• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número1

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número1"

Copied!
7
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Metabolic

profile

and

-glucuronidase

inhibitory

property

of

three

species

of

Swertia

Swagata

Karak,

Gargi

Nag,

Bratati

De

PhytochemistryandPharmacognosyResearchLaboratory,DepartmentofBotany,UniversityofCalcutta,Kolkata,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29February2016 Accepted18July2016 Availableonline3October2016

Keywords: Swertia

␤-Glucuronidase Xanthones Hepatoprotective

a

b

s

t

r

a

c

t

␤-Glucuronidaseinhibitorsaresuggestedaspotentialhepatoprotectiveagents.Swertiachirayita(Roxb.)

Buch.-Ham.exC.B.Clarke,Gentianaceae,isknownforitshepatoprotectiveandanti-hepatotoxic

activ-ityinAyurvedicsystemofmedicineforages.ThisplantissubstitutedbyotherspecieslikeS.decussata

NimmoexC.B.ClarkeandS.bimaculata(Siebold&Zucc.)Hook.f.&ThomsonexC.B.Clarke.Theaimofthe

studywastocomparemetaboliteprofileand␤-glucuronidaseinhibitoryactivityofthesethreeimportant

speciesofSwertiaandtoidentifytheactiveconstituents.S.chirayita(IC50210.97␮g/ml)andS.decussata

(IC50269.7␮g/ml)showed␤-glucuronidaseinhibitoryactivitysignificantlyhigherthanthatofsilymarin,

theknowninhibitoroftheenzyme.TheactivityofS.bimaculatawaslow.Themetabolitespresentinthe

threespecieswereanalyzedbyHPLCandGC-MSbasedmetabolomicsapproach.Fiveaminoacids,twenty

oneorganicacids,oneinorganicacid,eightfattyacids,twentyonephenolsincludingxanthones,eight

sugars,sevensugaralcohols,fiveterpenoidsandamarogentinwereidentified.Activitiesofthe

xan-thonesmangiferin(IC5016.06␮g/ml),swerchirin(IC50162.84␮g/ml),decussatin(IC50195.11␮g/ml),

1-hydroxy-3,5,8-trimethoxyxanthone(IC50245.97␮g/ml),bellidifolin(IC50390.26␮g/ml)were

signifi-cantlyhigherthanthatofsilymarin(IC50794.62␮g/ml).Quinicacid(IC502.91mg/ml),O-acetylsalicylic

acid(IC5048.4mg/ml),citricacid(IC501.77mg/ml),d-malicacid(IC5014.82mg/ml)andsuccinicacid

(IC5038.86mg/ml)alsoinhibitedtheenzyme␤-glucuronidase.Thefindingssuggestthatconstituents,

inadditiontothexanthones,probablyalsocontributetothebioactivityofdifferentSwertiaspeciesby

synergisticeffect.Furtherinvivostudyisrequiredtosupporttheclaim.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen

accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Liverdiseasehasbecomeamajorhealthissueglobally(Byass,

2014). The liver is a vital organ that is involved in

mainte-nance of metabolic functions and helps in the detoxification

processbycountering severalexogenousand endogenous

chal-lenges(Kshirsagaretal.,2011).Glucuronidationisamajorpathway

ofphase IIxenobiotic biotransformation(deGraafet al.,2002).

Conjugationoftoxinswithglucuronicaciddeactivatespotentially

damagingcompoundsandsubsequentlyeliminatesthemfromthe

body.However,thisprocessbecomeslimitedbytherateof

deglu-curonidationby␤-glucuronidase.Hydrolysis oftheglucuronide

moietycanbecarriedoutby␤-glucuronidasepresentinmostof

thetissues,inendocrineandreproductiveorgans(Dutton,1980).

∗ Correspondingauthor.

E-mail:bdbot@caluniv.ac.in(B.De).

Liverdamagecausesanincreaseinthelevelof␤-glucuronidasein

blood(Pinedaetal.,1959),andlivercancercouldberelatedtothis

enzyme(MillsandSmith,1951).

␤-Glucuronidaseinhibitorsreducethecarcinogenicpotentialof

toxiccompoundsnormallyexcretedinbileafterglucuronidation

(Walaszeketal.,1984).Duetothiscorrelation,␤-glucuronidase

inhibitorsaresuggestedaspotentialhepatoprotectiveagents(Shim

et al., 2000). Certain hepatoprotective plant extracts and their

constituentsare knowntoinhibittheenzyme, ␤-glucuronidase

(JoshiandSanmugapriya,2007).Silymarin(amixtureof

flavono-lignans),thecommercialplantderived␤-glucuronidaseinhibitor

(Kimetal.,1994),isusedtotreatliverdisordersandalsocertain

cancers(Dixitetal.,2007).Butithaspoorbioavailability(Dixitetal.,

2007).Silymarinhascertainotherlimitationsrelatedto

gastroin-testinaltractlikebloating,dyspepsia,nausea,irregularstooland

diarrhoea.Italsoproducedpruritus,headache,exanthema,malaise,

asthenia,andvertigo(PradhanandGirish,2006).Hence,searchfor

glucuronidaseinhibitorycompoundsfrommedicinallyimportant

traditionalplantsthatareearlierreportedtobehepatoprotective

isnecessary.

