• Nenhum resultado encontrado

Hybrid magnetic graphitic nanocomposites towards catalytic wet peroxide oxidation of the liquid effluent from a mechanical biological treatment plant for municipal solid waste

N/A
N/A
Protected

Academic year: 2021

Share "Hybrid magnetic graphitic nanocomposites towards catalytic wet peroxide oxidation of the liquid effluent from a mechanical biological treatment plant for municipal solid waste"

Copied!
13
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Applied

Catalysis

B:

Environmental

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t b

Research

Paper

Hybrid

magnetic

graphitic

nanocomposites

towards

catalytic

wet

peroxide

oxidation

of

the

liquid

effluent

from

a

mechanical

biological

treatment

plant

for

municipal

solid

waste

Rui

S.

Ribeiro

a,b

,

Raquel

O.

Rodrigues

a,b

,

Adrián

M.T.

Silva

b

,

Pedro

B.

Tavares

c

,

Ana

M.C.

Carvalho

d

,

José

L.

Figueiredo

b

,

Joaquim

L.

Faria

b

,

Helder

T.

Gomes

a,∗

aLaboratoryofSeparationandReactionEngineeringLaboratoryofCatalysisandMaterials(LSRE-LCM),EscolaSuperiordeTecnologiaeGestão,Instituto

PolitécnicodeBraganc¸a,CampusdeSantaApolónia,5300-253Braganc¸a,Portugal

bLaboratoryofSeparationandReactionEngineeringLaboratoryofCatalysisandMaterials(LSRE-LCM),FaculdadedeEngenharia,UniversidadedoPorto,

RuaDr.RobertoFrias,4200-465Porto,Portugal

cCQVRCentrodeQuímicaVilaReal,UniversidadedeTrás-os-MonteseAltoDouro,5000-801VilaReal,Portugal dResíduosdoNordeste,EIM,RuaFundac¸ãoCalousteGulbenkian,5370-340Mirandela,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received11May2017

Receivedinrevisedform26July2017 Accepted2August2017

Availableonline3August2017

Keywords:

Core-shellnanocomposites HeterogeneousFenton-likeprocess Mechanicalbiologicaltreatment Processwater

Magneticseparation

a

b

s

t

r

a

c

t

Magnetite,nickelandcobaltferriteswerepreparedandencapsulatedwithingraphiticshells,resultingin threehybridmagneticgraphiticnanocomposites.Screeningexperimentswitha4-nitrophenolaqueous modelsystem(5gL−1)allowedtoselectthebestperformingcatalyst,whichwasobjectofadditional studieswiththeliquideffluentresultingfromamechanicalbiologicaltreatmentplantformunicipalsolid waste.Duetoitshighcontentinbicarbonates(14350mgL−1)andchlorides(2833mgL−1),controlling theinitialpHwasacrucialsteptomaximizetheperformanceofthecatalyticwetperoxideoxidation (CWPO)treatment.Thecatalystloadwas0.5gL−1,averylowdosagewhencomparedtothehighchemical

oxygendemand(COD)oftheeffluent−9206mgL−1.AttheoptimumoperatingpH(i.e.,pH=6),ca.95% ofthearomaticitywasconvertedandca.55%ofCODandtotalorganiccarbon(TOC)oftheliquideffluent wasremoved.ThebiodegradabilityoftheliquideffluentwasenhancedduringthetreatmentbyCWPO, asreflectedbythe2-foldincreaseofthefive-daybiochemicaloxygendemand(BOD5)toCODratio

(BOD5/COD),namelyfrom0.21(indicatingnon-biodegradability)to0.42(suggestingbiodegradabilityof

thetreatedwastewater).Inaddition,thetreatedwaterrevealednotoxicityagainstselectedbacteria. Lastly,amagneticseparationsystemwasdesignedforin-situcatalystrecoveryaftertheCWPO reac-tionstage.Thehighcatalyststabilitywasdemonstratedthroughfivereaction/separationsequential experimentsinthesamevesselwithconsecutivecatalystreuse.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

The organic fraction accounts for about 30–40wt.% of the municipalsolid waste (MSW)produced in Europe, correspond-ingtoover 70milliontonnesperyear[1].Asignificantportion ofthisbiodegradablewasteendsupinlandfills[1];however,this approachisnotreallysustainable[2].Inordertolimitthe envi-ronmentalimpactofdirectlandfilldisposal,theEUDirectiveon wastelandfilling(CouncilDirective99/31/EC)aimstoreducethe biodegradableMSWgoingtolandfills,namely65wt.%withinjust 15years[3].Asaconsequence,theconceptofhierarchicalwaste

∗ Correspondingauthor.

E-mailaddress:htgomes@ipb.pt(H.T.Gomes).

managementiswell-establishednowadays,mechanicalbiological treatment(MBT)plantsbeingasuitablealternativethatis grow-inginpopularityinmanyEuropeancountriesaswellasinother countriesworldwide[4,5].

MBTplantstypicallyoperateintwosteps:thefirststep com-prisesresiduepreparationandsortingintodifferentfractionsusing mechanicalmeans;thesecondstepenvisagesthebiological treat-mentoftheorganicfractionofMSWtoproduceastabilizedsolid outputforagronomicalapplications(compost) orultimatelyfor disposal to landfill [6]. Under this context, anaerobicdigestion isanenergyefficientbiologicaltreatmenttechniquethatallows using theorganicfractionofMSW asrenewable energy source (e.g.throughbiogasproduction)whilereducingthe environmen-talimpactofitsdirectlandfilldisposal[2,7].Therefore,MBTplants allowreducingthewastestreamgoingtolandfillwhilebenefiting http://dx.doi.org/10.1016/j.apcatb.2017.08.013

(2)

fromresources(e.g.recyclablesandcompost)andenergyrecovery [5].

Inordertoachieveoptimumprocessconditions,the biodegrad-ablefractionoftheMSWgoingtoanaerobicdigestionmustfirst besuspendedin,ormoistenedwithwater,leadingtosignificant freshwaterrequirements–from0.4to0.6m3pertonneofwaste,

fordryor wetfermentation,respectively [7].Inadditiontothe processwaterfrom(i)anaerobicdigestion,theothermainsources ofprocesswaterstreamsare:(ii)leachatefromintensiverotting, (iii)pressingwaterfromdigestatedewateringand(iv)condensates and/orscrubberwaterfromtheexhausttreatment[7].However, unlikethegaseousemissionsandthestabilizedsolidoutput,the literaturelacksoninformationregardingthecharacteristicsand subsequenttreatmentof theliquideffluentwithhighpollutant loadsresultingfromtheprocesswaterstreamsofMBTplantsfor MSW[7].

Bearingthisinmind,aliquideffluentwascollectedfromaMBT plantlocatedintheNortheastregionofPortugal(currently pro-cessing50000tofMSWperyear);afterdetailedcharacterization, catalyticwetperoxideoxidation(CWPO)–apromisingalternative technologytotheconventionalhomogeneousFentonprocess[8]– wasstudiedunderatmosphericpressureandmoderate tempera-ture(80◦C)forthetreatmentofthisliquideffluentpresentinglow biodegradability.Thisapproachisinlinewiththecurrenttrendfor theintensificationofCWPOprocesses,whichismovingtheprocess towardstheapplicationofhighertemperatures,rangingfrom80◦C to125◦C[9–11].

CatalystdesignplaysacrucialroleinCWPO,sincethiswater treatment technology relies on the catalytic decomposition of hydrogenperoxide(H2O2)viaformationofhydroxylradicals(HO•)

–whichareverypowerfulandeffectiveoxidantsforthe destruc-tionofahugerangeoforganicpollutants[12,13].Thisisconfirmed byseveralrecentreviewarticlesonthesynthesisandapplication ofheterogeneousmetal/magneticphasesinCWPO,eitherdirectly appliedascatalysts orincluded in verydistinct support/hybrid materials[8,13–21].Under this context, ourpreviousworkhas beenmainlyfocusedonthecombinationofactiveandmagnetically separableiron-basedmaterialswiththeeasilytunedproperties ofcarbon-basedmaterials[14].Asaresult,theoutstanding per-formanceofahybridmagneticgraphiticnanocomposite(MGNC) catalyst–composedbyamagnetite(Fe3O4)coreandagraphitic

shell–wasreportedwhenappliedintheCWPOofatypical refrac-toryorganicmodelpollutant(4-nitrophenol;4-NP)withhighload (5gL−1,correspondingtoatotal organiccarboncontentsimilar tothatoftheliquideffluentconsideredinthiswork)[9]. Specifi-cally,itwasconcludedthattheperformanceofbareFe3O4inCWPO

isenhancedwhenthismagneticmaterialisencapsulatedwithin agraphitic structure duringthe synthesisof MGNC,due tothe increasedadsorptiveinteractionsbetweenthecarbonphaseand thepollutantmolecules;whileatthesametime,theleachingofFe speciesfromFe3O4tothetreatedwaterisstronglylimiteddueto

theconfinementeffectcausedbythecarbonshell[9].

