• Nenhum resultado encontrado

Long-term sustainability of cork oak agro-forests in the Iberian Peninsula: A model-based approach aimed at supporting the best management options for the montado conservation

N/A
N/A
Protected

Academic year: 2021

Share "Long-term sustainability of cork oak agro-forests in the Iberian Peninsula: A model-based approach aimed at supporting the best management options for the montado conservation"

Copied!
12
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Ecological

Modelling

jo u r n al ho m e p ag e :w w w . e l s e v i e r . c o m / l o c a t e / e c o l m o d e l

Long-term

sustainability

of

cork

oak

agro-forests

in

the

Iberian

Peninsula:

A

model-based

approach

aimed

at

supporting

the

best

management

options

for

the

montado

conservation

M.L.

Arosa

a,∗

,

R.

Bastos

b

,

J.A.

Cabral

b

,

H.

Freitas

a

,

S.R.

Costa

c,d

,

M.

Santos

b

aCentreforFunctionalEcology,DepartmentofLifeSciences,UniversityofCoimbra,P.O.Box3046,3001-401Coimbra,Portugal

bLaboratoryofAppliedEcology,CITABCentrefortheResearchandTechnologyofAgro-EnvironmentandBiologicalSciences,Universityof Trás-os-MonteseAltoDouro,5000-911VilaReal,Portugal

cMountainResearchCenter(CIMO),ESA,PolytechnicInstituteofBraganc¸a,CampusdeSantaApolónia,5300-253Braganc¸a,Portugal

dCBMACentreofMolecularandEnvironmentalBiology,DepartmentofBiology,UniversityofMinho,CampusdeGualtar,4710-057Braga,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received25March2016 Receivedinrevisedform 26September2016 Accepted10October2016 Availableonline31October2016 Keywords: Quercussuber Modelling Montadosustainability Populationdynamics

a

b

s

t

r

a

c

t

Thefutureofthemontado,ahumanshapedagro-forestryecosystemofSouthWesternEurope,is ques-tionedduetotheobservedlackofcorkoakhealthandlownaturalregeneration.WedevelopedaSystem DynamicsModellingapproachtopredictthelong-termsustainabilityofthisagro-forest,by recreat-ingcork-oakpopulationdynamics,managementpracticesandthemainenvironmentalandbiological constrainsassociatedwiththisecosystem.Ourresultsindicatethattheleadinglimitationstocorkoak regenerationinmontadoecosystemsresultfromtheintensityandinteractionoflandmanagement prac-tices,namelylivestockandtheuseofheavymachinery.Themainconclusionsindicatethatlimitingthe quantityoflivestockupto0.40LU.ha−1,andconsideringsoilploughingwithaminimumperiodicityof 5years,arecrucialtomaintainingsustainablecorkoakpopulations.Thisstudyrepresentsafirststep tosupportstrategicoptionsforcorkoakmontadomanagementbyprovidingprojectionsoflong-term populationtrendsunderrealisticsocial-ecologicalchangescenarios.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

The largest cork oak woodlands are found in the Iberian

Peninsula,wherecorkharvesting,agricultural,pastoralandother

traditionaluseshavebeenpracticedatleastsincetheMiddleAges

(Joffreet al.,1999;Oleaetal.,2005; Bugalhoet al.,2011).This

agro-silvo-pastoralecosystem,knownasmontadoordehesa(the

PortugueseandSpanishnames,respectively),iscomposed

typi-callyofopenwoodlands(20–80treesha−1)withonlyoneorafew

treespeciessuchascorkoak(Quercussuber),holmoak(Quercus

rotundifolia)andpines(Pinusspp.)(Joffreetal.,1999;Pinto-Correia

andMascarenhas,1999;Pinto-CorreiaandFonseca,2009).

More-over,themontadoecosystemisconsideredbothaprotectedhabitat

withintheEUhabitatsdirective(92/43/EEC)andahighnaturevalue

farmingsystem,accordingtotheclassificationproposedbythe

EuropeanEnvironmentalAgency(Paracchinietal.,2008).

∗ Correspondingauthor.

E-mailaddress:merisinha@hotmail.com(M.L.Arosa).

Thedominanttreeofthemontado,thecorkoak(Quercussuber),

isasclerophyllousevergreenoakthatoccursinnon-carbonated

soils(Pausas et al.,2009)restricted to thewesternpart ofthe

MediterraneanBasin(Tutinetal.,1964).Thisisa slow-growing

tree with a high longevity like other oaks, with a lifespan of

250–300years.Earliestfloweringandfructificationoccurataround

15–20years ofage,producing both annualand biennial acorns

(Natividade, 1950; Elena-Rosselló et al., 1993; Díaz-Fernández et al.,2004; Pereira and Tomé,2004).Acorns can bedispersed

by animals or predated. The main seed dispersers are wood

mouse(Apodemussylvaticus)andEuropeanjay(Garrulus

glandar-ius), which are involved in short- and long-distance dispersal,

respectively(Herrera,1995;Pausasetal.,2009).Acornpredators

aremainlyseed-boringinsects,suchastheacornweevil(Curculio

spp.,Coleoptera)andtheacornmoth(Cydiaspp.,Lepidoptera)(Ceia

andRamos,2014).Inopenareas,predatorscanalsobelivestock,

deer,wildboar,birdsandrabbitswhereasunderashrubcanopy

acornpredationismostlycarriedoutbysmallrodents,since

nei-therlargemammalsnorbirdswillpenetratethedensevegetation

(Herrera, 1995).Corkoak trees growin areas withstrong

sea-sonalwaterdeficitsbysurvivingtodroughtsinpartduetotheir

http://dx.doi.org/10.1016/j.ecolmodel.2016.10.008

(2)

Fig.1.Conceptualdiagramofthedynamicmodelusedto:B)simulatethecorkoakpopulationdynamics,assumingcorkoakagestratification(seedlings,saplings,immature treesandadulttrees),A)simulatetheassociatedenvironmentalconstrainsandC)therespectiveeconomicbalancesub-model.

extensiveanddeeprootsystemandinsomecasesseedlingsshed

leavesandresproutwhenthedroughtisover(Acácioetal.,2007;

Gómez-Aparicioetal.,2008;Arosaetal.,2015).Thecorkoakhasa

thickinsulatingbarkwhichevolvedasafireprotectionmechanism

(Pausas,1997;Catryetal.,2012)andwhichregrowsafterextraction

forcorkproduction(Pausasetal.,2009).Corkextractionrepresents

animportantresourceofhigheconomicvalueintheIberian

Penin-sulaascorkthicknessandpropertiesmakeitvaluablerawmaterial

forindustry.Aftertheremovaloftheouterbark,atraditional

prac-ticethatdoesnotharmthetreeandoccursevery9years,thetree

hasthecapacitytoproduceanewcorkbarkbyaddingnew

lay-ersofcorkeveryyearandthismayberepeatedthroughoutthe

treelifetime(Pausasetal.,2009).Theannualproductionofcorkis

about370000t,mostlyfromthecorkoaksofPortugalandSpain

thatproducerespectively51%and23%oftheworldtotal(Pereira

andTomé,2004).

Ourmaingoalwastheintegrationofdisperseinformationfrom

specificstudiesconcerningthedifferentlifestagesandstressors

inasingleuser-friendlyplatformforunderstandingandpredicting

thefuturesustainabilityofthemontadoecosystem.Weconsidered

asstressorsthelackofcorkoakhealthandthelownatural

regen-erationrates.Treehealthhasbeenaffectedbyintensivepruning,

exaggeratedcorkharvestingand theinfluenceofpestsand

dis-eases(Camilo-Alvesetal.,2013;AcácioandHolmgren,2014).The

limitationstonaturalregenerationhavebeenattributedtovarious

causes,including:a)poordispersalandshortageofviableacorns

(Brancoetal.,2002;PulidoandDíaz,2005;Acácioetal.,2007);

b)highpost-dispersiveacornlossesassociatedwithseedling

mor-talityduetoover-grazingbylivestockandwildanimals(Herrera,

1995;Plieningeretal.,2004;Acácioetal.,2007;Pulidoetal.,2013);

c)lowseedlingsurvivaltosummerdrought(Gimenoetal.,2009;

Smitetal.,2009).Besides,thedevelopmentoffarm

mechaniza-tion,includingthegeneraliseduseofwideplows,discharrows,and

scarifiersdestroysyoungtreesandmaydamagerootsandweaken

establishedtrees,creatingmoresusceptibilitytotheattackofpests

anddiseases (Brancoand Ramos,2009; Arosaetal., 2015).The

firefrequencydetectedinthelastfewdecadesinthisecosystem

(PausasandVallejo,1999)hasalsobecomeanadditionalobstacle

tocorkoaksurvivaland recruitment(Acácioetal.,2009,2010).

Althoughcorkoakisabletoexhibitfire-resistancecharacteristics

due to thebark insulation and tothe mechanism of

resprout-ingafterwards,frequentorintensewildfiresmaykilladulttrees,

especiallyiftheseeventsoccurimmediatelyaftercorkextraction

(Moreiraetal.,2007).Additionally,asconsequenceofconcomitant

changeofmeanannualtemperatureandrainfallextremesduring

thelastdecades,therecurrentdroughts willreducethecanopy

coverandlimitcorkoakregeneration(VivasandMaia,2008;Acácio

etal.,2009).

Consideringitsecologicalandeconomicsustainability,the

con-servationoftheseecosystemsrequiresthecomprehensionofits

capacitytowithstandandrecoverfromdisturbancesimposedby

naturalandanthropogenicfactors(Müller,2005;Kandzioraetal.,

2013;Stolletal.,2015).Ecologicalmodellingprovidesusefultools

tostudycomplexsystemsbypredictingtheoutcomeofalternative

scenarios,andmighthelpguidingthemostcorrectmanagement

optionsfromprojectedfutureoutcomes(e.g.Bastosetal.,2012,

2015;Fernandesetal.,2013;Santosetal.,2013).Actuallydynamic

modelscanbeusedtosupportthemechanisticunderstandingof

complexmultifactorialecologicalprocessesastheysimultaneously

integratethestructureandthecompositionofsystemsforaspecific

period(Jørgensen,1994,2001).Whenproperlydeveloped,tested

and applied withinsight and withrespect for theirunderlying

assumptions,dynamicmodelsarecapableofsimulatingconditions

thataredifficultorimpossibletoproduceotherwise(Jørgensen,

2001).

