• Nenhum resultado encontrado

Cloning and high-level expression of Thermus thermophilus RecA in E. coli: purification and novel use in HBV diagnostics

N/A
N/A
Protected

Academic year: 2021

Share "Cloning and high-level expression of Thermus thermophilus RecA in E. coli: purification and novel use in HBV diagnostics"

Copied!
8
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Biotechnology

and

Industrial

Microbiology

Cloning

and

high-level

expression

of

Thermus

thermophilus

RecA

in

E.

coli:

purification

and

novel

use

in

HBV

diagnostics

Sudarson

Sundarrajan,

Sneha

Rao,

Sriram

Padmanabhan

CancyteTechnologiesPvt.Ltd.,RangadoreMemorialHospital,SriShankaraResearchCenter,Shankarapuram,Bangalore,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received4October2017

Accepted13March2018

Availableonline12April2018

AssociateEditor:FlávioDaFonseca

Keywords: RecA HepatitisBvirus DNAvirus Thermusthermophilus

a

b

s

t

r

a

c

t

WestudiedtheroleofThermusthermophilusRecombinaseA(RecA)inenhancingthePCR

signalsofDNAvirusessuchasHepatitisBvirus(HBV).TheRecAgeneofathermophilic

eubacterialstrain,T.thermophilus,wasclonedandhyperexpressedinEscherichiacoli.The

recombinantRecAproteinwaspurifiedusingasingleheattreatmentstepwithouttheuseof

anychromatographysteps,andthepurifiedprotein(>95%)wasfoundtobeactive.The

puri-fiedRecAcouldenhancethepolymerasechainreaction(PCR)signalsofHBVandimprove

thedetectionlimitoftheHBVdiagnosisbyrealtimePCR.TheyieldofrecombinantRecA

was∼35mg/L,thehighestyieldreportedforarecombinantRecAtodate.RecAcanbe

suc-cessfullyemployedtoenhancedetectionsensitivityforthediagnosisofDNAvirusessuch

asHBV,andthismethodologycouldbeparticularlyusefulforclinicalsampleswithHBV

viralloadsoflessthan10IU/mL,whichisinterestingandnovel.

©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

TherecombinaseA(RecA)protein(accessionno.AAK15321.1)

from the thermophilic bacterium Thermus thermophilusis a

thermostableenzymethatplaysimportantrolesin

homolo-gousrecombinationandDNArepair.1DNArecombinationin

prokaryotesisachievedbycatalyzingthepairingof

homol-ogous DNA sequences,2,3 and DNA repair is achieved by

Correspondingauthorat:R&D,CancyteTechnologiesPvt.Ltd,SriShankaraResearchCentre,RangadoreMemorialHospital,1stCross,

Shankarapuram,Bangalore560004,India.

E-mails:sriram.padmanabhan@cancyte.com,padsriram@gmail.com(S.Padmanabhan).

protection of the damaged DNA ends.4,5 This protein has

theactivitiesofsingle-strandedDNAdependentATPase,DNA

annealing, andexchangingofstrands betweentwo

recom-bining DNA double helices, similar to Escherichia coli RecA

(accessionno.AFU91764.1)protein,buttheoptimal

tempera-tureforthestrandexchangeofRecAisbetween50and60◦C.6

RecA-like proteins have been sequenced from over 60

differentprokaryoticspecies7,8 andit hydrolyzesATPwhen

boundtoDNA,anditsATPaseactivityrateisproportionalto

https://doi.org/10.1016/j.bjm.2018.03.007

1517-8382/©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC

(2)

theamountofRecAboundtotheDNA9–12withthefactthat

theATPaseactivityisusedtomeasureitsbindingefficiency

toDNA.13IthasbeenshownthattheRecAproteincatalyzes

invitroDNAstrandexchangereactions14withpeakefficiency

atapproximately60◦C,6atemperaturethatisfairlycloseto

theTmrequiredforthermaldenaturationofdsDNA.15

NumerousapplicationsofRecAarereported.Theseinclude

identificationofdifferentBurkholderia cepaciagenomovars,16

sequence-specific ligation of DNA using the E. coli RecA

protein,17 maintaining the integrity of chloroplast DNA

moleculesinArabidopsis,18auto-cleavageofotherserine

pro-teasesandrepressorsofthebacteriophagelyticcycle,19–22and

itsroleinswarmingmotilityinE.coli.23

Shigemorietal.24haveusedRecAinstimulatingpairing

betweencompletelymatchedprimersandtargetsequences

and effectivelyeliminating non-specificPCRproducts. This

specificityenabledthemtoamplifythesequences between

anysitesofinterestwithoutneedingtoconsidertheoptimal

primingsitesforeachPCR.Similarly,FukuiandKuramitsu25

have recently utilized MutS, a thermostable

mismatch-recognizingproteinfromT.thermophilus,alongwithRecAto

reducenon-specificamplificationsinPCRs.

Hence,werealizedtheimmensepotentialofRecAin

PCR-baseddiagnosticsandattemptedtogenerateRecAproteinby

asimplepurificationmethodthatwouldinturnmakethePCR

baseddetectionofvirusesmoresensitiveandcost-effective.

Material

and

methods

Reagents

Allchemicalswereofanalyticalgrade.Oligonucleotides,used

inthisstudy,werefromBioServeTechnologiesPvt.Ltd,

Hyder-abad,India. Bradfordproteinassayreagentsand IPTGwere

obtained from Amresco, USA. Standard RecA pure protein

was procured from NEB, USA, while ATP was purchased

fromThermoFisherScientific,USA.Proteinmolecularweight

markers 11–180kDa and 11–97kDa were obtained from

G-Biosciences, USA and Aristogene Life Sciences, Bangalore,

Indiarespectively.

