• Nenhum resultado encontrado

Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil

N/A
N/A
Protected

Academic year: 2021

Share "Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil"

Copied!
11
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Genomic

identification

and

characterization

of

the

elite

strains

Bradyrhizobium

yuanmingense

BR

3267

and

Bradyrhizobium

pachyrhizi

BR

3262

recommended

for

cowpea

inoculation

in

Brazil

Jakson

Leite

a

,

Samuel

Ribeiro

Passos

b

,

Jean

Luiz

Simões-Araújo

c

,

Norma

Gouvêa

Rumjanek

d

,

Gustavo

Ribeiro

Xavier

d

,

Jerri

Édson

Zilli

d,∗

aDepartamentodeSolos,UniversidadeFederalRuraldoRiodeJaneiro,23851-970Seropédica,RJ,Brazil

bDepartamentodeCiênciasAmbientais,UniversidadeFederalRuraldoRiodeJaneiro,23851-970Seropédica,RJ,Brazil

cLaboratóriodeGenéticaeBioquímica,EmbrapaAgrobiologia,23851-970Seropédica,RJ,Brazil

dLaboratóriodeEcologiaMicrobiana,EmbrapaAgrobiologia,23851-970Seropédica,RJ,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received3October2016 Accepted12January2017 Availableonline31March2017 AssociateEditor:FernandoAndreote

Keywords: Vignaunguiculata Rhizobia MLSA DDH ANI

a

b

s

t

r

a

c

t

Theleguminousinoculationwithnodule-inducingbacteriathatperformbiologicalnitrogen fixationisagoodexampleofan“eco-friendlyagriculturalpractice”.Bradyrhizobiumstrains BR3267andBR3262arerecommendedforcowpea(Vignaunguiculata)inoculationinBrazil andshowedremarkableresponses;neverthelessneitherstrainwascharacterizedatspecies level,whichisourgoalinthepresentworkusingapolyphasicapproach.Thestrains pre-sentedthetypicalphenotypeofBradyrhizobiumwithaslowgrowthandawhitecolonyon yeastextract-mannitolmedium.StrainBR3267wasmoreversatileinitsuseofcarbon sourcescomparedtoBR3262.ThefattyacidcompositionofBR3267wassimilartothetype strainofBradyrhizobiumyuanmingense;whileBR3262wassimilartoBradyrhizobiumelkaniiand

Bradyrhizobiumpachyrhizi.Phylogeneticanalysesbasedon16SrRNAandthree

housekeep-inggenesplacedbothstrainswithinthegenusBradyrhizobium:strainBR3267wasclosest

toB.yuanmingenseandBR3262toB.pachyrhizi.Genomeaveragenucleotideidentityand

DNA–DNAreassociationconfirmedthegenomicidentificationofB.yuanmingenseBR3267

andB.pachyrhiziBR3262.ThenodCandnifHgeneanalysesshowedthatstrainsBR3267and

BR3262holddivergentsymbioticgenes.Insummary,theresultsindicatethatcowpeacan establisheffectivesymbiosiswithdivergentbradyrhizobiaisolatedfromBraziliansoils.

PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeMicrobiologia. ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.

org/licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mail:jerri.zilli@embrapa.br(J.É.Zilli).

https://doi.org/10.1016/j.bjm.2017.01.007

1517-8382/PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeMicrobiologia.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Introduction

Bacteriacollectively known as rhizobia forman important partofthe soilmicrobiota and performbiological nitrogen fixation (BNF) through nitrogenase activity when in sym-biosiswithleguminousplants.Thisecologicalphenomenon hasgreatbiotechnologicalimpactonbiomassandgrain pro-duction. For example, in the soybean crop production in Brazil it isestimated to save over US$ 10 billion annually

bytheuseofBradyrhizobiuminoculationinsteadofchemical

fertilization.1

TheBrazilianMinistryofAgriculturehasalistofrhizobial strains recommended formore than 50 leguminous grain-producingcrops,forageandgreenmanure.2 Inrecentyears

effortshavebeen madetobettercharacterizethesestrains recommendedforinoculationinBrazilandatleastfivenew specieshavebeendescribed.3–6

Brazilistheworld’sthirdleadingcowpeaproducer, with anestimatedproductionof500,000tonsperyear.7Thecrop

yieldvariesfrom400to2000kgha−1,dependingonthesystem andtheregionofcultivation.7Thisyieldhasbeenrisingin

recentyearswithimprovementsincultivationmanagement, suchastheinoculationofseedswithnitrogen-fixingbacteria, apracticeappliedtoapproximately100,000hectares.

ThestrainsBR3267andBR3262areconsideredas“elite” forinoculationofcowpeaplantsinBrazil2andseveral

stud-iesundercontrolledandfieldconditionshaveshownthatboth strainsmakesignificantcontributionstocropyields,including morethan50%NaccumulationviaBNF.8BR3267strainwas

isolatedfromthesemiaridnortheasternregionofthecountry, usingcowpeaastrapplants,whileBR3262strainwasisolated fromanAtlanticForestareainsoutheasternBrazilusingthe samestrategy.1,9 Althoughthesestrainswereisolatedmore

than a decade ago, they were only partially characterized throughassessmentofthegrowth rate,colonymorphology and16SrRNAphylogeny,11 butnotclassifiedatthespecies

level.

Zilli and colleagues11 have characterized the 16S rRNA

genes of the BR 3267 and BR 3262 strains and concluded that both are members of the genus Bradyrhizobium. This genuswascreated inthe early1980stoaccommodate root nodule-inducing bacteria with slowgrowth on media con-taining mannitol and yeast extract.12 Since the turn of

the century, two major subgroup divisions (I and II) have been recognized within this genus based on DNA–DNA hybridization.12–14TheBradyrhizobiumjaponicumand

Bradyrhi-zobium elkaniiwere the firstspeciesassigned tosubgroupI

andII,respectively.15,16AccordingtoZilliandcolleagues,10BR

3267clusteredwithinthesubgroupB.japonicumandBR3262 withinthe subgroupB.elkanii.However,inthe lightof cur-rentknowledge,thoseresultscanbeconsideredinconclusive becausenewBradyrhizobiumspecieswasrecentlydescribed. Thus, furtherinvestigation employing the latestmolecular techniques is needed for the correct positioning of these strains.

In the past five years, the use of housekeeping genes as powerful phylogenetic markers for bacteria has led to the description of over 15 new species within the genus

Bradyrhizobium17 and enabled the separation of genetically

close strains into different species. Examples are the def-inition ofthe species Bradyrhizobiumdiazoefficiens based on

B.japonicumandBradyrhizobiumpachyrhizifromB.elkanii.3,18

Furthermore,newmethodsforgenome-togenome compari-son,likeAverageNucleotideIdentity(ANI)andGenomeBlast DistancePhylogeny(GBDP)havebeenintroducedandare con-tributingtoimprovebacterialtaxonomy.19,20

Therefore,thegoal ofourstudywastocharacterizeata finer thetaxonomiclevelbothBR3267andBR3262strains usingapolyphasicapproach.

Materials

and

methods

Strainsused

The cowpea strains BR 3267 and BR 3262, and the type strain B. elkaniiUSDA 76T were obtainedfrom the Johanna

DöbereinerBiologicalResourceCenter(CRB-JD,Embrapa Agro-biologia, Seropédica-Riode Janeiro,Brazil).Thetypestrains

B.pachyrhiziPAC48T(=LMG24246T)andBradyrhizobium

yuan-mingenseCCBAU10071T(=LMG21827)wereobtainedfromthe

LMGCultureCollection(Belgium).Thestrainsweregrownon yeastextract-mannitolagar medium(YMA)and were incu-batedat28◦C21forsevendaysuntiltheyreachedsufficient colonygrowthlevelstoobservemorphologicalfeaturesand purity.