http://dx.doi.org/10.1016/j.bjp.2016.07.007

(2)

PlantsofthegenusSwertia,Gentianaceae,arewellrecognizedin

literatureasimportantmedicinalherbhavinganarrayof

biologi-calandtherapeuticproperties(Negietal.,2011).Hepatoprotective

andanti-hepatotoxicactivityofSwertiasp.havealreadybeen

estab-lishedinAyurvedicmedicalsystemandvalidatedscientificallyin

animalsystem(Mukherjeeetal.,1997;Karanetal.,1999;Reen

etal.,2001).Swertiachirayita(Roxb.)Buch.-Hamex C.B.Clarke,

consideredtobethemostimportantspeciesofSwertiareported

fromIndia,foritsmedicinalproperties,hasbeenconsideredas

crit-icallyendangeredplant(Pantetal.,2000;JoshiandDhawan,2005;

Bhargavaetal.,2009).Thisplantissubstitutedbyotherspecies likeS.decussataNimmoexC.B.ClarkeandS.bimaculata(Siebold&

Zucc.)Hook.f.&ThomsonexC.B.Clarke(Chopraetal.,1956;Phoboo

etal., 2010).Metabolitessuchas terpenoids,flavonoids, iridoid

glycosidesandxanthonesareconsideredasactiveconstituentsof

Swertiasp.,xanthonesbeingthemainactivesecondarymetabolite

(Brahmacharietal.,2004;Nagetal.,2015).

In a previous study antioxidant, anti-glycosidase and

anti-acetylcholinesterase properties of S. chirayita and the two

substituteswerereportedfromthelaboratory(Nagetal.,2015).

Although the hepatoprotective property of S. chirayita is well

known,themodeofactionforhepatoprotectionhasnotyetbeen

studied.Theactive principlesfor hepatoprotection arealso not

known.␤-Glucuronidaseinhibitorypropertiesoftheextractsof

theseplantswouldfurthervalidatetheirhepatoprotective

prop-erty.So,theaimofthestudywastocomparemetaboliteprofile

and␤-glucuronidaseinhibitoryactivityofthreeimportantspecies

ofSwertiai.e.S.chirayita,S.decussataandS.bimaculatainorderto

identifytheactiveconstituents.

Materialsandmethods

Plantmaterial

LeafyshootsofthreespeciesofSwertia,Gentianaceae,namely

Swertiachirayita(Roxb.) Buch.-HamexC.B.Clarke (Voucherno.

Bot332S-1),S.bimaculata(Siebold&Zucc.)Hook.f.&Thomson

exC.B.Clarke(VoucherNo.Bot332S-2)werecollectedfrom

Dar-jeelingHimalayas.Thethird speciesS.decussata NimmoexC.B.

Clarke(VoucherNo.Bot332S-3)wascollectedfromtheWestern

Ghats,India.VoucherspecimensareavailableintheDepartment

ofBotany,UniversityofCalcutta.ThetwonamesS.chirayitaand

S.decussataareunresolvedasperIPNI(InternationalPlantNames Index).

Chemicalsandreagents

␤-Glucuronidase (ex. bovine liver), 4-nitrophenyl-␤-d

-glucuronide; methoxyamine hydrochloride, N-methyl-N

-(trimethylsilyl)trifluoroacetamidewith1%trimethylchlorosilane

(MSTFA),adonitoland FAME(Fatty Acid MethylEster) markers

were obtainedfrom Sigma–Aldrich (St. Louis, MO, USA); HPLC

gradeacetonitrile,formicacid,water,methanol,chloroformand

pyridinefromMerckSpecialitiesPrivateLimited(Mumbai,India).

Six standard compounds: mangiferin, amarogentin, bellidifolin,

swerchirin/methylbellidifolin, decussatin and 1-hydroxy-3, 5,

8-trimethoxyxanthonewereavailableinthelaboratory.

Samplepreparation

MethanolicextractsoftheleafyshootsofSwertiasp.were

pre-paredbyrefluxingdried,groundmaterialswithmethanolfor5h.

Foreachplantmaterial,thefiltrate,afterextraction,was

evapo-ratedtodrynessunderreducedpressure.Differentconcentrations

ofthemethanolicextractandthatofreferencecompoundswere

usedforstudyingtheenzymeinhibitionactivityinvitroaswellas

forHPLCandGC/MSanalysis.

Assayforˇ-glucuronidaseinhibition

␤-Glucuronidaseinhibition assaywascarried outas perthe

methodofKimetal.(1999)withmodification.Inbrief,100␮lof

␤-glucuronidase(986.4units/mlin0.1Mphosphatebuffer,pH7.0)

and340␮loftestsolution/referencestandardofvarious

concentra-tionsin0.1Mphosphatebuffer(pH7.0)werepre-incubatedat37◦C

for15min.Followingthepre-incubation,60␮lofp-nitrophenyl-␤

-d-glucuronide(3.15mg/mlin0.1Mphosphatebuffer,pH7.0)was

addedandincubatedat37◦Cfor50min.Thecolourdevelopedwas

readat405nminspectrophotometer.Controlsweredevoidoftest

samples.Thepercentinhibitionwascalculatedasfollows:

Inhibition (%)=

ControlODSampleOD

ControlOD

×100.

