• Nenhum resultado encontrado

Magnetic composites based on metallic nickel and molybdenum carbide : a potential material for pollutants removal.

N/A
N/A
Protected

Academic year: 2021

Share "Magnetic composites based on metallic nickel and molybdenum carbide : a potential material for pollutants removal."

Copied!
9
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Hazardous

Materials

j o ur na l ho me p a g e : w w w . e l s e v i e r . c o m / l o ca t e / j h a z m a t

Magnetic

composites

based

on

metallic

nickel

and

molybdenum

carbide:

A

potential

material

for

pollutants

removal

Raquel

V.

Mambrini

a

,

Thales

L.

Fonseca

a

,

Anderson

Dias

b

,

Luiz

C.A.

Oliveira

a

,

Maria

Helena

Araujo

a

,

Flávia

C.C.

Moura

a,∗

aDepartamentodeQuímica,UniversidadeFederaldeMinasGerais,BeloHorizonte,MG31270-901,Brazil bDepartamentodeQuímica,UniversidadeFederaldeOuroPreto,OuroPreto,MG35400-000,Brazil

h

i

g

h

l

i

g

h

t

s

 NewmagneticmolybdenumcarbidecompositescanbepreparedbyCVDfromethanol.

 Magneticmolybdenumcarbideshowspromisingresultsforpollutantsremoval.

 Thecarbidecompositescanbeeasilyrecoveredmagneticallyandreused.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received14May2012

Receivedinrevisedform15August2012 Accepted2September2012

Available online 7 September 2012 Keywords:

Carbides Magneticmaterials Vapordeposition Sulfurandnitrogenremoval

a

b

s

t

r

a

c

t

Newmagneticcompositesbasedonmetallicnickelandmolybdenumcarbide,Ni/Mo2C,havebeen

pro-ducedviacatalyticchemicalvapordepositionfromethanol.Scanningelectron microscopy,thermal

analysis,RamanspectroscopyandX-raydiffractionstudiessuggestthattheCVDprocessoccursina

singlestep.ThisprocessinvolvesthereductionofNiMooxidesatdifferenttemperatures(700,800and

900◦C)withcatalyticdepositionofcarbonfromethanolproducingmolybdenumcarbideonNisurface.

IntheabsenceofmolybdenumtheformationofNi/Cwasobserved.Themagneticmolybdenumcarbide

wassuccessfullyusedaspollutantsremovalbyadsorptionofsulfurandnitrogencompoundsfrom

liq-uidfuelsandmodeldyessuchasmethyleneblueandindigocarmine.Thedibenzothiofeneadsorption

processoverNi/Mo2Creachedapproximately20mgg−1,notablyhigherthanothermaterialsdescribed

intheliteratureandalsoremovedalmostallmethylenebluedye.Thegreatadvantageofthesecarbide

compositesisthattheymaybeeasilyrecoveredmagneticallyandreused.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Transition metal carbides have been widely investigated in recentyearsbecauseoftheirgoodcatalyticactivityandselectivity for hydrogenation, hydrodesulfurization and hydrodenitrogena-tionreactionsinpetroleumrefining[1].Amongthemmolybdenum carbidehasbeenextensivelystudiedduetoitsuniquephysicaland chemicalpropertiesincludingmechanicalhardness,thermal sta-bility,superconductivityandsurfacereactivity.Also,ithasbeen reportedthatitpossessescatalyticbehaviorcomparabletonoble metals[2–4].ThesynthesisofMo2Cistypicallycarriedoutusing

Temperature Programmed Reaction(TPRe) where molybdenum oxideisheatedunderanatmosphereofhydrogen/hydrocarbon(e.g. CH4,C2H6,C2H2,etc.)[5–7].Hereinwereportthepreparationofthe

∗ Correspondingauthor.Tel.:+553134097556;fax:+553134095700. E-mailaddress:flaviamoura@ufmg.br(F.C.C.Moura).

magneticcompositeNi/Mo2Cviachemicalvapordeposition(CVD)

usingethanolasthecarbonsource.