WehavedevelopedaSystemDynamicsModellingapproachto

recreatethemanagementpracticesassociatedwithcorkoak

mon-tadoandthemainbiologicalandenvironmentaldriversinfluencing

thissemi-naturalecosystem,inordertoassessitslong-term

sus-tainability(Sterman,2001).Thisstudyisthefirsttointegrateina

singleapproachthemultifactorialfactorsassociatedwithcorkoak

populationdynamics.Specifically,ourobjectiveswere:(1)

inte-gratinginauser-friendlyplatformthebioticandabioticfactors,

actingasawhole,withholisticandinterrelatedinfluencesonthe

corkoakpopulationdynamics(2)simulaterealisticscenariosin

ordertounderstandthemostdeterminantfactorsimplicatedinthe

corkoakdeclineacrosstheIberianPeninsulaand(3)highlightthe

mosteffectivemanagementpracticesthroughquantitativemetrics

withimplicationsforthelong-termsustainabilityandconservation

(3)

Fig.2.Classesinthelifecycleofcorkoakinagroforestsconsideredforthedesignof theconceptualdiagramofthefoursub-models:1seedlings,2saplings,3immature trees,4adulttreesandtheprocessesinfluencingeachcohortofindividuals.Drought, fire,livestockandshrubclearingareprocessesthatmostaffect1and2classes.Death andfirehaveanimportanteffectover3and4classes.Individualsofaspecificclass transittothenextwhencompletingtheirdevelopment.

2. Methods

2.1. Dynamicmodelconceptualization

Corkoakpopulationdynamicsinagro-forestsweremodelled

toanticipatethepotentialeffectsof currentmanagement

prac-ticesunderdifferentenvironmentalscenariosexpectedforthe21st

century.Naturalregenerationisadynamicprocesswherenew

indi-vidualsarerecruitedintothematurepopulation,compensatingthe

lossesduetomortality,inducedbyseveralbioticandabiotic

fac-tors(Harper,1977;Holmgrenetal.,1997;PulidoandDíaz,2005; FeiandSteiner,2008).Therefore,wedevelopedaSystemDynamics

Modellingapproachcomposedbyfoursub-modelsconcerningthe

corkoakpopulationdynamicsbasedoncorkoakagestratification

(classes)(Gonzálezetal.,2015),representedbythesumof

differ-entlifestagecohorts(seedlings,saplings,immaturetreesandadult

trees),andoneadditionalsub-modeltoestimatetheeconomic

bal-ancesassociated(Fig.1).

Theyearwaschosenastime unitand thesimulation period

wasestablishedfor100years,consideredsuitabletocapturethe

influenceofmainfactorsonthelongtermcorkoakpopulation

dynamics,namelythoseinducedbymanagementoptions.All

mod-ellingwas performedwiththe software STELLA,version 10.0.5

(IseeSystems,Inc.).Theoriginalconceptualdiagramofthe

over-allsub-models(AppendixIinSupplementarymaterial),variables

andequations includedinthemodel construction(Table1 and

AppendixIIinSupplementarymaterial)andfullexplanationof

pro-cesses(AppendixIIIinSupplementarymaterial),areavailableas

supplementaryelectronicmaterial.

3. Naturalregeneration

Inordertorecreatecorkoak naturalregeneration, four

sub-models (seedlings, saplings, immature trees, adult trees) were

designedtoreproducethemostrelevant classes,dynamics and

environmentalconstrainsassociatedtothecorkoakpopulations

(Fig.1,Table1,AppendixI,AppendixIIinSupplementary

mate-rial, Fig.3).For each sub-model, cork oak trees were grouped

intoclasses,consideringtheirstage,sizeanddiameteratbreast

height(DBH):seedlings(acornorcotyledonscattersstillattached,

height<50cm),saplings(height>50cm,DBH<10cm),immature

tree (height >50cm, DBH>10cm) and adult tree (DBH>25cm)

(MuickandBartolome,1987;MonteroandCa ˜nellas,2003).

Transi-tionsbetweenclassesandwithineachclasswereaffectedbybiotic

andabioticfactorsthatimplicatecause-effectrelationships.Data

usedinthemodelwascompiledfrompublicationsregardingthe

corkoak’lifecycleandthecorkoakmontadocharacterizationinthe

IberianPeninsula,rangingfrominlandregions,withlowerannual

precipitation(550mm)andhighertemperature(17◦C),tocoastal

regions,withhigherrainfall(1800mm)andmildertemperatures

(14◦C)(Table1).

3.1. Bioticandabioticprocessesinfluencingcorkoaknatural

regeneration

Severalbioticandabioticprocesseswereassumedasinfluent

driversonthecorkoakpopulationdynamics.Theseedlingsand

saplingsweremainlyaffectedbydroughts,fireeffects,livestock

andgrazingpressure,andshrubclearingintensity(Fig.2).Onthe

otherhand,immatureandadulttreeswereaffectedbyfireand

naturaldeathbyaging.Besidestheeffectofexternalfactors,the

transitionof individuals throughoutclasses consideredintothe

modelisalsolimitedbyintraspecificcompetitionandbythe

suc-cessofestablishedcorkoakplants.

3.1.1. Acorngermination

To model the germination of acorns, each adult tree was

assumedtoproducebetween1.32and33.6kgofacornsperyear

(Herrera, 1995;Ca ˜nellas etal.,2007;Pérez-Ramoset al.,2008).

Sincethegerminationofacornsislimitedbybioticfactorsrelated

withpredationandinsectdamages,theeffectivenumberofacorns

supplyingthesystemwasdependentonthepredation/survivalrate

andoftheproportionofviableacorns(Brancoetal.,2002;Acacio

etal.,2007).Furthermore,acornsthatdonotgerminateandremain

intheunderstorydryoutandbecomeinviablebeforethebeginning

ofanewyear.

3.1.2. Competition

Cork oak competition in montado involves an intraspecific

struggle for basic resources, suchas light, water and/or

nutri-ents(Flores-Martinezetal.,1994;Holmgrenetal.,1997;Callaway andWalker,1997).Ourdynamicmodelwasdesignedtorecreate

intraspecificcompetitionwithinandbetweenthedifferentclasses,

fromthesaplingtotheadulttrees.Duringthetreedevelopment,

competitionvaries from soilresources tolight, this last

affect-ingtheshape andsize ofcrowns(Kenkel,1988; Deleuzeetal.,

1996).Withincreasingtreecoverandlightlimitation,theolder

individualsbegintodisproportionatelyobstructtheincomingsolar

radiationbecauseofitsunidirectionalnature,therebysuppressing

thegrowthof younger trees (Dolezal etal., 2004).In this

con-text,AssmannandGardiner(1970)definedthattheareaavailable

foratreeisrepresentedbyitscrownprojectionversusthe

cor-respondingfractionnotoccupied.Serrada(2002)estimatedthat

thismethodsuffersthedisadvantageofsupposingafullcanopy

cover(100%)butincorkoakmontadosthenormalcanopycoveris

incomplete,thusweusedtheDiBérenger´ısmethodfor

calculat-ingaveragecrownprojectionusingthediameteratbreastheight

(DBH).This methodenablesthecalculationof treedistribution

withinanarea,assumingamixtureoftreesbelongingtoallclasses.

Throughthefunctiony=0.0431•x1.6025(xisDBHincm)the

maxi-mumcorkoakdensity(treesha−1)belongingtoeachsizeclasswas

limitedinthemodel(Natividade,1950;Marín-PageoandCamacho,

(4)

Table1

Specificationofthemainvariablesincludedinthemodel,respectivedescription,measureunitsandreferences.

Corkoakpopulationdynamics

Variable Description Unit Source

Seedlings

Randomacornspertree Averagekgofacornspertree Minimumacornspertree=1.32 Maximumacornspertree=33.6

kgofacorns Herrera(1995),Ca ˜nellasetal. (2007),Pérez-Ramosetal. (2008)

RandomacornsPredationrate Proportionofpredatedacornsbefore

germination

Minimumacornspredationrate=0.36 Maximumacornspredationrate=0.83

rate Acácioetal.(2007)

Randomacornsinsectdamagerate Proportionofacornsdamagedbyinsects

beforegermination

Minimumacornsinsectdamagerate=0.09 Maximumacornsinsectdamagerate=0.68

rate Brancoetal.(2002),Acácio etal.(2007)

RandomacornsAcorngerminationrate Proportionofacornssuccessfullygerminated

Minimumacornsgerminationrate=0.38 Maximumacornsgerminationrate=0.84

rate Herrera(1995),Acácioetal. (2007),Arosaetal.(2015)

Averageseedlingsfiremortalityrate Proportionofseedlingmortalitybyfire

Fireseedlingsmortality=0.0008

rate Catryetal.(2012)

Randomseedlingdroughtmortalityrate Proportionofseedlingmortalitybydrought

Minimumseedlingsdroughtmortality rate=0.68

Maximumseedlingsdroughtmortality rate=0.70

rate Arosaetal.(2015)

Randomseedlingslivestockmortalityrate Proportionofseedlingmortalitybylivestock

Minimumseedlingslivestockmortality rate=0.28

Maximumseedlingslivestockmortality rate=0.65

rate Plieningeretal.(2004)

Randomseedlingsshrubclearingmortalityrate Proportionofseedlingmortalitybyshrub clearing

Minimumseedlingsshrubclearingmortality rate=0

Maximumseedlingsshrubclearingmortality rate=1

rate Arosaetal.(2015)

Averageseedlingsresproutingrate Proportionofseedlingsuccessfully

resprouted=0.239

rate Arosaetal.(2015)

Saplings

Averagesaplingsfiremortalityrate Proportionofsaplingsmortalitybyfire

Firesaplingsmortality=0.0008

rate Catryetal.(2012)

Randomsaplingscohort×drought mortalityrate Proportionofsaplingsmortalitybydrought Minimumsaplingsdroughtmortality rate=0.68

Maximumsaplingsdroughtmortality rate=0.70

rate Arosaetal.(2015)

Randomsaplingscohort×livestockmortalityrate Proportionofsaplingsmortalitybylivestock Minimumsaplingslivestockmortality rate=0.57

Maximumsaplingslivestockmortality rate=0.87

rate Plieningeretal.(2004)

Randomsaplingscohort×shrubclearingmortalityrate Proportionofsaplingsmortalitybyshrub clearing

Minimumsaplingsshrubclearingmortality rate=0

Maximumsaplingsshrubclearingmortality rate=1

rate Arosaetal.(2015)

DBHsaplings Saplingsaveragediameteratbreastheight=6 cm Pulidoetal.(2013)

Immaturetrees

Randomimmaturetreescohort×firemortalityrate Proportionofimmaturetreesmortalitybyfire Minimumimmaturetreescohort×fire mortalityrate=0.06

Maximumimmaturetreescohort×fire mortalityrate=0.08

rate Catryetal.(2012)