CloningandconstructionofRecAexpressionconstruct

ThesyntheticgeneofT.thermophilusRecAwascustom

syn-thesizedfromIntegratedDNATechnologies,Inc.(IDT),USA,

andclonedintothepUC57vector.Thenucleotidesequence

oftheT.thermophilusRecAgenewasadjustedforcodonbias

withoutalteringanyoftheaminoacids.TheRecAgenewas

excisedfromthepUC57-RecAplasmidasaNdeI/HindIII

frag-mentandclonedintothepET26bvectorintosimilarrestriction

sites.TherecombinantswerescreenedbyPCRusingT7

pro-moterspecificprimers,forward5TAATACGACTCACTATAGGG

3 andreverse5 GCTAGTTATTGCTCAGCGG3,andthe

posi-tivecloneswerefurtherconfirmedbyrestrictionanalysisand

DNAsequencing.ThepET26b-RecAplasmidwasdesignatedas

pCAN008.

TheplasmidDNAofpCAN008wasintroducedintoER2566

competent cells (NEB,USA) for expression ofrecombinant

RecA.TheprotocolwasessentiallyasdescribedbyPauletal.26

Briefly, theinduction ofRecA waseffected bythe addition

of1mMIPTGwhencellsinLBmedium(containing20␮g/mL

kanamycin)reachedanOD600valuebetween0.5and0.8.The

inductionproceededfor4hbyincubatingthecultureat37◦C,

andthentheinducedcellswerepelletedat7670×gfor10min.

Theharvestedcellswereresuspendedin25mMTris.Cl,pH

7.5andsonicatedinasonicator(OmniSonicRuptor400,GA,

USA)at50%amplitudeforoneminon/offfor10minincold.

Thesonicatedlysatewasspunat9000×gfor20minat4◦C

andthesupernatantobtainedwasusedforpurificationofthe

RecAexpressedprotein.

RecApurificationbyheattreatment

RecA is known to be thermostable,27 and we utilized this

propertytopurifytherecombinantRecAprotein.Different

vol-umesofcrudelysateofRecAwereheatedat75◦Cfor30min,

after which the sampleswere centrifuged at30,670×g for

10min,andthesupernatantswereanalyzedon12%SDS–PAGE

forRecAproteinfollowedbysilverstainingasdescribedby

Nesterenkoetal.28 Proteinconcentrationsweredetermined

byBradford’smethod29toquantifythetotalyieldofRecAper

literofinducedcultureunderthedescribedexperimental

con-ditions.

ATPhydrolysisassay

ATPase activity was determined using a QuantiChrom

ATPase/GTPaseAssayKitDATG-200(EnzyChrom,USA).

Phos-phatestandardsweremadebytakingvaryingconcentrations

ofphosphate(0–50␮M)innucleasefreewaterasper

manu-facturer’sinstructions.Equalamountsofproteinsofin-house

purifiedRecAandcommercialRecA(NewEnglandBiolabs,UK)

wereusedfordetectingtheATPaseactivity.Afterincubating

theRecAproteinswithATP,200␮Lofthesuppliedreagentwas

added,andcontentswereincubatedfor30minatroom

tem-perature. TheOD ofthesamples,reflecting freephosphate

releaseduetoATPhydrolysisbyRecA,wasreadatOD620nmin

anELISAplatereader(TecanGroupLtd,Männedorf,

Switzer-land).

Humanleucocyteantigen(HLA)PCR

HumangDNAisthesourceofthetemplateforthe

amplifi-cationofHLAgenes.30ThedifferentprotocolsforHLAtyping

reportedrequireuseofgDNAbetween5and30ng/␮L31 and

DNA concentrations lower than 2ng/␮L have been found

to compromise genotyping results severely.32 Since RecA

is known to prevent false priming, we hypothesized that

sampleswith lower concentrationsofgenomic DNA might

display highergene amplificationsin presenceofRecA.To

validatethis hypothesis,wecarriedout PCRsofHLAgenes

from humangDNA inpresence and absence of RecA.The

primers for amplification of HLA class I genes, namely,

HLA-A-exon 2and exon 3, HLA-B-exon 2and exon 3 and

HLA-C-exon2and3,wereasdescribedbyItohetal.,33while

theprimersforHLAclassIIgenessuchasDPB1,DQB1 and

DRB1,targetingexon2,wereaccordingtoLangeetal.30The

PCRreactionwascarriedoutin25␮Lreactionvolumeandthe

(3)

2.5mMmagnesiumchloride;0.2mMdNTPs;5%DMSO;0.2%

Tween-20;0.04%BSA;0.4␮MHLAprimers;and1unitofTaq

DNA polymerase (ThermoFisher Scientific, USA)with 40ng

ofgDNA.PCRconditionswereasfollows:Initialdenaturation

of95◦Cfor5min,followedby35cyclesof95◦C,30s;51.1◦C,

30s;and72◦C,45s.Thefinalextensionstepwasperformed

at72◦Cfor10min,andsuitablealiquotswereloadedona2%

agarosegelforvisualization.

SamplecollectionandHIV,HBVandHCVPCR

Patients who visited Kuppam Medical College, Andhra

Pradesh,IndiaforviraltestingofHIV,HBVandHCVduringthe

periodofMarch2016toMarch2017servedasthestudy

mate-rial.BloodsampleswerecollectedinEDTAcoatedtubesand

plasmawascollectedbycentrifugingthesamplesat2000×g

for10min.Theplasmasampleswerestoredat−20◦Cuntil

fur-theruse.Insomecases,serumwascollectedfromthepatients.