SeekingforaMGNCcatalystoptimizationbasedonthe mag-netic core,nickel ferrite(NiFe2O4)and cobalt ferrite(CoFe2O4)

werepreparedinthepresentworkandthenencapsulatedwithin graphiticshells,inadditiontoFe3O4.Duetotheeasier

manipula-tion,simplicityandincreasedreproducibilityoftheexperimental results, the4-NP aqueous model system(5gL−1) wasused for theinitial screening of theMGNC catalysts, as well as for the developmentofanin-situmagneticseparation systemfor cata-lystrecoveryaftertheCWPOreactionstage.Afterwards,theMGNC catalystwithhigheractivityfortheCWPOof4-NPwasemployed inthetreatmentoftheliquideffluentcollectedfromaMBTplant. TheperformanceoftheCWPOprocesswasthoroughlyevaluated bysystematicmeasurementsofchemicaloxygendemand(COD), totalorganiccarbon (TOC), aromaticity,H2O2 consumption and

dissolvedmetalspecies,inordertooptimizetheoperating parame-ters.Five-daybiochemicaloxygendemand(BOD5)wasdetermined

inordertoestimatetheeffectofCWPOonthebiodegradabilityof theliquideffluent.Totalheterotrophicbacteriawereestimatedin ordertoassesstheeffectofCWPOontheautochthonousmicrobial populationoftheliquideffluent.Additionalmicrobiologicalassays wereperformedinordertoevaluatetheantimicrobialactivityof theliquideffluentbeforeandaftertreatmentbyCWPO.

2. Materialsandmethods

2.1. Chemicals

4-Nitrophenol,4-NP(O2NC6H4OH,Mr139.11,98wt.%),

hydro-genperoxide(H2O2,30%w/v)andpotassiumphthalatemonobasic

(99.5wt.%)werepurchased from AcrosOrganics andFluka and Riedel-de Haën, respectively. Iron (III) chloride hexahydrate (FeCl3·6H2O, 97wt.%), phenol (99.5wt.%), formaldehyde

solu-tion (37wt.%,stabilized with methanol), potassium dichromate (99.5wt.%), mercury (II) sulphate (HgSO4,99wt.%), ammonium

hydroxide solution(25wt.%)and silver nitrate(99.8wt.%)were obtainedfromPanreac.Titanium(IV)oxysulphate(TiOSO4·xH2O,

15wt.% in diluted sulphuric acid, 99.99%), iron (II) chloride tetrahydrate (FeCl2·4H2O, 99wt.%), copolymer pluronic F127,

ethanolabsolute(99.8wt.%)andsodiumsulphite(Na2SO3,98wt.%)

were purchased from Sigma-Aldrich. Nickel (II) chloride hex-ahydrate(NiCl2·6H2O,95wt.%), cobalt(II) chloridehexahydrate

(CoCl2·6H2O,99wt.%), sodiumhydroxide(NaOH, 98.7wt.%),

sul-phuricacid(H2SO4,95wt.%),hydrochloricacid(HCl,37wt.%),silver

sulphate(95wt.%),methanol(HPLCgrade),glacialaceticacid (ana-lyticalreagentgrade),tert-butanol(99.8wt.%),acetonitrile(HPLC grade)andpotassium chromate(99.6wt.%)wereobtainedfrom FisherChemical.Platecountagar(PCA),MullerHintonagar(MHA) andnutrientbroth(NB)werepurchasedfromLiofilchem.

Allchemicalswereusedasreceived,withoutfurther purifica-tion.Distilledwaterwasusedthroughoutthework.

2.2. Liquideffluentfromamechanicalbiologicaltreatmentplant formunicipalsolidwaste

The liquid effluentused in this work was collected from a MBTplantforMSWlocatedinNorthernPortugal.Theliquid efflu-ent,whosepropertiesaresummarizedinTable1,gathersallthe wastewaterproducedintheplant(mainlycomposedbya mechan-icalunitforresiduesorting,followedbyananaerobicdigestionunit forbiogasproductionfromtheorganicfractionoftheMSW).The liquideffluentwasfiltered(analyticalfilterpaper,25␮m)priorto itsuseinthiswork,inordertoremovethesuspendedsolidsthat wouldinterfereinsubsequenttreatmentandanalyticalsteps. 2.3. Magneticnanoparticles

Magnetite(Fe3O4)wassynthesizedbyco-precipitationofFe2+

and Fe3+ in basicsolution, at 30C and under N2 atmosphere,

aspreviouslydescribed[9].Forthatpurpose,13.44mmolofiron (II) chloride tetrahydrate and 26.88mmol of iron (III) chloride hexahydrateweredissolvedin250mLofdistilledwaterand trans-ferredintoa500mLglassreactor,equippedwithacondenserand immersedinanoilbathwithcontrolledtemperature.Whenthe desiredtemperaturewasreached,themixturewasdeaerated dur-ing10minwithN2undervigorousstirring,andfurtherkeptunder

inertatmosphere. Atthispoint,10mLofammoniumhydroxide solution(25wt.%) wasquickly added,a black precipitatebeing instantlyobtained.Afterwards,possibleresiduesoftheprecursors werewashed-outwithdistilledwater,thesamplebeingthendried inanovenat60◦Cfor24h,resultingintheFe3O4material.

(3)

Cobaltferrite(CoFe2O4)wassynthesized byco-precipitation

of Co2+ and Fe3+ in basic solution at 75C, adapting the

pro-cedure described elsewhere[22]. For that purpose, 67mmol of cobalt(II)chloridehexahydrateand134mmolofiron(III)chloride hexahydrateweredissolvedin100mLofdistilledwaterand trans-ferredintoa250mLglassreactor,equippedwithacondenserand immersedinanoilbathwithcontrolledtemperature.Whenthe desiredtemperaturewasreached,80mLofammoniumhydroxide solution(1molL−1)wasaddeddropwiseusingaperistalticpump, underconstantvigorousstirring.Afterthecolourofthesolution turnedtodark-brown,themixturewaskeptundervigorousstirring foranadditional30min,inordertoensurethecompleteformation offerritecrystals.Possibleresiduesoftheprecursorswere washed-outwithdistilled waterandabsoluteethanol,thesamplebeing thendriedinovenat60◦Cfor24h,groundintofinepowderand treatedunderapurifiedairflow(100cm3min−1)at500Cfor2h

withaheatingrampof2◦Cmin−1,allowingcrystallizationofthe materialswiththeinversespinelstructure[22,23],andresultingin theCoFe2O4sample.Nickelferrite(NiFe2O4)wassynthesizedusing

thesameprocedure,exceptthatthecobaltprecursorwasreplaced bynickel(II)chloridehexahydrate.

2.4. Hybridmagneticgraphiticnanocomposites

TheMGNCmaterialswerepreparedbyhierarchicalco-assembly ofmagneticnanoparticlesandcarbonprecursors,followedby ther-maltreatment,adaptingtheprocedurepreviouslydescribed[9]. Forthatpurpose,5gofcopolymerpluronicF127wasdissolvedin 50mLofH2O,inaroundbottom500mLglassreactorequippedwith

acondenserandimmersedinanoilbathwithtemperaturecontrol. Then,5mLofmagneticnanoparticlessuspension(17mgmL−1, pre-viouslyobtainedbydispersionofFe3O4,NiFe2O4 orCoFe2O4,in

H2Oinanultrasonicbath)wasadded,theresultingsolutionbeing

stirredduring2hat66◦Cforhomogenization.Afterthat,≈60mL ofa phenol/formaldehyde resolsolutionwasadded, the result-ingmixturebeingkeptunderstirring(400rpm)at66◦Cfor72h andthenat70◦Cforanadditional24h.Thephenol/formaldehyde resolsolutionwaspreparedbydissolutionof 2.0gofphenolin 7.0mLofformaldehyde37wt.%solution,towhich50.0mLofNaOH 0.1molL−1wasadded,thesolutionbeingthenkeptunderstirring at70◦Cfor30min.

Ineachcase,therecoveredsolidswerewashedwithdistilled water in order to promote the washing-out of some possible residuesoftheprecursorsandthendriedovernightinovenat60◦C. Afterwards,eachsamplewasthermallytreatedunderaN2 flow

(100cm3min−1)at120,400and600Cduring60minateach

tem-peratureandthenat800◦Cfor240min,definingaheatingramp of2◦Cmin−1.Finally, each samplewaswashedwith1L of dis-tilledwaterat50◦Cundervacuumfiltration,andthenwith1Lof HClsolution(pH=3),alsoat50◦Cundervacuumfiltration,being thendriedovernightinovenat60◦C,resultingintheFe3O4/MGNC,

NiFe2O4/MGNCorCoFe2O4/MGNCmaterials.

