• Nenhum resultado encontrado

Nonlinearly perturbed hyperbolic conservation laws

N/A
N/A
Protected

Academic year: 2021

Share "Nonlinearly perturbed hyperbolic conservation laws"

Copied!
27
0
0

Texto

(1)

Nonlinearly perturbed hyperbolic conservation laws

Joaquim M. C. Correia

DMat-ECT, CIMA-IIFA, UÉvora & CAMGSD, IST, Portugal Email: jmcorreia@uevora.pt

CVIM’2013

(2)

Outline

Abstract Introduction The problem A priori estimates References

(3)

Abstract

In this presentation we attempt to stress two points of view on hyperbolic conservation laws: modelization and analytical theory. And, how they are sensitively related. While appliers are concerned with reliability, integrity or failure of solutions, mathematcians are concerned with non uniqueness, selection of physically relevant solutions or entropy criteria.

In the modeling process, within simplifications, some “spurious terms” are usually discarded from the equations and so, in order to address uniquen-ess, a crucial information is lost. We discuss here the relevant dissipative or dispersive effect of some of those small scale terms (zero singular limits).

(4)

The perturbed equations under consideration have the form ∂tu + div f (u) = ε div b(u, ∇u) + δ div ∂ξc(u, ∇u) ,

which include generalized Korteweg-de Vries-Burgers equation when ξ is a space variable and Benjamin-Bona-Mahony-Burgers equation when ξ is the time variable, or

∂tu + div f (u) = δ div c(u, ∇∂ξu) ,

which can present unexpected dissipative properties.

Keywords: Hyperbolic conservation law; shock wave; entropy weak solution; measure-valued solution; dissipation; dispersion; diffusion; capilllarity; Burgers equation; KdV-type equation

(5)

About the Title:

The class of equations ξ∈ {t, x1, . . . , xn}:

∂tu + (∗) div( ... ) z }| { transport z }| { div f (u) = viscosity z }| {

ε div b(u, ∇u) +

capillarity

z }| {

δ div ∂ξc(u, ∇u)

| {z }

pertubation Pε,δ(u;f,b,c)

a) ‘Nonlinearly perturbed’: as ε, |δ| → 0+, (b, c = ?),

∂tu + div f (u) = 0 (simplified eq.);

b) ‘hyperbolic’: finite speed of propagation;

c) ‘conservation laws’: they have ‘divergence form’ (∗), via modelization of “phys. closed syst.s” (sources; anisotropy).

(6)
(7)
(8)

The transonic regime issues:

I control of vibrations and

(9)

Singular limits

Linear perturbations of the inviscid Burgers equation (quasilinear) ut+ uux = 0 :

“Vanishing viscosity method” [Kružkov, 1970]

ut+ u2/2



x = εuxx [conv.; Burgersdissip. model];

“Zero-dispersion limit” [Lax-Levermore, 1979, 1983]

ut+ u2/2



x = δuxxx [¬ conv.; KdVdisper. model];

“Vanishing viscosity-capillarity method” [Schonbek, 1982]

(10)

Nonlinear perturbations & the Tartar-Schonbek-DiPerna-Szepessy setting:

[LeFloch-Natalini, 1999], [C-LeFloch, 1998], [C, 2008 (2006)], (C, 2012)

ut+ f (u)x = ε b(ux)x + δ c(ux)xx;

[C-LeFloch, 1999], (Bedjaoui-C, 2011)

ut+ f (u)x = ε (|ux|p−2ux)x + δ g (uxx)x;

[Bedjaoui-C, 2013 (2012); 2013?]1

ut+ f (u)x = δ g (uxx)x [conv.; KdV disper. model].

(11)

Paradox

∂tu + div f (u) = ε div b(u, ∇u) + δ div ∂ξc(u, ∇u)

small scale mechanisms of

ε,b-dissipation (heat conduction... with diffusive effect), δ,c-dispersion (capillarity... with oscillatory effect).

I ξ= t (the time): gBBM-Burgers;

I ξ= xk (one space variable): gKdV-Burgers.

(12)

Nonlinear hyperbolic conservation laws

Formallyas ε, δ → 0, all the equations have the,same, zero

diffusion-dis-persion limit (conservation law)

∂tu + div f (u) = 0.

Well-posedness of the (time-evolution) Cauchy problem means that this equation must be hyperbolic and, because it is nonlinear, it develops dis-continuities (“shocks”) in finite time: the global (in time, weak-) solutions

arenot unique.

(13)

Classification

As the ε,δ-parameters tend to zero, we can: I have no limit at all (Failure;δ > O (εγ)),

I obtain different limits (Reliability):

I classical-entropy weak-solutions (Integrity;δ < O (εγ)), I nonclassical-entropy weak-solutions (δ = O (εγ)),

according to theγ-balance of strengths and a growthratioof diffusion and dispersion.

