• Nenhum resultado encontrado

Diversity of retrievable heterotrophic bacteria in Kongsfjorden, an Arctic fjord

N/A
N/A
Protected

Academic year: 2021

Share "Diversity of retrievable heterotrophic bacteria in Kongsfjorden, an Arctic fjord"

Copied!
11
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Diversity

of

retrievable

heterotrophic

bacteria

in

Kongsfjorden,

an

Arctic

fjord

Rupesh

Kumar

Sinha

a,∗

,

Kottekkatu

Padinchati

Krishnan

a

,

Ammanamveetil

Abdulla

Mohamed

Hatha

b

,

Mujeeb

Rahiman

b

,

Divya

David

Thresyamma

a

,

Savita

Kerkar

c

aNationalCentreforAntarcticandOceanResearch,ESSO-NCAOR,HeadlandSada,Vasco-da-Gama,Goa,India

bCochinUniversityofScienceandTechnology,MicrobiologyandBiochemistry,DepartmentofMarineBiology,Cochin,Kerala,India cGoaUniversity,DepartmentofBiotechnology,TaleigaoPlateau,Goa,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received10July2015 Accepted22December2015 Availableonline15October2016 AssociateEditor:ValeriaMaiade Oliveira

Keywords:

Kongsfjorden

Retrievableheterotrophicbacteria 16SrRNA

Arcticfjord

a

b

s

t

r

a

c

t

ThediversityandabundanceofretrievablepelagicheterotrophicbacteriainKongsfjorden, anArctic fjord,wasstudiedduringthesummerof2011(June,August,andSeptember). Retrievablebacterialloadrangedfrom103to107CFUL−1inJune,whileitwas104–106CFUL−1

inAugustandSeptember.Basedon16SrRNAgenesequencesimilarities,ahighernumber ofphylotypeswasobservedduringAugust(22phylotypes)comparedtothatduringJune (6phylotypes)andSeptember(12phylotypes).Thegroupswereclassifiedintofourphyla:

Firmicutes,Actinobacteria,Proteobacteria,andBacteroidetes.Bacteroideteswasrepresentedonly byasinglememberLeewenhoekiellaaequoreaduringthethreemonthsandwasdominant (40%)inJune.However,thisdominancechangedinAugusttoawell-knownphytopathogenic speciesRhodococcusfascians(32%),whichcouldbearesultofdecreaseinthephytoplankton biomassfollowingthesecondarybloom.ItisthefirstreportofHalomonastitanicaeisolation fromtheArcticwaters.ItshowedanincreaseinitsabundancewiththeintrusionofAtlantic waterintoKongsfjorden.IncreasedabundanceofPsychrobacterspeciesinthelatesummer monthscoincidedwiththepresenceofcoolerwaters.Thus,thecompositionandfunctionof heterotrophicbacterialcommunitywasfundamentallydifferentindifferentmonths.This couldbelinkedtothechangesinthewatermassesand/orphytoplanktonbloomdynamics occurringinArcticsummer.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Arcticmarine ecosystemshaverecentlyreceived increased attention,astheyareconsidered tobesensitivetothe cli-matechange.1 Kongsfjorden, aglacialfjordinthe Svalbard

Correspondingauthor.

E-mail:kineto.magnetic@gmail.com(R.K.Sinha).

archipelago, Spitsbergen 79◦N–12◦E, is a key site for the monitoring of Arctic biodiversity and also considered for modelinginclimatechangestudies.1Themarineecosystem

ofKongsfjorden iswell explored withregards to hydrogra-phy, mesozooplankton,andhigher trophiclevels,whilethe knowledgeonitsbacterialdiversitystillremainsinsufficient.2

http://dx.doi.org/10.1016/j.bjm.2016.09.011

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Theinformationabout thebacterial assemblageata given time-pointcouldconveyvitalinformationpertainingtothe ecologicalaspectsoftheenvironment. Severalfactors have beenreportedtoaffectthecompositionofthemarinebacterial communities.3Phytoplanktoncompositionandthereby

sub-stratecompositionandconcentrationhavebeenfoundtoplay importantrolesinthedynamicsofbacterialcommunities.4,5

Heterotrophicbacteriacansupportthegrowthof phytoplank-ton via recycling of nutrients, but atthe same time, they alsocompetewithphytoplanktonforessentialnutrients.Both aliveanddead(ordying)phytoplanktonreleaseorganic com-pounds that are consumed by heterotrophic bacteria; and these interactions vary with the bacterial species and the physiological status of the phytoplankton.6 Indeed,

bacte-ria sustain at a high level immediately after the collapse of a bloom, as they continue to use the organic matter releasedfromthedyingphytoplankton.7Despitethevariation

inphytoplanktoncompositionandenvironmentalconditions, alimitednumberoftaxaareconsistentlyfoundtodominate bloom-associatedbacterialcommunities.Themostfrequent bacteria, identified by 16S rRNA gene-based analyses, are themembersoftheclasses,Flavobacteriaand␣-Proteobacteria, andalsoincludeRhodobacteraceaeand -Proteobacteria.7,8 An

insight,aboutrolesthatindividual bacterialspeciesplayin theformationofbloomsandtheireventualcollapse,will ulti-matelyunraveltheforcesthatcontrolenergyflowinthefjord aswellasthecyclingofcompounds,whichultimately influ-encetheclimatechange.

Culture-dependent and -independent methods using oligonucleotideprobesand/orthecloningofenvironmental DNAhaveindicatedoccurrenceofexceptionallydiverse bac-terialcommunitiesthrivinginArcticfjordhabitats.9,10Inthe

recent studiesof Piquet et al.11,12 on the pelagic microbial

communitiesofKongsfjorden,thediversityofnon-culturable communities of bacteria, phytoplankton, and protists was monitored.However,very fewattemptshavebeen madeto understandthediversityofretrievableheterotrophicbacteria ofthisecosystem.13,14

The present study attempts to understand the taxon-omy of retrievable heterotrophic bacteria in Kongsfjorden during the summer of 2011. We carried out an investiga-tion inJune–September 2011 to determine the changes in retrievablebacterialcommunity.Observationon phytoplank-ton blooming pattern using SAMS mooring for the year 2010(SupplementaryFig. 1)indicatedthatsampling during thesesummermonthsmaximizedthepossibilityofhigh het-erotrophicbacterialactivityanddiversityduetothecollapse of the spring bloom (June–July) and the secondary bloom (August–September).Inaddition,wealsoaddressthe ecolog-icalsignificanceofthevariousgroupsofbacteriapresentin Kongsfjorden.