2.5. Characterizationtechniques

X-raydiffraction(XRD)analysiswasperformedinaPANalytical X’PertMPDequippedwithaX’Celeratordetectorandsecondary monochromator(CuK␣␭=0.154nm; datarecordedata0.017◦ step size). The crystallographic phases present were identified using HighScore software and Crystallography Open Database. RietveldrefinementoftheXRDdiffractionpatternswasperformed usingPowderCellsoftwareallowingphasequantification. Crystal-litesizesweredeterminedbytheWilliamson-Hallmethod.

Transmissionelectronmicroscopy(TEM)wasperformedina LEO906Einstrumentoperatingat120kV,equippedwitha4Mpixel 28×28mmCCDcamerafromTRS.Atleast100countswere

per-formedbyusingImageJsoftwareinordertoestimatethesizeof themagneticnanoparticles.Atleast65countswereperformedto estimatethesizeofthemetalcoreoftheMGNCmaterials.

The textural properties were determined from N2

adsorption–desorption isotherms at −196◦C, obtained in a

Quantachrome NOVA 4200e adsorption analyser, as previously described [24]. The pH at point of zero charge (pHPZC) was

obtainedbypHdrifttests[24].Thermogravimetricanalysis(TGA) wasperformedusingaNetzschTG209F3Tarsusequipmentunder oxidativeatmosphere,uponheatingthesamplesfrom30to950◦C at20◦Cmin−1.

2.6. Catalyticwetperoxideoxidationexperiments

BatchCWPOexperimentswith4-NPasmodelpollutantwere performedinawell-stirred(600rpm)glassreactorequippedwith a condenser, a temperature measurement thermocouple, a pH measurementelectrodeandasamplecollectionport.Thereactor wasloadedwith4-NPaqueoussolutions(5.0gL−1)andheatedby immersioninanoilbathatcontrolledtemperature.Upon stabiliza-tionat80◦C,thesolutionpHwasadjustedto3bymeansofH2SO4

andNaOHsolutions,andtheexperimentswereallowedto pro-ceedfreely,withoutfurtherpHconditioning.Acalculatedvolume ofH2O2(30%w/v)wasinjectedintothesystem,inordertoreachthe

stoichiometricamountofH2O2neededtocompletelymineralise

4-NP(17.8gL−1).Thecatalystwasaddedaftercomplete homoge-nizationoftheresultingsolution,thatmomentbeingconsidered ast0=0min.Pureadsorptionrunswerealsoperformedinorder

toassessthepossibleadsorptioninfluenceonthe4-NPremoval byCWPO,but,inthiscase,theamountofH2O2wasreplacedby

distilledwater.Blankexperiments,withoutanycatalyst,werealso carriedouttoassesspossiblenon-catalyticoxidationpromotedby H2O2.

Inordertoshowthepredominantroleofheterogeneous catal-ysispromotedbyCoFe2O4/MGNC,aleachingtestwasperformed

aspreviouslydescribed[9].Forthatpurpose,theCoFe2O4/MGNC

catalystwasremovedafter30minofreactionatthereaction tem-perature(80◦C),andthereactionsolutionwasallowedtoprogress further.TheparticipationoftheHO•radicalsintheCWPOprocess wasindirectlyshownbyaddingtert-butanol(tBuOH)–astrong HO•scavenger[25].

Batch CWPO experiments withthe liquid effluentdescribed in Section 2.2 were performed under the same experimental conditionsdescribedfortheCWPOrunsperformedwith4-NP solu-tions, except that theconcentration of H2O2 wasin the range

13.9–34.7gL−1(correspondingto0.6and1.6-foldthe stoichiomet-ricamounttheoreticallyneededtoreducetheeffluentCODandto reactwiththeeffluentchlorides),andtheoperatingpHintherange 2.5–8.

Thein-situmagneticseparationofthecatalystwasperformed afterthereactionstage,bycouplingaMitutoyo7033Bswitchable magneticstand(clampingforce600N)withtheglassreactorused forCWPO.Briefly,themagneticstandiscomposedbyfourparts: anon-ferrousmetalspacerplacedbetweentwoplatesoriron,and themagnetatthecentre;whenthemagnetpolesarealignedwith theferrousplatesthemagneticstandisON,whereasthemagnetic standisOFFwhen themagnetpoles arealignedwiththe non-ferrousspacer.Whentheroundbottomglassreactorwasplaced onthemagneticstand,itwasimmediatelyswitchedONandthe magneticseparationwasallowedtoproceedduring5min. After-wards,thetreatedwaterwascollectedwithapipette.Inorderto evaluatethestabilityoftheCoFe2O4/MGNCcatalystintheCWPO

oftheliquideffluentfromtheMBTplant,reusabilitycycleswere performedasdescribed:aftereachrun,in-situmagnetic separa-tionwasemployedforcatalystrecoveryandthetreatedwaterwas collected.Afterwards,23wt.%oftheinitialcatalystloadwasadded

(4)

Fig.1.XRDdiffractionpatternsof(a)Fe3O4andFe3O4/MGNC,(b)NiFe2O4and

NiFe2O4/MGNC,and(c)CoFe2O4andCoFe2O4/MGNC.Standardreferencepatterns

ofmagnetite(crystallographyopendatabasecode:9005840),nickelferrite (crys-tallographyopendatabasecode:2300289)andcobaltferrite(crystallographyopen databasecode:1535820)arealsogivenforcomparison.

(i.e.,0.115gL−1;correspondingtothemassfractionlostduetothe samplingprocedureandtothetreatedwatercollection)inorderto ensureequalcatalystdosagethroughoutallthereusabilitycycles (0.5gL−1),andthecatalystwasreusedinCWPOupontheaddition offreshliquideffluent.

Selectedexperimentswereperformedinduplicate,inorderto assessreproducibilityanderroroftheexperimentalresults.Itwas foundthatthestandarddeviationofthe4-NPandH2O2

determina-tionswasneversuperiorto1%intheexperimentsperformedwith themodelpollutant,whileintheexperimentsperformedwiththe liquideffluentfromaMBTplant,thestandarddeviationoftheCOD, TOC,H2O2andaromaticitydeterminationswasneversuperiorto

2%,1%,4%and1%,respectively. 2.7. Analyticalmethods

Theparentcompound4-NPandpossibleoxidationby-products were determined by high performance liquid chromatography (HPLC),usingamethodpreviouslydescribed [26].Totalorganic carbon(TOC)wasdeterminedusingaShimadzuTOC-LCSN anal-yser.Forquantificationpurposes,smallaliquotswereperiodically withdrawn fromthe reactor and an excess of sodium sulphite wasimmediatelyaddedinordertoconsumeresidualH2O2 and

toinstantaneouslystopthereaction.

The concentration of H2O2 was followed by a

colorimet-ricmethodwithtitanium(IV)oxysulfate[26].Chemicaloxygen demand(COD) wasdetermined by a closed refluxcolorimetric method,adaptingtheproceduredescribedelsewhere[27].A10:1 wtratioofHgSO4:Cl−wasensuredinalltheanalysisinorderto

avoidtheinterferenceofchlorideion[27].TheapparentCODvalue obtained(CODapp)wasthencorrectedconsideringthetheoretical

interferenceofresidualH2O2,asdescribedinEq.(1),whichwas

givenelsewhere[28],andconfirmedinthepresentstudy (consider-ingtheconcentrationrange0≤[H2O2]≤692mgL−1).Absorbance

spectraintherange200–660nmwereobtainedwitha0.5nm sam-plinginterval, using a T70spectrometer(PG Instruments, Ltd.). Aromaticitywasestimatedbymeasuringtheabsorbanceat254nm – a wavelength at which most aromatic compounds typically presenta maximum valueofabsorbance [29].The contribution ofresidualH2O2onaromaticitywasexperimentallydetermined

usingH2O2standardsolutionsintherange10–14000mgL−1.

After-wards,theapparentaromaticityvalueobtained(Aromaticityapp)

wascorrectedconsidering theinterferenceofresidual H2O2,as

describedinEq.(2).

Thefive-daybiochemicaloxygendemand(BOD5)was

deter-minedbythestandardisedrespirometricOxiTop®method(WTW, Weilheim,Germany).Forthatpurpose,anappropriatevolumeof sample was added into a brownglass bottle (nominal volume 510mL)equippedwithamagneticstirrerandacarbondioxidetrap intheheadspace(NaOHpellets).Eachbottlewassealedwithan OxiTop®headandthenplacedinanincubatorboxatconstant tem-perature(20◦C)duringthefive-dayincubationperiod.TheBOD5

valuewascalculatedfromthepressuredecreaseintheclosed ves-sel,asrecordedviathepiezoresistiveelectronicpressuresensors oftheOxiTop® measuringsystem.Inthesamplescollectedafter CWPO,theapparentBOD5valueobtained(BOD5,app)wasthen

cor-rectedconsideringthetheoreticalinterferenceofresidualH2O2,as

describedinEq.(3).