Magneticparticleshavemanypotentialtechnological applica-tions,e.g.supportforcatalysts[8,9],magneticresonanceimaging

[10,11],drugdelivery[12],adsorptionprocesses[13,14]and envi-ronmentalremediation[8,15–17].Magneticparticlescanbecoated withaprotectivelayerofdifferentmaterialstoimprovetheir sta-bilityandtointroducenewsurfacepropertiesandfunctionalities. Someofthesecoatingmaterialsaresilica[18],alumina[19],gold

[20],andpolymers,suchaspolystyrene[21],polyaniline[22], poly-methylmethacrylate [23] and polyacrylamide[24]. Carbonis a versatilecoatingmaterialduetoitschemicalstability, biocompat-ibility,possibilityofsurfacemodificationandporecreation[25], andhavebeenusedasefficientadsorbentindifferentapplications. Theuseofcommercialfuelsandtheemissionsfromrefineries areofgreatenvironmentalimpactandareamongthemaintargets ofthenewenvironmentalstandardsthatsuggeststhereductionof sulfurandnitrogeninfuelslikegasolineandoildiesel.Theremoval ofthesecompoundsisamajoroperationinpetroleumrefiningand 0304-3894/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(2)

refining[1].

Molybdenumcarbidehasbeenextensivelystudieddue toits unique physical and chemical properties including mechanical hardness,thermalstability,superconductivity,andsurface reactiv-ity.Also,itisreportedthatmolybdenumcarbidepossessescatalytic behaviorcomparabletothenoblemetals[2–4].

Thesynthesisofmolybdenumcarbideistypicallycarriedout usingTemperatureProgrammed Reaction(TPRe)where a given amountofthemolybdenumoxideisheatedwhileitis exposed toamixtureofhydrogenwithahydrocarbonlikeCH4,C2H6,C2H2,

etc.[5–7].Hereinwereporttheproductionofmolybdenum car-bidecoveringthesurfaceofNi0metallic.Themagneticcomposite

Ni/Mo2Cwasobtainedbychemicalvapordeposition(CVD)using

ethanolascarbonsource.Magneticparticleshavemanypotential technologicalapplicationsindifferentareas,suchasincatalysis assupport[8,9],inbiomedicineasmagneticresonance imaging

[10,11]indrugdelivery,inadsorptionprocess[13,14]andin envi-ronmentalremediation[8,15–17].Magneticparticlescanbecoated withaprotectivelayerofdifferentmaterialstoimprovetheir sta-bilityandtointroducenewsurfacepropertiesandfunctionalities. Someofthesecoatingmaterialsaresilica[18],alumina[19],gold

[20],andpolymers,suchaspolystyrene[21],polyaniline[22], poly-methylmethacrylate[23] and polyacrylamide[24].Carbon is a versatilecoatingmaterialduetoitschemicalstability, biocompat-ibility,possibilityofsurfacemodificationandporecreation[25], andhavebeenusedasefficientadsorbentindifferentapplications. Theuseofcommercialfuelsandtheemissionsfromrefineries areofgreatenvironmentalimpactandareamongthemaintargets ofthenewenvironmentalstandardsthatsuggestthereductionof sulfurandnitrogeninfuelslikegasolineandoildiesel.Theremoval ofthesecompoundsis amajor operationin petroleumrefining andisachievedbycatalyticprocessesoperatedathighpressures andtemperatures[26,27].Thereforeresearchhasbeendeveloped fornewmaterialcapableofloweringtheconditionsreactionsto removalofsulfurcompoundsandnitrogencompounds[28].

Thestudyofmagneticparticlescoatedwithcarbonforsulfur andnitrogenremovalisofgreatinterest.Inthisworktheproduced magneticmolybdenumcarbidewasusedasanadsorbentofsulfur andnitrogencompoundsusingmodelmoleculesdibenzotiophene andquinolineandalsohasbeenusedasorganicdyesadsorbent.

2. Experimental

Commerciallyavailablesolvents and reagents of highpurity wereusedasreceived.Nickeloxide,NiO,wasobtainedbyheating 2gofnickelchloride,NiCl2,(Synth)inair10◦Cmin−1upto450◦C

during4h.NiOwasimpregnatedwith(NH4)6Mo7O24·4H2O

(Rio-Lab)atdifferentNi:MomolarratiostoproduceNiMooxides.Forthe preparationofNi/CorNi/Mo2Cachemicalvapordeposition(CVD)

reactionusingethanol(Synth)ascarbonsourcewasinvestigated. About500mgofNiOorNi/Mooxidesinaquartztubeof30mm

75 (2)atascanrateof4min .Magnetizationmeasurements werecarried outin a magnetometerLakeShore7404VSM Sys-tem.Thesurfaceareawasdeterminedbynitrogenadsorptionusing theBET method with22 nitrogen adsorption/desorption cycles in an Autosorb 1 Quantachrome instrument. Scanning electron microscopy(SEM)analyseswerecarriedoutinaJeolJSM840Aand aQuanta200ESEM-FEGfromFEI.Adsorptionexperimentswere carriedoutwith30mgofthemagneticcompositesand5mLof quinoline,dibenzonthiopheneor dye(methyleneblueorindigo carmine)solutions(50mgL−1).Allsystemswerekeptfor24hat roomtemperature.Theconcentrationsofthedyesweremeasured byUV/VisspectrophotometryusinganUVmini-1240Shimadzu. Theconsumptionofquinolineanddibenzothiophenewere moni-toredbygaschromatography(Shimadzu,GC17Amodelequipped withaFIDdetector)usinganEquity-5columnandargonas car-riergas.ZetapotentialatdifferentpH’sweremeasurementusinga DispersionTechonoly,Inc.,model:DT1200SN:447.