Randomimmaturetreescohort×deathrate Proportionofimmaturetreesdeath

Minimumimmaturetreescohort×death rate=0

Maximunimmaturetreescohort×death rate=0.000092

rate RibeiroandSurov ´y(2008)

DBHimmaturetrees Immaturetreesaveragediameteratbreast

height=10

cm Pulidoetal.(2013)

Adulttrees

Adulttreesperha Initialdensityofadulttrees=50 treesha−1 Joffreetal.(1999)

Randomadulttreesfiremortalityrate Proportionofadulttreesmortalitybyfire

Minimumadulttreesfiremortality rate=0.038214

Maximumadulttreesfiremortality rate=0.04465

(5)

Table1(Continued)

Corkoakpopulationdynamics

Variable Description Unit Source

Randomadulttrees deathrate Proportionofadulttreesdeath Minimumadulttreesdeathrate=0 Maximumadulttreesdeathrate=0.000092

rate RibeiroandSurov ´y(2008)

DBHadulttrees Adulttreesaveragediameteratbreast

height=89

cm Pulidoetal.(2013)

Corkoakmanagementincomeperyear

Randomcorkproductionpertreekg Averagekgofcorkproducedpertree

Minimumcorkproductionpertree=35.95534 Maximumcorkproductionpertree=69.56406

kgtree−1 PereiraandTomé(2004)

Randomincomefromcorkpertreeeuroskg AverageincomeinDperkgofproducedcork

Minimumincomefromcorkpertree=1.33 Maximumincomefromcorkpertree=3.33

Dkg−1 PinheiroandRibeiro(2013) Averagestrippingcostcorkextractioneurosperkg AveragecostofcorkextractioninDperkg

Strippingcostcorkextraction=0.23

Dkg−1 PinheiroandRibeiro(2013)

Periodicitycorkextraction Averageyearsbetweencorkextraction

Periodicitycorkextraction=9

years PereiraandTomé(2004)

Averageshrubclearingcosteurosperha AveragecostinDperclearedha

Shrubclearingcost=120

Dha−1 Pinheiroetal.(2008) Averagerevenuefromlivestockeurosperha AverageincomeinDoflivestockperha

Revenueformlivestock=22.4

Dha−1 Pinheiroetal.(2008) 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 Year 0 200 400 600 800 1000 No . of a co rn s/ s eed li ng s/ s a pl in gs pe r h a 0 10 20 30 40 50 60 No. of i mm atu re/ ad u lt tr ee s per ha A Acorns Seedlings Saplings Immature trees Adult trees 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 Year 0 200 400 600 800 1000 1200 No . of a co rn s/ se ed lings/s ap li ngs pe r ha 0 10 20 30 40 50 60 No . of im ma tu re /a d u lt tr ee s p e r ha B Acorns Seedli

ngs

Sapli

ngs

Immature trees Adult trees 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 Year 0 200 400 600 800 1000 1200 No . of a c o rn s/ se e d li ng s/ s a pl in gs pe r h a 0 10 20 30 40 50 60 N o. of i mm atu re/ ad u lt tr ee s pe r h a C Acorns Seedlings Saplings Immature trees Adult trees 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 Year 0 200 400 600 800 1000 1200 No . of a co rns/ se e d li n gs/ sa p li n gs per ha 0 10 20 30 40 50 60 N o. of i mm at u re/ ad u lt tr e es pe r h a D Acorns Seedlings Saplings Immature trees Adult trees

Fig.3.Modelsimulationsofcorkoakpopulationaveragetrendsperlifestage(acorns,seedlings,saplings,immature,andadulttrees)from100independentsimulations throughout100yearsofsimulation,includingthestochasticoccurrenceoffiresanddroughts,aswellascorkextractionevery9years.(A)Scenario1:shrubclearingevery4 yearsandpresenceoflivestock(0.24–0.40LUha−1).(B)Scenario2:shrubclearingevery5yearsandpresenceoflivestock(0.24–0.40LUha−1).(C)Scenario3:shrubclearing every5yearsandthepresenceoflivestock(0.40LUha−1).(D)Scenario4:shrubclearingeveryyear,whilelivestockwasabsent.

3.1.3. Fire

FiresarecommonphenomenainsouthernEuropeandcorkoaks

arevulnerabletoitseffects,especiallyseedlingsandsaplings,but

alsoimmatureandadulttreeswhenburningoccursimmediately

aftercorkextraction(Cabezudoetal.,1995;Pausas,1997;Moreira

etal.,2007;Catryetal.,2012).DatafromtheSpanishForest

Ser-vice(magrama.gob.es)wasusedtoparameterizeannualfrequency

andtomodeltheconsequencesoffiresforeachcorkoaklifestage,

taking intoaccount therespective treediameters (DBH)(Catry

(6)

fires.ha-1;mean±standarddeviation)obtainedperstudyunitin44years,

from100independentstochasticsimulations,wasconsidereda

reliablereproductionoftheregionalhistoricaltrendsoffireevents

(0.016±0.021firesha-1)(magrama.gob.es).

3.1.4. Drought

Droughtscontributetocorkoakpopulationlossesasithampers

regenerationandincreasestreemortality(AcácioandHolmgren,

2014).Consideringthehistoricaltrendsofdroughtsinmainland

Portugal from 1976 to 2007 (INAG, 2007), thedrought effects

peryearwereconsideredasdirectconstrainsoverseedlingsand

saplingsviability,themorevulnerableclassestothis

environmen-talfactor.Afterthecalibrationprocedures,theaveragenumberof

0.24±0.078droughts.ha−1(mean±standarddeviation)obtained

perstudyunitin31years,from100independentstochastic

sim-ulations,wasconsidereda reliablereproductionoftheregional

historical trends of drought events (0.24±0.43 droughts.ha-1)

(INAG,2007).

3.1.5. Livestockgrazing

Theconsequences ofintensegrazing arethedeathof young

trees,soilcompaction,decreaseofwaterinfiltrationandlocal

bio-diversitydecline(Plieningeretal.,2004;Plieninger,2006).Grazing

pressurewasdefinedastheratiobetweenstockingrate,i.e.the

numberoflivestockunits(LU)perunitareaandunit time,and

biomass (totaldry weight of vegetationper unit areaand unit

time)(Allenetal.,2011;Sales-Baptistaetal.,2015).Fromthe50’s

topresenttimes,stockingratesinmontadoecosystemsincreased

from0.10–0.15to0.24–0.40LUha−1(Plieningeretal.,2004).Since

the presence of livestock affects the survival of seedlings and

saplingsduetostemconsumption,damagesfromlivestockgrazing

wereincludedinthemodeltoassesstheinfluenceoflivestock

pres-sureinthecorkoakregeneration.Thelivestockmortalityratewas

determinedbytheproportionofseedlingsandsaplingsexpected

todieduetolivestockgrazingperyearofsimulation,rangingfrom

0.28to0.87(Plieningeretal.,2004).

3.1.6. Shrubclearing

Weincludedtheeffectofshrubclearingasa negative

influ-enceonseedlings andsaplingsviabilitysincethis isa common

managementpracticein montadotocontrol shrubinvasion and

topromote pasture growth(Pignatti, 1983; Pulido et al.,2001;

Plieningeretal.,2003,2004;Calvo etal.,2005).Contrarytothe

effect of shrub encroachment that enhances oak regeneration,

promotessoilrehabilitationandpreventserosion,shrubclearing

increasessoil erosionand can derailtheregenerating cork oak

seedlingsand saplings(Plieninger etal.,2004; Pulidoand Díaz,

2005;Pérez-Ramosetal.,2008;Simõesetal.,2009;Nunesetal., 2011;Arosaetal.,2015).Therefore,mortalityduetoshrubclearing

wasincludedinthemodeltoassesstheinfluenceofthis

manage-mentpracticeinthecorkoakregeneration.

3.1.7. Corkoaknaturalmortality

The cork oak natural mortality often represents a sum of

continuous environmental and intrinsic processes with

multi-ple contributors acting in the tree, such as age degeneration,

insectdamagesordiseases,withunobviouscause-effect

relation-shipsconcerningmanagement practicesand/orclimatechanges

(Franklinetal.,1987;Brancoetal.,2002;Camilo-Alvesetal.,2013).

Inthemodel,weconsideredtheeffectoftreenaturalmortalityover

immatureandadultcorkoaktreesusingestimatesfromRibeiro

andSurov ´y(2008)whodeterminedthemortalitytrendsofcorkoak

(treesha−1)inPortugalbasedonaerialphotographsinterpretation.

4. Economicbalance

Thecorkoakmontadoisamultifunctionalagro-forestry

ecosys-tem that can benefit society with many goods and services.

However,theeconomicsustainabilityofcorkoakmontadodepends

mainlyonthepriceofcork,associatedwithitsqualityandfinaluse.

Corkoaktreesmaylive250–350yearsbutcorkthicknessand

qual-itydecreasesandthelimittousefulcorkproductionis150–200

years.Treeswithcircumferenceatbreastheightmorethan70cm

canbe debarked,which corresponds totrees with25–40years

ofage,dependingonsiteproductivityandtreedensity.Afterthe

firstcorkdebarking,theminimumperiodtolerablebetweencork

extractionsis9years(PereiraandTomé,2004;Pinheiroetal.,2008).

Furthermore,dependingofthemontadomanagementandlanduses

profit,thebenefitscanbealsoincreasedmainlybylivestock

pro-duction.Ontheotherhand,shrubclearingandcorkextractions

representthemain costsassociatedwiththemontado

manage-ment. Overall, themodelling of cork oak population dynamics,

underscenarioswheredifferentmanagementpracticeswere

sim-ulated,includestheassessmentofthepossibleeconomicincomes

frommontadobybalancingthefinancialgainsandlossesbetween

scenarios.

5. Sensitivityanalysis

AccordingtoLeeetal.(2015)thepurposeofasensitivity

analy-sisisprovideameasureoftherobustnessofthemodel,measuring

thesensitivityoftheobtainedresultstochangesinparameters,

forcingfunctionsand/orsub-models.Localsensitivityanalysis(SA)

wasdonebyone-parameter-at-a-timetechnique(OAT),changing

thepopulationparametersofthemodelwith+/−10%and+/−50%

variation oftherespectivevalues andobserving changesin the

responseoftheselectedstatevariables(Ligmann-Zielinska,2013).

6. Scenarios

Ourmodelwasconstructedinordertosimulaterealistic

envi-ronmentalconditionsandmanagementpracticesconcerningcork

production,and assessitsinfluence onthecorkoak population

dynamics.Wedesignedthescenarios,consideringthemost

com-monmanagementpracticesinmontado.Thedesignincludedthe

morelimitingfactorsforcorkoakregeneration,thenumberof

live-stockunitsandthefrequencyofshrubclearing.Fourscenarioswere

designed,consideringfireanddroughtsasstochasticeventsand

corkoakextractionevery9years.Inallscenariosameannumber

of50adulttrees.ha-1wasconsideredinthebeginningofeach

sim-ulation(t=0),(Joffeetal.,1999),reproducingatypicalmontado.