The samples collected for the determination of H2O2, COD,

absorbance spectra, aromaticity and BOD5 were immediately

placediniceinordertostopthereaction,andkeptat3◦Cuntil theanalysis.Appropriatedilutionsweremadewhennecessary.

COD= CODapp−0.4706[H2O2]/mgL−1 (1)

Aromaticity= Aromaticityapp−0.0005[H2O2]/mgL−1 (2)

BOD5= BOD5,app+0.4706[H2O2]/mgL−1 (3)

Total Fe content was determined by a colorimetric method with1,10-phenantroline,according toISO 6332 and measuring theabsorbanceat510nm[30].Thesameanalyticalprocedurewas employedforthedeterminationofthedissolvedFecontent,except thatinthiscasethesampleswerefiltered(0.2␮m)priortothe analysis.Likewise,dissolvedNiandCocontentsweredetermined

(5)

Fig.2. TEMmicrographs:(main)of(a)Fe3O4/MGNC,(c)NiFe2O4/MGNCand(e)CoFe2O4/MGNC;and(inset)of(a)Fe3O4,(c)NiFe2O4and(e)CoFe2O4.Histogramofparticle

sizedistribution:(main)ofthemetalcoreof(b)Fe3O4/MGNC,(d)NiFe2O4/MGNCand(f)CoFe2O4/MGNC;and(inset)of(b)Fe3O4,(d)NiFe2O4and(f)CoFe2O4,asdetermined

byTEMmeasurements.

byusingaPerkinElmerPinAAcle900atomicabsorption spectrom-eter,employing a multi-element hollowcathodelamp (Lumina N3050214).Theconcentrationofchloridesdissolvedintheliquid effluentwasdeterminedbytheMohrmethod(titrationwithsilver nitrate,usingpotassiumchromateasindicator).

2.8. Microbiologicalassays

Heterotrophicplatecountbythespreadplatemethodwasused inordertoestimatethenumberofliveheterotrophicbacteriainthe liquideffluentbeforeandaftertreatmentbyCWPO[31].Forthat

purpose,0.1mLofstartingsampleandserial10-folddilutionswere spreadontoPCAplatesunderasepticconditionsandincubatedat 28◦Cduring5days;countingwasperformedforplatesdisplaying 10–100colony-formingunits(CFU),theresultsbeingreportedas CFUpermillilitre(CFUmL−1).Alltheprocedurewasperformedin triplicate.

Theagardisk-diffusionmethodwasusedfortheantimicrobial susceptibilitytestingoftheliquideffluentbeforeandafter treat-mentbyCWPO[32].Klebsiellapneumoniae(Gram negative)and Bacilluscereus(Grampositive)wereselectedastest microorgan-isms.Ineachcase,thebacteriawereinitiallygrownovernightinNB

(6)

Table1

CharacterizationoftheliquideffluentfromtheMBTplantforMSWlocatedin North-ernPortugal,asdeterminedintriplicatemeasurements.

Parameter Value Units

Chemicaloxygendemand(COD) 9206±284 mgL−1

Biochemicaloxygendemand(BOD5) 1933±153 mgL−1

Totalorganiccarbon(TOC) 2046±16 mgL−1

Chlorides 2833±14 mgL−1

pHat25◦C 8.20±0.01 Sørensenscale

TotalFecontent 6.4±0.1 mgL−1

DissolvedCocontent 0.12±0.01 mgL−1

Totalheterotrophicbacteriacultivableat28◦C 14.7±2.1 ×104CFUmL−1

Conductivitya 23933±4554 ␮Scm−1

Bicarbonatesa 14350±50 mgL−1

Ammonianitrogena 2300±285 mgL−1

Totalhydrocarbonsa 4±1 mgL−1 aAsdeterminedinquarterlyanalysisprovidedbytheintermunicipalcompany.

at37◦C.Afterwards,MHAplateswereinoculatedwithstandardised inoculaofthetest microorganisms(0.5McFarland; correspond-ingto108CFUmL−1).Then,antibioticstestingpaperdiscs(6mm

diameter;FiltresFioroni)containing10␮Lofthetestingsolution, previouslysterilizedbyfiltration(0.2␮m),wereplacedontheagar surface.Finally,possibleinhibitiongrowthzonessurroundingthe paperdiscswereevaluatedafter16and24hofincubationat37◦C. Thewholeprocedurewasperformedintriplicate.

3. Resultsanddiscussion

3.1. Materialscharacterization

BoththemagneticnanoparticlesandtheresultingMGNC mate-rials developed for this work were extensively characterized. XRD and TEM analysis were performed in order to assess the molecularstructureandmorphologyofthesematerials,the corre-spondingresultsbeinggiveninFigs.1and2,respectively.Fe3O4

exhibitsthetypicaldiffractionpattern ofmagnetite, witha lat-ticeparametera=8.357Å and acrystallite sizeof 16.6±0.2nm (cf.Fig.1a).AsobservedinFig.1b,animpurephase wasfound inthediffractionpatternofNiFe2O4 inadditiontonickelferrite

(a=8.330Å,crystallitesizeof10.2±0.5nm),whichwasascribedto thethermaltreatmentrequiredforthecrystallizationofthe amor-phousmaterialswiththeinversespinelstructure.Thisadditional phasewasidentifiedashematite(a=5.015Å,c=13.75Å, crystal-litesizeof16.6±1.0nm),correspondingto21wt.%ofNiFe2O4,as

determinedbyXRDanalysis.AsobservedinFig.1c,asimilar phe-nomenonoccurredduringthesynthesisofCoFe2O4.Inthiscase

hematite(a=5.043Å,c=13.78Å,crystallitesizeof24.2±0.5nm) wasfoundinadditiontocobaltferrite(a=8.387Å,crystallitesize of14.3±0.2nm),theimpurephase correspondingto24wt.%of CoFe2O4.

Asdetailedinourpreviouswork[9],Fe3O4nanoparticleswere

successfullyencapsulatedwithinagraphiticstructureduringthe synthesisofFe3O4/MGNC,resultinginacore-shellstructure(cf.

Fig.2a).AsobservedinFig.1a,somechangesinthemagnetitephase occurred, maghemite (a=8.379Å), iron (a=2.868Å) and traces ofhematite(proto)beingidentifiedinthediffractionpatternof Fe3O4/MGNC,inadditiontomagnetite(a=8.343Å)andgraphite.

Sincemagnetitenanoparticlesareverysensitivetooxidationinthe presenceofoxygen,thesephasemodificationscanbeascribedto theprogressiveoxidationofFe2+ionsintheinversespinelstructure

ofmagnetitetoFe3+mostlikelyduringtheFe

3O4/MGNCsynthesis

stepperformedinliquidphase(i.e.,inoxidativemedia),resulting initspartialoxidationtomaghemiteandhematite[33,34].

During the hierarchical co-assembly mechanism in the Fe3O4/MGNC synthesis, Fe3O4 nanocrystals grow and

sponta-neouslyco-assemblebypartiallyreplacingF127/resolmicelles;at

thesametime,carbon–carbonbondsareformedwiththe poly-merizationofresolsand,uponthermaltreatment,thecopolymer F127iseliminated,graphiticcarbonframeworksbeingobtained withtheparticipationofFe3O4asgraphitizationcatalyst[35].The

averagesizeofthemagneticcoreofFe3O4/MGNC,109±35nm,as

determinedfromTEMmeasurements(cf.Fig.2b),suggeststhatthe coresaremainlycomposedbyagglomeratesofmagnetic nanopar-ticles(withcrystallitesizesintherange23–165nm,dependingon thephase,asdeterminedbyXRDanalysis).Theseobservationsare inaccordancewiththehierarchicalco-assemblymechanismofthe Fe3O4/MGNCsynthesis.

NiFe2O4/MGNCandCoFe2O4/MGNCwerepreparedbythesame

procedure used for the synthesis of Fe3O4/MGNC, except that

Fe3O4wasreplacedbyNiFe2O4andCoFe2O4,respectively.

There-fore,theencapsulationofthesemagneticnanoparticleswithina graphiticshellisexpectedtooccurthroughasimilarroutetothat reportedfor Fe3O4.As observedin Fig.2c ande, both NiFe2O4

andCoFe2O4nanoparticlesweresuccessfullyencapsulatedwithin

graphiticstructures duringthesynthesis ofNiFe2O4/MGNC and

CoFe2O4/MGNC, respectively, resulting in core-shell structures.

Regardingthemolecularstructure,nickel (a=3.575Å,crystallite size of 33±5nm) was identified in the diffraction pattern of NiFe2O4/MGNC,inadditiontonickelferrite(a=8.348Å,

crystal-litesizeof19±3nm)andgraphite(cf.Fig.1b);iron(a=2.858Å, crystallitesizeof44±1nm)wasidentifiedinthediffraction pat-ternofCoFe2O4/MGNC,in additiontocobalt ferrite(a=8.363Å,

crystallitesizeof33±2nm)andgraphite(cf.Fig.1c).Onceagain, whentheaveragesizeof themagneticcoresof NiFe2O4/MGNC

andCoFe2O4/MGNC(36±15nmand56±18nmrespectively,as

determinedfromTEMmeasurements,cf.Fig.2dandf),are com-paredtothesizeofparentNiFe2O4 andCoFe2O4 (11±3nmand

14±4nmrespectively,cf.theinsetsofFig.2dandf),itissuggested thatthecoresoftheseMGNCmaterialsaremainlycomposedby agglomeratesofmagneticnanoparticles.