3. Resultsanddiscussion

3.1. Preparationandcharacterizationofmagneticcomposites The magnetic composites wereprepared by chemical vapor depositionreactionwithethanolasthecarbonsourceat700,800 and900◦C,usingNiOandNiMooxides,whicharenotmagnetic,as startingmaterials.Allthematerialsbecamestronglymagneticafter theethanol/CVDprocessandpresentedverylowspecificareaca. 15m2/g,whichisexpectedconsideringthepreparationmethod.

Diffractogrampatternsofthematerials(Fig.1a)showedthatthe ethanolreducedNi2+(NiO)toformNi/Ccomposites.Metallicnickel

wasformedat700◦Candasmallamountofcarbonwasproduced onitssurface(Fig.1aindetail).Whenmolybdenumisintroduced (NiMooxides)theformationofcarbonispreferentiallyobserved at700◦C.However,athighertemperatures(800–900◦C)the car-bonamountdecreasestoformhigherquantitiesofmolybdenum carbide,Mo2C.Thepresenceofmetallicnickelinallsamplescan

explainthemagneticbehaviorofthematerialsduetoitshigh sat-urationmagnetizationpresentedbyNi0.Thismagneticpropertyis

veryusefultotheadsorptionapplicationsthatallowthematerials tobeeasilyremovedfromdereactionssystembyapplicationofa magneticfield.

Regardingtheremovalof themagneticparticlesfroma cat-alyticreactionbymeansoftheapplicationofamagneticforce,this magneticforcewillbeproportionaltothefieldgradientapplied andtothemagneticmomentoftheparticles.Hence,themagnetic forceactingintheparticlewillbeproportionaltoits magnetiza-tion.Inconsequenceifthefieldappliedissufficienttosaturatethe particlethenthemagneticforcewillbeproportionaltothe satura-tionmagnetizationoftheparticle.Themagneticpropertiesofthese materialsarestrategicandveryimportantfortheintended appli-cation.Beingmagnetic,thematerialscanberemovedeasilyfroma

(3)

Fig.1.XRDfortheNi/C(a)andNi/Mo2C(b),afterethanol/CVDprocessatdifferenttemperatures.

reactionsystemafterapplicationofamagneticfieldgradientand bepulledintothestrongestmagneticfieldregionfacilitatingtheir removal[29].

Theroom-temperaturemagnetizationcurve(Fig.2)showsa sat-urationmagnetizationvalueof49.9and13.2emug−1,forNi/C800 andNi/Mo2C800,respectively.Thesesaturationmagnetization

val-uesarecoherentoncethesampleNi/Cpresentshigheramountof NicomparedtoNi/Mo2C.

Scanning electron micrographs of Ni and NiMooxides after ethanol/CVDprocessareshowninFigs.3and4,respectively.Ni particleswerepartiallycoatedwithfilamentouscarbonascanbe seenintheSEMimagesofallNiOsamplesafterCVD(Fig.3).Insome casesitispossibletoobservecarbonfilaments,approximately1␮m longanddiametersofafewnanometersandalsosomeNiparticles completelycoatedbycarbon.Incontrast,whenMoisintroduced inthesample themorphologycompletelychanges (Fig.4).The ethanol/CVDprocessofNiMooxidesproduceshigheramountsof coatedmaterialsprobablybytheformationofmolybdenumcarbide assuggestedbyXRD.

Further information regarding the carbon structures was obtainedbyRamanspectroscopy(Fig.5).IntheRamanspectraof theNiOafterCVDitispossibletoseetwointensebandsattributed toDandG-bandsofcarbonmaterials,suggestingtheformation oftheNi/Ccomposites.TheG-band,relatedtothevibrationofsp2

hybridizedcarboninthetwo-dimensionalgraphiteforordered car-bonspecies,canbeobservedat1578cm−1.TheD-bandishighly

Fig.2.MagnetichysteresiscurvesfortheNi/C800andNiMo/C800materialsandin detailmagneticseparationofthematerialsafterutilization.

sensitivetoamorphouscarbonordefectsinthecarbonmaterials andappearsat1331cm−1andcanbeascribedtothedefectsinthe fibrouscarbonstructure.TheintensityoftheD-bandincomparison withthegraphiticcarbonG-bandsuggeststhatdefectivecarbon ismoreabundantinthesampleafterethanol/CVDat700◦C.The moreintenseandnarrowG-bandwithIG/IDratioof4.3,observedas

theethanol/CVDprocesstemperatureincreases,reflectsthemore organizedandcrystallinecarbonstructures.Thisorganizedcarbon wasalsoobservedintheXRDpatternswithreflectionpeakswith 2atapproximately26◦.