Noseedlings,saplingsandimmaturetreeswereconsideredinthe

beginningofsimulations,sincethisisthetypicalsituationin

man-agedmontados.Scenario1recreatesthetraditionalmanagement

ofthemontado,withshrubclearingevery4yearsandannual

pres-enceoflivestockwithvaluesrangingbetween0.24–0.40LUha−1

(thebrowsingindexvariedbetween0.278–0.651onseedlingsand

between0.574–0.875onsaplings,Plieningeretal.,2004).

Scenario2wasbasedonthescenario1trends,maintainingthe

densityof livestockbutwithshrubclearingoccurrenceevery5

years.Thisallowedustotestthepossibleeffectsofasimple

man-agementalterationonthecorkoakpopulationdynamics.

Inscenario3,shrubclearingoccurrencewassetevery5years

asinscenario2butlivestockdensitywasincrease(0.40LUha−1).

Thebrowsingindexcorrespondedto0.651and0.875onseedlings

andsaplings,respectively(Plieningeretal.,2004).

Inordertorecreateamontadowithannualsoilmobilizationto

producefodderforlivestockattheendofsummer,thescenario4

(7)

Inallscenarios,mortalityduetoshrubclearingwasbasedonthe

resultsofArosaetal.(2015),assumingthatallemergingseedlings

andsaplingsdieduetoshrubclearing.

In order to detect possible effects of differentmanagement

practices on the sustainability of the cork oak population, the

Kruskal-Wallis non-parametric test was used since the

vari-ablestested didnot meetthenormalityassumption,evenafter

datatransformation(McDonald,2014):classes(i.e.average

den-sityofseedlings, saplings,immaturetrees and adulttrees) and

theincome from cork oak management (i.e.average economic

revenue),accordingto2timeframes(t=50andt=100)were

com-pared betweenscenarios do detect long-term changes. In case

ofsignificantdifferencesprovedbytheKruskal-Wallistest,post

hoc comparisons between the groups were done using mean

ranks(SiegelandCastellan,1988).Here,significancelevelswere

correctedaccordingtothesequentialBonferonnitechnique.

Differ-enceswereconsideredsignificantiftheirprobabilityofoccurring

bychancewaslessthan5%.Statisticalanalyseswerecarriedout

usingthesoftwareStatisticaversion8.0(StatSoftInc.2007).

7. Results

7.1. Sensitivityanalysis

Theresults fromthe OATsensitivity analysis showthat the

parametersassociatedwithseedlings,saplings,immaturetreesand

adulttreecauseindividualchangesonthemodellingoutcomes

(Table2).Randomsaplingscohortxlivestockmortalityratewas

theparameterwiththemainkeyinfluenceontheoutputsofmost

surrogates.

7.2. Corkoakpopulationdynamics

Thescenario 1 involves themaintenance of montado

(agro-forestry)traditionalmanagement:adeclineofmostclasses(acorns,

seedlings,saplingsandadulttrees)waspredictedthroughoutthe

simulationperiod(Fig.3A).Anywaythemostlimitingfactortothe

overallpopulationisassociatedtotheimmaturetrees,constrained

bymortalityassociatedwithshrubclearing.Fires,droughts,

live-stockbrowsingandcorkextractionseemtoplaysecondaryroles.

Thedecreasein thenumber ofadulttrees willalsorestrictthe

amountofacornsavailableeachyear,andconsequentlythe

num-berofviableseedlingsandsaplings(Fig.3A):theinitialdensityof

50adulttreesha−1isexpectedtodecreasetocirca35treesha−1in

theendofsimulation(i.e.−30%ofadulttrees/100years).

Conversely,whentheimplementationof1-yeardelayinshrub

clearingwastestedinscenario2,thefinaldensityofadulttrees

isexpectedtosustainorevenincrease(52trees.ha−1)throughout

(i.e.+4%ofadulttrees/100years)(Fig.3B).Thisslightlynon-linear

increaseinthenumber ofadulttrees(Fig.3),shows thatsome

individualsreachtheimmaturetreesstage,compensatingadults

“naturalmortality”,raisingthenumberofacornsandconsequently

thenumberofseedlingsandsaplingsandcreatingapopulationof

immaturetreesthatwillsubstitutethedecliningadults.

Nevertheless,thecorkoakrecoveryachievedinscenario2by

increasingshrubclearingperiodicityforevery5years,was

com-pletely withdrew by increasing livestock pressure as tested in

scenario3,withanoveralldecreaseforallclasses(Fig.3C).The

smallamountofimmaturetrees(Fig.3C)isnotenoughtosustain

inthelong-termthepopulationofadulttrees.Theestimated

den-sityofadulttreesafter100yearsofsimulationdecreaseabout36

trees.ha−1(i.e.−28%ofadulttrees/100years).

Intensiveshrubclearingeffectsmodelledinscenario4,resulted

inneithersaplingsnorimmaturetrees,beingthemostaggressive

managementasdepictedinFig.3D.Adecreaseinthedensityof

adulttreesto35treesha−1wasestimatedattheendof100years

ofsimulation(i.e.−30%ofadulttrees/100years).

By comparing the four scenarios we didnot detect

signifi-cantdifferencesinthenumberofseedlingsatt=50(H3,96=5.95,

p=0.114,Fig.4A),whileatt=100thenumberofseedlingsin

sce-nario2wassignificantlyhigher,withmeanvaluesof299±185.63

trees.ha−1(H3,96=58.56,p<0.001,Fig.4A).

Thelownumberofsaplingsinscenario3,withmeanvaluesof

67.99±64.05att=50and63.08±42.63trees.ha−1att=100,and

theabsenceofsaplingsinscenario4att=50andt=100was

insuf-ficienttowithstandthepopulationofimmatureandadulttreesin

thelong-term(H3,96=32.68,p<0.001andH3,96=29.06,p<0.001,

forscenario3and4respectively.Fig.4A).

Theresultsforimmaturetreesaresimilaratt=50andt=100

(H3,96=94.29,p<0.001,Fig.4C).Infact,theobtainedlownumber

ofimmaturetreesinscenarios1,3and4seemstobeaconsequence

ofthelowavailabilityofsaplingsduetointensiveshrubclearing

andpresenceofhighnumberoflivestockunits.Ontheotherhand,

althoughimmaturetreeshavealsobeenprojectedatlowdensities

inscenario2(6.06±5.90and4.81±4.07trees.ha−1,att=50and

t=100respectively)itseemsenoughfortherecoveryofadulttrees

inthelongterm.Thismaybemainlyduetothetimetorecoverfrom

theextendedshrubclearingintervalandthenumberoflivestock

units.

Regardingadulttreestheresultsatt=50weresignificantly

dif-ferentbetweenscenarios(H3,96=46.65,p<0.001,Fig.4D),being

the scenario 2 the only one with increasing number of adult

treesfacingtheotherscenarios(46.53±3.63trees.ha-1).Att=100,

with51.68±8.19trees.ha−1inscenario2(H3,96=60.77,p<0.001m

Fig.4D)thosedifferencesweremaintained

8. Montadomanagement

Theeconomicbalancesassociatedwithscenario1,2,3and4

resultedfromtheincomesrelatedwithcorkextractionand

live-stockpresence(anddirectpaymentstofarmersenrolledunderthe

CAP)andlossesfromsoilmanagementandstrippingcorkcosts.

Interestingly,scenario2hadthehighestaveragepredictedrevenue

from corkoak (661.33±151.70Dha−1peryear) (H3,396=218.18,

p<0.001,Fig.5),whileaverageprofitsassociatedwithscenarios1

and3werealmostidentical(564.94±118.20and569.55±120.70

Dha−1peryear, respectively). Scenario 4 generated the lowest

averageincome(275.13±112.39Dha−1peryear).

9. Discussion

The noveltyof our studywas theinclusion of severalwork

previouslypublishedwithinasinglemodellingplatformwiththe

key-componentsof changingmontadoagro-forestry, with

holis-ticandecologicalrelevance,namelybyfocusingondriverswith

influenceonthelong-termsustainabilityoftheseecosystems.In

themontado, a dramaticmortality ofcork oak hasbeentaking

placewhentreeswerethinnedtoeasetheuseoffarmmachinery

andpromotewidercrownsthatyieldmoreacorns(Pulidoetal.,

2001;Plieninger,2007).Somestrategieswerecreatedtopreserve

themontadoandenhanceitsculturalandnaturalvaluesand

eco-logicalservices.Inthisperspective,legalprotectionofthetrees

andagroenvironmentalschemeshavebeenimplementedto

pro-tectand promotetreeplantation in themontado(Pinto-Correia

etal.,2011).Ontheotherhand,mostmontadoecosystemsinSpain

andPortugalareprivateandchangesintheruralsocioeconomic

condition,inpartinducedbythepreviousCommonAgricultural

Policy(CAP),havecontributedtotheruralexodusduetopoor

con-ditionsforagriculture,theperipherallocationoftheruralareas

(8)

There-Table2

Localsensitivityanalysis(one-parameter-at-a-time)ofthemainstatevariablesofthemodelto+/−10%and+/−50%variationoftheparametervalues.