HPLCanalysis

TheHPLCanalysiswasperformedonanAgilent1260(Agilent

Technologies,USA)HPLCsystemconsistingofaquaternarypump,

acolumntemperaturecontrollerandadiode-arraydetector(DAD).

The analytical column (Agilent Eclipse plus C18, 100×4.6mm,

3.5␮m)wasusedfortheanalysis.Themobilephasewascomposed

ofsolventA(acetonitrile)andsolventB(0.1%formicacidaqueous,

v/v).Thelineargradientprogrammefollowedwas:10%Aat0min,

30%Aat20min,60%Aat35minand80%Aat45min(Duetal.,

2012).Theflowratewas0.7ml/min.20␮laliquotswereinjected.

UVspectraofthepeakswererecordedfrom190–400nmovera

rangeof8differentUVwavelengths(210,214,230,250,254,260,

273,and280nmrespectively).

GC/MSanalysis

GC–MSanalysiswasperformedusingAgilent7890AGC

[soft-waredriverversion4.01(054)]equippedwith5795CinertMSD

withTripleAxisDetector.Thecolumnusedforquantification

anal-ysiswasHP-5MScapillary column[AgilentJ&W;GC Columns

(USA)]of dimensions30m×0.25mm×0.25␮m. Themethodof

Kind et al. (2009) was followed after modification (Das et al., 2016).Theanalysiswasperformedunderthefollowingoven

tem-peratureprogramme:ovenramp60◦C(1minhold),to325Cat

10◦C/min,heldfor10minbeforecool-downproducingaruntime

of37.5min.Theinjectiontemperaturewassetat250◦C,theMSD

transferlineat290◦Candtheionsourceat230C. Heliumwas

usedasthecarriergas(flowrate0.723ml/min;carrierlinear

veloc-ity 31.141cm/s). Thedried crude extract wasderivatized using

methoxyaminehydrochlorideandMSTFAtoincreasethe

volatil-ityofthemetabolites.AmixtureofinternalRetentionIndex(RI)

markers(methylestersofC8,C10,C12,C14,C16,C18,C20,C22,

C24andC26linearchainlengthfattyacids)(2␮l)wasaddedto

each sample. Derivatizedsamples wereinjected viasplit mode

(splitratio10:1)ontothecolumn.Massspectraranging30–500m/z

wererecorded.Automatedmassspectraldeconvolutionand

iden-tificationsystem(AMDIS)wasusedtodeconvoluteand identify

chromatographicpeaks.Themetaboliteswereidentifiedby

com-paringthefragmentationpatternsofthemassspectra,retention

times(RT)and retentionindices(RI)withentriesofmass

spec-tra,RTandRIinAgilentGC-MSMetabolomicsRTLLibrary(2008)

(AgilentTechnologies,USA).Therelativeresponseratiosofallthe

metaboliteswerecalculatedafternormalizingthepeakareasofthe

metabolitesbyextractdryweightandthepeakareaoftheinternal

(3)

Statisticalanalysis

Each experiment was repeated four–five times. Percentage

inhibitionin activityispresentedasmean±standarddeviation.

Regressionequationswerepreparedfromtheconcentrationsofthe

extractsandpercentageinhibitionofenzymeactivity.IC50

(concen-trationofsamplerequiredtoinhibit50%enzymeactivity)values

werecalculatedfromtheseregressionequations.Thedifferences

inactivitywerecalculatedbyTukey’sandBonferroni’stests.

Resultsanddiscussions

The entire plant of S. chirayita is used in traditional

sys-temof medicine(Joshi andDhawan, 2005).During thepresent

studyleafyshoots couldbecollected. Somethanolicextractsof

theleafy shoots of three species of Swertiawere tested for ␤

-glucuronidaseinhibitoryactivity.Concentrationrequiredfor50%

inhibitionofenzymeactivity(IC50value)forsilymarinwasdetected

tobe794.62±10.01␮g/ml.So, initially,␤-glucuronidase

inhibi-tionactivitiesofallthreespeciesweremeasuredat500␮g/ml.It

wasobservedthatS.bimaculatahadlowestactivityatthetested

concentration(Fig.1).TheactivitiesofS.chirayitaandS.

decus-satawerehigherwithnosignificantdifferencesinactivitybetween

them. Sothe IC50 values of the two species S. chirayita and S.

decussataweredetermined.Theextractsinhibitedtheenzymein

adosedependentmanner.ItwasobservedthatS.chirayitahad

lowerIC50valuebetweenthetwospeciesindicatingstronger

activ-ity (Fig. 2). IC50 values of both the extracts were significantly

0

S. chirayita S. decussata S. bimaculata

Concentration (500 µg/ml)

% inhibition

98.19 ± 0.77 95.95 ± 1.36

30.89 ± 4.02

20 40 60 80 100 120

Fig.1.Comparisonof␤-glucuronidaseinhibitoryactivityofSwertiasp.