Phenotypicandphysiologiccharacterizations

Inoculum preparationforbothBR 3267andBR3262strains wascarriedoutusingYMAmediumat28◦C.Carbonsource utilizationwasassessedwithBiologGN2microplates(Biolog Inc., Hayward, CA) following the manufacturer’s instruc-tions, except that cell concentration was adjusted to5 on the McFarland scale. Plates were incubated in the darkat 28◦Cforten days.Thebiochemical featureswereassessed using API 20 NE strips (bioMérieux, Marcy-L’Etoile, France) following a standard protocol that uses a saline solution (0.85%NaCl)forbacterialsuspension.Additionally,the toler-ancetoabioticstress,suchastemperature,pHandsalinity (NaCl), was determined by examining the growth in YMA medium. The temperature tolerance was evaluated at 15, 20, 25, 28, 30, 32 and 37◦C, and the pH tolerance was tested in arange from 4 to10. Thesalinitytolerance was examined at 28◦C in YMA medium supplemented with 0.1, 0.3, 0.5, 1.0, 1.5, 2.0 or 2.5% (w/v) of NaCl. The resis-tance to antibiotics was determined using YMA medium and the disk diffusionmethodforampicillin (25␮g), chlor-amphenicol(50␮g),erythromycin(30␮g),gentamicin(10␮g), kanamycin(30␮g),neomycin(10␮g),penicillin(10␮g), strep-tomycin(10␮g)andtetracycline(30␮g).Alltestswererunin triplicate.

Fattyacidcomposition

The BR 3267and BR 3262and type strains B.elkanii USDA

76T,B.pachyrhiziPAC48TandB.yuanmingenseCCBAU10071T

type strains were characterized based on whole-cell fatty acids,derivedusing themethyl esters’method(FAME) and

(3)

analyzedwith aHewlett Packardgaschromatograph fitted with a fused silica capillary column (25m×0.2mm inter-nal diameter). The type strains B. elkanii USDA 76T, B.

pachyrhiziPAC48T and B.yuanmingense CCBAU10071T were

chosenbecausetheywere the closestrelated strainstoBR 3262 and BR 3267 respectively, based on EzTaxon identi-ficationsearch(http://www.ezbiocloud.net/eztaxon/identify). ChemStation A.09.01 software [1206] and a MIDI Micro-bial Identification System 4.0(Sherlock TSBA Library, MIDI ID, Inc., Newark, DE, USA) were used for the fatty acid identification.

DNAextraction,PCRamplificationandsequencingofPCR fragments

Pure cultures ofBradyrhizobiumstrains were grown on YM mediumfor4daysat28◦Cunderstirringof120rpm.Then, 2mL of cell suspension were centrifuged (12,000×g), and the total genomic DNA was extracted using a Wizard® GenomicDNAPurificationKit(Promega,USA)followingthe manufacturer’s instructions. The recA gene was amplified by PCR using the primers TSrecAf and TSrecAr, and the

glnII gene was amplified with the primers TSglnIIf and

TSglnIIr.22 Theprimers NodCfor540and NodCrev1160 were

used to amplify the symbiotic nodC gene, as described by Sarita et al.23 For the nifH, the primers NifHF/NifHI were

used followingthe methods described byLaguerre et al.24

DNA sequences of the PCR products were obtained for bothstrands with the same primers used for gene ampli-fications. The 16S rRNA sequences of the BR 3267 (Gene BankA.no. AY649439)andBR3262(A.no.AY649430)strains obtainedinapreviousstudy10wereretrievedfromGenBank

(http://www.ncbi.nlm.nih.gov/genbank/). For the gyrB gene,

thesequenceswereretrievedfromdraftgenomesequences ofthe BR 3267and BR 3262 strains(Ac. no. KT005410 and KT005409,respectively).

Phylogeneticanalysis

Forward and reverse readings of the 16S rRNA, recA, glnII, nodC and nifH gene fragments were edited and assem-bled using DNABASER (http://www.dnabaser.com). Multiple sequencealignmentswereperformedusingClustalWthrough MEGA6.0.25 Maximumlikelihood(ML)phylogenetic

recons-tructions were completed using MEGA 6 for single gene sequences(16SrRNA,recA,glnII,gyrB,nodCandnifH),anda multilocussequence analysis (MLSA) wasperformed using theconcatenatedsequencesofthehousekeepinggenesrecA,

glnIIand gyrB.Thedistancematriceswerecalculatedusing

the Kimura two-parameter substitution model,26 and the

robustness of the tree nodes was evaluated with a boot-strap analysis27 using 500 pseudoreplicates. The software

default parameters were considered in all of the analy-ses.Sequencesofrhizobialtypestrains usedforalignment and phylogenetic analysis were retrieved from GenBank

(http://www.ncbi.nlm.nih.gov/genbank/),andaMicrovirga

vig-nae BR 3299 strain28 was used as the outgroup in the ML

analysisofthe16SrRNAgene.

DNA–DNArelatednessandaveragenucleotideidentity (ANI)

TheDNA–DNA hybridization(DDH)amongbacterialstrains wasdeterminedbasedonthethermaldenaturation temper-aturesofhybridandhomologousgenomicDNA,asdescribed byGonzalezandSaiz-Jimenez,29,30exceptthattheDNA

con-centrationwasadjustedto2␮gperreaction.Theexperiments were performed in 96-well optical plates with appropriate optical adhesives in three replicates and including wells without DNA asnegativecontrol.For DNA hybridization,a Bio-RadMyCiclerthermocyclerwasused,andfor fluorimet-ricmeasurementsduringthedenaturationstageanApplied Biosystems7500Real-Timesystemwasused.Thermal con-ditionsforhybridizationconsistedonadenaturationstepof 99◦Cfor10min,followedbyanannealingperiodof8hat79◦ C(optimumtemperatureforrenaturation–TOR).29,31 Itwas

followedbyprogressive10-minsteps,eachat1.8◦Cbelowthe previousone,until25◦Cwhenitwasholdfor30minbefore refrigerationto4◦C.Thefluorescencewasmeasuredusinga denaturationrampsettledatthestepandholdmode.Heating rate was 0.2◦Cs−1 with fluorescence decreasing measure-mentateach0.2◦Cstep,duringa12shold,andbetween25 and99.9◦C.29TheDDHexperimentswereperformedbetween

strainsBR3267andBR3262andtheirphylogeneticallyrelated typestrainsbasedonthe16SrRNAgenesimilarities.BR3267 wascomparedagainstB.yuanmingenseCCBAU10071T,andBR

3262wascomparedagainstB.pachyrhiziPAC48TandB.elkanii

USDA76T.

TheANIestimationwasperformedwithaJSpecies plat-form version 1.2.1,32 and MUMmer was used for genome

alignment.33Allsystemrequirements(BLASTandMUMmer)

weredownloadedandinstalledlocallyinasystemLinux. Bac-terial genome were retrieved from NCBI database as fasta fileandusedtoANIcalculation,consideringJSpeciesdefault parameters.ThesequencedgenomeofstrainBR3262(Ac.no. LJYE00000000.1)34 was comparedtogenomesofthe strains

USDA 76T (B.elkanii GenBankA.no. ARAG00000000.1)and

PAC48T (B. pachyrhiziGenBankA.no. LFIQ00000000.1).The

genome ofthe strainBR 3267(A.no. LJYF00000000.1)35 was

comparedtothatofthestrainCCBAU35157(B.yuanmingense

–A.no.AJQL00000000.1).