Materials

and

methods

Samplingsite

Kongsfjorden (Fig. 1) is a polar fjord located between 78◦04N–79◦05N and 11◦03E–13◦03E on the west coast of Spitsbergen, Svalbard Archipelago. The fjord is

characterized by a weak tidalrange (∼2m) strongly influ-enced by the topography and adjacent ocean. Western Svalbardcoastalwatersareinfluencedbythenorthernmost extensionofthewarmNorth AtlanticCurrent.15

Kongsfjor-den,atitsinnerend,hasthreemainglaciers,viz.,Kongsbreen, Conwaybreen,andBlomstrandbreen,drainingintoitand pro-vidingthemajorsourceoffreshwater.Thus,Kongsfjordenis undertheinfluenceofbothmeltwaterofglacialoriginaswell asbymildtemperaturesmediatedbytheinflowofAtlantic water.

Samplingmethod

Duringtheyear2011,watersampleswerecollectedfrom16 locations(Fig.1)atvariousdepthsfrom5mtoamaximumof 100minthemonthofJune,August,andSeptember.Inorder tomonitortheeffectofphytoplanktonassemblageon retriev-ableheterotrophicbacteria,mostofoursamplingdepthswere restrictedtoupper40mwithfewexceptionsinAugustwhere weakfluorescencewasalsoobservedathigherdepths (Sup-plementary Table1).Thesampling wasdone followingthe hydrological observationswith a conductivity-temperature-depth (CTD) profiler(SBE 19 plus V2, Sea Bird Electronics, Bellevue,WA,USA)equippedwithafluorescencesensor(Wet Labs,Philomath,USA).Theaveragevolumeofthetransformed AtlanticwaterinsideKongsfjordenwas calculatedwiththe upper boundary (thickness)of the watermass, which was delineatedusingacombinationofitscharacteristic hydrogra-phyvalues16withupperlimittemperatureof3Candsalinity

of>34.65psu.Watersampleswerecollectedasepticallyin ster-ileglassbottles(DuranSchott,Stafford,UK).Thesampleswere immediatelysubjectedtoanalysisintheshorelaboratory.

Totalcounts,culture,andisolationofheterotrophic bacteria

Totalcellsinthewatersamples(10mLeach)collectedfrom all the discrete depths were stainedwith 4 ,6-diamidino-2-phenylindole(DAPI)17beforecounting.CellsstainedwithDAPI

were first fixed with filter sterilized particle free buffered formaldehyde (final concentration, 3.7%) to preserve the cell morphology and improve the staining efficiency. The stainedcellswerefilteredthrough0.22␮blackpolycarbonate membranes (Nucleopore Track-Etch Membrane, Whatman, Maidstone,UK)andcountedunderanOlympus epifluoresce-ncemicroscope(BX51)withtheaidofanOlympusU-MWU2 filter(Excitation330–385nmandEmission420nm).Counting wasdoneonaWhipplegridwitha100×objective(Olympus UPLNFLN,Tokyo,Japan).

Watersampleswerespreadplatedusing100␮Laliquoton precooled(4◦C)quarterstrengthZobellMarine Agar(ZMA) andincubatedat4◦Cfor1–2weeks.Colonieswithunique mor-phologicalfeatureswereisolatedandsub-culturedtoobtain purecultures.

PCRamplificationofthe16SrDNA,sequencingand phylogeneticanalysis

Cell biomass forDNA extractionwas obtained by growing the pure cultures in quarter strength Zobell Marine Broth

(3)

11º 12º

79º

11º 12º

79º

Fig.1–BathymetricmapofKongsfjordenwithsamplinglocations.Sampleswerecollectedfrom16stations.Stations1–9 alongthefjordandstations3.1–3.4and7.1–7.3attheintersectionofstation3and7,respectively.

(ZMB). Total bacterial genomic DNA was extracted using ChargeSwitchgDNAmini bacteriakit (Invitrogen, Carlsbad, CA,USA).ThepurityoftheDNAextractswasverifiedbygel electrophoresison1%agarose.The16SrRNAgenewas ampli-fiedusingthe universalbacterial16Sprimers:forward(27f) 5-AGAGTT TGA TCM TGG CTC AG-3 and reverse (1492r) 5-GGTTAC CTT GTTACG ACTT-3.18 TheDNA

amplifica-tioninafinalreactionvolumeof50␮Lcontaining0.3pM/␮L ofeach primer,1.5mMMgCl2, 200␮MdNTPsand2.5UTaq

DNApolymerase(Invitrogen,Carlsbad,CA,USA)wascarried out in a thermocycler (BioRad CFX 96) with the following conditions: initial denaturation at94◦C for 2min followed by 29 cycles of 30s at 95◦C, 30s at 45◦C and 2min at 72◦C, and a final extension of 10min at 72◦C. Amplifica-tion was confirmed by electrophoresis in 1% agarose gel. The amplicons were purified using ChargeSwitch Pro PCR cleanupkit(Invitrogen,Carlsbad,CA,USA).Theeluted frag-mentsweresequencedusinganautomatedDNAsequencing system(AppliedBiosystems,Carlsbad,CA,USA).Theobtained sequenceswerecheckedforchimerawiththeCHIMERA detec-tion program (http://rdp8.cme.msu.edu/cgis/chimera.cgi).19

The 16S rDNA sequences of the isolates (∼1200bp) were compared with the type strains belonging to the same phylogenetic group, using the Seqmatch tool of Ribo-somal Database Project (http://rdp.cme.msu.edu/).19 SINA

v1.2.1120 software was used to align the 16S rRNA gene

sequences. Thephylogenetic trees were constructed using maximum likelihood and neighbor-joining methods using MEGA Version 521 and 1000 subsamples were generated

usingthebootstrapanalysis.The16SrRNAgenesequences of the isolated strains were deposited with accession numberHE800807-HE800839,HE815462-HE815463, HG795014-HG795016,HF569156-HF569159andHF913434-HF913440inthe EMBLdatabase.