StateVariable Parameter Sensitivity

−50% −10% +10% +50%

Seedlings Randomseedlingsshrubclearingmortalityrate 0.046 −0.120 −0.308 −0.308

Randomseedlingdroughtmortalityrate −0.184 −0.121 −0.036 a

Randomacornsgerminationrate −0.597 0.045 −0.045 0.234

Randomacornspredationrate −0.126 −0.004 −0.243 −0.174

Randomacornsinsectdamagerate −0.136 −0.234 −0.177 −0.166

Averageseedlingsfiremortalityrate −0.121 −0.121 −0.397 0.197

Randomseedlingslivestockmortalityrate −0.010 0.190 0.155 −0.478

Randomsaplingscohort×shrubclearingmortalityrate 0.247 0.338 0.099 0.099

Randomsaplingscohort×droughtmortalityrate −0.184 −0.121 −0.036 a

Averagesaplingsfiremortalityrate −0.121 −0.121 −0.397 0.197

Randomsaplingscohort×livestockmortalityrate 1.228 2.245 −0.408 −0.377

Randomimmaturetreescohort×firemortalityrate 0.214 0.090 −0.102 −0.026

Randomimmaturetreescohort×deathrate −0.209 0.196 −0.099 0.025

Periodadulttreesdecay −0.079 0.034 0.120 −0.203

Adulttreesperha −0.559 −0.333 0.420 −0.196

Randomadulttreesdeathrate −0.039 −0.051 −0.325 −0.189

Randomadulttreesfiremortalityrate 0.142 0.060 0.053 0.078

Randomacornspertree −0.663 −0.102 0.271 0.587

Saplings Randomseedlingsshrubclearingmortalityrate 1.658 1.599 1.225 1.225

Randomseedlingdroughtmortalityrate 2.595 1.193 1.360 a

Randomacornsgerminationrate 0.015 1.479 1.878 3.079

Randomacornspredationrate 1.538 2.054 1.405 0.257

Randomacornsinsectdamagerate 2.809 1.260 1.825 0.861

Averageseedlingsfiremortalityrate 1.656 1.411 2.118 2.076

Randomseedlingslivestockmortalityrate 4.098 1.384 1.335 −0.038

Randomsaplingscohort×shrubclearingmortalityrate 0.247 0.338 0.099 0.099

Randomsaplingscohort×droughtmortalityrate 2.595 1.193 1.360 a

Averagesaplingsfiremortalityrate 1.656 1.411 2.118 2.076

Randomsaplingscohort×livestockmortalityrate 11.535 7.816 0.502 0.286

Randomimmaturetreescohort×firemortalityrate 2.437 1.809 2.291 2.426

Randomimmaturetreescohort×deathrate 1.643 1.729 1.277 2.287

Periodadulttreesdecay 1.629 1.019 2.932 1.979

Adulttreesperha 0.252 2.158 4.240 3.693

Randomadulttreesdeathrate 1.881 1.446 2.521 2.487

Randomadulttreesfiremortalityrate 1.384 1.421 0.765 2.113

Randomacornspertree −0.458 1.599 3.249 5.096

Immaturetrees Randomseedlingsshrubclearingmortalityrate 0.710 0.746 −0.011 −0.011

Randomseedlingdroughtmortalityrate 0.494 0.151 0.090 a

Randomacornsgerminationrate −0.600 −0.020 0.367 1.614

Randomacornspredationrate 0.477 0.316 0.105 0.053

Randomacornsinsectdamagerate 0.479 0.548 0.056 −0.071

Averageseedlingsfiremortalityrate 0.156 0.434 0.078 0.191

Randomseedlingslivestockmortalityrate 1.123 0.362 0.137 −0.551

Randomsaplingscohort×shrubclearingmortalityrate 0.247 0.338 0.099 0.099

Randomsaplingscohort×droughtmortalityrate 0.494 0.151 0.090 a

Averagesaplingsfiremortalityrate 0.156 0.434 0.078 0.191

Randomsaplingscohort×livestockmortalityrate 5.273 3.918 −0.679 −0.991

Randomimmaturetreescohort×firemortalityrate 0.568 0.032 0.785 −0.061

Randomimmaturetreescohort×deathrate −0.294 0.779 0.427 0.602

Periodadulttreesdecay −0.164 −0.207 0.033 0.483

Adulttreesperha −0.390 0.045 0.610 1.090

Randomadulttreesdeathrate 0.356 −0.061 0.389 0.111

Randomadulttreesfiremortalityrate 1.003 0.354 0.293 0.177

Randomacornspertree −0.423 0.181 0.738 1.576

Adulttrees Randomseedlingsshrubclearingmortalityrate 0.247 0.338 0.099 0.099

Randomseedlingdroughtmortalityrate 0.147 0.179 0.078 a

Randomacornsgerminationrate −0.179 0.103 0.332 0.351

Randomacornspredationrate 0.178 0.249 0.086 0.001

Randomacornsinsectdamagerate 0.142 0.063 0.064 0.043

Averageseedlingsfiremortalityrate 0.233 0.179 0.246 0.140

Randomseedlingslivestockmortalityrate 0.454 0.156 0.307 −0.160

Randomsaplingscohort×shrubclearingmortalityrate 0.247 0.338 0.099 0.099

Randomsaplingscohort×droughtmortalityrate 0.147 0.179 0.078 a

Averagesaplingsfiremortalityrate 0.233 0.179 0.246 0.140

Randomsaplingscohort×livestockmortalityrate 2.016 2.006 −0.205 −0.381

Randomimmaturetreescohort×firemortalityrate 0.160 0.165 0.223 0.223

Randomimmaturetreescohort×deathrate 0.154 0.245 0.135 0.229

Periodadulttreesdecay −0.098 0.109 0.215 0.419

Adulttreesperha −0.421 0.138 0.504 0.795

Randomadulttreesdeathrate 0.248 0.086 0.251 0.255

Randomadulttreesfiremortalityrate 0.227 0.228 0.252 0.155

Randomacornspertree −0.150 0.175 0.203 0.572

(9)

1 2 3 4 Scenario 0 50 100 150 200 250 300 350 No. se ed lings p er ha A Initial Year 25 Year 50 Year 75 Year 100 1 2 3 4 Scenario 0 20 40 60 80 100 120 140 160 180 No. sa p li n gs p er ha B Initial Year 25 Year 50 Year 75 Year 100 1 2 3 4 Scenario 0 1 2 3 4 5 6 7 No . imma tu re t ree s pe r ha C Initial Year 25 Year 50 Year 75 Year 100 1 2 3 4 Scenario 0 10 20 30 40 50 60 No . a dult t ree s p er ha D Initial Year 25 Year 50 Year 75 Year 100

Fig.4.Averagedensityofseedlings(A),saplings(B),immaturetrees(C)andadulttrees(D)perhectare,from100independentsimulations,accordingto4timeframes(t=1, t=25,t=75andt=100)ineachscenarioconsidered.

fore,theimportanceofthesocioeconomicsituationinrelationto

landusechangeisgenerallyrecognized(Brandtetal.,1999):the

directaidtocerealareasand tosomegrazinganimalsinto

sin-glepayments tofarmers,whicharedecoupledfromproduction,

resultedinland ownersthat havetended toreplacesheepand

goatswithcattle,whichinlast16yearsincreaseditsnumbersby

2.5timesduetoCAPsupport(D ´yrmundsson,2004;Pinto-Correia

andGodinho,2013;Pinto-Correiaetal.,2014;Viegasetal.,2014).

Aftertheabandonmentofcerealcropsandlivestockrearing,during

the70’s,shrubclearingandrotationalploughingbecamecommon

practicestocontrolshrubinvasion,topromotepastureproduction

andpreventfire(Pignatti,1983;Pulidoetal.,2001;Plieningeretal.,

2003,2004,2005).Theheavycattlebreedsorhigherlivestockrates,

togetherwithdeepploughingofcultivatedcrops,isundoubtedly

affectingnatural regenerationand manyauthorsestimatethese

factorsasamajorthreattothemontadoecosystem(Pinto-Correia

andMascarenhas,1999;Bugalhoetal.,2011;MorenoandPulido, 2009).

10. Mainlimitationstoregeneration

Overall,ourresultsindicatethatthemain limitationstothe

lackof corkoak regeneration in montado ecosystemsrisefrom

landmanagementpractices,ratherthanenvironmentalfactors.In

fact,theobtainedresultssuggestthatdelayingshrubclearingand

limitingthequantityoflivestockunitsmightconstituteasuitable

measuretoallowthelong-termsustainabilityofthemontado.A

minimaldelayofone yearinsoil ploughingwillbeenoughfor

landownerstoensurethemaintenance/increaseinthenumberof

immatureand adulttrees aswellas thelong-term

sustainabil-ityof themontadoecosystem.Since corkisthemostprofitable

productobtainedfromthemontado,anincreaseinthedensityof

adulttreeswouldhavealsoadirectpositiveeffectontheeconomic

balanceofagroforestry“crop”.Ontheotherhand,byincreasing

livestockdensities,corkoakregenerationisseverelyconstrained

duetotheconsumptionofseedlingsandsaplings,andthe

regener-ationcyclewouldeventuallycollapse.Asimilarresultisobtained

whenthereisacontinuoususeofheavymachinery.Other

con-ventionalsemiquantitativestudiesthat investigatedtheeffects

ofmontadochangeshavecometosimilarconclusions,

corroborat-ingthatlivestockpressureactsasamaindriverdeterminingthe

ratesofmontadoloss,althoughnotexplainingwithdetailthe

pro-cessbeneath(Blondel,2006;Plieninger,2007;Gasparetal.,2008;

Bugalhoet al.,2011).Acornpredationand browsing,aswellas

tramplingofseedlingsarethemainpressuresofovergrazing,

asso-ciatedwiththeintensityandtypeofgrazing(livestocktype,breeds,

density,lengthoftime inpasture)(Pulido andDíaz,2005).Our

resultsidentifylimitstothecarryingcapacityofthemontadonear

0.40LUha-1,fromwhichthefutureofthemontadosustainability

wouldbeseriouslythreatened.Thisoutcomealsodemonstrates

thatcaremustbetakenwiththeCAPsupporttoincreasingthe

numberoflivestockperha.AlsoBaeza,2004andCalvoetal.,2012

limitthenumberofLU.ha-1near1,whichbasedonourresults,may

putthemontadoagroecosystematrisk.

Resultsrelative toshrubclearingdemonstrated thatmostof

(10)

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 Year 0 200 400 600 800 1000 1200 Ba la n ce i n € pe r ha S1 S2 S3 S4

Fig.5.Predictedaverageeconomicbalance(D.ha-1)forscenarios1,2,3and4,from 100independentsimulationsthroughout100yearsofsimulation.

Shrubclearingmighthinder landscapeheterogeneityand

dam-agethefungalcommunityinmontado,decreasingthemycorrhizal

community that is part of the symbiosismost intimately

con-nectedtothesoilandmostdirectlyinvolvedinuptakingnutrients

and influencing soil properties (Azul, 2002; Azul et al., 2010).

Theperiodbetweenconsecutiveshrubclearingssupports

differ-entmanagementobjectives:intensiveshrubclearingeverythree

yearswillfavourpasturelandfor livestockgrazingand

decreas-ingshrubgrowingwillneglectitspositiveprotector effectover

regeneration(Canteiroetal.,2011;Simõesetal.,2015).Thisagrees

withourresults, where shortperiodsbetweenclearings would

inhibittheregeneration of trees,since mechanical clearingis a

non-selectivetoolthatdestroysmostseedlings(Arosaetal.,2015),

thustheabsenceofimmaturetreesdirectlyaffectsnegativelythe

populationofadulttrees.Accordingtoourlongtermresults,we

assumethatextendingshrubclearingforlongerperiodswould

ben-efitnaturalregeneration,whichisinagreementwithothershort

termstudies(Canteiroetal.,2011;Godinhoetal.,2014;Simões

etal.,2016).Infact,otherauthors’conclusionssuggest

maintain-ingshrubcoverforaperiodbetween7and12yearstohelpcork

oakregenerationandpromotetreenurseryandsoilrehabilitation.