PlasmaorserumsampleswereanalyzedforHIV,HBVand

HCVbyroutinediagnostictests(RDT)aspermanufacturer’s

instructions.ThetestkitsemployedincludedtheHIV-1

TRI-DOTkit,HEPACARDtestkitandHCVTRI-DOTtestkits.Viral

positivesampleswerehandledwithadequateprecautionsin

theBSL-IIfacilityofCancyteTechnologiesPvt.Ltd,Bangalore,

India.IVDcertifiedNucleospinDxviruskit(Macherey-Nagel,

GmbH)wasusedtoisolateviralnucleicacidsfollowing

man-ufacturer’sinstructions.

TominimizetheriskofcontaminationofPCRamplicons,

andtoavoidtransferofDNAfromonesampletotheother,

inourlaboratory,thepreandpost-polymerasechainreaction

(PCR)productswerekeptphysicallyseparated,andall

biolog-icalsampleswereprocessedseparatelyinadedicatedBSL-II

biosafetyhood.TheDNA-freeconsumablesandnegative

con-trolswereusedateverystageofthePCRanalysis.

TheHIVprimerswere designedtoamplify thegaggene

ofthe HIV(accession number KY713247.1), while the HBV

andtheHCVprimersamplifiedtheSgene(accession

num-ber MF967563.1) of HBV and 5 UTR (accession number

MG436884.1)regionofHCVrespectively.AllthePCRswere

car-riedoutin25␮LreactionvolumesandthePCRproductswere

analyzedon2%agarosegelelectrophoresisstainedwith

ethid-iumbromideforvisualization,unlessmentionedotherwise.

The PCR mixture comprised 1× Superscript III

RT/Platinum® Taq Mix buffer, HIV forward primer (5

ATCAAGCAGCCATGCAAAT3)andreverseprimer(5

TACTAG-TAGTTCCTGCTATGTC3)or HCVforward (5 GAAAGC GTC

TAGCCATGGCG3)andreverseprimer(5ACGCCCAAATGG

CCGGGCATAGA3),and0.5␮LofSuperScriptIIIenzyme.PCR

wasperformedinaProflexPCRmachine(AppliedBiosystems,

USA).PCRconditionswereasfollows:onecycleof50◦Cfor

30mintoconvertRNAtocDNA,followedbyasinglestepof

denaturationat95◦Cfor5minand40cyclesof95◦Cfor30s,

55◦Cfor30s,and72◦Cfor1minfollowedbyafinalextension

at72◦Cfor10min.

PCR for HBV detection in clinical samples was carried

out in25␮Lreactionvolumes. ThePCRmixturecomprised

of 1× ammonium sulfate buffer, pH 8.3; 2.5mM

magne-siumchloride;0.2mMdNTPs;5%DMSO;primers0.4␮M(FP

5 CCCCCACTGGCTGGGGCTTGGT 3 and RP5

AGGACGTC-CCGCGCAGGATC 3); and 1unit of Taq DNA polymerase

(ThermoFisherScientific,USA).PCRstepsincludedaninitial

denaturationof95◦C,10min,followedby40cyclesof95◦C,

30s;60◦C,30s;and72◦C,45sandafinalextensionstepat

72◦Cfor10min.

For carryingoutPCRswithRecAandATP, ATPwasused

atafinalconcentrationof0.3mMalongwith0.25␮gofeither

in-housepurifiedRecAorcommerciallyavailableRecA.

HBVviralload

Briefly,thereactionwascarriedoutinafinalvolumeof25␮L

containing1×ThermoScientificMaximaSYBRGreenmaster

mix,andforward(FP5CCCCCACTGGCTGGGGCTTGGT3and

RP5AGGACGTCCCGCGCAGGATC3)primerswereaddedtoa

finalconcentrationof4pmolperreaction.Atotalof0.3mM

ATPand0.25␮gofRecAwereaddedtooneset,andsuitable

sampleswithoutRecAservedasnegativecontrols.

TheqPCRwasperformedinaQiagenqPCRmachine

(Qia-gen,Germany),andthe conditionsforqPCR were45 cycles

ofPCRamplification,eachcomprising95◦Cfor5min,95◦C

for30s,60◦Cfor30s,and72◦Cfor30s.Datacollectionwas

performed at72◦C in each cycle. Following the

amplifica-tion, amelting curve analysiswas performedto verify the

authenticityoftheamplifiedproductsbycheckingtheir

spe-cificmelting temperatures(Tm).Experimentswere donein

duplicates.

Therecombinantplasmid containingthe SgeneofHBV

(named pTZ57R/T-HBV) was confirmed by DNA

sequenc-ing (data not shown) and used to generate a standard

curve. The concentration (ng/␮L) of the purified stock of

plasmid DNA was measured by a NanoDrop 1000

spec-trophotometer(ThermoFisherScientific),andplasmidcopy

number was calculated using the DS DNA copy calculator

usingtheformula:pTZ57R/Tcopies/␮L=(plasmid

concentra-tion[ng/␮L]×6.022×1023)/(nucleotidelength×1×109×650),

asdescribedbyStaroscik.34Theplasmidstocksolutionwas

dilutedwithDNase/RNase-freedistilledwater,10-foldserial

dilutionscontaining2.5×105–250copies/␮Lweremade,and

smallaliquotswerestoredat−20◦Cforfutureusein

generat-ingstandardcurves.TheCtvaluesweretestedforstatistical

significancebyStudent’st-test.