0.00

S. chirayita

210.97 ± 0.04

IC

50

v

alue (

µ

g/ml

±

sd)

269.70 ± 2.11

794.62 ± 10.01

S. decussata Silymarin

100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00

Fig.2.Comparisonofenzymeactivity.

mAU 50 0 –50 –100 –150 (A)

(B)

(C) –200 –250 –300 –350

10

1 2

3,4 5

6

6

5 3,4 2

1

1 2

3,4

5 6

20 30 40 50 min

10 20 30 40 50 min

10 –600

–600 –400 –200 0 200

–500 –400 –300 –200 –100 0 mAU mAU

*DAD1 A, sig=254.4 ref=360 100 (21-10-2014\SB000003.D) *DAD1 A, sig=254.4 ref=360 100 (21-10-2014\Authentics00006.D)

*DAD1 A, sig=254.4 ref=360 100 (20-10-2014\SDNEW000004.D) *DAD1 A, sig=254.4 ref=360 100 (20-10-2014\Authentics00007.D) *DAD1 A, sig=254.4 ref=360 100 (17-10-2014\SC000002.D) *DAD1 A, sig=254.4 ref=360 100 (17-10-2014\Authentics00006.D)

20 30 40 50 min

(4)

Table1

ComparisonofHPLCidentifiedmetabolitesamongthreespeciesofSwertiainelutionorder.

Standard/referencecompounds S.chirayita S.decussata S.bimaculata

Relativeresponseratiopergextract

Mangiferin 1.084±0.39 0.758±0.17 0.209±0.02

Amarogentin 0.376±0.07 – 0.040±0.01

Bellidifolin+1-Hydroxy-3,5,8-trimethoxyxanthone 0.661±0.22 1.463±0.31 0.043±0.01

Decussatin 0.159±0.02 1.130±0.21 0.066±0.01

Swerchirin 0.233±0.06 0.452±0.17 –

100.00 80.00 60.00 40.00 20.00 0.00

0.00

0 100 200 300 400 100.00 200.00 300.00

Concentration (µg/ml)

Concentration (µg/ml)

Bellidifolin

Decussatin Mangiferin

1-hydroxy-3.5.8-trimethoxy xanthone

y=0.2004x+0.8437

R2=0.9448

y=0.499x−31 174

R2=0.9879

y=0.3225x−75 669

R2=0.9597

y=0.2868x−5.9433

R2=0.9876 y=–0.1502x2+9.2781x– 60 279

R2=0.9827

Swerchirin

Concentration (µg/ml)

Concentration (µg/ml)

Concentration (µg/ml)

% inhibition

100.00 80.00 60.00 40.00 20.00 0.00

% inhibition

120.00

80.00 100.00

60.00 40.00 20.00 0.00 0

0 10 20 30 40

100 200 300

90 80 70 60 50 40 30 20 10

80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00

0 100 200 300 400 0

% inhibition

% inhibition

% inhibition

400.00 500.00 600.00

Fig.4. ␤-Glucuronidaseinhibitionbythexanthones.

lower than that of silymarin. The bioactivity of a plant is due tothephytoconstituentspresent in it.For a comparativestudy ofthemetaboliteprofilein thethree species,identificationand semiquantitativeanalysesofthemetaboliteswereperformedby HPLC withphotodiode array detectionand GC–MSfollowing a metabolomicsapproach.HPLCprofileofthethreespeciesof

Swer-tia(Fig.3) showedthe confirmedpresence of three xanthones

(swerchirin,decussatin,mangiferin)andtheiridoidamarogentin.

Bellidifolinand1-hydroxy-3,5,8-trimethoxyxanthonecouldnotbe

separatedfromeach otherbyHPLCastheirretentiontime(RT)

andabsorbanceweresame.Semiquantitativecomparisonofthe

normalizedpeakarearevealedthatmangiferinwaspresentin

max-imumconcentrationinS.chirayita,followedbyS.decussataandS.

bimaculata.AmarogentinandswerchirinwerenotdetectedinS. decussataandS.bimaculatarespectively.Decussatinwasfoundto

beinmaximumamountinS.decussata.Acomparativeaccountof

theHPLCidentifiedmetaboliteshasbeenrepresentedinTable1.

GC–MSbasedmetabolomicsapproachhelpedinidentificationof

72compoundsfromthemethanolextractofthreespeciesof

Swer-tia.Fiveaminoacids,twentyoneorganicacids,oneinorganicacid,

eightfattyacids,sixteenphenols,eightsugars,sevensugaralcohols,

fiveterpenoidsandoneotherorganiccompound(porphine)were

identified.Asemiquantitativecomparison,basedontherelative

responseratiopergextract,oftheidentifiedmetaboliteshasbeen

representedinTable2.S.chirayitapresentedmaximumnumberof

metabolitesfollowedbyS.bimaculataandS.decussatarespectively.

Five xanthones and the iridoid amarogentin, isolated from

S. chirayita previously (Nag et al., 2015), were tested for their

␤-glucuronidaseinhibitory property. The activitiesof the

com-pounds were compared with that of silymarin. The activities

of the xanthones tested were proportional to their

concentra-tions (Fig. 4). All the xanthones showed inhibitory activities

significantly higher than that of the commercial drug (Fig. 5).

0.00

3 6

IC

50

v

alue (

µ

g/ml

±

sd)

5 1 4 Silymarin

390.26

±

2.92

162.84

±

3.72

195.11

±

5.03

16.06

±

0.05 245.97

±

4.19

794.62

±

10.01

100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00

(5)

Table2

ComparativemetabolicprofileofthreespeciesofSwertiausingGC/MS.