The Raman spectra of the Ni/Mo2C material after the

ethanol/CVDprocessshowscharacteristicbandsofmolybdenum carbide,Mo2C[30],asthemainproduct,inagreementofXRD

pat-terns.AlsosomepeakscanbeobservedrelatedtoGandDbandfor carbon.

Theamountsofcarbondepositedonthematerialswere esti-matedbythermalanalysisTG/DTG(Fig.6).ForallNi/Ccomposites, it is possibletoobservea weightlossbetween500and 620◦C relatedtocarbonoxidationaccordingtoEq.(1),andaweightgain relatedtoNioxidation(Eq.(2))athighertemperatures(Fig.6aand b).

C(s)+O2(g)→ CO2(g) (1)

Ni(s)+½O2(g)→ NiO(s) (2)

Therefore, theresults clearly show that the temperature of the ethanol/CVD process directly affects theamount of carbon depositedonthesurfaceofthematerialswith14,16and19%,for thesamplestreatedat700,800and900◦C,respectively.Also,itis interestingtoobservefromDTGcurves(Fig.6b)thatthevelocity ofcarbondecompositionisdifferentforthematerialspreparedat 700,800and900◦C.ForthesampleNi/C700thecarbon decom-posesinamaximumofvelocityat512◦CandforthematerialsNi/C 800thistemperaturesismuchhigherof616◦C.Theseresults sug-gestthatthecarbondepositedduringtheCVDprocessat800◦C ismorestableandcrystallinethanthecarbondepositedat700◦C. TheseresultsareinagreementwiththeonesobtainedbyXRDwith aslightincreaseintheintensityofthepeakattributedtothe car-bonaswellasbyRamanspectroscopythatpresentsapronounced increaseintheintensityoftheGband,relatedtobetter graphi-tizedcarbon,andspeciallyinIG/IDratiowiththeincreaseinthe

temperatureofCVDprocess.

Thethermalbehaviorofthematerialcompletelychangeswith the addition of molybdenum. It is possible to observe an ini-tialweightgainafter350◦CrelatedtotheNioxidation(Eq.(2)). At higher temperatures (ca. 800◦C) it is possible to observe a weightlossthatcanberelatedtodecompositionoftheverystable

(4)

Fig.3.SEMimagesofNi/Cobtainedbyethanol/CVDprocessat700◦C(Ni/C700),800C(Ni/C800),and900C(Ni/C900).

molybdenumcarbide,formingmolybdenumoxide(Eq.(3)), con-firmedbytheXRDresultsobtainedfortheTGresidue.

Mo2C(s)+4O2(g)→2MoO3(s)+CO2(g) (3)

Also,astrongincreaseintheamount(50%)ofcarbondeposited ascarbideonthematerialsisobservedfortheNi/Mo2Cmaterials

(Fig.6candd)at900◦C.

TGresultsstronglyindicatethatthecarbonaceousmaterialsin Ni/Mo2CmaterialsarecompletelydifferentfromthosewithoutMo.

Thefirstonedecomposesat700◦Candforthelatterthe decompo-sitionstartsat480◦C.Webelievethattheseresultsarerelatedto thedecompositionofverystableandhighlycrystalline molybde-numcarbideformedduringtheCVDprocess,asobservedbyXRD. Ontheotherhand,theoxidationofcarbonat480◦Cisrelatedto theformationofalesscrystallinecarbon,suchasgraphiteor car-bonfilaments.Itiseasytoobservethatthetemperatureofnickel oxidation increase with the temperature of CVD.Probably the

highestthetemperatureofCVDthehigherthecoatingofNi parti-clesbyMo2C,makingtheNimoredifficulttooxidize.