Results

Cloningandexpressionstudies

Fig.1showstheplasmidmapofpET26b-RecA.Theclonesof

pET26b-RecAwereconfirmedbyDNAsequencingand

restric-tionanalysis.Fig.S1showsthesilverstainedgelofwholecell

lysatesoftwoclonesofpET26b-RecA.TherecombinantRecA

proteinwasrestrictedtothesolublefractionofthecelland

constituted>50%ofthetotalsolubleproteinasjudgedby

den-sitometryscanningandoftheexpectedsizeof∼39kDa.The

studiesontheexpressionofRecAfrompET26b-RecAclonein

ER2566cellsusingdifferentconcentrationsofIPTGindicated

thattheamountofRecAexpressionincreasedwithincreased

timeofinductionasexpected(Fig.S2)andthattheexpression

ofRecAcouldbeinducedevenwith0.125mMIPTGeffectively

(4)

Dra l

Pvu ll

Cla l

Kan lac Z Hind lll

Alw l Ori T7 pro pCAN 008/ Rec A 6309 bp Rec A Gene (1064) Nde l

Fig.1–PlasmidmapofthepET26b-RecAconstruct (pCAN008). 1 M 2 3 4 75 63 48 35 25

Fig.2–SilverstainedSDS–PAGEgelofthepurified

in-houseRecAandcommercialRecAproteins.Notethatthe purityoftheRecAis>95%asjudgedbythesilverstained gel.Lane1:commercialRecA(0.25␮g);lane2:in-house purifiedRecA(0.2␮g);lane3:in-housepurifiedRecA (0.5␮g);lane4:in-housepurifiedRecA(1.0␮g).M: pre-stainedproteinMWmarker(11–180kDa).

PurificationandtotalyieldofRecAusingheattreatment

TheRecAexpressedfromtheclonepET26b-RecA(#5)afterheat

treatmentwasfoundtobehomogenousandwas>95%pure

asjudgedbysilverstaining.ItisevidentfromFig.S4thatheat

treatmentwassufficienttoachievepureRecA.Thetotalyield

ofpureRecAperliterofLBwasfoundtobe35mg/Landits

M 9 8 7 6 5 4 3 2 1

M 9 8 7 6 5 4 3 2 1

A

B

Fig.3–HLA-PCRofClassIandClassIIantigensbyPCR. PanelAshowsPCRwithoutRecA,andpanelBshowsHLA PCRswithRecA.Lane1:HLA-A-Exon2(478bp);lane2: HLA-A-Exon3(327bp);lane3:HLA-B-Exon2(469bp);lane 4:HLA-B-Exon3(371bp);lane5:HLA-C-Exon2(489bp); lane6:HLA-C-Exon3(500bp);lane7:DPB1,Exon3(368bp); lane8:DQB1,Exon3(350bp);lane9:DRB1Exon3(351bp); lane10:DNAmolecularweightmarker(100bpladder).

puritymatchedthepurityofthecommerciallyavailableRecA

protein(Fig.2).

ATPhydrolysisassay

Thein-housepurifiedRecA proteinshowed ATPaseactivity

units of3.0×105U/␮L,whilethe commercial RecA showed

activityof2.5×105U/␮L.Thisresultindicatedthatthe

purifi-cationmethodologyfollowedforthein-houseRecAprotein

doesnotcompromisethefunctionoftheRecAprotein.

HLA-PCR

ItisclearfromFig.3thatRecAamplifiestheHLAgenesof

inter-estevenwhenthegDNAusedwasaslowas5ngperreaction,

whilewithoutRecA,therewasnegligibleamplificationofall

thegenesundersimilarexperimentalconditions.

HIV,HBVandHCVPCR

Fig.4showsthePCRamplificationofHIV/HBVandHCVtarget

genesusingthreeELISApositiveclinicalsamples.Itisevident

fromFig.4thatRecAimprovedthePCRsignalintensitiesofthe

HBVsamples(Fig.4,lanes13,14and15incomparisontolanes

4,5and6),whilethePCRsignalsoftargetgenesofRNAviruses

(5)

1 2 3 4 5 6 M 7 8 9

10 11 12 13 14 15 M 16 17 18

A

B

Fig.4–PCRproductsofthreeHIV,HBVandHCVsamples withandwithoutRecA.PanelAshowsPCRwithoutRecA, whilepanelBshowsPCRwithRecA.Lanes1,2,3,10,11 and12areHIVsamples;lanes4,5,6,13,14,and15are HBVsamples;lanes7,8,9,16,17,and18areHCVsamples. RT-PCRwasperformedfortheHIVandHCVsamplesas describedintheM&Msection,whileforHBV,regularPCR wasperformedaspertheprotocoldescribedintheM&M section.

therewasmarkedreductioninlevelsofnon-specific

ampli-ficationswhenRecAwasincludedinthePCRreactionmix.

SinceHBVisaDNAvirus,itispossibletospeculatethatRecA

enhancestheannealingoftheHBVspecificprimerstothe

tar-getSgeneoftheHBV,andduetothereportedroleofRecAin

minimizingfalsepriming,theintensityofthePCRsignalsfor

theHBVsamplesappearhigherwithRecAincomparisonto

thePCRofthesamesampleswithoutRecA.