Results

Physicalpropertiesofthesamplingsites

The details about the geographic location of the stations selectedforsamplingduringsummer2011aregiveninFig.1. Thewatercolumnwaswarmer(4◦C)duringJunecomparedto thatinAugust,wheretemperaturedecreasedgraduallyalong withthedepth,exceptatthesurface,whichwaswarmerinthe vicinityoftheglacierasdepictedinFig.2.Watertemperature wasuniform(4◦C)throughoutthecolumnduringSeptember. Salinityrangedfrom31to35psuduringsummer2011(Fig.2). ThesurfacewaterwaslesssalineduringJuneandSeptember (∼31psu),whilesalinityincreasedalong withthedepth up to∼35psu.Autotrophicbiomass(fluorescence)wasrestricted toshallowerdepthsduringSeptemberandwashigherduring JuneandAugustascomparedtothatinSeptember(Fig.2).The abundancewasconfinedinthevicinityofKongsbreenglacier duringAugust,whereas duringJuneandSeptember,it was moretowardthemouthofKongsfjorden(Fig.2).Theaverage volumeofthetransformedAtlanticwaterinside Kongsfjor-den was7.9km3, 27.2km3 and 12km3 duringJune,August,

andSeptember,respectively.

Totalandretrievablebacterialcountandphylogenetic identificationofbacterialisolates

TotalbacterialcountduringJune–Septemberrangedfrom107

to109cellsL−1.DuringJuneandAugust,thecellcountswere

intherangeof107–108cellsL−1,whileinSeptemberthe

bac-terialloadwashigher(107–109cellsL−1).Thelowestbacterial

count(2.3×107cellsL−1)wasrecordedinthevicinityof

(4)

Fig.2–PhysiochemicalpropertiesofwatersamplescollectedfromKongsfjordeninJune(A),August(B),andSeptember(C) 2011.

(5)

Fig.3–PercentagecompositionandabundanceofheterotrophicbacterialspeciesbelongingtothephylumFirmicutes( ),

Actinobacteria( ),˛-Proteobacteria( ),-Proteobacteria( )andBacteroidetes( )isolatedfromKongsfjordenwatersamples duringJune,August,andSeptember2011.

inAugust.Thehighestbacterialload(2.7×109cellsL−1)was

observedduringSeptembertowardthemouthof Kongsfjor-den.TheretrievablebacterialloadduringJunerangedfrom 103 to 106CFUL−1, while during August and September, it

wasintherangeof104–106CFUL−1.Atotalof117,332,and

107 bacterial isolates were recovered in June, August, and September, respectively, from the water samples collected atvariousdepths.Theisolateshaving>97%16SrRNAgene sequence similarity with the type strain were considered asphylotypes. Using the representative phylotypes,all the bacterialisolatesrecoveredfromsamplescollected inJune, August,andSeptember2011werecategorizedinto6,22,and 12phylotypes, respectively;and the obtainedresultsabout abundanceofeachspeciesaregiveninFig.3.The phyloge-netictreesillustratingtheevolutionaryrelationshipsamong thebacterialisolatesarepresentedinFig.4A–C.Twobacterial strains,Paenibacillussp.(Kongs–47,HG795014)and Alterery-throbactersp.(Kongs– 48,HG795015)recovered from water samplesofAugustandonestrain,Brevundimonassp.(Kongs –49,HG795016),recoveredfromSeptembercouldnotbe iden-tifiedasanyknownspeciesduetolowsequencesimilarity (≤97%) withany typestrain, and probablymight represent newspecies. Theclosest phylogenetic relativeofKongs–47 wastypestrainofPaenibacillusphyllosphaerae(96%)andthose

ofKongs–48and Kongs–49were Altererythrobacter gangjinen-sis (96%)and Brevundimonas subvibrioides(97%), respectively (Fig.4A).

BacterialdiversityatKongsfjorden

The bacterial isolates retrieved from the water sam-ples belonged to five phyla: Firmicutes, Actinobacteria, ˛-Proteobacteria, -Proteobacteria and Bacteroidetes (Fig. 3). The phylum Bacteroidetes was the most dominant (40%) during June and was entirelyrepresented bythe species Leeuwen-hoekiella aequorea. Itwas followed by ˛-Proteobacteria (27%),

Actinobacteria (17%),-Proteobacteria(9%)and Firmicutes(7%).

Sphingopyxisbaekryungensis(25%)andErythrobactercitreus(2%) constituted˛-ProteobacterialpopulationwhileAgrococcusbaldri, Psychrobacter nivimaris, and Bacillus subtilis represented the phyla Actinobacteria, -Proteobacteria, and Firmicutes, respec-tively.

The retrievable bacterial diversity was higher during August;it was representedby22 phylotypesincluding two unclassified sequences (Paenibacillussp.and Altererythrobac-ter sp.). The population was dominated by Actinobacteria

(39%) and -Proteobacteria (23%), while Firmicutes (14%),

(6)

Kongs-25HE800831 Kongs-38HF569158 Kongs-1HE800807 Kongs-2HE800808 Kongs-12HE800818 Kongs-21HE800827 Kongs-23HE800829 Kongs-45HF913439 Kongs-6HE800812 Kongs-42HF913436 Kongs-8HE800814 Kongs-19HE800825 Kongs-4HE800810 Kongs-5HE800811 100 100 57 98 100 97 100 86 95 0.05 100 100 62 100 87

Leeuwenhoekiella aequorea (T) AJ278780

Psychrobacter nivimaris (T) AJ313425

Erythrobacter citreus (T) AF118020

Sphingopyxis baekryungensis (T) AY608604

Bacillus subtilis (T) AJ276351

Aquifex pyrophilus (T) M83548

Agrococcus baldri (T) AB279548

A

Fig.4–Phylogenetictreeconstructedonthebasisof16SrRNAgenesequencesshowingtherelationshipamongthe bacterialstrains(prefixwithKongs),obtainedfromthewatersamplescollectedduringJune(A),August(B)andSeptember (C)2011fromKongsfjorden,withtheirnearestphylogenetictypestrains.Theaccessionnumberof16srRNAgenesequence ofthestrainsisdenotednexttoitsname.Phylogenetictreewasconstructedbymaximumlikelihoodmethod.Numbers shownatnodesarebootstrapvalues.Thebarrepresents0.02substitutionsperalignmentposition.