Fromtheresultspresentedaboveweproposedthattheethanol decompositionmechanismtoformthecarbonaceousphasesinthe solidphase seemstobedifferentin themolybdenumpresence. Metallicnickelshowedactivityforethanoldecomposition, espe-ciallyathightemperatures,toformgraphiticoramorphouscarbon. However,inthepresenceofmolybdenum,initiallythereaction withethanoltakesplacewiththeactivationofethanol toform atomiccarbononthesurfaceoftheparticleswithchemical reduc-tionofNiandMo.Inasecondstep,thereducedmolybdenumis abletoreactwiththecarbontoformhighlycrystallineandstable molybdenumcarbide.Inthisstep,thesurfaceofnickelremainsin themetallicform(Ni/Mo2C).Itisinterestingtonotethatthe

pres-enceofmolybdenuminhibitstheformationofgraphiticcarbonon thenickelsurface(Fig.7),whichavoidsthepoisoningofsurface nickelwithcarbondeposits.

(5)

Fig.4. SEMimagesofNi/Mo2Cobtainedbyethanol/CVDprocessat700◦C,800,and900◦C.

TheformationoftheNi/Mo2Ccompositewasstudiedwith

dif-ferentamountsofmolybdenum.TheCVDprocesswascarriedout withNioxideimpregnatedwithdifferentNi:Momolarratio(NiMo, NiMo0.5andNiMo0.25).

TheXRD(Fig.8)andRaman(Fig.9)analysesofthematerials showthat themolybdenumcarbideamountincreases withthe molybdenumimpregnation.Thisincreasehappensconcomitantly withadecreaseofcarbonformation.Theseresultsareinagreement withtheproposalin Fig.7thatmolybdenumfavorsthe activa-tionofethanolcomparedtothecarbonformationonthenickel surface.

3.2. Adsorptionstudies

The magnetic Ni/Cand Ni/Mo2C materialsobtained by CVD

atdifferenttemperatureswereusedas adsorbentsfordifferent contaminants,i.e.dibenzothiophene,quinoline,andorganicdyes methyleneblue(MB)andindigocarmine(IC).Theobtainedresults areshowninFigs.10and11.

Theadsorption of IC dyein the Ni/Ccomposites is low, 32, 22 and 22% for the materials treated at 700, 800 and 900◦C,

respectively.TheadsorptionofMBwaslower(lessthan10%)for allNi/Cmaterials(Fig.10a).

AfteradditionofMo,Ni/Mo2C,itispossibletoobservethatthe

adsorptioncapacitystronglyincreases(Fig.10b).Thisislikelydue tointeractionsofthemolybdenumcarbidecoatingwiththedye molecules.Moreover,itisworthnotingthatthetreatment tem-peratureledtoacompletelydifferentbehavioroftheadsorption propertiesofthematerials.

AdsorptionofICdyeoncompositestreatedat700and800◦Care relativelylow,i.e.,43and31%,respectively.However,the adsorp-tionofmethyleneblueisvery high,reachingalmost100% after 20min.Adifferentbehaviorwasobservedforthecompositetreated at 900◦C withadsorption capacities of34% for methyleneblue and99%forindigocarmine.Theseresultssuggestthat,beyondthe hydrophobicinteraction,theelectroniccharacteristicsofthedyes arealsoanimportantfactorintheadsorptionpropertiesonthe materialssurface.

Inordertounderstandtheseelectrostaticinteractionsbetween thedyesandtheadsorbentmaterials,zetapotentialmeasurements atdifferentpHwerecarriedout(Fig.12).Thezetapotentialat differ-entpHcurvesallowsthedeterminationofthepointofzerocharge

(6)

Fig.5. RamanspectraofthecompositeNi/C(a)andNi/Mo2C(b),obtainedafterethanol/CVDprocessatdifferenttemperatures.

(7)

Fig.7. RepresentationofthereactionofNiandNiMooxideswithethanolduringtheCVDprocesstoformthemagneticcomposites.

Fig.8.XRDanalysesoftheNi/Mo2Cwithdifferentamountsofmolybdenum,

obtainedbyCVDofethanolat800◦C.

(PZC)ofthematerialsandanevaluationofthesurfacechargeofthe particlesunderstudy.

Fig.12showsapointofzerocharge(PZC)atpH2.6and3.0for theNi/Mo2C700andNi/Mo2C800materials,respectively.Since

theinitialpHofthedyesolutionswas4.0,thoseresultsindicated thatthesurfaceofthematerialsisnegativelychargedand there-forepreferentially adsorbpositively chargedmolecules suchas methylenebluedye.Ontheotherhand,theNi/Mo2C900material,

Fig.9. RamanspectraoftheNi/Mo2Cwithdifferentamountsofmolybdenum,

obtainedbyCVDofethanolat800◦C.

withPZCatpH5.1,wouldhaveapositivelychargedsurfaceatpH 4.0andthereforewouldabsorbmoreanionicdyessuchasindigo carmine.