ThetextureandsurfacechemistryoftheMGNCmaterialswere furthercharacterizedbyTGAanalysis,N2 adsorption-desorption

isothermsandpHPZC.TheTGAanalysisofFe3O4/MGNC(cf.Fig.S1a,

insupplementarymaterial)reveals27.3wt.%ofashes, correspond-ingtothemassfractionofFe3O4 encapsulatedinFe3O4/MGNC.

Likewise,theashcontentsofNiFe2O4/MGNCandCoFe2O4/MGNC

are10.4wt.%and14.4wt.%,respectively(cf.Fig.S1bandc).Itwas alsofoundthatalltheMGNCmaterialsarestableupto400◦Cunder oxidizing atmosphere. The N2 adsorption-desorption isotherms

at−196◦C oftheMGNCmaterials(cf.Fig.S2) denotethe

pres-ence of mesoporosity (as revealed by the progressive increase oftheamountofN2 adsorbedathigher relativepressures) and

microporosity(asrevealedbytheamountofN2 adsorbedatlow

relativepressure).Thedetailed texturalpropertiesoftheMGNC materialsaregiveninTable2.Asobserved,similartextural prop-ertiesareobtainedregardlessofthecompositionofthemagnetic core.Nevertheless,asreflectedbythepHPZCvaluesalsogivenin

Table2,theoverall surfacechemistry is slightlyaffected.Ifthe valuesof pHPZC obtainedfor Fe3O4/MGNC(7.1), NiFe2O4/MGNC

(8.7)andCoFe2O4/MGNC(9.0)arecomparedwiththoserecently

reportedintheliteraturefortheirmainmetaloxideconstituents [36,37],namelyFe3O4(6.2–7.4),NiFe2O4(6.7–10.2)andCoFe2O4

(7.5–10.1),itissuggestedthatthepHPZCoftheMGNCmaterials

aremainlydeterminedbythedifferentcontributionsofthemetal oxidesdetectedbyXRD.

3.2. Screeningofthehybridmagneticgraphiticnanocomposites inCWPO

TheperformanceoftheMGNCmaterialswhenappliedinCWPO wasinitiallyevaluatedthroughexperimentsperformedwithhighly loaded4-NP solutions (5gL−1, correspondingtoa TOC content

(7)

Table2

PropertiesoftheMGNCmaterials:specificsurfacearea(SBET),non-microporousspecificsurfacearea(Smeso),microporevolume(Vmicro),totalporevolume(Vtotal),average

porediameter(dpore)andpHatthepointofzerocharge(pHPZC).

Material Parameter

SBET(m2g−1) Smeso(m2g−1) Vmic(cm3g−1) Vtotal(cm3g−1) dpore(nm) pHPZC

Fe3O4/MGNC 330 170 0.07 0.31 3.75 7.1 NiFe2O4/MGNC 345 135 0.10 0.29 3.36 8.7 CoFe2O4/MGNC 330 170 0.07 0.31 3.75 9.0 0 2 4 6 8 0.0 0.2 0.4 0.6 0.8 1.0 4-NP H2O2 Fe3O4/MGNC CoFe2O4/MGNC NiFe2O4/MGNC Non-catalytic 4-NP H2O2

C

/ C

0

t (h)

Fig.3. 4-NPandH2O2conversionsobtainedasafunctionoftimeinCWPOruns

performedwiththeMGNCmaterials.Experimentsperformedwith[4-NP]0=5gL−1,

[catalyst]=0.5gL−1,T=80C,pH=3and[H2O2]0=[H2O2]Stoichiometric=17.8gL−1.

similartothat oftheliquid effluentconsideredin Section3.4), under theexperimental conditions described in Section 2.6. In order to optimize the efficiency of catalyst usage, the catalyst dosagewaskeptverylowwhencomparedtothepollutant con-centration,witha fixedpollutant/catalyst massratioashighas 10. As observed in Fig.3,the 4-NP removal obtained after8h inthenon-catalyticexperimentisnegligiblewhencomparedto thatobtainedinthepresenceoftheMGNCcatalysts.Amongthe compositematerials,thecatalystresultingfromtheinclusionof CoFe2O4withinacarbonshell(CoFe2O4/MGNC)revealsthe

high-estactivity forthe CWPO of 4-NP. In this case, complete 4-NP conversionisobtainedin3h, correspondingtoaveryhigh pol-lutantmassremovalof3333mgg−1h−1.Thisenhancedactivityin CWPOcanbeascribedtothepresenceofCospecies,asobserved inpreviousworks[24,38].Theapparentcatalyticactivityofthe material resulting from the inclusion of NiFe2O4 within a

car-bonshell(NiFe2O4/MGNC)isalsosuperiortothatobtainedwith

the material with the Fe3O4 core (Fe3O4/MGNC). However, by

comparingthe leaching of Fe species at theend of the CWPO runsperformed with Fe3O4/MGNC (1.8mgL−1), NiFe2O4/MGNC

(3.2mgL−1)andCoFe2O4/MGNC(0.9mgL−1),itisobservedthatthe

NiFe2O4/MGNCcatalystexhibitstheloweststability.Onthe

con-trary,theCoFe2O4/MGNCcatalystrevealsanenhancedresistance

totheleachingofFespecies,whichcanalsobeascribedtothe pres-enceofCospecies,asdetailedinapreviouswork[38].However,as CoisoxidizedduringCWPO,itssusceptibilitytoundergoleaching tothetreatedwatersisexpectedtoincrease[38].Inorderto con-firmthishypothesis,theleachingofCofromtheCoFe2O4/MGNC

catalystwasdeterminedattheendoftheCWPOrundepictedin Fig.3.AlthoughundertheseconditionstheleachingofCoamounts to10.7mgL−1,therearealackofstandardsfortreated wastew-aterandevenfor drinkingwater [39].Likewise,theleachingof

Nispecies attheendof theCWPOexperiment performedwith NiFe2O4/MGNCwasalsodetermined(4.2mgL−1).

Duetothebestoverallperformance inthescreening experi-ments,CoFe2O4/MGNCwas objectof additionalstudies.A pure

adsorption run was performed in order to assess the possible adsorptioninfluenceontheremovalof4-NPbyCWPO.Asobserved inFig.4a, theremoval of4-NPobtainedinthepureadsorption runperformedwithCoFe2O4/MGNCisnegligible,corresponding

to 0.7% of the initial content of 4-NP. This negligible percent adsorption removal of 4-NP can be ascribed to the very low CoFe2O4/MGNCdosagewhencomparedtothepollutant

concen-tration, as reflected by the4-NP/catalyst mass ratioof 10. The evolutionofCOD,TOCandH2O2 consumptionduringtheCWPO

run performed with CoFe2O4/MGNC is also shown in Fig. 4a.

As observed, TOC and COD removalsof 54.4% and 74.2% were respectivelyobtained.Atthesametime,theconsumptionofH2O2

amountsto71.0%,representinghighefficienciesofTOCandCOD removalsperunitofH2O2decomposed.

Aleachingtestwasperformedinordertoevaluatethe heteroge-neousnatureoftheCoFe2O4/MGNCcatalyst,asdescribedinSection

2.6.AsobservedinFig.4b,whentheCoFe2O4/MGNCcatalystis

removedafter30minofreaction,thereactionsolutionreveals neg-ligibleactivityintheCWPOof4-NP,consideringboth4-NPand TOCremovals.Thisobservationconfirmsthepredominantroleof heterogeneousCWPOpromotedbyCoFe2O4/MGNC.

TheparticipationofHO•radicalsintheprocesswasindirectly evaluated.Forthatpurpose,tert-butanol(tBuOH)−astrongHO• scavenger[25],wasaddedbeforeaCWPOexperimentperformedin thepresenceofCoFe2O4/MGNC.WhentheCWPOrunsperformed

inthepresenceandabsenceoftBuOHarecompared(cf.Fig.4c), itisobservedthattheremovalof4-NPisgreatlysuppressedby tBuOH.Althoughnotdirectlysupportedbyquantificationofthe HO•radicalsformedduringtheprocess,thisindirectresultsuggests theabilityofCoFe2O4/MGNCtoefficiently promotethe

decom-positionof H2O2 viaHO• formation.Furthermore,the aromatic

by-productsdetectedduringtheCWPOof4-NPin thepresence ofCoFe2O4/MGNC(cf.Fig.5a)areinagreementwithareaction

mechanismincludingtheattackofthe4-NPmoleculebyHO• rad-icals,asreportedinourpreviousworks[9,26].Furtherattackof HO•radicalsonthearomaticintermediatecompoundsleadstothe openingofthearomaticring,andthustotheformationofaseries oflowmolecularweightcarboxylicacids(cf.Fig.5b).Inaddition, NO3−canbeproducedfromthe NO2groupsubtractionfromthe

4-NParomaticringundertheoxidationconditionsemployed[26]. BasedontheNO3−concentrationsshowninFig.5b,itcanbe

con-cludedthatatleast50.8%ofthetotalnitrogeninitiallypresentinthe 4-NP5gL−1solutionwaseffectivelysubtractedfromthemain aro-maticringafter4hofCWPOinthepresenceoftheCoFe2O4/MGNC

catalyst.