abundance.TheabundanceofFirmicuteswasalmosttwiceof thatinJune,andwasmainlyconstitutedbythegenus Staphy-lococcus,whichwasrepresentedbyStaphylococcushaemolyticus

andStaphylococcus pasteuri(5%ofeach).Awell-known phy-topathogenic bacterium Rhodococcus fascians constituted to the most (32%) of the Actinobacterial population, which increasedby22%ascomparedtothatinJune.Atotaloffive genera(Brevundimonas,Erythrobacter,Phenylobacterium, Sphin-gopyxis,andAltererythrobacter)wererecoveredwithintheclass ˛-Proteobacteria,wherePhenylobacteriumfalsumwasmajor con-tributor(4%). However,thetotal abundanceofthis phylum decreasedby15% ascomparedtoJune.-Proteobacteriawas representedbyfourgeneraandsevenspecies.Themajor frac-tionwasconstitutedbythegenusPsychrobacter(17%),which wasrepresentedbyPsychrobacterfozii(2%),Psychrobacter glac-incola(6%),P.nivimaris(4%),andPsychrobacterokhotskensis(4%). OthergeneraincludedAcinetobacter(2%),Halomonas(4%),and

Janibacter(1%).InJune,L.aequoreawastheonlyspecies recov-eredunderthephylumBacteroidetes;however,itsabundance decreasedby28%duringAugust.

During September, Proteobacteria was the major phylum with ˛-Proteobacteria (31%) and -Proteobacteria (33%) being dominant,followedbyActinobacteria(21%),Bacteroidetes(12%), and Firmicutes (3%). Halomonas titanicae (16%) represented the major fraction of -Proteobacteria, while Brevundimonas variabilis(15%)wasdominant-Proteobacteria.Firmicuteswas

representedbytwobacterialspecies,Bacillusidriensis(2%)and

Paenibacillusurinalis(1%).ThepopulationofActinobacteriawas reducedby18%inSeptemberascomparedtothatinAugust and it wasrepresentedbyNocardioides basaltis(12%)andR. fascians(9%).L.aequoreawastheonlyspeciesrepresenting Bac-teroideteseveninSeptemberwithanalmostequalabundance asinAugust.

Discussion

Thephysico-chemicalconditionsintheKongsfjordenwater columnarehighlydynamic,especiallyinthesummer,when thereisalargescalefluxofcoldArcticwaterfromthe east-ernsideandintrusionofwarmAtlanticwater(AW) onthe westernside.1Kongsfjordenisoneofthewesternfjordsthose

receiveAW.Accordingtothemooredobservatories,thefjord normallyreceivesthemaximumcontentofAWinlate sum-mer,whilethroughthefallandwinter,thefjordwatermasses aregraduallyreplacedbyfresherandcoldArcticwater.16In

thepresentstudy,thefjordwasfoundtoreceivehighest vol-umeoftransformedAtlanticwater(27.2km3)duringAugust

ascomparedtoJune(7.9km3)andSeptember (12km3).The

complexdynamicsofthefjordwatermassesmayberegarded asthemajordriving forceforthevariabilityin phytoplank-tonassemblages.DuringJuneandSeptember,theautotrophic

(7)

83 94 57 100 98 100 80 97 100 100 100 100 100 100 100 100 100 22 38 65 81 99 100 89 100 100 100 100 100 100 100 100 100 99 91 97 0.05 100 99 Kongs-24HE800830

B

Kongs-17HE800823 Kongs-26HE800832 Kongs-37HF569157 Kongs-3HE800809 Kongs-16HE800822 Kongs-39HF569159 Kongs-7HE800813 Kongs-9HE800815 Kongs-36HF569156 Kongs-40HF913434 Kongs-34HE815462 Kongs-48HG795015 Kongs-15HE800821 Kongs-20HE800826 Kongs-10HE800816 Kongs-14HE800820 Kongs-11HE800817 Kongs-47HG795014 Kongs-13HE800819 Kongs-22HE800828 Kongs-18HE800824

Psychrobacter glacincincola (T) AJ312213

Psychrobacter okhotskensis (T) AB094794

Psychrobacter fozii (T) AJ430827

Acinetobacter lwoffii (T) X81665

Halomonas titanicae (T) FN433898

Leeuwenhoekiella aequurea (T) AJ278780

Brevundimonas mediterranea (T) AJ227801

Phenylobacterium falsum (T) AJ717391

Sphingopyxis flavimaris (T) AY554010

Sphingopyxis baekryungensis (T) AY608604

Erythrobacter citreus (T) AF118020

Alterythrobacter gangjinensis (T) JF751048

Agrococus baldri (T) AB279548

Janibacter limosus (T) Y08539

Mocrococcus yunnanensis (T) FJ214355

Rhodococcus fascians (T) X79186

Aquifex pyrophilus (T) M83548

Paenibacillus barcinonensis (T) AJ716019

Paenibacillus phyllosphaerae (T) AY598818

Bacillus subtilis (T) AJ276351

Staphylococcus haemolyticus (T) X66100

Staphylococcus pasteuri (T) AB009944

Psychrobacter nivimaris (T) AJ313425

Fig.4–(Continued)

biomasswasconfinedtowardthemouthofthefjord,while duringAugustitwashigherintheproximityofglacier. Dur-ingJuneandSeptember,theglacialmeltwaterinputcould behigherasevidentbythelowersalinityvaluesintheupper watercolumn.Highsedimentconcentrationsderivedfromthe inputofmeltedglacialwatercanlimitthelightavailabilityfor phytoplanktongrowthneartheglaciers.12Theeuphoticzone

canberestrictedtothe upper0.3mclosetotheglaciers,22

leadingtohighly unfavorableconditions forphytoplankton growth.23

The bacteria–phytoplankton interactions during bloom events arecomplex and change throughoutthe lifetimeof thebloom.AnearlierstudybyJankowskaetal.,24conducted

duringsummer 1999,reportedbacterioplanktonabundance intherangeof108–109cellsL−1inKongsfjordenandthe

adja-cent Krossfjorden, while in our study the total cell count variedfrom107 to109cellsL−1.Thisvariable distributionof

thebacteriaduringtheobservationperiodcouldbeprimarily attributedtothevariationinthewatermassesand/or phyto-planktondistribution.DuringAugust,thehigherbacterialcell counttowardheadofthefjordcoincidedwithahigher phyto-planktondensity.Thelocalizedandtransientincreaseinthe abundanceofphytoplanktoncouldalterthelevelsofdissolved organicmatter,particularlyduringthecollapseofthe phyto-planktonbloom.3Asphytoplanktonbloomsareoftenseasonal