Results

Phenotypicandphysiologicfeatures

BothBR3267andBR3262strainscangrowinapHrangeof 4–10, tolerate upto 0.5%NaCl inthe mediumand present normal growth in a temperature range from 15 to 32◦C, andBR3267couldalsogrowupto37◦C(Table1).Likewise, bothstrainsshowedpositivereactionstoenzymeureaseand nitratereductase.Theirsusceptibilitiestodifferentantibiotics werevariable(Table1).BR3267wassensitivetostreptomycin andtetracycline,whileBR3262wastolerant.Withrespectto thecarbonsourcesevaluatedwiththeBiologkit,BR3262strain wasabletouse33ofthe95sourcestested,whileBR3267strain wasabletousemorethan50.

(4)

Table1–PhenotypicfeaturesofthecowpeaBradyrhizobiumstrainsBR3267andBR3262ascharacterizedbyAPI20NE andBiologGN2microplates.Dataobtainedfrom5daysduplicatereadmeanvalues(+=positive;=negative,w=weak).

Phenotypicfeature BR3267 BR3262 Phenotypicfeature BR3267 BR3262 Phenotypicfeature BR3267 BR3262

Enzymaticreaction pH4 + + Ester

Catalase + − pH10 + + Methylpyruvate + −

Hydrolysisofgelatine + − 1%NaCl − − Mono-methyl-succinnate + −

Hydrolysisofesculin + + Carbohydrates Aminoacids

ˇ-galactosidase w − d-Arabitol + − d-Alanine − +

Resistanceto(g) ␣-d-Glucose + − l-Alanine − +

Ampicillin(25) − + d-Mannose + − Glycyl-l-asparticacid + −

Chloramphenicol(50) − + d-Psicose + − l-Leucine + −

Kanamycin(30) + − d-Sorbitol + − l-Phenylalanine + −

Neomycin(10) + − Carboxylicacids l-Proline + −

Penicillin(10) − + d-Galacturonicacid + − d-Serine + −

Streptomycin(10) − + d-Glucosaminicacid + − l-Threonine + −

Tetracycline(30) − + ␣-Ketovalericacid + − ␥-Aminobutyricacid + −

Erythromycin(30) + + d,l-Lacticacid + − Polymer

Gentamicin(10) + + Malonicacid + − Dextrin − +

Growthat Quinicacid + − Amide

15◦C + + d-Saccharicacid + − Glucuronamide + −

32◦C + + Sebacicacid + − Amine

37◦C + − Succinicacid + − Phenylethylamine + −

BothstrainsBR3267andBR3262werepositiveto:Oxidase,Urease,Nitratereduction,Hydrolysisofesculin,l-Arabinose,l-Fucose,d-Galactose,

d-Mannitol,l-Rhamnose,Tween40,Tween80,Aceticacid,Citricacid,Formicacid,d-Galactonicacidlactone,d-Gluconicacid,␣-Hydroxybutyric

acid,␤-Hydroxybutyricacid,␥-Hydroxybutyricacid,p-Hydroxyphenylaceticacid,␣-Ketobutyricacid,␣-Ketoglutaricacid,Propionicacid,

Glyc-erol,l-Alanyl-glycine,l-Asparagine,l-Asparticacid,l-Glutamicacid,Glycyl-l-glutamicacid,l-Pyroglutamicacid,l-Serine,Succinamicacid,

l-AlaninamideandBromosuccinicacid; andnegative to:Tryptophandeaminase,Glucosefermentation,Argininedihydrolase,

N-Acetyl-d-galactosamine,N-Acetyl-d-glucosamine,Adonitol, d-Cellobiose,i-Erythritol,d-Fructose, Gentiobiose,m-Inositol, ␣-d-Lactose,Lactulose,

Maltose,d-Melibiose,␤-Methyl-d-Glucoside,d-Raffinose,Sucrose,d-Trehalose,Turanose,Xylitol,␣-Cyclodextrin,Glycogen,cis-Aconiticacid,

d-Glucuronicacid,Itaconicacid,2,3-Butanediol,d,l-␣-Glycerolphosphate,Glucose-1-phosphate,Glucose-6-phosphate,l-Histidine,

Hydroxy-l-proline,l-Ornithine,Urocanicacid,Inosine,Uridine,Thymidine,Putrescineand2-Aminoethanol.

Fattyacidcomposition

The fatty acid composition was analyzed for the BR 3262 andBR3267strainsandforB.elkaniiUSDA76T,B.pachyrhizi

PAC48TandB.yuanmingenseCCBAU10071T,theclosesttype

strainsbasedonEzTaxonIdentifysearchofthe16SrRNAgene

(http://www.ezbiocloud.net/eztaxon/identify).Thefatty acid

compositionsofBR3267andBR3262weresimilartothoseof otherstrainswithinBradyhizobiumgenus,especiallybecause ofthepresenceof16:00inapproximately15%andasummed feature8(18:1w7c)betweenapproximately70and80%.40BR

3262hasacompositionclosetothoseofB.elkaniiUSDA76T

andB.pachyrhiziPAC48T,withthepresenceof19:0cyclow8cof

15.98%andasummedfeature8(18:1w7c)of69.32.Instead,BR

3267andB.yuanmingenseCCBAU10071Tdidnotpresent19:0

cyclow8candhadasummedfeature8of86.42and84.63%, respectively.

Phylogeneticanalyses

The Maximum Likelihood (ML) phylogenetic analysis per-formedon the16S rRNA (1227bp) geneplacedthe cowpea strainsBR3267andBR3262intosubgroupsIandII, respec-tively, withinthe genus Bradyrhizobium(Fig.1). Theclosest straintoBR3267wasB.yuanmingenseCCBAU10071T(99.5%

16SrRNAsimilarity),with67%MLbootstrapsupport,followed

byBradyrhizobiumsubterraneum582-1T(99.6%16SrRNA

simi-larity)inaseparatedbranchwith62%bootstrap.Incontrast, BR3262wasplacedwithinsubgroupIIofBradyrhizobiumina

phylogeneticlinagetogetherwithB.pachyrhiziPAC48T(100%

16SrRNAsimilarity),B.elkaniiUSDA76T(99.9%)and

Bradyrhizo-biumtropiciagriCNPSo1112T(99.2%),butwithnodeslowerthan

<60%ofbootstrap.TheBradyrhizobiumferriligniCCBAU51502T

wastheclosesttaxontothecladeofB.tropiciagri–B.elkanii–B.

pachyrhizi–BR3262,asshownbythehighMLbootstrap

sup-port(91%,Fig.1);itshares97.8%of16SrRNAsimilaritywith BR3262.

We usedaligned sequences from the recA (359bp),glnII

(505bp)andgyrB(552bp)housekeepinggenes,whichresulted inaconcatenatedsequenceof1416bp,tobetterassess the phylogeneticaffiliationoftheBR3267andBR3262strains.ML phylogenetic treesofsingleandconcatenatedgenes(Fig.2) weregeneratedandshowedhighcongruence;therefore,we presentedonlytheconcatenatedone.Theconcatenated phy-logeneticanalysisrevealedaclearaffiliationbetweenBR3267

and B. yuanmingense CCBAU 10071T, with high confidence

bootstrapvaluesofthe100%,inalineage thatwasdistinct from the closestsoybean isolatesBradyrhizobiumdaqingense

CCBAU15774T48andBradyrhizobiumhuanghuaihaienseCCBAU

23303T.49 Ontheother hand,BR3262wasphylogenetically

close toB. pachyrhiziPAC48T, whichformed alineage with

high confidence values (bootstrap ML of 98%) and sepa-ratedfromtheclosedtaxaB.ferriligniCCBAU51502T andB.

elkanii USDA76T. Additionally, pairwise comparisonsof the

concatenated sequences revealed that BR 3267shared 99% sequence identity withB.yuanmingense CCBAU 10071T,

fol-lowed byBradyrhizobiumliaoningense USDA 3622T (95%) and

(5)