(14)

While our proofs establish integrity, major emphasis is onreliability(and failure):

we look to all knownphysically relevantsolutions, both classical and nonclassical;

we are aiming for a realistic multi-space dimensional framework (analytical setting on measure-valued function theory).

We use energy based methods,

without, until now, dimensional arguments. Remark: numerics is hopeless.

Issues concern:

thebehaviour and selectionof the rightmodels/solutions;

(15)

[C, 2008 (2007)], [C-Sasportes, 2009 (2012)], (C, 2012)

∂tu + div f (u) = div ε bj u, ∇u + δ g (u) d X k=1 ∂xkcjk g (u) ∇u ! 1≤j ≤d u(x , 0) = u0ε,δ(x ) .

(A2) for some µ ≥ 0, r > 0, |b(u, λ)| = O (|u|µ) O (|λ|r) as |u|, |λ| → ∞,

(A3) for some ϕ ≥ 0, ϑ < 1, D > 0,

λ · b(u, λ) ≥ D |u|µϕ|λ|r +1−ϑ, ∀u ∈ IR, λ ∈ IRd

.

(A4) for some ρ > 0, Kc > 0: ∀λ ∈ IRd k[cjk(λ)]k ≤ Kc|λ|ρ.

(16)

Entropy m.-v. solution

Assume that u0∈ L1(IRd) ∩ Lq(IRd) and f ∈ C (IR)d satisfies the growth

condition

(A1) |f (u)| = O(|u|m) as |u| → ∞, for some m∈ [0,q).

A Young measure ν associated with {un}n∈IN, a bounded sequence in

L∞((0, T ); Lq(IRd)), is called an entropy measure-valued solution if

∂thν(·), |u − k|i + divhν(·), sgn(u − k)(f (u) − f (k))i ≤ 0, for all k ∈ IR,

in the sense of distributions on IRd× (0, T ); lim t→0+ 1 t Z t 0 Z K hν(x ,s), |u − u0(x )| i dxds = 0,

(17)

A priori estimates

ut+ f (u)x = ε (|ux|p−2ux)x+ δ g (uxx)x

Multiply by a function η0(u) and let q0= η0f0 be the derivative of a new flux function:

η(u)t+ q(u)x = ε η0(u) |ux|p−2uxx − ε η00(u) |ux|p

+ δ η0(u) g (uxx)



x− δ η

00(u) u

xg (uxx) .

Integrate over IR × [0, t] with η(u) = |u|α+1. The conservative terms

(18)

Lemma

Let α ≥ 1 and g : IR → IR be any dispersion function. Each solution satisfies for t ∈ [0, T ] Z IR |u(t)|α+1 dx + (α + 1) α ε Z t 0 Z IR |u|α−1|u x|pdxds + (α + 1) α δ Z t 0 Z IR |u|α−1uxg (uxx) dxds = Z IR |u0|α+1dx .

Usually, taking α = 1, we deduce the a priori L2 first energy estimates.

It is not the case here, unless the factor δux of g (uxx) was always

(19)

Corollary

Let the dispersion g : IR → IR be a negative function, then any solution verifies for t ∈ [0, T ] Z IR u(t)2dx + 2 ε Z t 0 Z IR |ux|pdxds = ku0k22+ 2 δ Z t 0 Z IR ux|g (uxx)| dxds.

(20)

We use now the multipliers (q + 2)(|ux|qux)x and (q + 2)(uxq+1)x, with

the assumption that G (G00= G0= g ) is a homogeneous function of

degree n + 2: (q + 2) ut|ux|qux  x − (|ux| q+2) t= · · · = − (q + 1)|ux|q+2f0(u)  x +(q + 1)|ux|q+2uxf00(u) +ε (q + 2)(q + 1)(p − 1) |ux|p+q−2uxx2 + δ (q + 2)(q + 1) n |ux|qG (uxx)  x −δ (q + 2)(q + 1) q (n + 2) n |ux|q−2uxG(uxx) ,

(21)

(q + 2) utuq+1x  x − (u q+2 x )t = · · · = − (q + 1) uq+2x f0(u) x +(q + 1) uxq+3f00(u) +ε (q + 2)(q + 1)(p − 1) uxq|ux|p−2uxx2 + δ (q + 2)(q + 1) n uxqG (uxx)  x −δ (q + 2)(q + 1) q (n + 2) n uq−1 x G(uxx).