Conversely,periodslongerthan12yearscouldfacilitatefirespread

duetotheaccumulationofdeadmaterial(Canteiroetal.,2011).

EUprogramshaveonlybeensubsidizingplantingyoungcorkoak

treesbutresultsobtainedbyArosaetal.(2015)confirmedthat

directseeding(ornaturalregeneration)ofcorkoakisagood

alter-nativetofacilitateregeneration,becauseemergencesuccessranged

between43.5% and 63.9%. Agricultural policiesshouldconsider

thisinformation astheyplayanimportantrole inmanagement

decisionandcancontributetofurtherdegradationoftreecover

(Pinto-CorreiaandVos,2004).

11. Futureperspectives

Thedevelopeddynamic modelallowedpredictinglongterm

trendsin corkoak localpopulation, includingthoseattributable

to changes in habitat due to different sources of disturbance

andmanagementscenarios(Winkler,2006).Therefore,thisstudy

representsanearlysteptosupportstrategicoptionsforimpact

mitigationandmanagementbyprovidingprojectionsoflong-term

indicatortrendsunderrealisticsocial–ecologicalchangescenarios

(Bastosetal.,2015).Althoughtheprojectionsrecreates

realisti-callytheknowncorkoakregenerationpattersoccurringinmontado

regions,somelimitationsarisewhenconsideringvalidationasa

fundamentalprocesstoassesstherelativeaccuracyofthemodel

response facingindependent real data(Rykiel, 1996).The

vali-dationof thepredictionswasnot possiblein this studydue to

theimpracticalityofanimmediatevalidationoffuturescenarios,

whichcanonlybedoneafterseveralyearsofcollectingrelevant

site-specific informationunderwell-known localenvironmental

conditions(Glenzetal.,2001;Chaloupka,2002).

Ouracademicanduser-friendlymodel,afterspecificcalibration

andvalidation,couldbeusedtosupportspecificfarmerdecisions

inthemanagementofcorkoaksavannasandsupportagroforestry

extensionservices.Furthermore,large-scaleanalysesare

manda-torytofullyunderstandtheroleofmulti-scalecumulativedrivers

influencingtheregenerationprocessandtheroleofpoliciesin

man-agingthis ecosystem(Godinhoet al.,2014).Inthis context,the

combinationoflocalpopulationdynamics(temporal)andregional

distributional(spatial)modelscanhelptoassessandpredicthow

anthropogenicand environmentalchangeswillaffectthe

abun-danceanddisplacementofvulnerablespeciesorcommunitiesin

disturbed ecosystems and regions (Guisan and Thuiller, 2005).

Besides, modelsare useful to identifyareas where the conflict

betweenthepreviousforecastedtrendsanddrivers ofpressure

are of major conservationist concern, by allowing the

integra-tionoftheecologicalconsequencesfromlocaltoregionallevels

(Bjørnstadetal.,1999;Vicenteetal.,2011).Model-basedresearch

resultedveryusefulasaninvestigativetooltopredicttheoutcome

ofalternativescenarios,guidingcurrentrestorationoptionsfrom

predictedfuturetargets(Bastosetal.,2012).Futureworkshouldbe

directedtodeveloptherestorationstrategiesofcorkoakmontados,

whichwillcontributetofightdesertification,protectbiodiversity,

mitigateclimatechangeandpromotethesustainabledevelopment

oflocalcommunities.

12. Conclusion

Thecapacitytoaccuratelypredictresponsesofspeciesto

land-scapechangesiscrucialforconservationplanningandtosupport

key ecosystems management (Kandziora et al., 2013).In

mon-tadoecosystems,thereis alack ofevaluation onthelong-term

ecologicalchangesassociatedwithmanagementpractices,whose

consequencesmightrepresentmajorlimitingfactorstothe

ecolog-icalandeconomicsustainabilityofthisvaluableagro-ecosystem.

Thedevelopeddynamicmodelallowedintegratingandsimulating

themainfactorsaffectingthelong-termsustainabilityofthe

mon-tadosystem,namelythemajorlimitingfactorsdrivingthelackof

regenerationofcorkoaktreesinmontados.Thenumberoflivestock

unitsperhaandshortshrubclearingintervalswereidentifiedas

themainlimitingfactorsforthelongtermsustainabilityofthis

agroforestryecosystem.Thus,itshouldbeconsideredamaximum

quantityoflivestockof0.40LU.ha−1andtheminimumperiodicity

betweensoilploughingto5years.Specificmanagementpractices

aresuggestedtoovercomethesustainabilityoftheidentified

prob-lems.

Acknowledgements

This work was supported by the FCT (Portuguese

Foun-dation for Science and Technology) under a Ph.D. grant

[SFRH/BD/70708/2010].R.BastosisfundedbyFCTthroughthe

doc-toralgrantSFRH/BD/102428/2014.S.CostaisfundedbytheFCT

throughthepost-doctoralgrantSFRH/BPD/102438/2014.Weare

gratefultoAlfredoSendimfromHerdadedoFreixodoMeiowho

(11)

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in

theonlineversion,athttp://dx.doi.org/10.1016/j.ecolmodel.2016.

10.008.

References

Acácio,V.,Holmgren,M.,2014.PathwaysforresilienceinMediterraneancorkoak landusesystems.Ann.For.Sci.71,5–13.

Acácio,V.,Holmgren,M.,Jansen,P.A.,Schrotter,O.,2007.Multiplerecruitment limitationcausesarrestedsuccessioninMediterraneancorkoaksystems. Ecosystems10,1220–1230.

Acácio,V.,Holmgren,M.,Rego,F.,Moreira,F.,Mohren,G.M.,2009.Aredroughtand wildfiresturningMediterraneancorkoakforestsintopersistentshrublands? Agrofor.Syst.76,389–400.

Acácio,V.,Holmgren,M.,Moreira,F.,Mohren,G.M.J.,2010.Oakpersistencein Mediterraneanlandscapes:thecombinedroleofmanagement,topography, andwildfires.Ecol.Soc.15,40.

Allen,V.G.,Batello,C.,Berretta,E.J.,Hodgson,J.,Kothmann,M.,Li,X.,McIvor,J., Milne,J.,Morris,C.,Peeters,A.,Sanderson,M.,2011.Aninternational terminologyforgrazinglandsandgrazinganimals.GrassForageSci.66,2–28.

Arosa,M.L.,Ceia,R.C.,Costa,R.S.,Freitas,H.,2015.Factorsaffectingcorkoak (Quercussuber)regeneration:acornsowingsuccessandseedlingsurvival underfieldconditions.PlantEcol.Divers.,http://dx.doi.org/10.1080/17550874. 2015.1051154.

Assmann,E.,Gardiner,S.,1970.ThePrinciplesofForestYieldStudy.Pergamon Press,Oxford.

Azul,A.M.,Sousa,J.P.,Agerer,R.,Martín,M.P.,Freitas,H.,2010.Landusepractices andectomycorrhizalfungalcommunitiesfromoakwoodlandsdominatedby QuercussuberL.consideringdroughtscenarios.Mycorrhiza20(2),0261–0262,

http://dx.doi.org/10.1007/s00572-009-0261-2.

Azul,A.M.,2002.DiversidadeDeFungosEctomicorrízicosEmEcossitemasDe MontadoPh.D.Thesis.DepartmentofBotany,TheUniversityofCoimbra, Coimbra,Portugal.

Baeza,M.J.,2004.Elmanejodelmatorralenlaprevencióndeincendiosforestales. In:Vallejo,V.R.,Alloza,J.A.(Eds.),AvancesEnElEstudioDeLaGestiónDel MonteMediterráneo.FundaciónCentrodeEstudiosAmbientalesdel Mediterráneo,Valencia.

Bastos,R.,Santos,M.,Ramos,J.A.,Vicente,J.,Guerra,C.,Alonso,J.,Honrado,J.,Ceia, R.S.,Timóteo,S.,Cabral,J.A.,2012.Testinganovelspatially-explicitdynamic modellingapproachinthescopeofthelaurelforestmanagementforthe endangeredAzoresbullfinch(Pyrrhulamurina)conservation.Biol.Conserv. 147,243–254.

Bastos,R.,Pinhanc¸os,A.,Santos,M.,Fernandes,R.,Vicente,J.,Morinha,F.,Honrado, J.P.,Travassos,P.,Barros,P.,Cabral,J.A.,2015.Evaluatingtheregional cumulativeimpactofwindfarmsonbirds:howspatially-explicitdynamic modellingcanimproveimpactassessmentsandmonitoring?J.Appl.Ecol.,

http://dx.doi.org/10.1111/1365-2664.12451.

Bjørnstad,O.N.,Ims,R.A.,Lambin,X.,1999.Spatialpopulationdynamics:analyzing patternsandprocessesofpopulationsynchrony.TrendsEcol.Evol.14, 427–431.

Blondel,J.,2006.ThedesignofMediterraneanlandscapes:amillennialstoryof humanandecologicalsystemsduringthehistoricperiod.Hum.Ecol.34, 713–729.

Branco,M.,Branco,C.,Merouani,H.,Almeida,M.H.,2002.Germinationsuccess, survivalandseedlingvigourofQuercussuberacornsinrelationtoinsect damage.For.Ecol.Manage.166,159–164.

Brandt,J.,Primdahl,J.,Reenberg,A.,1999.Ruralland-useandlandscape dynamics-analysisof‘drivingforces’inspaceandtime.In:Kronert,R.,Baudry, J.,Bowler,I.R.,Reenberg,A.(Eds.),Land-UseChangesandTheirEnvironmental ImpactinRuralAreasinEurope.UNESCO,Paris,pp.81–102.

Bugalho,M.N.,Caldeira,M.C.,Pereira,J.S.,Aronson,J.,Pausas,J.G.,2011.

Mediterraneancorkoaksavannasrequirehumanusetosustainbiodiversity andecosystemservices.Front.Ecol.Environ.9,278–286.

Ca ˜nellas,I.,Roig,S.,Poblacione,M.J.,Gea-Izquierdo,G.,Olea,L.,2007.Anapproach toacornproductioninIberiandehesas.Agrofor.Syst.70,3–9.

Cabezudo,B.,LaTorre,A.P.,Nieto,J.M.,1995.Regeneracióndeunalcornocal incendidadoenelSurdeEspa ˜na(Istán,Málaga).ActaBot.Malacitana20, 143–151.