HBVviralload

SinceourdatashowedthatthePCRsignalsofHBVwashigher

inpresenceofRecAincomparisontothatachievedwithout

RecA,wewantedtoexamineifRecAwouldalsohaveaneffect

ontheHBVviralloadvaluesintheHBVpositiveplasma

sam-ples.FromFig.5A,itisclearthatthesensitivityoftheHBV

detectionisenhancedandtheoverallHBVviralloadvalues

were higher (by 50–98%) forall the samplestested in this

studywhenRecAwasincludedinthePCRreactionmixture

incomparisontotheHBVviralloadvaluesobtainedforthe

samesampleswithoutRecA(Table1).Fig.5Bshowsthe

stan-dardcurvepreparedusingplasmidpTZ57R/T-HBVfrom250to

2.5×105copies/mL.

Discussion

TheT7promoterisknowntobethestrongestpromoterknown

forthe prokaryotic expressionofproteins35 and in

experi-mentalE.colicultures,consistentlyhigherexpressionlevelsof

theproteinhavebeenobservedwiththekanamycinmarker

than inculturesgrownwiththecommonlyused antibiotic

ampicillin36withthetargetproteinbeingalmost50%oftotal

A

B

1 2 3 4 5 6 7 M +ve -ve 1 2 3 4 5 6 7 M +ve -ve 38 36 34 32 30 28 26 24 22 20 18 16 14 CT 102 103 104 105 106 107 Concentration

Cycling A.Green (Page1): R=0.99928 Rˆ2=0.99855 M=-3.944 B=42.653 Efficiency=0.79

Fig.5–(A)AgarosegeldepictingPCRofHBVsamples. PanelAshowsPCRwithoutRecA,whilepanelBshowsPCR withRecAforthesamesamples.Lanes1,2,3,4,5,6and7 showPCRampliconsfromELISApositiveHBVsamples.+ve denotespositivecontrolPCRwithpTZ57R/T-HBVplasmid and−vedenotesPCRwithnotemplatecontrol.(B) RepresentativestandardcurveoftheSYBRGreen-1qPCR assayforHBV.Theplotsweregeneratedusinga10-fold dilutionseriesrangingfrom250to2.5×105copies/mLof

plasmidDNAstandard(pTZ57R/T).Duplicatereactionsfor eachstandarddilutionwereused.Thestandardcurvewas generatedbyplottingthelog10copynumberofstarting

plasmidquantityonthex-axisagainstthecorresponding thresholdcycle(Ct)valueonthey-axis.

cellular proteininsomecases.37 Itis possibletospeculate

thatfortheabovereasons,weachievedhighlevelsofRecA

expressiondescribedinthisstudy.

OnecouldobserveasmallfractionofRecAproteininduced

evenunderuninducedconditions(Fig.S4,lane1).Expression

ofRecAunderuninducedconditionscouldbeattributedtothe

leakyexpressionoftheT7promoterthatisseencommonly

inE.colicellsandcanbeeasilycontrolledusingplysE

plas-mid,which expressesT7lysozyme,aninhibitorofT7RNA

polymerase.38 Also, one could see appreciable amounts of

RecA expressedevenwiththelowestconcentrationofIPTG

(0.125mM) which supports the recent report of high level

expressionofaleptospiralproteininE.coliusingsuchlow

concentrationsofIPTG.39

A number of protocols have been reported for

purifi-cation of wild-type RecA protein from E. coli or Thermus

aquaticus. These methods include salt precipitation

(6)

Table1–HepatitisBvirus(HBV)viralloadvaluesofenzyme-linkedimmunesorbentassay(ELISA)positiveHBVsamples withandwithoutRecA.

Sample Ctvaluewithout

RecA

WithoutRecA (VL/mL)

Cyclethreshold(Ct) valuewithRecA*

WithRecA (VL/mL) %increaseinVL withRecAin comparisontoVL withoutRecA Sample#1 38.515 2.00E+02 35.605 5.99E+03 96.66 Sample#2 41.155 2.00E+02 37.285 4.60E+03 95.65 Sample#3 15.41 6.20E+08 13.65 4.52E+09 86.29 Sample#4 29.58 1.70E+05 26.75 3.59E+05 52.59 Sample#5 34.185 1.20E+04 31.035 2.95E+04 59.28 Sample#6 38.605 1.00E+02 34.36 2.55E+04 99.61 Sample#7 41.175 2.00E+02 37.67 4.10E+03 95.12

TheCtvalueswerefoundtobestatisticallysignificant(p<0.000001)byStudent’s‘t’test.

exchangecolumn,25precipitationusingspermidine,40

purifi-cationusing chitinaffinity column,41 monoclonal antibody

affinitycolumns,42and phosphocellulosematrix.43 Manyof

theseprotocolsrequiremultiplestepsforpurificationandare

notverycost-effective.Inanefforttodevelopasimpleanda

cost-effectiveprotocolforRecApurification,wetook

advan-tageoftheheatstablepropertyofRecAandobtainedhighly

pureRecA preparationsbya simpleheat treatment ofthe

crudelysatewithoutthe useofanychromatographic steps

andsuchamethodologyforthepurificationofRecAishitherto

unreported.

Asignificantamountofendonucleasecontaminationfrom

thehostendAgenehasbeenreportedinRecAprotein

prepa-rationsbySingletonetal.,41whichwasremovedbyrigorous

washingoftheinduced cellswithdetergents.Theprotocol

describedinthisarticleutilizesanendA1negativeE.colihost,

ER2566,forRecAexpression,andhence,ourpurifiedRecAis

virtuallyfreeofanyendonucleasecontamination,whichisa

hugeadvantageforitsuseinPCR-baseddiagnostics.

