• Nenhum resultado encontrado

Baire's Theorem in Probabilistic Modular spaces

N/A
N/A
Protected

Academic year: 2017

Share "Baire's Theorem in Probabilistic Modular spaces"

Copied!
2
0
0

Texto

(1)

Baire’s Theorem in Probabilistic Modular spaces

Kourosh Nourouzi

Abstract— A real linear space X equipped with a probabilistic-valued functionρdefined onX is called a probabilistic modular space if it satisfies the following conditions:

i. ρx(0) = 0,

ii. ρx(t) = 1for all t >0 iffx= 0,

iii. ρ−x(t) =ρx(t),

iv. ραx+βy(s+t) ≥ ρx(s)∧ρy(t) for all x, y ∈ X, and

α, β, s, t∈ R0 +

, α+β= 1.

In this note, we give a modular formulation of Baire’s Theorem in probabilistic modular spaces.

Keywords: Modular Space, Probabilistic Modular space, Baire’s Theorem

1

Introduction

A modular on a real linear spaceX is a real functionalµ

onX satisfying the following conditions: 1. µ(x) = 0 iffx= 0,

2. µ(x) =µ(−x),

3. µ(αx+βy)≤µ(x) +µ(y),

for allx, y∈X andα, β≥0,α+β= 1.

Then, the vector subspace

Xµ={x∈X :µ(ax)→0 as a→0},

ofX is called a modular space.

Such spaces were considered for instance in [1, 2, 3]. The notions of modular and probabilistic metric spaces [4] provide the inspiration for introducing a new concept that it is called a probabilistic modular space in this note. We aim to investigate the Baire’s Theorem in such spaces.

2

Probabilistic Modulars

A function f : R −→ R0+ is called a distribution

function if it is non-decreasing and left-continuous with inft∈Rf(t) = 0, and supt∈Rf(t) = 1.

Definition 1 A pair (X, ρ) will be said a probabilistic modular space ifX is a real vector space,ρis a mapping

This research was in part supported by a grant from IPM (No. 86470033). Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O.Box 19395-5746, Tehran, Iran. (nourouzi@mail.ipm.ir) Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.(nourouzi@kntu.ac.ir)

from X into the set of all distribution functions( for

x ∈ X, the distribution function ρ(x) is denoted by

ρx, and ρx(t) is the value ρx at t ∈ R ) satisfying the

following conditions: 1. ρx(0) = 0,

2. ρx(t) = 1 for allt >0 iff x= 0,

3. ρ−x(t) =ρx(t),

4. ραx+βy(s+t) ≥ ρx(s)∧ρy(t) for all x, y ∈ X, and

α, β, s, t∈ R0+,α+β = 1.

We say that (X, ρ) satisfies ∆2-condition if there exists

c > 0 (∆2-constant) such that ρ2x(t) ≥ ρx(ct) for all

x∈X andt >0.

Example 1 Suppose thatX is a real vector space and

µis a modular onX. Define

ρx(t) =

0

t≤0

t

t+µ(x) t >0

Then (X, ρ) is a probabilistic modular space.

Example 2 Suppose thatX is a real vector space and

µis a modular onX. Define

ρx(t) =

0 t≤µ(x) 1 t > µ(x)

Then (X, ρ) is a probabilistic modular space.

Definition 2 Let (X, ρ) be a probabilistic modular space.

• A sequence (xn) in X is said to be ρ-convergent to

a point x∈ X and denoted byxn → xif for every

t >0 andr∈(0,1), there exists a positive integerk

such that ρxn−x(t)>1−rfor alln≥k.

• A sequence (xn) inXis called aρ-Cuachy sequence if

for every t >0 andr∈(0,1), there exists a positive integerksuch thatρxn−xm(t)>1−r, for allm, n≥

k.

• The modular space (X, ρ) is said to be ρ-complete if each ρ-Cauchy sequence inX isρ-convergent to a point ofX.

Proceedings of the World Congress on Engineering 2008 Vol II WCE 2008, July 2 - 4, 2008, London, U.K.

(2)

• The ρ-closure of a subset E of X is denoted by E

and defined by the set of allx∈X such that there is a sequence (xn) of elements of E such thatxn →x.

The subsetE isρ-dense inX ifE=X.

• Forx∈X,t >0, and 0< r <1, theρ-ball centered at xwith radiusris defined by

B(x, r, t) ={y∈X :ρx−y(t)>1−r}.

• An elementx∈Eis called aρ-interior point ofE if there arer∈(0,1) andt >0 such that B(x, r, t)⊆

E. We say that E isρ-open inX if each element of

E is a ρ-interior point.