Metabolites Relativeresponseratiopergextract

Swertiachirayita Swertiadecussata Swertiabimaculata

Aminoacids

N-Ethylglycine 1.13±1.09 – –

N-Acetyl-l-glutamicacid 15.73±2.85 – 21.72±9.41

l-Glutamicacid(dehydrated) 14.43±1.50 1.57±0.71b

l-Pyroglutamicacid – – 17.12±3.46

Allantoin 37.14±8.73 – –

Organicacids

l-(+)Lacticacid 28.97±2.06 25.03±7.83 137.05±14.21a

Glycolicacid 6.83±0.31 2.74±3.95 12.21±0.83a

Oxalicacid 0.98±0.31 – 4.00±2.27a

Malonicacid 3.82±0.91 – 2.88±1.66

Maleicacid 2.59±0.29 2.21±0.45 1.75±1.00

Succinicacid 86.36±2.13 1.62±0.08b 98.39±7.51a

Glycericacid 90.34±2.72 4.77±0.82b 67.42±3.79b

Fumaricacid 103.78±7.32 7.43±1.57b 18.97±3.81b

Citraconicacid 1.03±0.22 – 0.34±0.25b

Citramalicacid 3.79±0.92 – –

Mandelicacid 1.05±0.38 – 0.84±0.19

d-Malicacid 705.76±25.78 6.08±0.58b 296.55

±44.42b

Adipicacid – – 0.76±0.66

Citricacid 19.33±4.44 – 17.68±11.19

Gluconicacidlactone 144.13±14.48 41.30±5.64b 76.96±8.32b

Gluconicacid 15.29±7.38 – –

2-Isopropylmalicacid 1.51±0.19 – –

3-Hydroxy-3-methylglutaricacid(dicrotalicacid) 3.29±0.13 – –

Ribonicacid-gamma-lactone 22.24±35.46 – –

4-Guanidinobutyricacid 0.93±0.30 – –

Nicotinicacid 2.04±0.87 – 2.74±0.81

Inorganicacid

Phosphoricacid 14.97±2.36 3.99±0.45b 5.66±1.15b

Fattyacids

Lauricacid 1.26±0.13 1.44±0.73 6.16±2.69a

Behenicacid 8.71±1.06 – 14.63±3.04a

Myristicacid – – 6.79±1.82

Palmiticacid 109.52±11.08 94.42±15.02 247.32±10.48a

Linoleicacid 26.08±5.82 3.69±2.31b 27.39±7.70c

Oleicacid 32.02±9.41 4.93±3.89b 20.48

±16.95

Stearicacid 64.63±7.34 64.87±10.13 116.75±13.21a

Arachidicacid 4.13±0.99 – 20.27±4.24a

Phenols

Benzoicacid – – 1.97±0.22

O-Acetylsalicylicacid – – 3.60±0.35

4-Hydroxybenzoicacid 9.44±0.72 – 4.75±0.12b

2,3-Dihydroxybenzoicacid 41.22±0.14 22.78±1.75b 112.23±2.24a

4-Hydroxy-3-methoxybenzoicacid 56.08±1.65 1.48±0.40b 47.02±0.72b

Gentisicacid – 3.58±1.76 33.83±6.61c

Shikimicacid 1.47±0.21 – –

3,4-Dihydroxybenzoicacid 43.59±16.66 – 8.83±0.67b

Quinicacid 2.06±0.33 5.29±2.96 26.20±0.77a

Coniferylalcohol 6.90±1.95 – 22.27±9.60a

4-Hydroxycinnamicacid – 11.30±5.60 –

Ferulicacid – 7.76±6.08 –

Sinapylalcohol – – 3.46±1.96

Caffeicacid 0.86±0.09 1.44±0.72 –

Neohesperidin 0.95±0.34 –

Isoquercitrin 59.38±8.10 – –

Sugars

Methyl-␤-d-galactopyranoside 105.99±1.29 26.71±14.48b 45.95

±40.50b

Sucrose 1482.49±114.56 27.04±4.29b 1682.28

±1055.76c

Lactose 46.34±43.84 – –

d-(+)-Trehalose 248.92±66.71 22.69±7.72b 86.93±15.65b

Raffinose 2.46±1.91 – 6.39±5.06

Melezitose 3.70±1.99 3.19±0.28 4.55±3.22

d-(+)-Melezitose 1.98±0.83 86.62±100.91 –

Adenosine 9.66±7.90 – 6.95±1.24

Sugaralcohols

Glycerol 108.61±1.07 58.94±1.09b 563.47

±10.97a

Glycerol1-phosphate 2.98±0.26 – –

D-Threitol 58.63±4.42 7.61±1.60b 4.60

±0.93b

(6)

Table2(Continued)

Metabolites Relativeresponseratiopergextract

Swertiachirayita Swertiadecussata Swertiabimaculata

d-Mannitol 533.42±19.80 12.45±1.06b 66.75±1.01b

d-Sorbitol 199.74±2.90 115.11±18.17b 323.37

±47.73a

Galactinol 37.99±6.29 – –

Terpenoids

Phytol – – 3.44±0.66

Loganin – 105.87±12.81c 34.05

±7.11

Palatinitol 28.05±15.45 – 8.68±4.87

Stigmasterol 39.26±5.79 3.15±2.76b 42.25±7.60

Lanosterol – – 35.94±7.56

Macrocycleorganiccompound

Porphine 6.41±4.38 – –

–,notdetected.

aSignificantlyhigherthanS.chirayita.

b SignificantlylowerthanS.chirayita.

c SignificantlyhigherbetweenS.decussataandS.bimaculata.