3.3. Developmentofanin-situmagneticseparationsystemfor catalystrecovery

In order to take advantage of the magnetic properties of CoFe2O4/MGNC, a lab-scale magnetic separation system was

(8)

0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0

(a)

4-NP, CWPO H2O2, CWPO TOC, CWPO COD, CWPO 4-NP, Adsorption

X

/ X

0

t (h)

0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0

(b)

X

/ X

0

t (h)

4-NP, CWPO TOC, CWPO 4-NP, leaching test TOC, leaching test

0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0

(c)

[tBuOH] = 0 g L-1 [tBuOH] = 60 g L-1

[4-N

P

]/

[4-N

P

]

0

t (h)

Fig.4.(a)4-NP,COD,TOCandH2O2conversionsasafunctionoftimeintheCWPO

runperformedwithCoFe2O4/MGNC;4-NPremovalsbyadsorptionarealsoshown

forcomparison.(b)4-NPandTOCremovalsobtainedduringthe“leachingtest” per-formedwithCoFe2O4/MGNC(i.e.wherethecatalystwasremovedfromthesolution

after30minofreaction).(c)Effectoftert-butanol(tBuOH)ontheCWPOremoval of4-NPwhenusingCoFe2O4/MGNC.Experimentsperformedundertheconditions

giveninFig.3.

stage.Forthatpurpose,aswitchablemagneticstandwascoupled withthereactorafterthereactionstage(asdescribedinSection 2.6),allowingtoperformreaction/separationsequentialstagesin asinglevessel,thusavoidingtheseparationoftheheterogeneous catalystsbyfiltrationand/orcentrifugation.AsobservedinFig.6, thistechniquewassuccessfullyemployedfortherecoveryofthe CoFe2O4/MGNCcatalystaftertheCWPOrunperformedwith4-NP

0 1 2 3 4 0 200 400 600 800 1000 1200 1400 1600 1800

(a)

Co

n

c

e

n

trati

on

(mg

L

-1

)

t (h)

4-Nitrocatechol Hydroquinone 1,4-Benzoquinone 0 1 2 3 4 0 200 400 600 800 1000 1200 1400 1600 1800

Co

n

c

e

n

tra

ti

on

(mg

L

-1

)

(b)

t (h)

Oxalic acid Formic acid NO3

-Malic acid Malonic acid

Acetic acid Maleic acid

Fig.5.Evolutionofaromatic(a)andnon-aromatic(b)by-productsof4-NP oxi-dation,whenusingCoFe2O4/MGNCintheCWPOprocessdevelopedunderthe

conditionsgiveninFig.3.

(5gL−1),ca.98%ofthetreatedwater beingcollected. Animage oftheglassreactorcoupledwiththemagneticstandisprovided in Fig.6a. In orderto estimatetheefficiencyof catalyst recov-ery,theCoFe2O4/MGNCcollectedaftertheCWPOrunwasdried

overnightat60◦Candthenweighed.Reaction/separation sequen-tialexperimentsperformedintriplicateallowedtodeterminethe percentageofcatalystrecovery.Itwasfoundthat77.0±6.1wt.%of theinitialCoFe2O4/MGNCloadisrecoveredbyimplementingthe

proposedin-situmagneticseparationsystem,avaluewellabove the57.9±2.4wt.%recoveredbyconventionalfiltration.Thedirect benefit of magnetic separation for therecovery of the catalyst inthesameunit thatis usedintheCWPOexperiments isthus demonstrated.Withthisinmind,in-situmagneticseparationwill befurtherexploredinthereusabilitycyclesperformedinSection 3.4.3.

3.4. CWPOoftheliquideffluentfromaMBTplantformunicipal solidwaste

Herein,thesuitabilityofthemostactiveand stablecatalytic systemobtainedinSection3.2fortheCWPOoftheliquid efflu-entcollectedfromaMBTplantisevaluated.AsdetailedinTable1, this effluent contains a high pollutant load, due to the pres-enceoforganic(9206mgL−1 COD; 2046mgL−1 TOC),inorganic (14350mgL−1 bicarbonates;2833mgL−1 chlorides)and biologi-cal(14.7×104CFUmL−1totalheterotrophicbacteriacultivableat

(9)

28◦C)species.AccordingtotheBOD5/CODratio,whichiswidely

used asan indicatorof the biodegradabilityof liquid effluents, awastewater isconsideredeasilytreatablebybiological means if theBOD5/CODratio is 0.5 or larger[31].On thecontrary, a

BOD5/CODratio below0.3 suggeststhe presenceof toxic

com-ponents,thewastewaterbeingnotbiodegradable oracclimated microorganismsbeingrequiredforitsbiologicaltreatment[31]. The liquid effluent considered in this work is not expected to beproneto degradationby conventional biological treatments, accordingtothelowBOD5/CODratioof0.21.Itisalsoknownthat

bothbicarbonatesandchloridescanactasHO•radicalscavengers. Althoughseveralreactionsinvolvingbicarbonateandchlorideions mayoccurinthebulk,theHO•radicalscavengingeffectpromoted bytheseinorganicspeciesresultsmainlyfromtheirdirectreaction withHO•radicals.ThereactionofbicarbonateionswithHO• radi-calscanbedescribedbyEq.(4)[40],whilethereactionofchloride ionswithHO•radicalsproceedsthroughthemechanismdescribed byEqs.(5)and(6)[41].Therefore,thepresenceoftheseinorganic speciesis expectedtohindertheperformanceof CWPOforthe treatmentoftheliquideffluentconsideredinthiswork.Bearingthis inmind,theoperatingconditionsthatmaximizetheperformance ofCWPOforthetreatmentoftheliquideffluentfromtheMBTplant inthepresenceofCoFe2O4/MGNCwerethoroughlyinvestigated.

HO• +HCO3−→ CO3•−+H2O (4)

HO• +Cl−→HOCl•− (5)

HOCl•−+H+→Cl• +H2O (6)

3.4.1. CWPOprocessoptimization:thecrucialroleofthe operatingpH

The operating conditions used in Section 3.2 were initially employedinthisSection,thecatalystdosagebeingkeptverylow whencomparedtotheeffluentCOD.Takingintoaccountthe pos-siblecatalyticcontributionoftheFespeciespresentintheliquid effluentcollectedfromtheMBTplant(6.4mgL−1,cf.Table1), a preliminaryexperimentwasperformedwithoutaddedcatalyst.In spiteoftheFecontentandthehighcomplexityoftheliquid efflu-ent,theCODremovalobtainedafter24hofreactionunderthese conditionswasonly12.8%,representinglessthanathirdofthat obtainedinthepresenceofCoFe2O4/MGNC(0.5gL−1).Thisresult

highlightstheroleofCWPOpromotedbyCoFe2O4/MGNC.

SeekingforCWPOprocessoptimization,theinfluenceofH2O2

dosage was then evaluated. Based on the results obtained in CWPO runs performed with H2O2 concentrations in the range

13.9–34.7gL−1 (results not shown), it wasfound that thebest performanceisachievedwhenemploying[H2O2]0=27.7gL−1

(cor-responding to 1.2-fold the stoichiometric amount theoretically neededtoreducetheeffluentCODandtoneutralizetheHO• radi-calscavengingeffectpromotedbythechloridesdissolvedinthe effluent, asdescribed byEqs.(5) and(6)).Therefore, additional experimentswereperformedwiththisH2O2dosage.

Itisnoteworthythatthebicarbonateequilibriumconcentration inwaterdependsonthepH,asdescribedbytheacidionization reactions,Eqs.(7)and(8),andcorrespondingacid-dissociation con-stants[42].AtthenaturalpHoftheliquideffluentconsideredin thiswork(8.2)andgivenconcentrationsofdissolvedmatterand ions,theprevailingspeciesisthebicarbonateion(HCO3−).In

addi-tiontotheHO•radicalscavengingdescribedbyEq.(4),thenegative effectofHCO3−isparticularlysignificantinthecaseofCWPO,since

H2O2 canbedirectlydecomposedthroughtheparasiticreaction

describedbyEq.(9)[43],evenbeforeHO•formation.However,this parasiticreactioncanbeavoidedbydecreasingthesolutionpHto valuesbelow6.35;in thiscase,HCO3− isconverted tocarbonic

acid(H2CO3)−which is subsequentlydecomposed intocarbon

dioxide(whichescapesthesolutionforthegasphase)andwater

(cf.Eq.(10))[44].Therefore,basedonthepresenceofbicarbonate species(14350mgL−1),operatingatpH<6.35isexpectedtofavour theperformanceofCWPOforthetreatmentoftheliquideffluent consideredinthiswork.