(8)

48 45 100 100 100 69 100 100 100 100 100 100 100 100 0.05 89 51 99 99 99 96 51 Kongs-41HF913435

C

Kongs-31HE800837 Kongs-32HE800838 Kongs-30HE800836 Kongs-43HF913437 Kongs-33HE800839 Kongs-44HF913438 Kongs-49HG795016 Kongs-46HF913440 Kongs-35HE815463 Kongs-28HE800834 Kongs-29HE800835 Kongs-27HE800833

Psychrobacter nivimaris (T) AJ313425

Psychrobacter piscatorii (T) AB453700

Halomonas titanicae (T) FN433898

Paracoccus marinus (T) AB185957

Brevundimonas mediterranea (T) AJ227801

Brevundimonas subvibrioides (T) AJ227784

Brevundimonas VAriabilis (T) AJ227783

Paenibacillus urinalis (T) EF212892

Bacillus diriensis (T) AY904033

Aquifex pyrophilus (T) M83548

Nocardioides basaltis (T) EU143365

Rhodococcus fascians (T) X79186

Leeuwenhoekiella qequorea (T) AJ278780

Fig.4–(Continued)

ofheterotrophicbacteria vary accordingly.Theseprocesses arepartlybalancedbyasubsequentincreaseintheactivity ofheterotrophic bacteria, which transform phytoplankton-derivedorganicmatter.3Theheterotrophicretrievablecounts

inKongsfjordenwaterweremarkedlydynamicrangingfrom 103 to 107CFUL−1 during summer 2011. Previous studies

from Kongsfjorden have reported similar findings13,14 with

lowcounts,thatcanbeattributedtotheculture-dependent approachusingonlyonemedium(ZMA).14Theuseof

differ-entmediaand/orcultureconditionscanperhapsimprovethe viableheterotrophicbacterialcounts.

Althoughthephytoplanktoncompositionvarieswiththe environmental conditions, a limited number of taxa are consistently found to dominate bloom-associated bacterial communities. The 16S rRNA gene sequences correspond-ing to ˛-Proteobacteria, Firmicutes and -Proteobacteria were earlier reported from freshwater as well as marine water samples of the Kongsfjorden.11 In the current study, the

phyla, Bacteroidetes and Actinobacteria, were also retrieved along with ˛-Proteobacteria, Firmicutes, and -Proteobacteria. Thepredominance ofActinobacteria,Proteobacteria, and Bac-teroideteshasalreadybeenreportedinArcticwater,ice,and sediments.11,14,25,26 DuringJunearemarkabledominanceof

Bacteroidetes represented entirely by L. aequorea was seen. The second most abundant species, during June, was S. baekryungensis–ayellow-pigmented˛-Proteobacteria.Specific associationsbetween phytoplanktonandcertain speciesof

Bacteroidetesand˛-Proteobacteriahavebeenfoundinlaboratory conditions.7,8,27 The metabolic properties ofthese bacteria

enablethem torespondpromptlytothe transient nutrient pulses,whichareahallmarkofphytoplanktonblooms.3

Culture-independent studies have shown that Arctic waters harbor diverse taxa including Acidobacteria, Planc-tomycetes, Lentisphaerae, and Verrucomicrobiae9,10,28,29 which

couldbeduetotherecalcitranceofthesebacterialgroupson culturemedia.Incontrasttoseveralothermajormarine bac-teriallineages,suchastheSAR86andSAR116clades,which areeitherdifficulttocultureorhavenotyetbeenbroughtinto culture,thecultivablerepresentativesareavailableforseveral importantgroupsincludingBacteroidetesand˛-Proteobacteria.30 Indeed,cultivatedrepresentativesofthesetwogroupshave frequentlybeenisolatedfrombloomsandinvitroenrichment culturesofdifferentphytoplankton31–33 andhaveevenbeen

foundtobedirectlyattachedtothephytoplanktoncellsduring abloom.34Infact,thenatureofthesebacterial–phytoplankton

interactionsrangesfrommutualistictoparasitic.Some bacte-riaprovidetheirhostswithessentialvitaminsandnutrients and bestow resistance againsttoxic metabolic byproducts, whereasotherscompetewiththeirhostsfornutrientsor pro-ducealgicidalcompounds.3

TheshiftofbacterialcommunityfromJunetoAugust2011 couldbeattributedtochangeintheenvironmentalconditions anddifferencesinthedepthofisolationofbacterialspecies (Supplementary Table 1), atleast in part as the effects of physicochemicalproperties.Forinstance,theincreased phy-toplanktonabundanceinAugustcouldpromotethegrowth ofR.fascians(anActinobacteria),awell-knownphytopathogen, which constituted 32% of the total retrievable bacterial

(9)

diversityduringthisperiod.However,itsassociationhasonly beenreportedwithhigherplants35,36andthesameneedsto

beexaminedinthiscontext.Mergaertetal.37observedthat

alargeproportionoffacultativeand psychrotrophicstrains isolatedfromArcticandAntarcticseawaterscanbegrouped intotheR.fascianscluster.Thestudiesbasedonstable car-bonisotopeprobinghavedemonstrated thatinaddition to themembersof˛-ProteobacteriaandBacteroidetes, Actinobacte-riaand-Proteobacteriaassimilatealgalextractsquickly;these phylacanexpressabroadrangeofhydrolasesinimmediate responsetotheavailabilityofphytoplanktondetritus.38Thus,

oscillationsinthebacterialdiversityperhapsprovideaclue forbiochemicalprocess andrelatedchangesfunctioning in theecosystem.