65 72 60 95 60 59 7365 93 90 81 85 50 Bradyrhizobium manausense BR 3351T (HQ641226) Bradyrhizobium guangdongense CCBAU 51649T (KC508867) Bradyrhizobium ganzhouense RITF806T (JQ796661)

Bradyrhizobium cytisi CTAW11T (EU561065) Bradyrhizobium rifense CTAW71T (EU561074)

Bradyrhizobium vignae 7-2T (KP899563)

Bradyrhizobium huanghuaihaiense CCBAU 23303T (HQ231463) Bradyrhizobium arachidis CCBAU 051107T (HM107167)

Bradyrhizobium kavangense 14-3T (KP899562) Bradyrhizobium iriomotense EK05T (AB300992) Bradyrhizobium ingae BR 10250T (KF927043) Bradyrhizobium guangxiense CCBAU 53363T (KC508877) Bradyrhizobium diazoefficiens USDA 110T (NC_004463) Bradyrhizobium betae LMG 21987T (AY372184)

BR 3267 (AY649439)

BR 3262 (AY649430)

Bradyrhizobium yuanmingense CCBAU 10071T (AF193818)

Bradyrhizobium subterraneum 58 2-1T (KP308152) Bradyrhizobium liaoningense USDA 3622T (AF208513)

Bradyrhizobium daqingense CCBAU 15774T (HQ231274) Bradyrhizobium japonicum USDA 6T (U69638)

Bradyrhizobium canariense BTA-1T (AJ558025) Bradyrhizobium ottawaense OO99T (JN186270)

Bradyrhizobium denitrificans LMG 8443T (X66025) Bradyrhizobium oligotrophicum LMG 10732T (JQ619230) Bradyrhizobium retamae Ro 19T (KC247085)

Bradyrhizobium valentinum LmjM3T (JX514883)

Bradyrhizobium neotropicale BR 10247T (KF927051) Bradyrhizobium embrapense CNPSo 2833T (AY904773) Bradyrhizobium erythrophlei CCBAU 53325T (KF114645) Bradyrhizobium viridifuturi SEMIA 690T (FJ025107)

Bradyrhizobium lablabi CCBAU 23086T (GU433448) Bradyrhizobium icense LMTR 13T (KF896156) Bradyrhizobium paxllaeri LMTR 21T (AY923031)

Bradyrhizobium jicamae PAC68T (AY624134)

Bradyrhizobium pachyrhizi PAC48T (AY624135) Bradyrhizobium elkanii USDA 76T (U35000)

Bradyrhizobium tropiciagri CNPSo 1112T (AY904753) Bradyrhizobium ferriligni CCBAU 51502T (KJ818096) Microvirga vignae BR 3299T (JX504804)

Bradyrhizobium yuanmingense CCBAU 35157 (AJQL01000001.1)

0.02

Fig.1–MaximumLikelihoodphylogenetictreebasedon16SrRNAgenesequencesshowingrelationshipsbetweenthe strainsBR3262andBR3267andthetypespecies(T)ofthegenusBradyrhizobium.Bootstrapvalueswereinferredfrom500 replicatesandareindicatedatthetreenodeswhen≥50%.GenBankaccessionnumbersareprovidedinparenthesis.

MicrovirgavignaeBR3299Twasincludedastheoutgroup.Thebarrepresentstwoestimatedsubstitutionsper100nucleotide

positions.

similar toB. pachyrhizi PAC48T (98.6%), followed by B.

elka-niiUSDA76T (96.9%)andB. ferriligniCCBAU51502T (95.5%).

In an independent analysis of the recA, glnII and a con-catenated recA-glnII sequences (data not shown), BR 3267 and BR 3262 were far from the newest proposal species

Bradyrhizobium kavangense 14-3T,50 Bradyrhizobium vignae

7-2T51 and B. subterraneum 58-2-1T52 isolated from African

soils.

DNA–DNArelatednessandaveragenucleotideidentity

Afterobtainingthephylogeneticresults,weestablishedthe contrastsfortheanalysisoftheDNA–DNAhomology follow-ingtheprotocoldescribedbyGonzalesandSaiz-Jimenez.29BR

3262wascomparedwithB.elkaniiUSDA76TandB.pachyrhizi

PAC48T(thecloseststrainsaccordingtoMLSA),andBR3267

(6)

57 80 67 54 85 98 99 100 64 100 95 99 99 99 95 98 99 98 0.02

Bradyrhizobium cytisi CTAW 11T (GU001575, GU001594, JN186292)

Bradyrhizobium ganzhouense RITF806T (JX277144, JX277110, KP420022)

Bradyrhizobium rifense CTAW71T (GU001585, GU001604, KC569466)

Bradyrhizobium canariense BTA-1T (AY591553, AY386765, AB353736)

Bradyrhizobium betae LMG 21987T (FM253174, AB353733, AB353735)

Bradyrhizobium diazoefficiens USDA 110T (NC_004463, NC_004463, NC_004463)

Bradyrhizobium japonicum USDA 6T (AM168341, AF169582, AM418801)

Bradyrhizobium ottawaense OO99T (HQ587287, HQ587750, HQ873179)

Bradyrhizobium liaoningense USDA 3622T (AY494833, AY494803, FM253223)

Bradyrhizobium arachidis CCBAU 051107T (HM107233, HM107251, JX437675)

Bradyrhizobium neotropicale BR 10247T (KJ661714, KJ661700, KJ661707)

Bradyrhizobium iriomotense EK05T (AB300996, AB300995, HQ873308)

Bradyrhizobium ingae BR 10250T (KF927061, KF927067, KF927079)

Bradyrhizobium huanghuaihaiense CCBAU 23303T (HQ231595, HQ231639, JX437672)

Bradyrhizobium daqingense CCBAU 15774T (HQ231270, HQ231301, JX437669)

Bradyrhizobium yuanmingense CCBAU 10071T (AY591566, AY386780, FM253226)

Bradyrhizobium manausense BR 3351T (KF785992, KF785986, KF786000)

Bradyrhizobium guangdongense CCBAU 51649T (KC509269, KC509023, KC509072)

Bradyrhizobium guangxiense CCBAU 53363T (KC509279, KC509033, KC509082)

Bradyrhizobium denitrificans LMG 8443T (FM253196, HM047121, FM253239)

Bradyrhizobium oligotrophicum LMG 10732T (JQ619231, JQ619233,KC569467)

Bradyrhizobium jicamae PAC68T (HM590776, FJ428204, AM418801)

Bradyrhizobium paxllaeri LMTR 21T (JX943617, KF896169, KF896195)

Bradyrhizobium lablabi CCBAU 23086T (GU433522, GU433498, JX437670)

Bradyrhizobium retamae Ro19T (KC247094, KC247108, KF962698)

Bradyrhizobium icense LMTR13T (JX943615, KF896175, KF896201)

Bradyrhizobium valentinum LmjM3T (JX518589, JX518575,NZ_LLXX01000044.1)

Bradyrhizobium erythrophlei CCBAU 53325T (KF114669, KF114693, KF114717)

Bradyrhizobium tropiciagri CNPSo 1112T (FJ391168, FJ391048, HQ634890)

Bradyrhizobium embrapense CNPSo 2833T (HQ634899, GQ160500, HQ634891)

Bradyrhizobium viridifuturi SEMIA 690T (KR149140, KR149131, KR149134)

Bradyrhizobium elkanii USDA 76T (AY591568, AY599117, AB070584)

Bradyrhizobium ferriligni CCBAU 51502T (KJ818112, KJ818099, KJ818102)

Bradyrhizobium pachyrhizi PAC48T (HM590777, FJ428201, HQ873310)

BR 3267 (KF828822, KF828821, KT005410)

BR 3262 (KF828817, KF828816, KT005409)

Fig.2–Unrootedmaximumlikelihoodphylogenetictreebasedonthreeconcatenatedsequences(recA,glnII,gyrB)showing relationshipsbetweenthestrainsBR3262andBR3267andtypespecies(T)ofthegenusBradyrhizobium.Thephylogenetic treewasbuiltusingtheKimuratwo-parametermethod.Bootstrapvalueswereinferredfrom500replicatesandare indicatedatthetreenodeswhen≥50%.GenBankaccessionnumbersareprovidedinparenthesis.Thebarrepresentstwo estimatedsubstitutionsper100nucleotidepositions.

closeststrainintheMLSA).ThehybridizationofBR3262×B.

elkaniiUSDA76TandB.elkaniiUSDA76T×B.pachyrhiziPAC48T

presentedTmvaluesequalto10.1◦Cand3.9◦C,respectively,

and the hybridization of BR 3267×B. yuanmingense CCBAU 10071Tpresentedavalueof3.9◦C(Fig.3).