TheRecAgeneofT.thermophilusencodesa36kDa

polypep-tidewhoseaminoacidsequenceshows61%identitywiththat

oftheE.coliRecAproteinandT.thermophilusRecAisreported

tobethermostableincomparisontoE.coliRecAprotein27with

similarfunctions.TheyieldofrecombinantRecA(fromE.coli

orT.thermophilus)fromvariousliteraturereportsisvariable

andnotfeasibleforcommercialscaleoperations.Whilethe

protocoldescribedbyGriffithandShores40yieldonly10mg

ofRecAproteinperliter,theprotocoldevelopedbySingleton

etal.41showedayieldof28mgofRecA/literofE.coliculture.

Inthisstudy,wehaveachieved35mgofpureRecAperliter

ofE.coliculture,whichisthehighestreportofRecAyieldtill

date.Additionally,thecostof1mgofcommercialRecAis$575

andweareabletoproducealmostUS$20,125worthRecAfrom

everyliterofE.coliculture,whichisinterestinganduseful.

Lactosecanalsobeusedasaninducerduringthetransition

fromtheexponentialtothestationaryphaseforprotein

induc-tionforgenesclonedunderT7promoter.Sincelactosealso

actsascarbonsource,theuseoflactoseforinductionwould

proveusefulforincreasingtheRecAexpressionpercell.44

ATPhydrolysisservesasameansofreleasingRecA

promot-ersfromthe5endofthefilamentonceDNAstrandexchange

occurs,thus helpsrecyclethe RecA protein.45 Additionally,

ithasbeenshownbyYuand Egelman46 thattheRecA

fila-mentisinactivewhenthecompressedfilamentisformedin

theabsenceofanucleotidecofactorsuchasATP,eitherasa

self-polymer oronasingle-strandedDNAmolecule.Hence,

wehypothesizedthatATPhydrolysisisacrucialstepforthe

activityofRecA,andhence,theATPaseactivityofRecAcan

serveasameasureformonitoringRecAstrandexchange

activ-ity.WeobservedthattheATPaseactivityofthein-houseRecA

andcommercialRecApreparationsweresubstantiallysimilar.

ThisdataindicatesthatthepurifiedRecAdoesnothavethe

propertyofaggregation,sincetheaggregationstateofRecA

proteinisknowntoaffectitsATPaseactivity.47

Shigemorietal.24haveperformedRT-PCRfortheirtarget

geneusingaSYBRpremixExTaqkitwithandwithoutRecA

andobservedanearly30%increaseinPCRfluorescencesignal

intensitywithRecAcomparedtothatwithoutRecA.Our

obser-vationsof∼50to96%increaseinthefluorescenceintensity

oftheHBV PCRswithRecAsupportsthereported

observa-tions.Inaddition,weshowlowerCtvaluesinHBVqPCRwith

RecA,which isanewobservation.Also,the limitof

detec-tion(LOD)oftheHBVviralloadmethoddevelopedusingSYBR

greendyeappearstobe5viruscopies/reactionwhichequates

to40IU/mL.ThisLODvalueisvery closetotheLODvalue

oftheAbbottHBVviralloadkit(utilizingTaqManchemistry)

of15IU/mLforaprocedureprocessing0.2mLofthestarting

sample.

Anassaywithalower limitofdetection of103IU/mLof

HBVisreportedtobesufficienttomonitorandmanagethe

patient,48butinsomeinstances,amoresensitiveassaywith

alowerlimitofdetectionontheorderof101IU/mLis

recom-mendedtoensuredetectionoftheemergenceofresistanceas

earlyaspossible.Hence,ourobservationsofenhancementof

the limitofHBV viralloaddetectionbyalmost 1log copies

can beextrapolated toimproving theqPCR HBV LODfrom

200copies/mLto20copies/mLor40IU/mLto4IU/mL,which

ishithertounreported.

In this paper, wehave described a real-time PCR assay

forHBVDNAquantificationwithSYBRGreenchemistry.The

primersusedforqPCRtargetsthesurfaceantigenofHBVand

havebeendesignedafteraligningnucleotidesequencesofall

theHBVgenotypesavailableintheNCBIdatabasesothatone

isassuredofpositivePCRsignalforallHBVserotypesusing

thesesetofprimers.

Viral load set pointhas long been usedas aprognostic

markerofdiseaseprogressionand monitoringofvirusload

(7)

HBVstrains.Also,anundetectableorlowviralloaddoesnot

necessarilyguaranteethatapatientwillnotexperienceliver

damage;hencemethodsthatenhancethesensitivityofthe

viralloadmethodwouldhaveimmensevalueinclinical

set-ting and further drug treatments. In the light of this, our

observationofRecAenhancingtheLODoftheviralload

esti-mationmethodisnovelandinteresting.

We are presently focusing on generating novel RecA

fusionstoexaminewhethertheheatstabilityofRecAcanbe

impartedtoheterologousgenesandwhethersuch

heterolo-gousRecAfusionproteinscouldbepurifiedbyheattreatment

asdescribedinthisarticle.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

TheauthorswishtothankDr.C.Nagaraj,Prof.ofMicrobiology,

PESIMSR,Kuppam,India,forthesupplyofclinicalsamplesof

HIV,HBVandHCVforourstudies.Theauthorsalsowishto

thankDr.Sridhar,K.N.andDr.GauthamNadigfortheir

con-stantsupportandencouragement.CancyteTechnologiesPvt.

Ltd.isfullysupportedbySriSringeriSharadaPeetam,India.

Appendix

A.