H2CO3(aq) H+(aq)+HCO−3(aq) pKa1=6.35 (7)

HCO3−(aq) H++CO32−(aq) pKa2=10.33 (8)

HCO3−(aq)+H2O2(aq)HCO4−(aq)+H2O(aq) (9)

H2CO3(aq)CO2(g)+H2O(l) (10)

Nevertheless,thepresenceofchloridesshouldalsobetakeninto accountinthisanalysis.AsdiscussedelsewherefortheH2O2/UV

process, the solution pHcan also affect theextent of the HO• radical scavenging reaction described by Eq. (5) [45]. Specifi-cally, therate constant for the reaction described in Eq. (5) is 4.3×109Lmol−1s−1;however,thehypochlorousradical(HOCl•−)

formedbythereactiondescribedinEq.(5)isabletodissociateback toHO•radicalandchlorideion(Cl−),thedissociationrateconstant being6.1×109s−1[45].AsdescribedbyEq.(6),HOCl

canalsobe convertedintochlorineradicals(Cl•)andwaterthrougha protona-tionreactionwiththerateconstantof2.1×1010Lmol−1s−1,inthis

casethereverseratereactionbeingmuchsmaller(1.3×103s−1)

[45].Therefore,itisexpectedthattheformationofCl•bythe pro-tonationreactiondescribedinEq.(6)increasesasthesolutionpH decreases,thuspromotingthescavengingreactiondescribedbyEq. (5).Inthiscase,thecriticalpointaffectingtheextentofHO•radical scavengingisthepKaofthereversereaction(i.e.,the deprotona-tionreaction)describedbyEq.(6)(7.2).Thus,itcanbeconcluded thatCl•istheprevailingspeciesatsolutionpH<7.2,whileHOCl•− becomesthedominantspecieswhenpH>7.2,thusdecreasingthe consumptionofHO•radicalsbythereactiondescribedbyEq.(5). Therefore,basedonthepresenceofchloridespecies(2833mgL−1), operatingpH>7.2isexpectedtofavourtheperformanceofCWPO forthetreatmentoftheliquideffluentconsideredinthiswork.

Summarizing,thesolutionpHisexpectedtosignificantlyaffect theperformanceofCWPOforthetreatmentoftheeffluentfrom theMBTplant.Ononehand,pH<6.35limitsthenegativeeffectof bicarbonates;while,ontheotherhand,pH>7.2limitsthenegative effectofchlorides.Therefore,theselectionoftheoptimumpHmay beconsideredasthecrucialsteptoachievetheoperating parame-tersthatmaximizetheperformanceoftheliquideffluenttreatment byCWPOinthepresenceofCoFe2O4/MGNC.

Bearingthisinmind,theindividualeffectoftheoperatingpHon theefficiencyofCWPOwasevaluatedintherange2.5–8.Forthat purpose,COD,TOC,aromaticityandH2O2conversionswere

deter-mined,asshowninFig.7a.TheefficiencyofCWPOforthetreatment oftheliquideffluentfromtheMBTplanttendstoincreaseasthepH increasesintherange2.5–6,whereasitdramaticallydecreasesfor pH>6.Thisphenomenon–whichcanbeascribedtothepresenceof bicarbonatesandchlorides−confirmsthecrucialroleofthe oper-atingpHintheCWPOoftheliquideffluentconsideredinthiswork, aspreviouslydiscussed.AtpH>6,97%oftheinitialH2O2dosageis

consumedwithinthefirst30minofreaction,mostlikelyduetothe fastreactionwithHCO3−,asdescribedbyEq.(9).AtpH<6,theHO•

radicalscavengingbyCl−isincreasinglysignificant,thushindering theefficiencyoftheCWPOprocess.Therefore,pH=6canbe con-sideredtheoptimumoperatingpH,sinceitallowstomaximizethe performanceoftheliquideffluenttreatmentbyCWPOinthe pres-enceofCoFe2O4/MGNC.AdditionalinsightsontheCOD,TOC,H2O2

andaromaticityconversions,andabsorbancespectraevolutionas afunctionoftimeintheCWPOrunperformedundertheoptimized conditionsare giveninFig.7b andc,respectively. Asobserved, fastconversionsofCOD,TOC,aromaticityandH2O2areobtained

inthefirst8hofCWPO.Uptothatpoint,ca.93%oftheeffluent aromaticityisalreadyconverted;whilefrom8to24hofreaction,

(10)

Fig.6.In-situmagneticseparationofCoFe2O4/MGNCattheendoftheCWPOstageperformedwiththeaidofaMitutoyo7033Bswitchablemagneticstand(clampingforce

600N);(a)frontand(b)topviewoftheglassreactorimmediatelyaftertherecoveryofthetreatedwaterand(c)topviewofthereactorafterthedryingprocess(60◦C)for catalystrecovery.

anincreaseofonlyca.2%isobservedinthearomaticity conver-sion.However,theTOCcontentoftheeffluentdecreasesca.14% duringthesameperiod,whiletheabsorbancespectraalsoevolved favourably(cf.Fig.7c),revealingthatthetreatmentreactionsstill proceedalthoughatalowerrate.Theseobservationssuggestthat recalcitrantby-productsareformedwhenthearomaticcompounds areattackedbyHO•radicals(cf.demonstratedinSection3.2).This mechanismisalsosuggestedbythechanges inthesolutionpH observedduringthetreatmentbyCWPO(cf.Fig.7b).Specifically, pHdecreasesfrom6(i.e.,theinitialpH)to5.4inthefirst2h, sug-gestingtheformationoflowmolecularweightcarboxylicacids; afterwardsthepHgraduallyincreasesupto6.5attheendofthe reaction,suggestingthattheCWPOtreatmentisabletomineralize mostofthesecarboxylicacidsalthoughatanapparentlylowerrate whenbroadparameters,likeCODandTOCareconsidered.After 24hofCWPO,ca.95%oftheeffluentaromaticityisconvertedunder theseoperatingconditions,whileca.55%oftheinitialCOD and TOCareeffectivelyremoved.TheH2O2 consumptionduringthe

treatmentrepresentsca.98%oftheinitialdosage.

TheBOD5 ofthetreatedwaterwasalsodeterminedinorder

toestimatetheeffectofCWPOonthebiodegradabilityofthe liq-uideffluent.ItwasfoundthattheBOD5isslightlyaffectedduring

theprocess,a decrease from1933mgL−1 to1760mgL−1 being observed.AtthesametimetheCODdecreasedfrom9206mgL−1 to4164mgL−1.Accordingly, theBOD5/CODratioof thetreated

wateris0.42, representinga 2-foldincrease whencomparedto theBOD5/CODratiooftheliquideffluent(0.21).ABOD5/CODratio

in the range 0.3–0.5 suggests that the wastewater is treatable bybiological means[31].Itcanbethereforeconcludedthatthe biodegradabilityoftheliquideffluentisenhancedduringthe treat-mentbyCWPOinthepresenceofCoFe2O4/MGNC.

Inaddition,thedissolvedFecontentwasmeasuredattheend of the CWPO runs performed with operating pH in the range 2.5–6.Thehighestvaluewasfoundintheexperimentperformedat pH=2.5,correspondingtoaFeconcentrationof1.04mgL−1;onthe otherhand,thelowestvaluewasobtainedintheexperiment per-formedatpH=6(0.27mgL−1).However,itshouldbenotedthatthe liquideffluentconsideredinthisworkisverycomplex.Although thetotalFecontentpresentintheeffluentis6.4mgL−1,theamount ofdissolvedFespecies,i.e.,thoseobtainedafterfiltration(0.2␮m), actuallydependsonthepH.Forinstance,theinherentdissolved Fecontentoftheeffluentis0.96mgL−1 after24hatpH=3,but

thisvaluedecreasesto0.15mgL−1after24hatpH=6.Therefore, thedissolvedFecontentdeterminedattheendoftheCWPOruns cannotbefullyascribedtoleachingfromtheCoFe2O4/MGNC

cata-lyst.Likewise,thedissolvedCocontentattheendoftheCWPOrun performedatpH=6wasalsodetermined(0.58mgL−1);itcanbe consideredverylow,inparticularwhencomparedtotheinherently dissolvedCocontentintheeffluent(0.12mgL−1,cf.Table1).