FortheANIcalculation,weusedtheavailablegenomesof

B.elkaniiUSDA76TandB.pachyrhiziPAC48Tforcomparison

withBR3262and,B.yuanmingenseCCBAU3515754for

compar-isonwithBR3267becausenogenomewasavailableforthe typestrainofB.yuanmingenseCCBAU10071T.TheANIbetween

strainBR3262andB.elkaniiUSDA76TandbetweenstrainBR

3262andB.pachyrhiziPAC48Twas94.6and95.3,respectively.

OnanotherhandtheANIinthecomparisonofBR3267andB.

yuanmingenseCCBAU35157was96.5.

PhylogenybasedonthenodCandnifHsymbioticgenes

Maximum Likelihood phylogenetic analyses of the symbi-otic genes nodC and nifH separated the BR 3267 and BR 3262strainsintotwodivergentphylogeneticlineages(Fig.4A

fornodC, Fig. 4BfornifH).For bothnodC andnifH, BR3267

(7)

100 50 BR 3267 BR 3262 PAC 48 USDA 76 BR 3262 CCBAU 10071 Hybrid: BR 3267/CCBAU 10071 Hybrid: BR 3262/PAC 48 Hybrid: BR 3262/USDA 76 ΔTm= 3.9 ΔTm = 3.9 ΔTm = 10.1 0 100 50 0 100 50 0 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Temperature (ºC)

Fluorescence (%)

Fig.3–MeltingcurvesgeneratedwithAppliedBiosystems7500Real-TimeSystemforTmdeterminationbetween homologousandhybridDNA.(a)ComparisonbetweenstrainBR3267andB.yuanmingenseCCBAU1007T;(b)betweenBR

3262andB.pachyrhiziPAC48T;(C)betweenBR3262andB.elkaniiUSDA76T.

B.yuanmingenseCCBAU10071Tandthesoybeantypestrains

that represent the symbiovar glycinearum.In contrast, BR 3262was groupedin anearly branchlinkedtothe related strainsB.pachyrhiziPAC48T,B.elkaniiUSDA76TandB.ferriligni

CCBAU51502Tforbothsymbioticgenes(Fig.4AandB).

Discussion

Theanalysesintheculturemediumshowedthatbothstrains, BR3267andBR3262,havesimilarbehaviorsincomparison toothermembersoftheBradyrhizobiumgenusregarding tol-erance to temperature, pH and NaCl concentration in the culturemedium.Thesetraitsindicatetheyaretolerantto dif-ferentedapho-climaticfactorsandmakethemwelladapted totheconditionsofthetropicalsoilsfromwhichtheywere isolated.Thisadaptabilityiscorroboratedbytheirgood per-formanceincowpeainoculations.8,36,37 TheBR3267andBR

3262strains were positive to ureaseand nitrate reductase

enzymesreactions,whichareapparentlycommon character-isticsamongstrainsofthegenusBradyrhizobium.38,39Itseems

tobeacommoncharacteristicamongBradyrhizobiumspecies ofsubgroupI(closetoB.japonicum)tobesensitiveto strepto-mycinandtetracycline,asshowedbyBR3267.Incontrast,BR 3262wastoleranttotheseantibiotics,acommon

characteris-ticofBradyrhizobiumspeciesbelongingtosubgroupII(closeto

B.elkanii).40The50carbonsourcesusedbyBR3267pointsto

greateraccesstodifferentsoilcarboncompounds.Theresults ofthe fattyacid composition analysiscorroborateprevious findingsthatindicatethatthemaindifferencesbetween sub-groupsIandIIofBradyrhizobiumarethe19:0cyclow8cand thesummedfeature8(18:1w7c),whichindicatethatBR3267 belongstothe subgroupofB.japonicumandBR3262tothe subgroupofB.elkanii.40,41

Whenthe16SrRNAgenesofstrainsBR3267andBR3262 were firststudied,11 it wasobservedthatalthoughBR3267

could begrouped withB. japonicum,there were differences withrespecttotheB.japonicumtypestrainpattern.Atthetime,

(8)

B. japonicum USDA 6T (AB354632) B. ottawaense OO99T (HQ587980)

B. huanghuaihaiense CCBAU 23303T (KF962706) B. diazoefficiens USDA 110TT(NC_004463) B. daqingense CCBAU 15774TT (HQ231326)

B. yuanmingense CCBAU 10071T (AB354633)

BR 3267 (KF828824)

B. arachidis CCBAU 051107T (KF962705) B. vignae 7-2T (KT362339)

B. kavangense 14-3T (KT033402)

B. pachyrhizi PAC48T (HQ588110)

B. elkanii USDA 76T (AB354631) B. ferriligni CCBAU 51502T (KJ818109)

B. tropiciagri CNPSo 1112T (KP234520) B. embrapense CNPSo 2833T (KP234521) B. canariense BTA-1T (AJ560653)

B. cytisi CTAW11T (EU597844) B. rifense CTAW71T (EU597853) B. erythrophlei CCBAU 53325T (KF114576)

B. jicamae PAC68T (AB573869) B. lablabi CCBAU 23086T (GU433565)

B. paxllaeri LMTR 21T (KF896160) B. retamae Ro19T (KC247112) B. icense LMTR 13T (JX514897) B. valentinum LmjM3T (JX514897) B. neotropicale BR 10247T (KJ661727) B. ingae BR 10250T (KF927054)

B. iriomotense EK05T (AB301000) B. manausense BR 3351T (KF786002)

B. ganzhouense CCBAU 51649TT (JX292035)

Bradyrhizobium sp. ORS285 (AF284858) Bradyrhizobium. sp. VUPME10 (HG940520) BR 3262 (KF828819) 100 99 92 53 69 84 99 9498 67 99 100 100 100 100 100 100 100 100 55 84 97 59 99 71 99 89 95 99 97 93 82 66 95 0.02 89 96 99 0.05 B. huanghuaihaiense CCBAU 23303T (HQ231551) B. liaoningense USDA 3622T (EU818925) B. japonicum USDA 6T (HM047126) B. ottawaense OO99T (JN186287) B. diazoefficiens USDA 110T (NC_004463) B. daqingense CCBAU 15774T (HQ231323)

B. yuanmingense CCBAU 10071T (EU818927) B. arachidis CCBAU 051107T (HM107283)

B. pachyrhizi PAC48T (HM047124) B. elkanii USDA 76T (AB094963) B. ferriligni CCBAU 51502T (KJ818108)

B. tropiciagri CNPSo 1112T (HQ259540) B. embrapense CNPSo 2833T (KP234518) B. viridifuturi SEMIA 690T (KR149137) B. erythrophlei CCBAU 53325T (KF114598) B. lablabi CCBAU 23086T (GU433546)