Supplementary

data

Supplementarydataassociatedwiththisarticlecanbefound,

intheonlineversion,atdoi:10.1016/j.bjm.2018.03.007.

r

e

f

e

r

e

n

c

e

s

1. KowalczykowskiSC,DixonDA,EgglestonAK,etal.

BiochemistryofhomologousrecombinationinEscherichia

coli.MicrobiolRev.1994;58:401–465.

2. WestSC,CassutoE,Howard-FlandersP.RecAprotein

promoteshomologous-pairingandstrand-exchange

reactionsbetweenduplexDNAmolecules.ProcNatlAcadSci

USA.1981;78:2100–2104.

3. KatoR,KuramitsuS.CharacterizationofthermostableRecA

proteinandanalysisofitsinteractionwithsingle-stranded

DNA.EurJBiochem.1999;259:592–601.

4. WillettsNS,ClarkAJ.Characteristicsofsomemultiply

recombination-deficientstrainsofEscherichiacoli.JBacteriol.

1969;100:231–239.

5. KrasinF,HutchinsonF.RepairofDNAdouble-strandbreaks

inEscherichiacolicellsrequiressynthesisofproteinsthatcan

beinducedbyUVlight.ProcNatlAcadSciUSA.

1981;78:3450–3453.

6. AngovE,Camerini-OteroRD.TheRecAgenefromthe

thermophileThermusaquaticusYT-1:cloning,expression,

andcharacterization.JBacteriol.1994;176:1405–1412.

7. RocaAI,CoxMM.TheRecAprotein:structureandfunction.

CritRevBiochemMolBiol.1990;25:415–456.

8. SandlerSJ,SatinLH,SamraHS,etal.RecA-likegenesfrom

threearchaeanspecieswithputativeproteinproducts

similartoRad51andDmc1proteinsoftheyeast

Saccharomycescerevisiae.NucleicAcidsRes.1996;24:2125–2132.

9.WeinstockGM,McEnteeK,LehmanIR.Interactionofthe

recAproteinofEscherichiacoliwithadenosine

5-O-(3-thiotriphosphate).JBiolChem.1981;256:8850–8855.

10.KowalczykowskiSC,KruppRA.EffectsofEscherichiacoliSSB

proteinonthesingle-strandedDNA-dependentATPase

activityofEscherichiacoliRecAprotein.EvidencethatSSB

proteinfacilitatesthebindingofRecAproteintoregionsof

secondarystructurewithinsingle-strandedDNA.JMolBiol.

1987;193:97–113.

11.ShanQ,CoxMM.RecAproteindynamicsintheinteriorof

RecAnucleoproteinfilaments.JMolBiol.1996;257:756–774.

12.LindsleyJE,CoxMM.AssemblyanddisassemblyofRecA

proteinfilamentsoccuratoppositefilamentends.

RelationshiptoDNAstrandexchange.JBiolChem.

1990;265:9043–9054.

13.EgglerAL,LusettiSL,CoxMM,TheC.Terminusofthe

EscherichiacoliRecAproteinmodulatestheDNAbinding

competitionwithsingle-strandedDNA-bindingprotein.JBiol

Chem.2003;278:16389–16396.

14.RosselliW,StasiakA.TheATPaseactivityofRecAisneeded

topushtheDNAstrandexchangethroughheterologous

regions.EMBOJ.1991;10:4391–4396.

15.VoetD,VoetJG.Biochemistry.NewYork:JohnWileyandSons; 1990:805–806.

16.ChanCH,SteadDE,CouttsRH.Developmentofa

species-specificrecA-basedPCRtestforBurkholderia

fungorum.FEMSMicrobiolLett.2003;224:133–138.

17.FerrinLJ,Camerini-OteroRD.Sequence-specificligationof

DNAusingRecAprotein.ProcNatlAcadSciUSA.

1988;95:2152–2157.

18.RowanBA,OldenburgDJ,BendichAJ.RecAmaintainsthe

integrityofchloroplastDNAmoleculesinArabidopsis.JExp

Bot.2010;61:2575–2588.

19.JiangQ,KarataK,WoodgateR,etal.TheactiveformofDNA

polymeraseVisUmuD’2C-RecA-ATP.Nature.

2009;460:359–363.

20.RobertsJW,RobertsCW.Proteolyticcleavageof

bacteriophagelambdarepressorininduction.ProcNatlAcad

SciUSA.1975;72:147–151.

21.SauerRT,RossMJ,PtashneM.Cleavageofthelambdaand

P22repressorsbyrecAprotein.JBiolChem.

1982;257:4458–4462.

22.EguchiY,OgawaT,OgawaH.Cleavageofbacteriophagephi

80CIrepressorbyRecAprotein.JMolBiol.1988;202:565–573.

23.Gomez-GomezJM,ManfrediC,AlonsoJC,etal.Anovelrole

forRecAundernon-stress:promotionofswarmingmotility

inEscherichiacoliK-12.BMCBiol.2007;5:14.

24.ShigemoriY,MikawaT,ShibataT,etal.MultiplexPCR:useof

heat-stableThermusthermophilusRecAproteintominimize

non-specificPCRproducts.NucleicAcidsRes.2005;33:e126.

25.FukuiK,KuramitsuS.SimultaneoususeofMutSandRecA

forsuppressionofnon-specificamplificationduringPCR.J

NucleicAcids.2013;2013:823730.

26.PaulVD,SaravananSR,SundarrajanS,etal.Anovel

bacteriophagetail-associatedmuralyticenzyme(TAME)

fromphageKanditsdevelopmentintoapotent

anti-staphylococcalprotein.BMCMicrobiol.2011;11:226.