InSeptember2011,themostabundantspeciesrecovered fromthewatersamplewasH.titanicae.Thisisthefirstreport ontheoccurrenceofH.titanicaeinKongsfjordenwater.The typestrainofthisspecieshasbeenisolatedfromthe sam-plesofrusticles collected from the RMSTitanic wrecksite ata depthof∼3000minAtlanticOceanandwas foundto beassociatedwithcorrosion ofironwrecks.39 Arapidand

overwhelmingintrusionofAtlanticwateracrosstheshelfand intothefjordoccursduringmid-summer,andthefjordwater switchesfrombeingArcticdominanttoAtlanticdominant.16

Similarobservationswererecordedduringourstudy where the volume of the transformed Atlantic water was found toincreaseduringlatesummer(August andSeptember). A recentstudy fromNorthAtlanticOceanshowsthatdistinct waterbodieshostdifferentbacterialpopulations,whichmay serveasbiologicalmarkersforoceanicprovinces.40Similarly,

Fuetal.41foundwatermasstobethemostimportantfactor

forthedistributionofmarineRhodobacteralescommunitiesin theArcticmarinesystem.Thus,theincreasedpopulationof

H.titanicaecouldbeduetotheincreasedintrusionofAtlantic waterintoKongsfjordenduringthisperiod.

During the seasonal shift, along with the phytoplank-tonbloomdynamics,temperaturecouldbeoneofthemost importantparametersthatdeterminethedistributionofthe bacterialcommunitiesandaffectcellstructureandfunction. Lowtemperaturesreducebiochemicalreactionratesand sub-stratetransport.Notsurprisingly,anorganism’scompatibility withthetemperatureofitshabitatisultimatelydetermined by its underlying genetic structure. The genus Psychrobac-ter,under-Proteobacteria,includesagroupofGram-negative, heterotrophicbacteria, andamong them,many Psychrobac-ter species are capable to grow at low temperatures. The members ofthis genus can evengrow attemperatures as lowas−20◦Cand theyhavefrequentlybeenisolated from

various cold environments, including Antarctic and Arctic seaice.42–46 Inthepresentstudy,weobservedahigh

occur-renceofPsychrobacterspecieswithadecreaseintemperature fromJunetoSeptember.DuringAugustand September,the watercolumnwascolderthanthatinJune,whichcoincides withthemaximumretrievalofPsychrobacterspeciesinthese months.P. glacincola,P. fozii,and P. nivimarisretrieved from Kongsfjordenbelongtothesame typestrains reported ear-lier from Antarctic regimes.44,47,48 Several similaritiesexist

betweenthemarineregimesofArcticandAntarctica; how-ever,therearealsofundamentaldifferencesinwatermasses andwatercurrents.Whetherthesedifferencesinfluencethe

distributionanddevelopmentofbacterialcommunityisstill anopenquestion.InastudybyBrinkmeyeretal.,42the

anal-ysis of16S rRNA gene clone libraries from multipleArctic andAntarcticsamplesrevealedahighoccurrenceofclosely overlapping16SrRNAgenecloneandtheisolates’sequences. Approximately 50and 36% sequenceswere identifiedas

-Proteobacteria in Arcticand Antarctic samples, respectively. ThegeneralsimilarityofbacterialphylotypesinArcticand Antarctic samples implies that probably similar selective mechanismsoccuratboththepoles.However,theanalysis attheconservativegenelevelof16SrRNAisnotsufficientto determineifthesamespeciesarepresentatbothpoles.Other analyticalmethods,e.g.,DNA–DNAhybridization,might elu-cidatethediversitythatgoesundetectableby16SrRNAgene sequencing.

Conclusion

Theheterotrophicretrievable countsinKongsfjordenwater weremarkedlydynamicrangingfrom103to107CFUL−1

dur-ingsummer2011.Thevariabledistributionoftheretrievable heterotrophic bacteria during the observationperiod could primarilybeattributedtothevariationinthewatermasses and/orphytoplanktondistribution.Increasedphytoplankton concentrationduringAugustcouldpromotethegrowthofR. fascians,awell-knownphytopathogen.TheoccurrenceofH. titanicaefromKongsfjordenwaterhasbeenreportedfirsttime. Theincreasedpopulation ofH.titanicae duringAugust and September couldbeduetothehigherintrusion ofAtlantic water into Kongsfjorden during this period. Similarly, an increasedoccurrenceofthememberofthegenusPsychrobacter

inthelatesummerindicatesashiftintheheterotrophic bac-terialcommunitytowardtheonethatismorecapabletothrive at lower temperatures. Thus, changes in the environmen-talparameterscouldstronglyalterthespeciescomposition; therefore,itisworthwhiletomonitorthefjordecosystemfor alongtermtogetadeeperinsightofthissensitiveecosystem.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

TheauthorswishtoexpresstheirgratitudetoDr.S.Rajan, Director, NationalCentre forAntarctic andOceanResearch (ESSO-NCAOR). Thanksare duetoDr.FinloCottier,Headof Physics,SeaIceandTechnologyDepartment,Scottish Asso-ciationofMarineSciences,forfacilitatingtheSAMSmooring datacollectionfortheperiod2010.Thisworkwasundertaken asapartoftheproject‘Longtermmonitoringof Kongsfjor-densystemofArcticregionforclimatechangestudies’.This isESSO-NCAORcontributionnumber32/2016.

Appendix

A.

Supplementary

data

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,atdoi:10.1016/j.bjm.2016.09.011.

(10)

r

e

f

e

r

e

n

c

e

s

1. HopH,PearsonT,HegsethEN,etal.Themarineecosystem

ofKongsfjorden.SvalbardPolarRes.2002;21:167–208.

2. IversenKR,SeutheL.Seasonalmicrobialprocessesina

high-latitudefjord(Kongsfjorden,Svalbard):I.Heterotrophic

bacteria,picoplanktonandnanoflagellates.PolarBiol.

2011;34:731–749.

3. BuchanA,LeCleirGR,GulvikCA,GonzálezJM.Master

recyclers:featuresandfunctionsofbacteriaassociatedwith

phytoplanktonblooms.NatRevMicrobiol.2014;12:686–698.

4. GonzálezJM,SimóR,MassanaR,etal.Bacterialcommunity

structureassociatedwithadimethylsulfoniopropionate

producingNorthAtlanticalgalbloom.ApplEnvironMicrobiol.

