. Then

P{|=U02U0@3U04 cos !3cos ! sin ! g g! g =U02U0@3cos ! sin !64 cos4!g! g

=U02641 6cos6! !=@3 !=0 g = U2 0 212 g = 21 Hence({> |> }) = (0> 0> 2=1).

31.By the symmetry of the region,P{|= 0 and P|}= 0. Assuming constant density N,

p =UUUH NY = NU0U0U34 2sin ! g g! g = NU 0 g U 0 sin ! g! U4 3 2g = N cos !01 33 4 3= 2N ·373 = 743N

and P{}=UUUH | N gY = NU0U0U34( sin ! sin ) 2sin ! g g! g = NU0sin  gU0sin2! g!U34 3g

= N  cos 0 1 2! 14sin 2!  0 1 44 4 3= N(2)  2 1 4(256  81) = 1754 N

Thus the centroid is({> |> }) =  P|} p > Pp{}> Pp{|  =  0> 175N@474N@3 > 0  =0>525 296> 0  .

33. (a) The density function is({> |> }) = N, a constant, and by the symmetry of the problem P{}= P|}= 0. Then

P{|=U02U0@2U0dN3sin ! cos ! g g! g =12Nd4U0@2sin ! cos ! g! =18Nd4. But the mass isN(volume of the hemisphere) = 23Nd3, so the centroid is0> 0>38d.

(b) Place the center of the base at(0> 0> 0); the density function is ({> |> }) = N. By symmetry, the moments of inertia about any two such diameters will be equal, so we just need to ndL{:

L{=U02U0@2U0d(N2sin !) 2(sin2! sin2 + cos2!) g g! g

= NU02U0@2(sin3! sin2 + sin ! cos2!)1 5d5  g! g =1 5Nd5 U2 0  sin2 cos ! +1 3cos3!  +1 3cos3! !=@2 !=0 g =15Nd5 U2 0 2 3sin2 +13  g =1 5Nd5 2 3 1 2 14sin 2  +1 3 2 0 =15Nd5 2 3(  0) +13(2  0)  = 4 15Nd5

TX.10

TRIPLTRIPL

Referências

Documentos relacionados

Considerando o histórico recente da produtividade das lavouras de milho divulgado pela Conab, entre as safras 2008/2009 e 2018/2019, a produtividade média por hectare saltou de 60

Vemos que assim possibilita-se à sociedade a defesa dos direitos difusos, sendo por isso meio eficaz na defesa do patrimônio histórico e cultural e instrumento processual para que

Análise das Preferências dos Usuários do Transporte Rodoviário de Passageiros: Estudo de Caso na Linha Florianópolis SC – Porto Alegre RS Esta dissertação foi julgada adequada

Conduz que o princípio da proveniência aparece como aquele que direcionou a prática organizativa da Arquivologia, essa ideia de separar quem produziu nos condiz a entender sobre

55.1a that teacher education programs [Carrier: educ.sys.] are [Proc.: relational: intensive: attrib.] academically weak, highly theoretical, and largely divorced

O agente delituoso passa a ser considerado uma coisa e todos os direitos que lhe são auferidos pelo Estado Social Democrático de Direito passam a não mais existir no momento da

computador e caixa de som. Também responderam que não utilizam vídeos cinematográficos em suas aulas. Questionados sobre os reais motivos que levam a não utilização de filmes em suas

No decorrer desta pesquisa, me foi possível diagnosticar o tem sido veiculado, na cultura escolar, sobre a temática indígena, abordando o ensino de História na