27.KatoR,KuramitsuS.RecAproteinfromanextremely

thermophilicbacterium,ThermusthermophilusHB8.JBiochem.

1993;114:926–929.

28.NesterenkoMV,TilleyM,UptonSJ.Asimplemodificationof

Blum’ssilverstainmethodallowsfor30minutedetectionof

proteinsinpolyacrylamidegels.JBiochemBiophysMethods.

1994;28:239–242.

29.BradfordMM.Rapidandsensitivemethodforthe

quantitationofmicrogramquantitiesofproteinutilizingthe

principleofprotein–dyebinding.AnalBiochem.

(8)

30.LangeV,BöhmeI,HofmannJ,etal.Cost-efficient

high-throughputHLAtypingbyMiSeqampliconsequencing.

BMCGenomics.2014;15:63.

31.GandhiMJ.Targetednext-generationsequencingforhuman

leukocyteantigentypinginaclinicallaboratorymetricsof

relevanceandconsiderationsforitssuccessful

implementation.ArchPatholLabMed.2017;141:806–812.

32.SchöflG,LangK,QuenzelP,etal.2.7millionsamples

genotypedforHLAbynextgenerationsequencing:lessons

learned.BMCGenomics.2017;18:161.

33.ItohY,MizukiN,ShimadaT,etal.High-throughputDNA

typingofHLA-A,-B,-C,and-DRB1locibya

PCR–SSOP–LuminexmethodintheJapanesepopulation.

Immunogenetics.2005;57:717–729.

34.StaroscikA.CalculatorforDeterminingtheNumberofCopiesofa Template.URIGenomics&SequencingCenter;2004.

http://cels.uri.edu/gsc/cndna.html.

35.TegelH,OttossonJ,HoberS.Enhancingtheprotein

productionlevelsinEscherichiacoliwithastrongpromoter.

FEBSJ.2011;278:729–739.

36.Kesik-BrodackaM,RomanikA,Mikiewicz-SygulaD,etal.A

novelsystemforstable,high-levelexpressionfromtheT7

promoter.MicrobCellFact.2012;11:109.

37.GraumannK,PremstallerA.Manufacturingofrecombinant

therapeuticproteinsinmicrobialsystems.BiotechnolJ.

2006;1:164–186.

38.StudierFW.UseofbacteriophageT7lysozymetoimprovean

inducibleT7expressionsystem.JMolBiol.1991;219:37–44.

39.LarentisAL,NicolauJFMQ,EstevesGdosS,etal.Evaluation

ofpre-inductiontemperature,cellgrowthatinductionand

IPTGconcentrationontheexpressionofaleptospiralprotein

inE.coliusingshakingflasksandmicrobioreactor.BMCRes

Notes.2014;7:671.

40.GriffithJ,ShoresCG.RecAproteinrapidlycrystallizesinthe

presenceofspermidine:avaluablestepinitspurification

andphysicalcharacterization.Biochemistry.1985;24:158–162.

41.SingletonSF,SimonetteRA,SharmaNC,etal.

Intein-mediatedaffinity-fusionpurificationoftheEscherichia

coliRecAprotein.ProteinExprPurif.2002;26:476–488.

42.KriviGG,BittnerML,RowoldEJr,etal.Purificationof

recA-basedfusionproteinsbyimmunoadsorbent

chromatography.Characterizationofamajorantigenic

determinantofEscherichiacolirecAprotein.JBiolChem.

1985;260:10263–10267.

43.KuramitsuS,HamaguchiK,OgawaT,etal.Alarge-scale

preparationandsomephysicochemicalpropertiesofRecA

protein.JBiochem.1981;90:1033–1045.

44.NairR,SalviP,BanerjeeS,etal.Yeastextractmediated

autoinductionoflacUV5promoter:aninsight.NBiotechnol.

2009;26:282–288.

45.BellCE.StructureandmechanismofEscherichiacoliRecA

ATPase.MolMicrobiol.2005;58:358–366.

46.YuX,EgelmanEH.Structuraldatasuggestthattheactive

andinactiveformsoftheRecAfilamentarenotsimply

interconvertible.JMolBiol.1992;227:334–346.

47.OgawaT,WabikoH,TsurimotoT,etal.ColdSpringHarbor

SympQuantBiol.1979;43:909–915.

48.SitnikR,PaesA,MangueiraCP,etal.Areal-timequantitative

assayforhepatitisBDNAvirusdevelopedtodetectallHBV

Referências

Documentos relacionados

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

O campo de pesquisa é o Centro Socioeducativo Aldaci Barbosa Mota (CSABM), única unidade de internação para adolescentes do sexo feminino do Estado do Ceará 3 , ou seja,

coli RecA protein as a reference, the percentage of identical amino acids resi- dues in bacterial homologous proteins was found to range from 49% for Mycoplasma pulmonis to 100%

coli DH5 a resulted in RecA protein expression and development of the selective fl uoroquinolone resistance phenotype in the E. coli

Likewise, high level ex- pression of the HSP70 protein was detected at all the oocyte stages upon heat shock, however, as in the case of the HSP60 protein, weak constitutive

With the increase of matrine concentration, the relative expression level of Bcl-2 protein in CNE-2 cells was decreased, and the expression level of Caspase-3 protein was

As mesmas amostras foram também analisadas quanto à contagem de bactérias do gênero Enterococcus e os resultados obtidos variaram entre 10 6 e 10 8 UFC/g para queijos com

Neste trabalho apresentamos um novo algoritmo bi-critério para a ordenação da carteira da inspeção tributária, que pretende maximizar a prioridade (ou urgência) e maximizar