60.00

50.00

40.00

30.00

20.00

10.00

0.00 D-malic

acid

Succinic acid

IC

50

v

a

lue (mg/ml

±

sd)

14.82

±

0.36

38.86

±

1.24

1.77

±

0.02

48.40

±

1.31

2.91

±

0.02

0.79

±

0.01

Citric acid

O-acetyl salicylic acid

Quinic acid

Silymarin

Fig.6.Comparisonof␤-glucuronidaseinhibitoryactivityoforganicandphenolic acidswithrespecttosilymarin.

Mangiferinshowedthebest␤-glucuronidaseinhibitionwithan

IC50valueof16.06±0.05␮g/mlor0.038mMfollowedby

swer-chirin(IC50 162.84±3.72␮g/ml or 0.565mM), decussatin(IC50

195.11±5.03␮g/ml or 0.646mM), 1-hydroxy-3,5,8-trimethoxy

xanthone(IC50245.97±4.19␮g/mlor0.814mM)andbellidifolin

(IC50390.26±2.92␮g/mlor1.424mM).However,thebitteriridoid

compound,amarogentindidnotshowanyenzymeinhibitory

activ-ity.Outof72metabolitesidentifiedbyGC–MS,ninecompounds,

availableinthelaboratory,weretestedfortheir␤-glucuronidase

inhibitory activity. These were succinic acid, d-malic acid,

cit-ricacid,O-acetylsalicylicacid,4-hydroxybenzoicacid,quinicacid,

4-hydroxycinnamicacid,sucroseandglycerol.4-Hydroxybenzoic

acid,4-hydroxycinnamicacid,sucroseandglyceroldidnothaveany

␤-glucuronidase inhibitory activity. Remaining five compounds

inhibited␤-glucuronidaseinadose-dependentmanner.

Compari-sonoftheiractivitieswithrespecttosilymarinhadbeenillustrated

in Fig.6.Among these, citric acid (IC50 1.77±0.02mg/ml) and

quinicacid(IC502.91±0.02mg/ml)showedactivitycloseto

sily-marin(IC500.79±0.01mg/ml).

Xanthoneshad already beenreported topossess a range of

pharmacologicalactions(Peresetal.,2000).S.chirayita,S.

decus-sata and S. bimaculata are considered to be a natural source

oftetraoxygenatedxanthones(Pereset al.,2000).Mangiferin, a

xanthone-C-glycoside,had previously beenreported to possess

antioxidant(Nagetal.,2015);anti-diabeticandantitumour

activ-itiesto namea few (Suryawanshiet al., 2006).Bellidifolin and

swerchirinhadbeenfoundtobepotenthypoglycemicagent(Bajpai

etal.,1991;Basnetetal.,1995).Inaddition,swerchirin,hadalso

beenreportedtobehepatoprotective(Hajimehdipooretal.,2006)

onparacetamol-inducedhepatotoxicity inmice models.Several

studiesthathadbeencarriedouttoadvocatethehepatoprotective

andanti-hepatotoxicpropertyofthisgenuscreditsthisattribute

tothexanthonecontentpresentinextractoftheplant.Thefive

xanthonesthathadbeenconsideredinourstudyshowedgood␤

-glucuronidaseinhibition incomparisontothecommercialdrug,

silymarin,therebyproposingapossiblemechanismof

hepatopro-tectiveactionvia␤-glucuronidaseinhibition.Thesefindingshad

not been reported earlier in literature. The present study also

revealsthatsomeorganicacidsviz.,succinicacid,d-malicacid,citric

acidandphenoliccompoundsviz.,O-acetylsalicylicacidandquinic

acidhave␤-glucuronidaseinhibitoryproperties.Citricacidwas

reportedearliertoreducelipopolysaccharideinducedliverinjury

andoxidativestress(Abdel-Salametal.,2014).So,␤-glucuronidase

inhibitionpropertyoftheconstituentspresentinSwertiasp.maybe

amechanismforhepatoprotectiveactivityoftheseplants.Further

invivostudyisrequiredinthisregard.

Conclusion

Theproperties of three Swertiasp. e.g. S.chirayita, S.

decus-sataandS.bimaculatatoinhibit␤-glucuronidase,amechanismfor

hepatoprotection,wereassessedandthecontributoryconstituents

hadbeenidentified.Severalxanthoneswereidentifiedtobemajor

componentstohavesignificantlyhigher␤-glucuronidase

inhibi-tionpropertiesthanthatofsilymarin.Metabolitesotherthanthe

xanthones,probablyalsocontributetothebioactivityofdifferent

Swertiaspeciesbysynergisticeffect.Thepresentfindingssuggest

that␤-glucuronidaseinhibitionmaybeoneofthemechanismsfor

thehepatoprotectivepropertyofSwertiasp.Furtherinvivostudy

isrequiredtosupporttheclaim.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare

thatnoexperimentswereperformedonhumansoranimalsduring

thestudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata

appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat

(7)

Authors’contributions

SKperformedextraction, chromatographicanalysis,

bioactiv-ity studies and preparation of the manuscript. GN performed

extractionandsomeanalysis.BDprovidedidea,projectplanand

subsequentlypreparationofthemanuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

TheauthorsacknowledgefinancialsupportfromDepartmentof

ScienceandTechnology(GovernmentofWestBengal),Department

ofScienceandTechnologyFISTProgramme(GovernmentofIndia),

UniversityGrantsCommission.