Baire’s Theorem. Let (X, ρ) be a ρ–complete proba-bilistic modular space satisfying ∆2-condition. If (On) is a sequence ofρ–open and ρ–dense subsets of X, then

∩∞

1 On isρ–dense in X.

Proof First of all note that if B(x, r, t) is a ball in X andy is an arbitrary element of it, thenρx−y(t)>1−r.

Since ρx−y(·) is left continuous, there is ǫy > 0 such

that ρx−y(t−cǫ)>1−r, for all ǫ >0 with t−cǫ >0 and ǫ

c ∈ (0, ǫy), where c is the ∆2-constant. If 0 < r ′

< r,

ǫ

c ∈ (0, ǫy), and z ∈ B(y, r ′

,2cǫ2), then there exists a sequence (zn) inB(y, r′,2ǫc2) such thatzn→zand hence we have

ρz−y(ǫc) ≥ ρ(z−zn)(

ǫ

2c2)∧ρ(y−zn)(

ǫ

2c2),

> 1−r,

for somen∈ N. Thus,

ρx−z(t) ≥ ρ2(z−y)(ǫ)∧ρ2(x−y)(t−ǫ),

≥ ρz−y(ǫc)∧ρx−y(t−cǫ),

> 1−r,

i.e., B(y, r′

,2ǫc2) ⊆ B(x, r, t). It implies that if A is a nonempty ρ–open set of X, then A∩ O1 is non-empty

and ρ–open. Thus it contains a ball B(x0, r0,tc0). By

induction, we choosexn ∈X, rn ∈(0,1), andtn >0 as

follows: Withxi,ri, and ti ifi < n, we see that

On∩B(xn−1, rn−1,

tn−1

c ),

is non-empty and ρ-open, therefore we can choose

xn, rn, tn so that 0 < tn < 1n, 0 < rn < min{rn−1,n1}

and

B(xn, rn,

tn

c )⊆ On∩B(xn−1, rn−1, tn−1

c ).

Now (xn) isρ-Cauchy. Because, if 0< r <1, andt >0,

we can choosek∈ N such that 2tk < tand rk < r. For

m, n≥kwe have xm, xn∈B(xk, rk,tck) and

ρxm−xn(t) ≥ ρxm−xn(2tk), ≥ ρxk−xn(

tk

c)∧ρxk−xn(

tk

c),

≥ 1−rk,

> 1−r.

Since X is ρ-complete, xn → x for some x ∈ X. But

xn∈B(xk, rk,tck), for alln≥kand therefore

x∈B(xk, rk,

tk

c)⊆ Ok∩B(x0, r0, t0

c)⊆ Ok∩A,

for allk. Now, the fact that arbitraryρ-open setA inter-sects∩OnandB(z, r, t)⊇B(z,rn,nt) for alln, completes

the proof.

References

[1] Kozlowski W.M., Modular function spaces, Marcel Dekker, 1988.

[2] Musielak J.,Orlicz spaces and modular spaces, Lec-ture notes in Mathematics, vol. 1034, Springer-Verlag, 1983.

[3] Musielak J., Orlicz W., ”On modular spaces”,Studia Mathematica, V18, pp. 49-65, 1959.

[4] Schweizer B., Sklar A., Probabilistic metric spaces, New York, Amsterdam, Oxford: North Holland 1983.

Proceedings of the World Congress on Engineering 2008 Vol II WCE 2008, July 2 - 4, 2008, London, U.K.

Referências

Documentos relacionados

We would and will be ungratefully sinful not to go to Caldas da Rainha, her creation and benefactory, and while walking and thinking, visiting the place and touching her spirit, if

Entretanto, no presente trabalho, para que haja um fim passível de discussão para um desenvolvimento acadêmico útil, necessita-se, finalmente, observar a possibilidade

Deve haver uma forma de participação mais ativa dos vereadores no processo do OP, em que há um diálogo entre população, delegados e vereado- res, de modo a estabelecer os papéis

Apresenta fatores de risco importantes e bem conhecidos como por exemplo a idade compreendida entre os 40 e os 65 anos, o sexo masculino e a obesidade, mas não devemos

O planejamento a longo prazo determina políticas gerais da propriedade; o planejamento a médio prazo determina decisões específicas de como proceder em situações de falta ou excesso

É de salientar que actualmente, o contribuinte tem acesso a essa informação online (via segurança social directa). Os serviços da segurança social têm como suporte, um

As fundações empresariais, que são entidades coletivas e privadas constituídas por uma empresa ou um grupo de empresas, são consideradas, em alguns casos, uma

Ainda assim, no último capítulo do romance, confrontamo-nos com um exemplo mais notável, quando o negro é apresentado como uma personagem que tenta permanecer. respeitável