ThetypeofcarbonproducedbytheCVDprocess,inthepresence ofMo,mayexplainthehigheradsorptionpropertiesoftheNi/Mo2C

composites,oncethespecificareaareverysimilarforallthe mate-rials.Moreover,chemicalgroupssuchasphenolic,carboxilicacid

S N O N O S O O O --O O O

a

b

c

d

H H CH 3 CH3 H3C H3C N S N N

S

N

(8)

Ni/C700

N

i/C800

N

i/C900

0

NiMo/C700 NiMo/C800 NiMo/C900

0

Ni/Mo

2

C 700

Ni/Mo

2

C 800

Ni/Mo

2

C 900

Fig.11.IndigoCarmineandmethyleneblueadsorptionfortheNi/C(a),andNi/Mo2C(b)materials,obtainedaftertheethanol/CVDprocessatdifferenttemperatures(pH=4,

naturalpHofthedyesolution).

2 4 6 8 10 12 -40 -30 -20 -10 0 10 20 30 40 50 60 Zeta Potential / mV

pH

Ni/Mo

2

C 700

Ni/Mo

2

C 800

Ni/Mo

2

C 900

PZC

Fig. 12. Zeta potential measurements for Ni/Mo2C materials obtained after

ethanol/CVDprocessat700,800and900◦C.

canbeformedonthecarbon,whichcaninfluencetheadsorption process.

Anothergroupofpollutants(nitrogenandsulfurcompounds) was tested in the adsorption process. The preliminary results

are displayed in Fig. 13. In general, the molybdenum carbide presents a slightly betteradsorption capacity compared tothe materialwithoutMo.Thebestadsorbent wastheNi/Mo2C 700

withanadsorptioncapacity of approximately20mgg−1, which is higher in comparison withother materialsdescribed in the literature.

Themagneticpropertiescanbeusefulfortheseparationofthe adsorbentfromthereactionmixture,whichmayberecoveredafter beenusedintheadsorptionprocess.Thematerialwithadsorbed pollutantswasseparatedbyamagneticfield,fromthemixture. Then,thematerialwaswashedwithethanol toreleasethe pol-lutants,driedat60◦C,andtheregeneratedmaterialswereusedas adsorbentinanewsolution.After4cyclesofadsorption/desorption the sample still showed almost the same adsorption capacity (Supplementarymaterial).

Analyses of the liquid mixtures after the adsorption experiementsbyatomic absorptionspectrometry didnotshow anysignificantconcentrationofNiorMoionsinsolution. More-over, kinetic experiments showed that the adsorption stopped whenthematerialwasmagneticallyremovedfromthemedium. Theseresultsstronglysuggesttheoccurrenceoftheadsorptionin heterogeneousphase.

Theseresultsandpromisingcatalyticactivityaccreditedthem tobeusedincatalyticprocessesthatusecatalyststoreplacenoble metalsasanactivephase.

NiO

Ni/C700 Ni/C800 Ni/C900

0 4 8 12 16 20

a

b

Q

ads

/ mg

g

-1 material S N 0 4 8 12 16 20

Q

ads

/ mg

g

-1 material S N

NiMo Ni/Mo2C 700 Ni/Mo2C 800 Ni/Mo2C 900

(9)

4. Conclusion

TheCVDreactionofNiandNiMooxideswithethanolat tem-peraturesrangingfrom700–900◦Cproducesmagneticcomposites basedonNimagneticparticlewithcarbonaceousmaterialdeposits Ni/CandNi/Mo2C.

Preliminarystudiesintheuseofthemagneticcompositesas adsorbentofmodeldyesandespeciallyfordibenzothiopheneand quinoline,importantcontaminantsintheliquidfuelspresentgreat potentialtobeusedintechnologicalapplications.Thegreat advan-tageof thesecompositesis thattheycouldbeeasilyrecovered magneticallyandreused.

Acknowledgements

The financial support for this research work provide by FAPEMIG,CNPqandCAPESis gratefullyacknowledged.Wealso thanktheUFMGmicroscopycenterfortheuseoftheSEMfacilities. AppendixA. Supplementarydata

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/ j.jhazmat.2012.09.002.

References

[1]T.Chen,B.Yang,S.Li,K.Wang,X.Jiang,Y.Zhang,G.He,Ni2Pcatalystssupported

ontitania-modifiedaluminaforthehydrodesulfurizationofdibenzothiophene, Ind.Eng.Chem.Res.50(2011)11043–11048.