References

Abdel-Salam,O.M.E.,Youness,E.R.,Mohammed,N.A.,Morsy,S.M.Y.,Omara,E.A., Sleem,A.A.,2014.Citricacideffectsonbrainandliveroxidativestressin lipopolysaccharide-treatedmice.J.Med.Food17,588–598.

Bajpai,M.B.,Asthana,R.K.,Sharma,N.K.,Chatterjee,S.K.,Mukherjee,S.K.,1991. HypoglycemiceffectofswerchirinfromthehexanefractionofSwertiachirayita. PlantaMed.57,102–104.

Basnet,P.,Kadota,S.,Shimizu,M.,Takata,Y.,Kobayashi,M.,Namba,T.,1995. Bellidifolinstimulatesglucoseuptakeinrat1fibroblastsandameliorates hyper-glycemiainstreptozotocin(STZ)-induceddiabeticrats.PlantaMed.61,402–405. Bhargava,S.,Rao,P.S.,Bhargava,P.,Shukla,S.,2009.AntipyreticpotentialofSwertia

chirataBuchHam.rootextract.Sci.Pharm.77,617–623.

Brahmachari,G.,Mondal,S.,Gangopadhyay,A.,Gorai,D.,Mukhopadhyay,B.,Saha,S., Brahmachari,A.K.,2004.Swertia(Gentianaceae):chemicalandpharmacological aspects.Chem.Biodivers.1,1627–1651.

Byass,P.,2014.Theglobalburdenofliverdisease:achallengeformethodsandfor publichealth.BMCMed.,http://dx.doi.org/10.1186/s12916-014-0159-5. Chopra,R.N.,Nayar,S.L.,Chopra,I.C.,1956.GlossaryofIndianMedicinalPlants.CSIR,

NewDelhi,pp.237.

Das,S.,Dutta,M.,Chaudhury,K.,De,B.,2016.Metabolomicandchemometricstudy ofAchrassapotaL.fruitextractsforidentificationofmetabolitescontributing totheinhibitionof␣-amylaseand␣-glucosidase.Eur.FoodRes.Technol.242, 733–743.

deGraaf,M.,Boven,E.,Scheeren,H.W.,Haisma,H.J.,Pinedo,H.M.,2002. Beta-glucuronidase-mediateddrugrelease.Curr.Pharm.Des.8,1391–1403. Dixit,N.,Baboota,S.,Kohli,K.,Ahmad,S.,Ali,J.,2007.Silymarin:areviewof

pharmacologicalaspectsandbioavailabilityenhancementapproaches.Indian J.Pharmacol.39,172–179.

Du,X.G.,Wang,W.,Zhang,Q.Y.,Cheng,J.,Avula,B.,Khan,I.A.,Guo,D.A.,2012. IdentificationofxanthonesfromSwertiapuniceausinghigh-performanceliquid chromatographycoupledwithelectrosprayionizationtandemmass spectrom-etry.RapidCommun.MassSpectrom.26,2913–2923.

Dutton,G.J.,1980.GlucuronidationofDrugsandOtherCompounds.CRCPress,Boca Raton,FL.

Hajimehdipoor,H.,Sadeghi,Z.,Elmi,S.,Elmi,A.,Ghazi-Khansari,M.,Amanzadeh,Y., Sadat-Ebrahimi,S.E.,2006.ProtectiveeffectsofSwertialongifoliaBoiss.andits activecompound,swerchirin,onparacetamol-inducedhepatotoxicityinmice. J.Pharm.Pharmacol.58,277–280.

Joshi,C.S.,Sanmugapriya,E.,2007.␤-Glucuronidaseinhibitoryeffectofphenolic constituentsfromPhyllanthusamarus.Pharm.Biol.45,363–365.

Joshi, P., Dhawan, V., 2005. Swertia chirayita – an overview. Curr. Sci. 89, 635–640.

Karan,M.,Vasisht,K.,Handa,S.S.,1999.AntihepatotoxicactivityofSwertiachirata

onparacetamolandgalactosamineinducedhepatotoxicityinrats.Phytother. Res.13,95–101.

Kim,D.H.,Jin,Y.H.,Park,J.B.,Kobashi,K.,1994.Silymarinanditscomponentsare inhibitorsof␤-glucuronidase.Biol.Pharm.Bull.17,443–445.

Kim,D.H.,Shim,S.B.,Kim,N.J.,Jang,I.S.,1999.␤-Glucuronidaseinhibitory activ-ityandhepatoprotectiveeffectofGanodermalucidum.Biol.Pharm.Bull.22, 162–164.

Kind,T.,Wohlgemuth,G.,Lee,D.Y.,Lu,Y.,Palazoglu,M.,Shahbaz,S.,Fiehn,O.,2009. FiehnLib–massspectralandretentionindexlibrariesformetabolomicsbased onquadrupoleandtime-of-flightgaschromatography/massspectrometry.Anal. Chem.81(24),10038–10048.