B. paxllaeri LMTR 21T (DQ085619) B. icense LMTR 13T (KF89616) B. retamae Ro19T (KF670138) B. valentinum LmjM3T (KF806461) B. jicamae PAC68T (HM047127) B. guangdongense CCBAU 51649T (KC509130) B. guangxiense CCBAU 53363T (KC509140) B. denitrificans LMG 8443T (HM047125) B. ganzhouense RITF806T (JX292065)

B. canariense BTA-1T (EU818926) B. cytisi CTAW11T (GU001618)

B. rifense CTAW71T (GU001627)

BR 3267 (KF828825)

BR 3262 (KF828820)

A

B

Fig.4–UnrootedmaximumlikelihoodphylogenetictreebasedonnodC(A)andnifH(B)genesshowingrelationships betweenthestrainsBR3262andBR3267andtypespecies(T)andreferencestrainsofthegenusBradyrhizobium.The phylogenetictreewasbuiltusingtheKimuratwo-parametermethod.Bootstrapvalueswereinferredfrom500replicates andareindicatedatthetreenodeswhen≥50%.GenBankaccessionnumbersareprovidedintheparenthesis.Thebar representsfiveortwoestimatedsubstitutionsper100nucleotidepositions.

however,thespeciesB.yuanmingense,whichalsobelongsto subgroupIofBradyrhizobium,hadnotyetbeendescribed;thus, therewasnospeciesindication.Itwasobservedontheother handthatBR3262hadastrongresemblancetoB.elkaniiby the16SrRNAgene,whichsupportedthatthestrainshouldbe assignedtothatspecies.Atthattime,thespeciesB.pachyrhizi,

whichintermsofbasecompositionofthe16SrRNAgene dif-fersfromstrainsB.elkaniiUSDA76Tonlyontheorderof0.1%,

hadnotyetbeendescribed.16SrRNAsequenceanalysisisnot alwaysfineenoughforspeciesassignment42,43;inthegenus

Bradyrhizobiumsomespeciessharealmostidentical16SrRNA

genesequences.Examplesarethetypestrainsofthespecies

B.japonicumandB.liaoningense,3alongwithB.elkaniiandB.

pachyrhizi.18 Due tothe high conservation ofthe 16SrRNA

geneamongmembersoftheBradyrhizobiumgenus,14,15several

authorshaverecommendedanMLSAofprotein-encoding(i.e., housekeeping) genes.6,22,44–47 In ourcase,the MLSAresults

werecongruenttothe16SrRNAanalysisandclearlyindicate thatBR3267andBR3262asmembersofthespeciesB.

yuan-mingenseandB.pachyrhizi,respectively(Fig.2).TheDNA–DNA

homology resultsconfirmtheresultsobtainedin the anal-ysisofhousekeeping genes, i.e., BR 3262belongs tothe B.

pachyrhizispecies,andBR3267isamember oftheB.

yuan-mingensespecies.Aspreviouslyshown,aTmvalueequalto

5◦Ccanbeusedasthethresholdtodelineateaspecies,where lower valuesindicate equalspeciesandhighervalues indi-catedifferentspecies.29AT

mvalueof5◦Ccorrespondstoa

homologyvalueofapproximately70%obtainedbytraditional DNA–DNAhybridizationtechniques.29,30Moreover,we

calcu-latedtheANI,arobustmethodthatreplacesthetraditional DNA–DNAhybridizationtechniques.19Thismethodinvolves

comparing the sequences oftwo bacterialgenomes, and a valueof95%isconsideredasthethreshold.19,53Inthiscase,

whenthehomologyisgreaterthan95%,thetwostrainsbelong tothesamespecies;ifthehomologyislower,theybelongto differentspecies.Thus,theresultsofthecomparisonsagain confirmedthatBR3262belongstoB.pachyrhizi(ANIgreater

than95%)andthesameBR3267toB.yuanmingense(ANIgreater

than95%).

Symbiotic genes related to nodulation (nod) and nitro-gen fixation (nif)processes hold notaxonomicinformation forspeciesdefinition.17 However,inourstudy,theyshowed

goodphylogeneticcorrespondencetothecoregenomeones. Interestingly,nodCandnifHgenephylogeneticanalyseshave

(9)

beenusedtopredictthehostrangenodulationcapacityand for the delineation of symbiovars, i.e., groups of rhizobial strains withsimilar symbiotic behaviors concerning nodu-lation and nitrogen fixation capacity with legumes.55 For

the nodC gene, for example, a BLAST search in the NCBI database (http://blast.ncbi.nlm.nih.gov/)showed the Arachis

hypogaestrainsCCBAU53380(Ac.no.KC509232)andCCBAU

51663(Ac.no.KC509217),isolatedinChina,asthe Bradyrhizo-biumstrainsthathadtheclosestsimilarity(98%)withBR3267, indicatingthatpeanutmightbeapossiblehostforthislatter strain.Instead,inthenodCgene,BR3262had95%similarity withthecowpeastrainBradyrhizobiumsp.VUMPE10(Fig.4A), isolatedfromanEuropeansoilandproposedasanew symbio-var(sv.vignae)withintheBradyrhizobiumgenus.56Thesedata

indicatethatcowpeanodulateswithveryeffective Bradyrhizo-biumstrainsthatareholdingdivergentsymbioticgeneswhich mightrepresentdistinctsymbiovars.

Cowpeacannodulatewithawiderangeofrhizobia geno-types,Bradyrhizobiumbeingthemajorsymbiontgroup.Thies and colleagues57 proposed that cowpea’s promiscuity for nodulation withthe bradyrhizobialpopulation may have a limit.However,aglobalBradyrhizobiumcollectionforcowpea nodulationhasnotyetbeenwellanalyzedtoidentifytrue cow-peasymbiontsinlightofthesymbiovarconcept.Itisnotwell understoodwhetheranyBradyrhizobiumgroupisspecialized toproducenodulesandtofixnitrogenspecificallyincowpea.

Conclusion

TheresultsoftheidentificationsofB.yuanmingenseBR3267

andB.pachyrhiziBR3262canbeconsideredreliable.

Further-more,analysisofthenodCandnifHgenesindicatesthatthese two strains are similar to strains isolated on other conti-nents.StrainBR3262possiblybelongstothevignaesymbiovar, whichwasrecentlyassignedforstrainsisolatedfromcowpea inEurope.Bothstrainsholdsimilarsymbioticgenomeswith

BradyrhizobiumstrainsoutsideofSouthAmerica.

Apparently,cowpeaisabletoestablisheffectivesymbiosis withdivergent bradyrhizobiastrainsisolatedfrom Brazilian soils,confirmingitspromiscuouscapacityfornodulation.

Conflicts

of

interest

Theauthorsdeclaretheyhavenoconflictsofinterest.

Acknowledgements

ThisstudywassupportedbytheConselhoNacionalde Desen-volvimentoCientífico eTecnológico (CNPq). Wewould like tothanktheCoordenac¸ãodeAperfeic¸oamentodePessoalde NívelSuperior(Capes)forthescholarships,likewisetoCNPq forthefellowshipofresearchproductivity(PQ).

r

e

f

e

r

e

n

c

e

s

1.HungriaM,MendesIC.Nitrogenfixationwithsoybean:the

perfectsymbiosis?In:deBruijnFJ,ed.BiologicalNitrogen

Fixation.Hoboken,NJ:JohnWiley&Sons,Inc.; 2015:1009–1024.

2.BrasilMinistériodaAgriculturaPecuáriaeAbastecimento.

Instruc¸ãonormativan◦13de24demarc¸ode2011.Aprovaas

normassobreespecificac¸ões,garantias,registro,embalageme rotulagemdosinoculantesdestinadosàagricultura,bemcomoas relac¸õesdosmicroorganismosautorizadoserecomendadospara produc¸ãodeinoculantesnoBrasil,naformadosAnexosI,II,III, destaInstruc¸ãoNormativa.DiárioOficialdaUniãoda

RepúblicaFederativadoBrasil;2011:3–7.Sec¸ão1.