Callaway,R.M.,Walker,L.R.,1997.Competitionandfacilitation:asynthetic approachtointeractionsinplantcommunities.Ecology78,1958–1965.

Calvo,L.,Tárrega,R.,Luís,E.,Valbuena,L.,Marcos,E.,2005.Recoveryafter experimentalcuttingandburninginthreeshrubcommunities.PlantEcol.180, 175–185.

Calvo,L.,Baeza,J.,Marcos,E.,Santana,V.,Papanastasis,V.P.,etal.,2012.Post-fire managementofshrublands.In:Moreira,F.(Ed.),Post-fireManagementand RestorationofSouthernEuropeanForest.ManagingForestEcosystems,Vol24. Springer,NewYork,pp.293–319.

Camilo-Alves,C.S.P.,daClara,M.I.E.,Ribeiro,N.M.C.A.,2013.Declineof MediterraneanoaktreesanditsassociationwithPhytophthoracinnamomi:a review.Eur.J.For.Res.132,411–432.

Canteiro,C.,Pinto-Cruz,C.,PaulaSimões,M.,Gazarini,L.,2011.Conservationof Mediterraneanoakwoodlands:understorydynamicsunderdifferentshrub management.Agrofor.Syst.82,161–171.

Catry,F.X.,Moreira,F.,Pausas,J.G.,Fernandes,P.M.,Rego,F.,Cardillo,E.,Curt,T., 2012.Corkoakvulnerabilitytofire:theroleofbarkHarvesting,tree characteristicsandabioticfactors.PLoSOne7(6),e39810,http://dx.doi.org/10. 1371/journal.pone.0039810.

Ceia,R.S.,Ramos,J.A.,2014.Birdsaspredatorsofcorkandholmoakpests.Agrofor. Syst.,10.1007/s10457-014-9749-7.

Chaloupka,M.,2002.StochasticsimulationmodellingofsouthernGreatBarrier Reefgreenturtlepopulationdynamics.Ecol.Modell.148,79–109.

Díaz-Fernández,P.M.,Climent,J.,Gil,L.,2004.Biennialacornmaturationandits relationshipwithfloweringphenologyinIberianpopulationsofQuercussuber. TreesStruct.Funct.18,615–621.

D ´yrmundsson,O.R.,2004.SustainabilityofsheepandgoatproductioninNorth Europeancountries−fromtheArctictotheAlps.In:55thAnnualMeetingof theEuropeanAssociationforAnimalProduction,Bled,Slovenia.

Deleuze,C.,Herve,J.C.,Colin,F.,Ribeyrolles,L.,1996.Modellingcrownshapeof Piceaabies:spacingeffects.Can.J.For.Res.26,1957–1966.

Dolezal,J.,Ishii,H.,Vetrova,V.P.,Sumida,A.,Hara,T.,2004.Treegrowthand competitioninaBetulaplatyphylla–Larixcajanderipost-fireforestincentral Kamchatka.Ann.Bot.94,333–343.

Elena-Rosselló,J.A.,Río,J.M.,GarcíaValdecantos,J.L.,Santamaría,I.G.,1993. Ecologicalaspectsofthefloralphenologyofthecorkoak(Q.suberL.):whydo annualandbiennalbiotypeappear?Pp.114s-121s.In:Geneticsofoaks.proc. IUFROworkingpartymeeting,2–6Sept.1991.ArboretumNationaldesBarres, France.INRAParis.

Fei,S.,Steiner,K.C.,2008.Relationshipsbetweenadvanceoakregenerationand bioticandabioticfactors.TreePhysiol.28,1111–1119.

Fernandes,C.,Cabral,J.A.,Crespí,A.L.,Hughes,S.J.,Santos,M.,2013.Converting simplevegetationsurveysinfunctionaldynamics.ActaOecol.48,37–46.

Flores-Martinez,A.,Ezcurra,E.,Sanchez-Colon,S.,1994.EffectofNeobuxbaumia tetetzoongrowthandfecundityofitsnurseplantMimosaluisana.J.Ecol.82, 325–330.

Franklin,J.F.,Shugart,H.H.,Harmon,M.E.,1987.Treedeathasanecological process.Bioscience37,550–556.

Gómez-Aparicio,L.,Pérez-Ramos,I.M.,Mendoza,I.,Matías,L.,Quero,J.L.,Castro,J., Zamora,R.,Mara ˜nón,T.,2008.Oakseedlingsurvivalandgrowthalong resourcegradientsinMediterraneanforests:implicationsforregenerationin currentandfutureenvironmentalscenarios.Oikos117,1683–1699.

Gaspar,P.,Escribano,M.,Mesías,F.J.,RodriguezdeLedesma,A.,Pulido,F.,2008.

SheepfarmsintheSpanishrangelands(dehesas):typologiesaccordingto livestockmanagementandeconomicindicators.SmallRumin.Res.74,52–63.

Gimeno,T.E.,Pías,B.,Lemos-Filho,J.P.,Valladares,F.,2009.Plasticityandstress toleranceoverridelocaladaptationintheresponsesofMediterraneanholm oakseedlingstodroughtandcold.TreePhysiol.29,87–98.

Glenz,C.,Massolo,A.,Kuonen,D.S.,Schlaepfer,R.,2001.Awolfhabitatsuitability predictionstudyinValais(Switzerland).Landsc.UrbanPlann.55,55–65.

Godinho,S.,Guiomar,N.,Machado,R.,Santos,P.,Sá-Sousa,P.,Fernandes,J.P., Neves,N.,Pinto-Correia,T.,2014.Assessmentofenvironment,land

management,andspatialvariablesonrecentchangesinmontadolandcoverin southernPortugal.Agrofor.Syst., http://dx.doi.org/10.1007/s10457-014-9757-7.

González,D.,Cabral,J.A.,Torres,L.,Santos,M.,2015.Acohort-basedmodelling approachformanagingolivemothPraysoleae(Bernard,1788)populationsin oliveorchards.Ecol.Modell.296,46–56.

Guisan,A.,Thuiller,W.,2005.Predictingspeciesdistribution:offeringmorethan simplehabitatmodels.Ecol.Lett.8,993–1009.

Harper,J.L.,1977.PopulationBiologyofPlants.AcademicPress,London,UK.

Herrera,J.,1995.Acornpredationandseedlingproductioninalow-density populationofcorkoak(QuercussuberL.).For.Ecol.Manage.76,197–201.

Holmgren,M.,Scheffer,M.,Huston,M.A.,1997.Theinterplayoffacilitationand competitioninplantcommunities.Ecology78,1966–1975.

INAG,2007.PreliminaryCountryReport,Contribuic¸ãoportuguesaparaorelatório daComissãoEuropeiaWaterScarcity&Droughts−In-depthassessment, SecondInterimReport,InstitutodaÁgua,MinistériodoAmbiente OrdenamentodoTerritórioeDesenvolvimentoRegional.

Joffre,R.,Rambal,S.,Ratte,J.P.,1999.ThedehesasystemofsouthernSpainand Portugalasanaturalecosystemmimic.Agrofor.Syst.45,57–79.

Jørgensen,S.E.,1994.Modelsasinstrumentsforcombinationofecologicaltheory andenvironmentalpractice.Ecol.Modell.75,5–20.

Jørgensen,S.E.,2001.FundamentalsofEcologicalModelling,3rded.Elsevier, Amsterdam.

Kandziora,M.,Burkhard,B.,Müller,F.,2013.Interactionsofecosystemproperties, ecosystemintegrityandecosystemserviceindicators−atheoreticalmatrix exercise.Ecol.Indic.28,54–78.

Kenkel,N.C.,1988.Patternofself-thinninginJackpine:testingtherandom mortalityhypothesis.Ecology69,1017–1024.

Lee,J.S.,Filatova,T.,Ligmann-Zielinska,A.,Hassani-Mahmooei,B.,Stonedahl,F., Lorscheid,I.,Voinov,A.,Polhil,G.,Sun,Z.,Parker,D.C.,2015.Thecomplexities ofagent-basedmodelingoutputanalysis.J.Artif.Soc.Soc.Simulat.18(4),4.

Ligmann-Zielinska,A.,2013.Spatially-explicitsensitivityanalysisofan

agent-basedmodeloflandusechange.Int.J.Geogr.Inf.Sci.27(9),1764–1781.

Müller,F.,2005.Indicatingecosystemandlandscapeorganisation.Ecol.Indic.5, 280–294.

(12)

Marín-Pageo,F.,Camacho,V.,2011.DiBérenger´ısmethodapplicationinsouthwest iberiancorkoakstands.L’italiaForestaleeMontana66(1),31–40.

McDonald,J.H.,2014.HandbookofBiologicalStatistics,3rded.SparkyHouse Publishing,USA,pp.157–164.

Montero,G.,Ca ˜nellas,I.,2003.ElAlcornoqueManualDeReforestaciónYCultivo. Mundi-Prensa,Madrid.

Moreira,F.,Duarte,I.,Catry,F.,Acácio,V.,2007.Corkextractionasakeyfactor determiningpost-firecorkoaksurvivalinamountainregionofsouthern Portugal.For.Ecol.Manage.253,30–37.

Moreno,G.,Pulido,F.J.,2009.Thefunctioning,managementandpersistenceof dehesas.In:Rigueiro-Rodríguez,A.,McAdam,J.,Mosquera-Losada,M.R.(Eds.), AgroforestryinEurope,CurrentStatusandFutureProspects.Springer,The Netherlands,pp.127–160.

Muick,P.C.,Bartolome,J.W.,1987.AnAssessmentofNaturalRegenerationofOaks inCaliforniaDivisionofForestry.UniversityofCalifornia,Berkeley,CA,101pp.

Natividade,J.V.,1950–Subericultura.Dir.Gral.DosServ.Forestaira.Lisboa.ed. espa ˜nola,1992.MAPA,Madrid.

Nunes,A.N.,DeAlmeida,A.C.,Coelho,C.O.,2011.Impactsoflanduseandcover typeonrunoffandsoilerosioninamarginalareaofPortugal.Appl.Geogr.31, 687–699.

Olea,L.,López-Bellido,R.J.,Poblaciones,M.J.,2005.Europetypesofsilvopastoral systemsintheMediterraneanarea:dehesa.In:Mosquera,M.R.,Rigueiro,A., McAdam,J.(Eds.),SilvopastoralismandSustainableLandManagement.CABI Publishing,Lugo,Spain,pp.30–35.

Pérez-Ramos,I.M.,Urbieta,I.R.,Mara ˜nón,T.,Zavala,M.A.,Kobe,R.K.,2008.Seed removalintwocoexistingoakspecies:ecologicalconsequencesofseedsize, plantcoverandseeddroptiming.Oikos117,1386–1396.