Kshirsagar,A.D.,Mohite,R.,Aggrawal,A.S.,Suralkar,U.R.,2011.Hepatoprotective medicinalplantsofAyurveda–areview.AsianJ.Pharm.Clin.Res.4,1–8. Mills,G.T.,Smith,E.E.B.,1951.The␤-glucuronidaseactivityofchemicallyinduced

rathepatoma.Science114,690–692.

Mukherjee,S.,Sur,A.,Maiti,B.R.,1997.HepatoprotectiveeffectofSwertiachirataon rat.IndianJ.Exp.Biol.35,384–388.

Nag,G.,Das,S.,Das,S.,Mandal,S.,De,B.,2015.Antioxidant,anti-acetylcholinesterase andanti-glycosidasepropertiesofthreespeciesofSwertia,theirxanthonesand amarogentin.Acomparativestudy.Pharmacogn.J.7,117–123.

Negi,J.S.,Singh,P.,Rawat,B.,2011.Chemicalconstituentsandbiologicalimportance ofSwertia.Areview.Curr.Res.Chem.3,1–15.

Pant,N.,Jain,D.C.,Bhakuni,R.S.,2000.PhytochemicalsfromgenusSwertiaandtheir biologicalactivities.IndianJ.Chem.39B,565–586.

Peres,V.,Nagem,T.J.,Oliveira,F.F.,2000.Tetraoxygenatednaturallyoccurring xan-thones.Phytochemistry55,683–710.

Phoboo,S.,Bhowmik,P.C.,Jha,P.K.,Shetty,K.,2010.Anti-diabeticpotentialofcrude extractsofmedicinalplantsusedassubstitutesforSwertiachirayitausinginvitro

assays.Bot.Orient.:J.PlantSci.7,48–55.

Pineda,E.P.,Goldbarg,J.A.,Banks,B.M.,Rutenburg,A.M.,1959.Thesignificanceof serum␤-glucuronidaseactivityinpatientswithliverdisease.Apreliminary report.Gastroenterology36,202–213.

Pradhan, S.C., Girish, C.,2006. Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinicalmedicine. Indian J. Med.Res. 124, 491–504.

Reen,R.K.,Karan,M.,Singh,K.,Karan,V.,Johri,R.K.,Singh,J.,2001.Screeningof var-iousSwertiaspeciesextractsinprimarymonolayerculturesofrathepatocytes againstcarbontetrachloride-andparacetamol-inducedtoxicity.J. Ethnophar-macol.75,239–247.

Shim,S.B.,Kim,N.J.,Kim,D.H.,2000.␤-Glucuronidaseinhibitoryactivityand hep-atoprotectiveeffectof18-␤-glycyrrhetinicacidfromtherhizomesofGlycyrrhiza uralensis.PlantaMed.66,40–43.

Suryawanshi,S.,Mehrotra,N.,Asthana,R.K.,Gupta,R.C.,2006.Liquid chromatogra-phy/tandemmassspectrometricstudyandanalysisofxanthoneandsecoiridoid glycosidecompositionofSwertiachirata,apotentantidiabetic.RapidCommun. MassSpectrom.20,3761–3768.

Walaszek, Z., Hanausek-Walaszek, M., Webb, T.E., 1984. Inhibition of 7,12-dimethylbenzanthracene-induced rat mammary tumorigenesis by

Imagem

Fig. 3. HPLC chromatogram of (A) Swertia chirayita; (B) Swertia decussata; (C) Swertia bimaculata compared with reference compounds as mirrored images
Fig. 4. ␤-Glucuronidase inhibition by the xanthones.
Fig. 6. Comparison of ␤-glucuronidase inhibitory activity of organic and phenolic acids with respect to silymarin.

Referências

Documentos relacionados

Universidade Estadual da Paraíba, Campina Grande, 2016. Nas últimas décadas temos vivido uma grande mudança no mercado de trabalho numa visão geral. As micro e pequenas empresas

Os principais países latino-americanos observam seu futuro agravar-se a olhos vistos. O Brasil passa por uma desaceleração intensa do seu crescimento, e por contestações

Em relação à atividade física 27 artigos descreveram atividades de condicionamento físico, 18 artigos relacionaram o índice de fadiga em paciente com LES, 07 artigos realizaram

Material e Método Foram entrevistadas 413 pessoas do Município de Santa Maria, Estado do Rio Grande do Sul, Brasil, sobre o consumo de medicamentos no último mês.. Resultados

- Introdução, nos cursos de formação de professores e de outros profissionais da educação: de análises das relações sociais e raciais no Brasil; de conceitos e de

- Hospital Militar Montevideo - Servicio de Oncología Clínica del Hospital de Clínicas Montevideo - Banco de Previsión Social UCPP-BPS Montevideo, Cuidados Paliativos Pediátricos

Como o meio pelo qual essas novas mídias podem ser buscadas, o Google então se estabeleceu como o motor da busca por informação atualmente, diversificando

Aqui, vale retomar o questionamento inicial dessa pesquisa: Qual seria o modelo de gestão que poderia contribuir para resolver ou minimizar os principais problemas enfrentados