3.DelamutaJRM,RibeiroRA,Orme ˜no-OrrilloE,MeloIS,

Martínez-RomeroE,HungriaM.Polyphasicevidence

supportingthereclassificationofBradyrhizobiumjaponicum

GroupIastrainsasBradyrhizobiumdiazoefficienssp.nov.IntJ

SystEvolMicrobiol.2013;63:3342–3351.

4.DelamutaJRM,RibeiroRA,Orme ˜no-OrrilloE,etal.

Bradyrhizobiumtropiciagrisp.nov.andBradyrhizobium embrapensesp.nov.,nitrogen-fixingsymbiontsoftropical

foragelegumes.IntJSystEvolMicrobiol.2015;65:

4424–4433.

5.HeleneLCF,DelamutaJRM,RibeiroRA,etal.Bradyrhizobium

viridifuturisp.nov.,encompassingnitrogen-fixingsymbionts

oflegumesusedforgreenmanureandenvironmental

services.IntJSystEvolMicrobiol.2015;65:4441–4448.

6.MennaP,BarcellosFG,HungriaM.Phylogenyandtaxonomy

ofadiversecollectionofBradyrhizobiumstrainsbasedon

multilocussequenceanalysisofthe16SrRNAgene,ITS

regionandglnII,recA,atpDanddnaKgenes.IntJSystEvol

Microbiol.2009;59:2934–2950.

7.FilhoFRF.Feijão-CaupinoBrasil:Produc¸ão,melhoramento

genético,avanc¸osedesafios.Teresina:EmbrapaMeioNorte;

2011,81pp.

8.AlcantaraRMCM,XavierGR,RumjanekNG,RochaMM,

CarvalhoJS.SymbioticefficiencyinparentsofBrazilian

cultivarsofthecowpea.RevCiêncAgron.2014;45:1–9.

9.MartinsLMV,XavierGR,RangelFW,etal.Contributionof

biologicalnitrogenfixationtocowpea:astrategyfor

improvinggrainyieldinthesemi-aridregionofBrazil.Biol

FertilSoils.2003;38:333–339.

10.ZilliJE,FerreiraE,NevesM,RumjanekN.Efficiencyof

fast-growingrhizobiacapableofnodulatingcowpea.AnAcad

BrasCienc.1999;71:553–560.

11.ZilliJE,ValicheskiRR,RumjanekNG,Simões-AraújoJL,Freire

FilhoFR,NevesMCP.Symbioticefficiencyofcowpea

BradyrhizobiumstrainsinCerradosoils.PesquiAgropecuBras.

2006;41:811–818.

12.JordanD.NOTES:transferofRhizobiumjaponicumBuchanan

1980toBradyrhizobiumgen.nov.,agenusofslow-growing,

rootnodulebacteriafromleguminousplants.IntJSyst

Bacteriol.1982;32:136–139.

13.HollisAB,KloosWE,ElkanGH.DNA:DNAhybridization

studiesofRhizobiumjaponicumandrelatedRhizobiaceae.J

GenMicrobiol.1981;123:215–222.

14.WillemsA,CoopmanR,GillisM.PhylogeneticandDNA–DNA

hybridizationanalysesofBradyrhizobiumspecies.IntJSyst

EvolMicrobiol.2001;51:111–117.

15.WillemsA,Doignon-BourcierF,GorisJ,etal.DNA–DNA

hybridizationstudyofBradyrhizobiumstrains.IntJSystEvol

Microbiol.2001;51:1315–1322.

16.KuykendallLD,SaxenaB,DevineTE,UdellSE.Genetic

diversityinBradyrhizobiumjaponicumJordan1982anda

proposalforBradyrhizobiumelkaniisp.nov.CanJMicrobiol.

1992;38:501–515.

17.PeixA,Ramírez-BahenaMH,VelázquezE,BedmarEJ.

Bacterialassociationswithlegumes.CritRevPlantSci.

2015;34:17–42.

18.Ramírez-BahenaMH,PeixA,RivasR,etal.Bradyrhizobium

(10)

isolatedfromeffectivenodulesofPachyrhizuserosus.IntJSyst EvolMicrobiol.2009;59:1929–1934.

19.KonstantinidisKT,TiedjeJM.Genomicinsightsthatadvance

thespeciesdefinitionforprokaryotes.ProcNatlAcadSciUS

A.2005;102:2567–2572.

20.ThompsonC,AmaralG,CampeãoM,etal.Microbial

taxonomyinthepost-genomicera:rebuildingfromscratch?

ArchMicrobiol.2014;197:359–370.

21.VincentJM.AManualforthePracticalStudyofRoot-Nodule

Bacteria.Oxford:[Publishedforthe]InternationalBiological

Programme[by]BlackwellScientific;1970.International

BiologicalProgramme.

22.StepkowskiT,MoulinL,KrzyzanskaA,McInnesA,LawIJ,

HowiesonJ.EuropeanoriginofBradyrhizobiumpopulations

infectinglupinsandserradellainsoilsofWesternAustralia

andSouthAfrica.ApplEnvironMicrobiol.2005;71:7041–7052.

23.SaritaS,SharmaPK,PrieferUB,PrellJ.Directamplificationof

rhizobialnodCsequencesfromsoiltotalDNAand

comparisontonodCdiversityofrootnoduleisolates.FEMS

MicrobiolEcol.2005;54:1–11.

24.LaguerreG,NourSM,MacheretV,SanjuanJ,DrouinP,

AmargerN.ClassificationofrhizobiabasedonnodCandnifH

geneanalysisrevealsaclosephylogeneticrelationship

amongPhaseolusvulgarissymbionts.Microbiology.

2005;147:981–993.

25.TamuraK,StecherG,PetersonD,FilipskiA,KumarS.MEGA6:

molecularevolutionarygeneticsanalysisversion6.0.MolBiol

Evol.2013;30:2725–2729.

26.KimuraM.Asimplemethodforestimatingevolutionary

ratesofbasesubstitutionsthroughcomparativestudiesof

nucleotidesequences.JMolEvol.1980;16:111–120.

27.FelsensteinJ.EvolutionarytreesfromDNAsequences:a

maximumlikelihoodapproach.JMolEvol.1981;17:

368–376.

28.RadlV,Simões-AraújoJL,LeiteJ,etal.Microvirgavignaesp.

nov.,arootnodulesymbioticbacteriumisolatedfrom

cowpeagrowninthesemi-aridofBrazil.IntJSystEvol

Microbiol.2014;64:725–730.

29.GonzalezJM,Saiz-JimenezC.Asimplefluorimetricmethod

fortheestimationofDNA–DNArelatednessbetweenclosely

relatedmicroorganismsbythermaldenaturation

temperatures.Extremophiles.2005;9:75–79.

30.MoreiraAP,PereiraN,ThompsonF.Usefulnessofareal-time

PCRplatformforG+CcontentandDNA–DNAhybridization

estimationsinvibrios.IntJSystEvolMicrobiol.

2001;61:2379–2383.

31.DeLeyJ,DeSmedtJ.Improvementsofthemembranefilter

methodforDNA:rRNAhybridization.AntonieVan

Leeuwenhoek.1975;12:133–141.

32.RichterM,Rossello-MoraR.Shiftingthegenomicgold

standardfortheprokaryoticspeciesdefinition.ProcNatlAcad

SciUSA.2009;106:19126–19131.

33.DelcherAL,KasifS,FleischmannRD,PetersonJ,WhiteO,

SalzbergSL.Alignmentofwholegenomes.NuclAcidsRes.

1999;27:2369–2376.

34.Simões-AraújoJL,LeiteJ,RouwsLMF,etal.Draftgenome

sequenceofBradyrhizobiumsp.strainBR3262,aneffective

microsymbiontrecommendedforcowpeainoculationin

Brazil.BrazJMicrobiol.2016.