2000;66:4237–4246.

5. RayJL,TöpperB,AnS,etal.EffectofincreasedpCO2on

bacterialassemblageshiftsinresponsetoglucoseaddition

inFramStraitseawatermesocosms.FEMSMicrobiolEcol.

2012;82:713–723.

6. BiddandaB,BennerR.Carbon,nitrogen,andcarbohydrate

fluxesduringtheproductionofparticulateanddissolved

organicmatterbymarinephytoplankton.LimnolOceanogr.

1997;42:506–518.

7. BuchanA,GonzalezJM,MoranMA.Overviewofthemarine

Roseobacterlineage.ApplEnvironMicrobiol.2005;71:5665–5677.

8. KirchmanDL.TheecologyofCytophaga–Flavobacteriain

aquaticenvironments.FEMSMicrobiolEcol.2002;39:91–100.

9. TeskeA,DurbinA,ZiervogelK,CoxC,ArnostiC.Microbial

communitycompositionandfunctioninpermanentlycold

seawaterandsedimentsfromanArcticFjordofSvalbard.

ApplEnvironMicrobiol.2011;77(6):2008–2018.

10.ZengY,ZhengT,LiH.Communitycompositionofthemarine

bacterioplanktoninKongsfjorden(Spitsbergen)asrevealed

by16SrRNAgeneanalysis.PolarBiol.2009;32:1447–1460.

11.PiquetAM-T,ScheepensJF,BolhuisH,WienckeC,BumaAGJ.

Variabilityofprotistanandbacterialcommunitiesintwo

Arcticfjords(Spitsbergen).PolarBiol.2010;33:1521–1536.

12.PiquetAM-T,vandePollWH,VisserRJW,WienckeC,Bolhuis

H,BumaAGJ.SpringtimephytoplanktondynamicsinArctic

KrossfjordenandKongsfjorden(Spitsbergen)asafunctionof

glacierproximity.Biogeosciences.2014;11:2263–2279.

13.PrasadS,ManasaP,BuddhiS,etal.Diversityand

bioprospectivepotential(cold-activeenzymes)ofcultivable

marinebacteriafromthesubarcticglacialFjord,

Kongsfjorden.CurrMicrobiol.2014;68:233–238.

14.SrinivasTNR,NageswaraRaoSSS,ReddyPVV,etal.Bacterial

diversityandbioprospectingforcold-activelipases,

amylasesandproteases,fromculturablebacteriaof

KongsfjordenandNy-Alesund,Svalbard,Arctic.Curr

Microbiol.2009;59:537–547.

15.SvendsenH,Beszczynska-MøllerA,HagenJO,etal.The

physicalenvironmentofKongsfjorden–Krossfjorden,an

ArcticfjordsysteminSvalbard.PolarRes.2002;21(1):133–166.

16.CottierF,TverbergV,InallM,SvendsenH,NilsenF,Griffiths C.WatermassmodificationinanArcticfjordthrough cross-shelfexchange:theseasonalhydrographyof Kongsfjorden.SvalbardJGeophysRes.2005;110,

http://dx.doi.org/10.1029/2004JC00275.

17.HicksRE,AmannRI,StahlDA.Dualstainingofnatural

bacterioplanktonwith4,6-diamidino-2-phenylindoleand

fluorescentoligonucleotideprobestargetingkingdom-level

16SrRNAsequences.ApplEnvironMicrobiol.

1992;58:2158–2163.

18.WeisburgWG,BarnsSM,PelletierDA,LaneDJ.16Sribosomal

DNAamplificationforphylogeneticstudy.JBacteriol.

1991;173(2):697–703.

19.ColeJR,WangQ,CardenasE,etal.TheRibosomalDatabase

Project:improvedalignmentsandnewtoolsforrRNA

analysis.NuclAcidsRes.2009;37:D141–D145.

20.PruesseE,PepliesJ,GlöcknerFO.SINA:accurate

high-throughputmultiplesequencealignmentofribosomal

RNAgenes.Bioinformatics.2012;28:1823–1829.

21.TamuraK,PetersonD,PetersonN,StecherG,NeiM,Kumar

S.MEGA5:molecularevolutionarygeneticsanalysisusing

maximumlikelihood,evolutionarydistance,andmaximum

parsimonymethods.MolBiolEvol.2011;28(10):2731–2739.

22.KeckA,WiktorJ,HapterR,NilsenR.Phytoplankton

assemblagesrelatedtophysicalgradientsinanArctic,

glacier-fedfjordinsummer.ICESJMarSci.1999;56:203–214.

23.HopH,Falk-PetersonS,SvendsenH,etal.Physicaland

biologicalcharacteristicsofthepelagicsystemacrossFram

StraittoKongsfjorden.ProgOceanogr.2006;71:182–231.

24.JankowskaK,Włodarska-KowalczukM,WieczorekP.

AbundanceandbiomassofbacteriaintwoArcticglacial

fjords.PolishPolarRes.2006;26:77–84.

25.GroudievaT,KambourovaM,YusefH.Diversityand

cold-activehydrolyticenzymesofculturablebacteria

associatedwithArcticseaice,Spitzbergen.Extremophiles.

2004;8:475–488.

26.ReddyPVV,NageswaraRaoSSS,PratibhaMS,etal.Bacterial

diversityandbioprospectingforcold-activeenzymesfrom

culturablebacteriaassociatedwithsedimentfroma

meltwaterstreamofMidtreLovenbreenglacier,anArctic

glacier.ResMicrobiol.2009;160:538–546.

27.TeelingH,FuchsBM,BecherD,etal.Substrate-controlled

successionofmarinebacterioplanktonpopulationsinduced

byaphytoplanktonbloom.Science.2012;336:608–611.

28.GuoCY,HeJF,ZhangF,CaiMH,WangGZ.Spatial

heterogeneityofamicrobialcommunityinKongsfjorden,

Svalbardduringlatesummer2006anditsrelationshipto

bioticandabioticfactors.AdvPolarSci.2011;22(1):55–66.

29.RavenschlagK,SahmK,PernthalerJ,AmannR.High

bacterialdiversityinpermanentlycoldmarinesediments.