[2] N.M.Schweitzer,J.A.Schaidle,O.K.Ezekoye,X.Pan,S.Linic,L.T.Thompson,High activitycarbidesupportedcatalystsforwatergasshift,J.Am.Chem.Soc.133 (2011)2378–2381.

[3]Z.-Q. Wang, Z.-B. Zhang, M.-H. Zhang, The efficient synthesis of a molybdenum carbide catalyst via H2-thermal treatment of a

Mo(vi)-hexamethylenetetraminecomplex,DaltonTrans.40(2010)1098–1104. [4]S.Cetinkaya,S.Eroglu,ThermodynamicanalysisandsynthesisofporousMo2C

spongebyvapor-phasecondensationandinsitucarburizationofMoO3,J.Alloys

Compd.489(2010)36–41.

[5] Z.Yao,Z.Lai,X.Zhang,F.Peng,H.Yu,H.Wang,Structuralstabilityandmutual transformationsofmolybdenumcarbide,nitrideandphosphide,Mater.Res. Bull.46(2011)1938–1941.

[6] T.C.Xiao,H.T.Wang,J.W.Da,K.S.Coleman,M.L.H.Green,Studyofthe prepa-rationandcatalyticperformanceofmolybdenumcarbidecatalystsprepared withC2H2/H-2carburizingmixture,J.Catal.211(2002)183–191.

[7]A.F. Lamic,C.H.Shin,G.Djega-Mariadassou,C.Potvin,Characterizationof Mo2C-WO2compositecatalystsforbifunctionalisomerization:anewpulse

methodtoquantifyacidsites,Appl.Catal.A302(2006)5–13.

[8]C.S.Castro,M.C.Guerreiro,M.Gonc¸alves,L.C.A.Oliveira,A.S.Anastácio, Acti-vatedcarbon/ironoxidecompositesfortheremovalofatrazinefromaqueous medium,J.Hazard.Mater.164(2009)609–614.

[9]C.M. Piqueras, I.O.Costilla, P.G. Belelli, N.J. Castellani, D.E. Damiani, Pd-␥Al2O3 appliedtotriglycerideshydrogenation withsupercriticalpropane:

experimentalandtheoreticalcatalystscharacterization,Appl.Catal.A347 (2008)1–10.

[10]D.L.J.Thorek,A.Chen,J.Czupryna,A.Tsourkas,Superparamagneticironoxide nanoparticleprobesformolecular imaging, Ann.Biomed. Eng.34(2006) 23–38.

[11]D.E.Sosnovik,M.Nahrendorf,R.Weissleder,MagneticnanoparticlesforMR imaging:agents,techniquesandcardiovascularapplications,BasicRes.Cardiol. 103(2008)122–130.

[12]F.Yang,C.Jin,S.Subedi,C.L.Lee,Q.Wang,Y.J.Jiang,J.Li,Y.Di,D.L.Fu,Emerging inorganicnanomaterialsforpancreaticcancerdiagnosisandtreatment,Cancer Treat.Rev.38(2012)566–579.

[13] Z.H.Sun,L.F.Wang,P.P.Liu,S.C.Wang,B.Sun,D.Z.Jiang,F.S.Xiao,Magnetically motiveporousspherecompositeanditsexcellentpropertiesfortheremovalof pollutantsinwaterbyadsorptionanddesorptioncycles,Adv.Mater.18(2006) 1968–1973.

[14] S.B.C.Pergher,L.C.A.Oliveira,A.Smaniotto,D.I.Petkowicz,Magneticzeolites forremovalofmetalsinwater,Quim.Nova28(2005)751–755.

[15] L.C.R.Machado,F.W.J.Lima,R.Paniago,J.D.Ardisson,K.Sapag,R.M.Lago, Poly-mercoatedvermiculite-ironcomposites:novelfloatablemagneticadsorbents forwaterspilledcontaminants,Appl.ClaySci.31(2006)207–215.

[16]I.R.Guimarães,L.C.A.Oliveira,P.F.Queiroz,T.C.Ramalho,M.Pereira,J.D.Fabris, J.D.Ardisson,Modifiedgoethitesascatalystforoxidationofquinoline:evidence ofheterogeneousFentonprocess,Appl.Catal.A347(2008)89–93.

[17]L.C.A.Oliveira,R.V.R.A.Rios,J.D.Fabris,V.Garg,K.Sapag,R.M.Lago,Activated carbon/ironoxidemagneticcompositesfortheadsorptionofcontaminantsin water,Carbon40(2002)2177–2183.