35.Simões-AraújoJL,LeiteJ,PassosSR,XavierGR,Rumjanek

NG,ZilliJE.DraftgenomesequenceofBradyrhizobiumsp.

strainBR3267,anelitestrainrecommendedforcowpea

inoculationinBrazi.BrazJMicrobiol.2016.

36.GualterRMR,BoddeyRM,RumjanekNG,FreitasACRd,Xavier

GR.Eficiênciaagronômicadeestirpesderizóbioem

feijão-caupicultivadonaregiãodaPré-Amazônia

Maranhense.PesquiAgropecuBras.2011;46:303–308.

37.SilvaJúniorEB,SilvaK,OliveiraSS,etal.Cowpeanodulation

andproductioninresponsetoinoculationwithdifferent

rhizobiadensities.PesquiAgropecuBras.2014;49:804–812.

38.MesaS,AlchéJD,BedmarE,DelgadoMJ.Expressionofnir,nor

andnosdenitrificationgenesfromBradyrhizobiumjaponicum

insoybeanrootnodules.PhysiolPlant.2004;120:205–211.

39.MesaS,GöttfertM,BedmarEJ.Thenir,nor,andnos

denitrificationgenesaredispersedovertheBradyrhizobium

japonicumchromosome.ArchMicrobiol.2001;176:136–142.

40.KuykendallL,RoyM,O’neillJ,DevineT.Fattyacids,antibiotic

resistance,anddeoxyribonucleicacidhomologygroupsof

Bradyrhizobiumjaponicum.IntJSystBacteriol.1988;38: 358–361.

41.TigheSW,deLajudieP,DipietroK,LindströmK,NickG,Jarvis

BD.Analysisofcellularfattyacidsandphenotypic

relationshipsofAgrobacterium,Bradyrhizobium,

Mesorhizobium,RhizobiumandSinorhizobiumspeciesusingthe

SherlockMicrobialIdentificationSystem.IntJSystEvol

Microbiol.2000;50:787–801.

42.MignardS,FlandroisJ.16SrRNAsequencinginroutine

bacterialidentification:a30-monthexperiment.JMicrobiol

Methods.2006;67:574–581.

43.SrinivasanR,KaraozU,VolegovaM,etal.Useof16SrRNA

geneforidentificationofabroadrangeofclinicallyrelevant

bacterialpathogens.PLOSONE.2015;10:e0117617.

44.NzouéA,MichéL,KlonowskaA,LaguerreG,deLajudieP,

MoulinL.Multilocussequenceanalysisofbradyrhizobia

isolatedfromAeschynomenespeciesinSenegal.SystAppl

Microbiol.2009;32:400–412.

45.ParkerM.ThespreadofBradyrhizobiumlineagesacrosshost

legumeclades:fromAbarematoZygia.MicrobEcol.

2015;69:630–640.

46.RivasR,MartensM,deLajudieP,WillemsA.Multilocus

sequenceanalysisofthegenusBradyrhizobium.SystAppl

Microbiol.2009;32:101–110.

47.VinuesaP,SilvaC,WernerD,Martínez-RomeroE.Population

geneticsandphylogeneticinferenceinbacterialmolecular

systematics:therolesofmigrationandrecombinationin

Bradyrhizobiumspeciescohesionanddelineation.Mol PhylogenetEvol.2005;34:29–54.

48.WangJY,WangR,ZhangYM,etal.Bradyrhizobiumdaqingense

sp.nov.isolatedfromnodulesofsoybeangrowninDaqing

CityofChina.IntJSystEvolMicrobiol.2012;63:616–624.

49.ZhangYM,LiY,ChenWF,etal.Bradyrhizobium

huanghuaihaiensesp.nov.,aneffectivesymbioticbacterium

isolatedfromsoybean(GlycinemaxL.)nodules.IntJSystEvol

Microbiol.2012;62:1951–1957.

50.GrönemeyerJL,HurekT,Reinhold-HurekB.Bradyrhizobium

kavangensesp.nov.,asymbioticnitrogen-fixingbacterium

fromrootnodulesoftraditionalpulsesintheKavangoregion

ofNamibia.IntJSystEvolMicrobiol.2015;65:4886–4894.

51.GrönemeyerJL,HurekT,BüngerW,Reinhold-HurekB.

Bradyrhizobiumvignaesp.nov.,anitrogen-fixingsymbiont

isolatedfromeffectivenodulesofVignaandArachisinAfrica.

IntJSystEvolMicrobiol.2015;66:62–69.

52.GrönemeyerJL,ChimwamurombeP,Reinhold-HurekB.

Bradyrhizobiumsubterraneumsp.nov.,asymbiotic

nitrogen-fixingbacteriumfromrootnodulesofgroundnuts

inNamibia.IntJSystEvolMicrobiol.2015;65:324–327.

53.GorisJ,KonstantinidisK,KlappenbachJ,CoenyeT,

VandammeP,TiedjeJ.DNA–DNAhybridizationvaluesand

theirrelationshiptowhole-genomesequencesimilarities.

IntJSystEvolMicrobiol.2007;57:81–91.

54.TianCF,ZhouYJ,ZhangYM,etal.Comparativegenomicsof

rhizobianodulatingsoybeansuggestsextensiverecruitment

oflineage-specificgenesinadaptations.ProcNatlAcadSciUS

(11)

55.RogelMA,Orme ˜no-OrrilloE,MartinezRomeroE.Symbiovars

inrhizobiareflectbacterialadaptationtolegumes.SystAppl

Microbiol.2011;34:96–104.

56.BejaranoA,Ramírez-BahenaM-H,VelázquezE,PeixA.Vigna

unguiculataisnodulatedinSpainbyendosymbiontsof

Genisteaelegumesandbyanewsymbiovar(vignae)ofthe

genusBradyrhizobium.SystApplMicrobiol.2014;37:533–5340.

57.ThiesJE,BohloolBB,SingletonPW.Subgroupsofthecowpea

miscellany:symbioticspecificitywithinbradyrhizobiumspp.

forVignaunguiculata,phaseoluslunatus,Arachishypogaea,

andmacroptiliumatropurpureum.ApplEnvironMicrobiol.

Referências

Documentos relacionados

Nessa perspectiva, uma das formas de abordagem da Acessibilidade informacional é, portanto, o estudo dos fatores e das melhores práticas que a favorecem. Do ponto de vista do núcleo

FIGURA 5 - FLUTUAÇÃO POPULACIONAL DE Hypothenemus eruditus, Sampsonius dampfi e Xyleborus affinis (SCOLYTINAE, CURCULIONIDAE) COLETADOS COM ARMADILHAS ETANÓLICAS (25%)

Um aumento do imposto presente, que não seja mantido no futuro, diminui o consumo presente, mas deixa o consumo futuro inalterado.. Uma redução do imposto presente compensada por

In this study, empirical non-destructive models for leaf area and leaf pigment based on the leaf dimensions, length (L) and width (W) in centimeters, and chlorophyll meter

Malignant lymphoma in patients with systemic rheumatic disease (rheumatoid arthritis, systemic lupus eryt- hematosus, systemic sclerosis, and dermatomyositis): A clini-

armondii não germinaram neste substrato. O hipocótilo apresentou-se verde e suculento, alargando-se acropetamente, devido à formação dos cotilédones, estes com

O Método TOR-TOM oferece ao analista do trabalho, profissional de Métodos e Tempos e de Ergonomia uma metodologia para calcular a Taxa de Ocupação Real (TOR) da atividade

El discurso médico se constituye en voz que legitima su autoridad sobre la codificación y disciplina del cuerpo. Sin duda como remarca Merleau-Ponty (1985), allí se establece,