Integrate over IR × [0, t], restrict to odd q and add... If we abbreviate as U+ the {(x , t) ∈ IR × [0, T ] : δ u

x > 0} or their section by t = s as Us+,

(22)

Lemma

Let q be an odd number and g : IR → IR be the negative positively homogeneous dispersion function (of degree n ≥ 1) with homogeneous G such that G00= G0= g . Each solution satisfies for t ∈ [0, T ]

Z Ut+ |ux(t)|q+2dx + ε (q + 2)(q + 1)(p − 1) Z t 0 Z Us+ |ux|p+q−2u2xxdxds +|δ| (q + 2)(q + 1) q (n + 2) n Z t 0 Z Us+ |ux|q−1|G(uxx)| dxds + sgn(δ) (q + 1) Z t 0 Z Us+ |ux|q+3f00(u) dxds = Z U0+ |u00|q+2 dx .

(23)

Kružkov S.N. First order quasilinear equations in several independent variables. Mat. Sb., 81; 1970; Math. USSR Sb., 10; 1970

Lax P.D., Levermore C.D. The zero dispersion limit for the

Korteweg-de Vries equation Proc. Nat. Acad. Sci. U.S.A., 76; 1979; The small dispersion limit of the Korteweg-de Vries equation I, II, III Comm. Pure Appl. Math., 36; 1983

Schonbek M. Convergence of Solutions to Nonlinear Dispersive Equations. Comm. Part. Diff. Equa., 7; 1982

LeFloch P.G., Natalini R. Conservation Laws with Vanishing Nonlinear Diffusion and Dispersion. Nonlinear Anal., 36; 1999

(24)

Correia J.M.C., LeFloch P.G. Nonlinear Diffusive-Dispersive Limits for Multidimensional Conservation Laws in “Advances in Partial Differential Equations and Related Areas”, Beijing, 1997, World Sci. Publ., River Edge, NJ, 1998, pp. 103–123 (disponível em:

http://arxiv.org/abs/0810.1880)

Correia J.M.C., LeFloch P.G. Nonlinear Hyperbolic Conservation Laws in “Nonlinear Evolution Equations and their Applications”. Proc. Luso-Chinese Symposium, Macau, 1998, World Sci. Publ., River Edge, NJ, 1999, pp. 21–44

Correia, J.M.C. Approximation of Hyperbolic Conservation Laws, PhD thesis, Mathematical Analysis, FCL (preparação CMAP, Ecole Polytechnique, Palaiseau), 2008

(25)

Correia, J.M.C., Sasportes, R.S. Nonlinear hyperbolic conservation laws in “IRF2009, Integrity, Reliability and Failure (Chalenges and Opportunities)”, eds. J.F. Silva Gomes and Shaker A. Meguid, Edições INEGI, Porto, 2009, ISBN: 978-972-8826-22-2, 978-972-8826-21-5 http://hdl.handle.net/10174/5089

Correia J.M.C. Zero Limit for Multidimensional Conservation Laws with Full Non-linear Diffusion and Dispersion, (2012) to sub. Correia J.M.C., Sasportes R.S. Convergence of KdVB and BBMB Approximations for Conservation Laws, (2012) in rev.

(26)

Brenier Y., Levy D. Dissipative Behavior of Some Fully Non-Linear KdV-Type Equations. Phys. D., 3-4; 2000

Bedjaoui N., Correia, J.M.C. A note on nonlinear KdV-type equations, Bol. Soc. Port. Mat. (2013), no. especial. ISSN: 0872-3672 http://hdl.handle.net/10174/7598

Bedjaoui N., Correia, J.M.C. Dissipative KdV-Type Equations, (2012) in rev.

Bedjaoui N., Correia, J.M.C. Diffusive-Dispersive Traveling Waves and Kinetic Relations with Singular Diffusion and Dispersion, (in prep.)

(27)

A+

Suggestions !?...

Referências

Documentos relacionados

L’altro cardine della disciplina è costituito dall’istituzione della Commissione di Garanzia per l’attuazione dello sciopero nei servizi essenziali, un’autorità

1.1.2 Value-Based Pricing: True Economic Value, Perceived Value &amp; COGS Following a value-based strategy means, firstly, to assess the true economic value for the

Durante este período foi alcançada um novo entendimento de união entre os profissionais da América Latina – sem a orientação dos Estados Unidos – articulando

For the Mock2 dataset (see table 5.3 for the unweighted Unifrac values), mothur as the 16S analysis pipeline also achieved the best results for the unweighted values, no matter what

A aprendizagem da leitura e da escrita é um processo muito trabalhoso e demorado, que exige empenho da parte dos professores, dos alunos e dos pais, que se devem

fortalecer o espírito de equipa” (Cláudia Marques). Assim, compreende-se que é importante promover a valorização do team building nas empresas pelos mais variados motivos que

Este estudo teve como objetivos estudar a associação entre a auto-eficácia e suporte social percebido e medidas de ajustamento à condição (interferência da dor

(c) P - N.º total de horas práticas leccionadas, considerando que cada semestre tem a duração de 15 semanas e cada aula 60 minutos.. Comparando com a estrutura curricular de