ApplEnvironMicrobiol.1999;65(9):3982–3989.

30.GiovannoniSJ,RappeM.Evolution,diversityandmolecular

ecologyofmarineprokaryotes.In:KirchmanDL,ed.Microbial

EcologyoftheOceans.NewYork:JohnWiley&Sons,Inc.; 2000:47–84.

31.GrossartHP,LevoldF,AllgaierM,SimonM,BrinkhoffT.

Marinediatomspeciesharbourdistinctbacterial

communities.EnvironMicrobiol.2005;7:860–873.

32.GoeckeF,ThielV,WieseJ,LabesA,ImhoffJF.Algaeasan

importantenvironmentforbacteria–phylogenetic

relationshipsamongnewbacterialspeciesisolatedfrom

algae.Phycologia.2013;52:14–24.

33.Wagner-DöblerI,BallhausenB,BergerM,etal.Thecomplete

genomesequenceofthealgalsymbiontDinoroseobacter

shibae:ahitchhiker’sguidetolifeinthesea.ISMEJ.

2010;4:61–77.

34.MayaliX,FranksPJS,BurtonRS.Temporalattachment

dynamicsbydistinctbacterialtaxaduringadinoflagellate

bloom.AquatMicrobEcol.2011;63:111–122.

35.GoethalsK,VereeckeD,JaziriM,VanMontaguM,HolstersM.

LeafygallformationbyRhodococcusfascians.AnnRev

Phytopathol.2001;39:27–52.

36.VandeputteO,OdenS,MolA,etal.Biosynthesisofauxinby

thegram-positivephytopathogenRhodococcusfasciansis

controlledbycompoundsspecifictoinfectedplanttissues.

ApplEnvironMicrobiol.2005;71(3):1169–1177.

37.MergaertJ,VerhelstAN,CnockaertMC,TanT-L,SwingsJ.

Characterizationoffacultativeoligotrophicbacteriafrom

polarseasbyanalysisoftheirfattyacidsand16SrDNA

(11)

38.GihringTM,HumphrysM,MillsHJ,HuettelM,KostkaJE.

Identificationofphytodetritus-degradingmicrobial

communitiesinsublittoralGulfofMexicosands.Limnol

Oceanogr.2009;54(4):1073–1083.

39.Sánchez-PorroC,KaurB,MannH,VentosaA.Halomonas

titanicaesp.nov.,ahalophilicbacteriumisolatedfromthe

RMSTitanic.IntJSystEvolMicrobiol.2009;60:2768–2774.

40.HahnkeRL,ProbianC,FuchBM,HarderJ.Variationsin

pelagicbacterialcommunitiesintheNorthAtlanticOcean

coincidewithwaterbodies.AquatMicrobEcol.

2013;71:131–140.

41.FuY,KeatsKF,RivkinRB,LangAS.Watermassanddepth

determinethedistributionanddiversityofRhodobacteralesin

anArcticmarinesystem.FEMSMicrobiolEcol.

2013;84:564–576.

42.BrinkmeyerR,KnittelK,JürgensJ,WeylandH,AmannR,

HelmkeE.Diversityandstructureofbacterialcommunities

inArcticversusAntarcticpackice.ApplEnvironMicrobiol.

2003;69(11):6610–6619.

43.Ayala-del-RíoHL,ChainPS,GrzymskiJJ,etal.Thegenome

sequenceofPsychrobacterarcticus273–4,apsychroactive

Siberianpermafrostbacterium,revealsmechanismsfor

adaptationtolow-temperaturegrowth.ApplEnviron

Microbiol.2010;76(7):2304–2312.

44.BowmanJ,NicholsD,McMeekinT.Psychrobacterglacincolasp.

nov.,ahalotolerant,psychrophilicbacteriumisolatedfrom

Antarcticseaice.SystApplMicrobiol.1997;20:209–215.

45.MaruyamaA,HondaD,YamamotoH,KitamuraK,

HigashiharaT.Phylogeneticanalysisofpsychrophilic

bacteriaisolatedfromtheJapanTrench,includinga

descriptionofthedeep-seaspeciesPsychrobacterpacificensis

sp.nov.IntJSystEvolMicrobiol.2000;50:835–846.

46.RomanenkoLA,SchumannP,RohdeM,LysenkoAM,

MikhailovVV,StackebrandtE.Psychrobactersubmarinussp.

nov.andPsychrobactermarincolasp.nov.,psychrophilic

halophilesfrommarineenvironments.IntJSystEvol

Microbiol.2002;52:1291–1297.

47.BozalN,MontesMJ,TudelaE,GuineaJ.Characterizationof

severalPsychrobacterstrainsisolatedfromAntarctic

environmentsanddescriptionofPsychrobacterlutisp.nov.

andPsychrobacterfoziisp.nov.IntJSystEvolMicrobiol.

2003;53(4):1093–1100.

48.HeuchertA,GlöcknerFO,AmannR,FischerU.Psychrobacter

nivimarissp.nov.,aheterotrophicbacteriumattachedto

organicparticlesisolatedfromtheSouthAtlantic

Referências

Documentos relacionados

To examine the temporal patterns in the occurrence of a tropical ichthyofauna, fisheries-independent samples were collected between September 2003 and July 2004 from

In addition, the results shown in Table 3 for the months of May, July, August and November (Tmin series) and for the months of February, March, April, June, July, August, September

Bacteria were isolated from all wounds and 41 bacterial isolates could be identified based on culture of the materials collected by punch biopsy; 53.66% of the isolates

This research aimed to evaluate the bacteria diversity in water samples collected from five irrigated rice fields in RS, through enumeration and identification of mesophilic

Table 1 - Bacterial strains phylotypes isolated from honey stomach of honeybee Apis dorsata from the forest area of Melaleuca, in Terengganu, Malaysia.. Isolates a Sequence lengths

As a part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.), Gram-positive and Gram-negative bacterial isolates were collected from 33 centers in Latin America (centers

Genetic diversity and identification of fumonisin-producing isolates of Fusarium verticillioides from two provinces in the Philippines were analyzed using

From May to September 2011, a total of 138 wild rodents of the Cricetidae family were collected in the cities of Anhembi, Bofete and Torre de Pedra, in São Paulo State.. All