[18]S.Veintemillas-Verdaguer,Y.Leconte,R.Costo,O.Bomati-Miguel,B. Bouchet-Fabre,M.P.Morales,P.Bonville,S.Pérez-Rial,I.Rodriguez,N.Herlin-Boime, Continuousproductionofinorganicmagneticnanocompositesfor biomed-ical applications by laser pyrolysis, J. Magn. Magn. Mater. 311 (2007) 120–124.

[19]G.M.Shi,Z.D.Zhang,H.C.Yang,Al2O3/Fe2O3composite-coatedpolyhedralFe

nanoparticlespreparedbyarcdischarge,J.AlloyComps.384(2004)296–299. [20] Z.Wang, P.Xiao,N.He,Synthesisandcharacteristicsofcarbon encapsu-latedmagneticnanoparticlesproducedbyahydrothermalreaction,Carbon 44(2006)3277–3284.

[21]P.Y.Keng,I.Shim,B.D.Korth,J.F.Douglas,J.Pyun,Synthesis,Self-assemblyof polymer-coatedferromagneticnanoparticles,ACSNano1(2007)279–292. [22]E.N.Konyushenko,N.E.Kazantseva,J.Stejskal,M.Trchova,J.Kovarova,I.

Sapu-rina,M.M.Tomishko,O.V.Demicheva,J.Prokes,Ferromagneticbehaviourof polyaniline-coatedmulti-wallcarbonnanotubescontainingnickel nanoparti-cles,J.Magn.Magn.Mater.320(2008)231–240.

[23]S.Gyergyek,M.Huskic,D.Makovec,M.Drofenik,Superparamagnetic nanocom-positesofironoxideinapolymethylmethacrylatematrixsynthesizedbyinsitu polymerization,ColloidsSurf.A317(2008)49–55.

[24] M.K.Hong,B.J.Park,H.J.Choi,Preparationandphysicalcharacterizationof polyacrylamidecoatedmagnetiteparticles,Phys.StatusSolidi204(2007) 4182–4185.

[25]L.C.A.Oliveira,E.Pereira,I.R.Guimaraes,A.Vallone,M.r.Pereira,J.P.Mesquita, K.Sapag,PreparationofactivatedcarbonsfromcoffeehusksutilizingFeCl3and

ZnCl2asactivatingagents,J.Hazard.Mater.165(2009)87–94.

[26]P. Tétényi,T. Ollár, T. Szarvas, Sulfurexchange capacity and thiophene hydrodesulfurizationactivityofsulfidedmolybdena–aluminacatalysts pro-motedbynickel,Catal.Today181(2011)148–155.

[27] I.Bezverkhyy,S.Schneefeld,J.Skrzypski,J.P.Bellat,Reactionofthiophenewith mono-andbimetallicNi–Coparticlessupportedongamma-Al2O3andHDS

activitiesofobtainedsulfides,Appl.Catal.A:Gen.371(2009)199–204. [28]E.Rossetto,R. Beraldin,F.G.Penha, S.B.C.Pergher,Bentonites,Diatomites

clayscharacterizationandapplicationinadsorption,Quim.Nova32(2009) 2064–2067.

[29]R.Gerber,Magneticseparation,in:AppliedMagnetism,vol.253,Erice,Italy, 1994,pp.165–220.

[30]T.-C.Xiao,A.P.E.York,H.Al-Megren,C.V.Williams,H.-T.Wang,M.L.H.Green, Preparationandcharacterisationofbimetalliccobaltandmolybdenum car-bides,J.Catal.202(2001)100–109.

Referências

Documentos relacionados

These small iron oxy-hydroxides will be reduced to Fe 0 catalyst for the formation of high surface area carbon nanotubes and nanofibers from ethanol during the CVD reaction..

Temperature-programmed CVD (TPCVD), analyses by X-ray diffractometry (XRD), Mössbauer spectroscopy, energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy, thermogravimetry

Dentre os diversos testes de campo para avaliação da potência aeróbia, o TCar parece ser o mais indicado para atletas de HSG, por combinar os seguintes fatores:

Therefore, this paper aims to synthesize and characterize pure molybdenum carbide and molybdenum carbide based materials (with nickel addition or not) supported on

The grafted imprinting polymers on the magnetic nano-components were prepared by the following steps: synthesis of magnetic cores, silica coating on the magnetic nanoparticles,

When the carbon surface is homogeneously and almost entirely coated with tin dioxide and platinum nanoparticles, low oxidation peak current densities are observed (Pt/SnO 2 /C-1). SnO

Não se pretende de forma alguma substituir a execução prática, absolutamente fundamental para a aquisição de determinadas competências processuais, no entanto a

10 En concreto, este lexicógrafo explica el término del modo siguiente: ‘Encounters.. Además de su significado más común de‘The red liquid circulating in the arteries