Paracchini,M.L.,Petersen,J.E.,Hoogeveen,Y.,Bamps,C.,Burfield,I.,vanSwaay,C., 2008.HighNatureValueFarmlandinEurope.AnEstimateoftheDistribution PatternsontheBasisofLandCoverandBiodiversityData.OfficeforOfficial PublicationsoftheEuropeanCommunities,Luxemburg.

Pausas,J.G.,Mara ˜nón,T.,Caldeira,M.,Pons,J.,etal.,2009.NaturalRegeneration.In: Aronson(Ed.),pp.115–124,Chapter10.

Pausas,J.G.,1997.ResproutingofQuercussuberinNESpainafterfire.J.Veg.Sci.8, 703–706.

Pereira,H.,Tomé,M.,2004.CorkOakEncyclopediaofForestSciences.Elsevier, Oxford,pp.613–620.

Pignatti,S.,1983.HumanimpactonthevegetationoftheMediterraneanBasin.In: Holzner,W.,Werger,M.J.A.,Ikusima,I.(Eds.),Man’sImpactonVegetation,3. Geobotany,pp.151–161.

Pinheiro,A.C.,Ribeiro,N.A.,2013.Forestpropertyinsurance:anapplicationto Portuguesewoodlands.Int.J.Sustain.Soc.5,284–295.

Pinheiro,A.C.,Ribeiro,N.A.,Surov ´y,P.,Ferreira,A.G.,2008.Economicimplications ofdifferentcorkoakforestmanagementsystems.Int.J.Sustain.Soc.1, 149–157.

Pinto-Correia,T.,Fonseca,A.,2009.HistoricalperspectiveofMontados:theÉvora casestudy.In:Aronson,J.,SantosPereira,J.,Pausas,J.G.(Eds.),CorkOak WoodlandsinTransition:Ecology,Management,andRestorationofanAncient MediterraneanEcosystem.IslandPress,WashingtonDC,pp.49–58.

Pinto-Correia,T.,Godinho,S.,2013.Changingagriculturechanginglandscapes: whatisgoingoninthehighvaluedmontado.In:Ortiz-Miranda,D., Moragues-Faus,A.,ArnalteAlegre,E.(Eds.),AgricultureinMediterranean Europe:BetweenOldandNewParadigms(ResearchinRuralSociologyand Development,Vol.19.EmeraldGroupPublishingLimited,Bingley,pp.75–90.

Pinto-Correia,T.,Mascarenhas,J.,1999.Contributiontothe

extensification/intensificationdebate:newtrendsinthePortuguesemontado. Landsc.UrbanPlann.46,125–131.

Pinto-Correia,T.,Vos,W.,2004.MultifunctionalityinMediterraneanlandscapes: pastandfuture.In:Jongman,R.(Ed.),TheNewDimensionsofthe

Europeanlandscape.WagenigenURFrontisSeries,Vol.4.Springer,Dordrecht, TheNetherlands,pp.135–164.

Pinto-Correia,T.,Ribeiro,N.,Sá-Sousa,P.,2011.Introducingthemontado,thecork andholmoakagroforestrysystemofSouthernPortugal.Agrofor.Syst.82, 99–104.

Pinto-Correia,T.,Menezes,H.,Barroso,F.,2014.Thelandscapeasanassetin SouthernEuropeanfragileagriculturalsystems:contrastsandcontradictions inlandmanagersattitudesandpractices.Landsc.Res.39,205–217.

Plieninger,T.,Pulido,F.J.,Konold,W.,2003.Effectsofland-usehistoryonsize structureofholmoakstandsinSpanishdehesas:implicationsforconservation andrestoration.Environ.Conserv.30,61–70.

Plieninger,T.,Pulido,F.J.,Schaich,H.,2004.Effectsofland-useandlandscape structureonholmoakrecruitmentandregenerationatfarmlevelinQuercus ilexL.dehesas.J.AridEnviron.57,345–364.

Plieninger,T.,2006.Habitatloss,fragmentation,andalteration—quantifyingthe impactofland-usechangesonaSpanishdehesalandscapebyuseofaerial photographyandGIS.Landsc.Ecol.21,91–105.

Plieninger,T.,2007.Compatibilityoflivestockgrazingwithstandregenerationin Mediterraneanholmoakparklands.J.Nat.Conserv.15,1–9.

Pulido,F.J.,Díaz,M.,2005.RegenerationofaMediterraneanoak:awholecycle approach.Écoscience12,92–102.

Pulido,F.J.,Díaz,M.,Trucios,S.J.H.,2001.Sizestructureandregenerationof SpanishholmoakQuercusilexforestsanddehesas:effectsofagroforestryuse ontheirlong-termsustainability.For.Ecol.Manage.146,1–13.

Pulido,F.,McCreary,D.,Ca ˜nellas,I.,McClaran,M.,Plieninger,T.,2013.Oak regeneration:ecologicaldynamicsandrestorationtechniques.In:Campos,P., Huntsinger,L.,OviedoPro,J.L.,Starrs,P.F.,Díaz,M.,Standiford,R.B.,Montero, G.(Eds.),MediterraneanOakWoodlandWorkingLandscapes.Springer Netherlands,TheNetherlands,pp.123–144.

Ribeiro,N.A.,Surov ´y,P.,2008.InventárioNacionalDeMortalidadeDeSobreiroNa FotografiaaéreaDigitalDe2004/2006.ICAM,MADRP,AFN.ÉvoraUniversity Publishings.

Rykiel,E.J.,1996.Testingecologicalmodels:themeaningofvalidation.Ecol. Modell.90,229–244.

Sales-Baptista,E.,Cancelad’Abreu,M.,Ferraz-de-Oliveira,M.I.,2015.Overgrazing intheMontado?Theneedformonitoringgrazingpressureatpaddockscale. Agrofor.Syst.,http://dx.doi.org/10.1007/s10457-014-9785-3.

Santos,M.,Bastos,R.,Cabral,J.A.,2013.Convertingconventionalecological datasetsindynamicanddynamicspatiallyexplicitsimulations:current advancesandfutureapplicationsoftheStochasticDynamicMethodology (StDM).Ecol.Modell.258,91–100.

Serrada,R.,2002.ApuntesDeSelvicultura.E.U.I.T.F,Madrid.

Siegel,S.,Castellan,N.J.,1988.NonparametricStatisticsfortheBehavioralSciences, 2nded.McGraw-Hill,NewYork,NY.

Simões,M.P.,Madeira,M.,Gazarini,L.,2009.AbilityofCistusL.shrubstopromote soilrehabilitationinextensiveoakwoodlandsofMediterraneanareas.Plant Soil323,249–265.

Simões,M.P.,Belo,A.F.,Fernandes,M.,Madeira,M.,2016.Agrofor.Syst.90,107, doi:10.1007/s10457-015-9818-6.

Smit,C.,Díaz,M.,Jansen,P.,2009.Establishmentlimitationofholmoak(Quercus ilexsubsp.ballota(Desf.)Samp.)inaMediterraneansavanna–forestecosystem. Ann.For.Sci.66,1–7.

Sterman,J.D.,2001.Systemdynamicsmodelling:toolsforlearninginacomplex world.Calif.Manage.Rev.43,8–25.

Stoll,S.,Frenzel,M.,Burkhard,B.,Adamescu,M.,Augustaitis,A.,Baeßler,C.,Bonet, F.J.,Cazacu,C.,Cosor,G.L.,Díaz-Delgado,R.,Carranza,M.L.,Grandin,U.,Haase, P.,Hämäläinen,H.,Loke,R.,Müller,J.,Stanisci,A.,Staszewski,T.,Müller,F., 2015.AssessmentofecosystemintegrityandservicegradientsacrossEurope usingtheLTEREuropenetwork.Ecol.Modell.295,75–87.

Tutin,T.G.,Heywood,V.H.,Burges,N.A.,Valentine,D.H.,Walters,S.M.,Webb,D.A., 1964.Floraeuropaea.LycopodiaceaetoPlatanaceae,Vol.1.Cambridge UniversityPress,Cambridge,UK.

VanDoorn,M.M.,Bakker,A.M.,2007.Thedestinationofarablelandinamarginal agriculturallandscapeinSouthPortugal:anexplorationoflandusechange determinants.Landsc.Ecol.22,1073–1087.

Vicente,J.,Randin,C.F.,Gonc¸alves,J.,Metzger,M.,Lomba,A.,Honrado,J.,Guisan, A.,2011.Wherewillconflictsbetweenalienandrarespeciesoccurafter climateandland-usechange?Atestwithanovelcombinedmodeling approach.Biol.Invasions13,1209–1227.

Viegas,I.,AguiarFontes,M.,LimaSantos,J.,2014.Produc¸ãodecarnedebovinoem sistemassilvo-pastoristradicionais–umaboaopc¸ãoparaaprotec¸ão

ambiental?-BeefProductionintraditionalsilvopastoralsystems–Asecondbest fortheenvironment?RevistaPortuguesadeCiênciasVeterinárias1091–10. Vivas,E.,Maia,R.,2008.Caracterizac¸ãodasPrinciaisSituac¸õesdeSecaHistórica emPortugalContinental-AImportánciadaUtilizac¸ãodeIndicadores.Actasdo 2asJornadasdeHidráulica,RecursosHídricoseAmbiente,FEUP.Portugal. Winkler,E.,2006.Recenttrendsinplant-ecologicalmodelling:speciesdynamicsin

Referências

Documentos relacionados

A figura mostra a evolução da média do rácio de endividamento em valor de mercado dos bancos de maior e menor dimensão, estando contemplados na amostra 560

Furthermore, Fátima Santos, general secretary of AORP, defends that the Asian market is very attractive for Portuguese jewelry companies by its growing dimension and importance

As minhas funções não passaram só por coadjuvar a diretora de turma nas tarefas de direção de turma, passou também em planear, organizar e conduzir as aulas de

Verified field amplitude fluctuations are due to constructive/destructive interference caused by random refractive index perturbations, which result from the limited lithographic

Foram estatisticamente associados à baixa adesão ao tratamento na análise bruta: idade (65 a 74 anos), não ter plano de saúde, ter que comprar (totalmente ou em parte) os

Assim, responderei ao tema de forma precisa numa úl- tima parte deste estudo (fase mais utópica), iniciando com dois tópicos de teor mais analítico, um olhando para o que envolve

sacas a mais por hectare para essa variável em relação à ureia convencional para cobrir o custo operacional total, oscilando entre duas e oito sacas por hectare com o incremento

(1997) *HRSROtWLFDGRFDRVRio de Janeiro: Editora Vozes.. developing social education. However, there are two views / action based on manipulation. There are the