3.4.2. Disinfectionandantimicrobialactivity

Regardingthebacterialpopulation,heterotrophicplatecount isaprocedurewidelyusedtoevaluatetheperformanceof treat-ment processes, since it allowsto estimatethe number oflive heterotrophicbacteria in a given water or wastewater [31].As described in Section 2.8, thespread plate methodwasused in thiswork.Theselectedincubationtemperaturewas28◦C,since itfavoursthegrowthofwaterbornebacteria,thusyieldinghigher bacterialplatecountswhencomparedtothatobtainedatlower orhigher incubation temperatures[46–48].Under this context, totalheterotrophicbacteriainthetreatedwaterwereestimatedin ordertoassesstheeffectofCWPOontheeffluentautochthonous microbialpopulation(14.7×104CFUmL−1totalheterotrophic

bac-teriacultivableat28◦C).Afterincubationat28◦Cduring5days, not asingle colonywasfoundin theplate countperformedin triplicate, even in the undilutedtreated water samples. There-fore, although this was not the main goal of the treatment proposed, it can be concluded that disinfection of the effluent wasachievedupon theCWPOtreatmentemployedinthe pres-enceofCoFe2O4/MGNCundertheoptimumoperatingconditions

considered(i.e.,[CoFe2O4/MGNC]=0.5gL−1,T=80◦C, pH=6 and

[H2O2]0=27.7gL−1).

Additionalmicrobiologicalassayswereperformedinorderto evaluatethe antimicrobialactivity of theliquid effluent before and aftertreatment byCWPO. As described in Section 2.8,the agardisk-diffusion methodwasusedfor theantimicrobial sus-ceptibilitytesting.Forthatpurpose,Klebsiellapneumoniae(Gram negative) and Bacillus cereus (Gram positive) were selected as testmicroorganisms.After16and24hofincubationat37◦C,the absenceofinhibitiongrowthzonessurroundingthetestingpaper discscontainingboththeeffluentandthetreatedwatersamples wasobserved.Thesequalitativeresultsrevealthatbothselected microorganismsareresistanttotheeffluent,eitherbeforeorafter treatmentbyCWPO,suggestingthatthetoxicityoftheliquid

(11)

efflu-Fig.7. (a)EffectofpHonCOD,TOC,H2O2andaromaticityconversionsobtainedafter

24hinCWPOrunsperformedwithCoFe2O4/MGNC.(b)COD,TOC,H2O2,aromaticity

[leftaxis],solutionpH[rightaxis]and(c)absorbancespectraevolutionasafunction oftimeintheCWPOrunperformedatpH6;Experimentsperformedwiththeliquid effluentcollectedfromaMBTplant,[CoFe2O4/MGNC]=0.5gL−1,T=80◦C,pH=6and

[H2O2]0=27.7gL−1.

entfromtheMBTplantisnotincreasedduringitstreatmentby CWPOundertheoptimumoperatingconditionsdeterminedin Sec-tion3.4.1.

3.4.3. Reusabilitycyclesimplementingin-situmagnetic separationforcatalystrecovery

Catalystseparationandlong-termstabilityarecrucialaspects forthefeasibilityoftheproposedwatertreatmentprocessinlarge scaleapplications.Therefore, once thecatalytic systemandthe

CWPOprocesswereoptimized,thebenefitsofmagnetic separa-tionfortherecoveryofthecatalystwereexploredbyperforming aseriesoffiveCWPOreaction/separationsequentialexperiments inthesamevesselwithconsecutivereuseoftheCoFe2O4/MGNC

catalyst,asdepictedinFig.8.Forthatpurpose,thein-situ mag-neticseparationsystemdevelopedinSection3.3wasemployed forcatalystrecoveryattheendofeachCWPOcycle,thetreated waterbeingcollectedafterwards.Inordertoensureequalcatalyst dosagethroughoutallthereusabilitycycles(0.5gL−1),23wt.%of theinitialcatalystloadwasadded(i.e.,0.115gL−1; correspond-ingtothemassfractionlostduetosamplingandtreatedwater collection),andanewCWPOrunwasperformeduponthe addi-tionoffreshliquideffluent.AsobservedinFig.9,theefficiencyof CWPOforthetreatmentoftheliquideffluentfromtheMBTplant ismaintainedthroughoutthefivecyclesperformedinthe pres-enceofCoFe2O4/MGNCundertheoptimumoperatingconditions

determinedinSection3.4.1.Undertheseconditions,theCOD,TOC, aromaticityandH2O2conversionsobtainedafter24hofreaction

withCoFe2O4/MGNCarenotparticularlyaffectedbythesuccessive

reuseofthecatalyst,thusrevealingitshighstabilityforCWPO,and highpotentialforlargescaleapplications.Thisstabilityfeaturefor CWPOcanbeascribedtotheresistanceoftheCoFe2O4/MGNC

cat-alystagainsttheleachingofFespecies–whichistypicallythemain causeofcatalystdeactivation[8,14],ashighlightedbymeasuring thedissolvedFecontentattheendofeachCWPOcycle.Specifically, thehighestvaluewasobtainedinthefirstcycle,correspondingto 0.27mgL−1.Fromthesecondtothefifthcycle,thedissolvedFe contentwasintherange0.13–0.17mgL−1,thelowestvaluebeing obtainedafterthefifthcycle.ThedissolvedFecontentobtained afterthefifthCWPOcycleissimilartothedissolvedFecontent inherenttotheliquideffluent(0.15mgL−1;asdiscussedin Sec-tion3.4.1),confirmingthehighresistanceoftheCoFe2O4/MGNC

catalysttotheleachingofFespecies.Regardingtheleachingof Cospecies,thelowestvaluewasobtainedinthefirstCWPOcycle (0.58mgL−1),whilethehighestvaluewasobtainedinthethird cycle(4.55mgL−1).Theleaching ofCospecies intheremaining cycleswasintherange1.92–2.64mgL−1,thelowestvaluebeing obtainedafterthefifthcycle.TheseresultssuggestthatCospecies aremoresusceptibletoundergoleachingfromthecatalysttothe treatedwatersthanFespecies,which isinlinewiththeresults previously reportedontheapplication ofbimetallic iron-cobalt magneticcarbonxerogelsinCWPO[38].

4. Conclusions

Allthehybridmagneticgraphiticnanocompositesdevelopedin thisworkrevealedcatalyticactivityintheCWPOof4-NP. Neverthe-less,thebestperformancewasachievedwiththematerialresulting fromtheinclusionofCoFe2O4intoagraphiticstructureduringthe

synthesisofCoFe2O4/MGNC.

TheefficiencyofCWPOforthetreatmentoftheeffluentfrom aMBTplantwasstronglyinfluencedbytheoperatingpH,a phe-nomenonwhichwasascribedtothepresenceofbicarbonatesand chlorides.AtpH>6,H2O2isreadilyconsumedduetothefast

reac-tionwithHCO3−;whileatpH<6,theHO•radicalscavengingby

Cl−hinderstheefficiencyoftheCWPOprocess.BasedontheCOD, TOC,H2O2andaromaticityconversionsobtained,pH=6was

con-sideredtheoptimumoperatingpHfortheliquideffluenttreatment byCWPOinthepresenceofCoFe2O4/MGNC.The

biodegradabil-ityoftheliquideffluentwasenhancedduringthetreatment,as reflectedbythe2-foldincreaseoftheBOD5/CODratioobtained.In

addition,disinfectionoftheliquideffluentwasachievedandthe treatedwaterrevealednotoxicityagainstselectedbacteria.

A magneticseparation systemwas developedfor thein-situ recovery of the CoFe2O4/MGNC catalyst after the CWPO

(12)

reac-Fig.8.ExperimentalprocedureduringtheCWPOreusabilitycyclesperformedwiththeliquideffluentcollectedfromaMBTplantandCoFe2O4/MGNC. 1st cycle 2nd cycle 3rd cycle 4th cycle 5th cycle 0 10 20 30 40 50 60 70 80 90 100

COD TOC H2O2 Aromaticity

C

on

ve

rsion (

%)

Fig.9.COD,TOC, H2O2 and aromaticityconversionsobtained after 24hin a

seriesoffiveCWPOrunsperformedwithconsecutivereuseofCoFe2O4/MGNC.

Experimentsperformed with theliquideffluent collected from aMBT plant, [CoFe2O4/MGNC]=0.5gL−1,T=80◦C,pH=6and[H2O2]0=27.7gL−1.

tionstage.ThehighstabilityofCoFe2O4/MGNCfortheCWPOof

theliquideffluentconsideredinthisworkwasdemonstratedby performingaseriesoffiveCWPOreaction/separationsequential experimentsinthesamevessel.

Theabilityofthedevelopedcatalyticsystemtoenablethe treat-mentoftheliquideffluentfromaMBTplantforMSWbyCWPO–in spiteofitsveryhighconcentrationofchloridesandbicarbonates, andinawiderangeofoperatingpH–opensfutureprospectsfor theapplicabilityofthiswastewatertreatmenttechnology.

Acknowledgments

Thisworkwasfinanciallysupportedby:Project POCI-01-0145-FEDER-006984–AssociateLaboratoryLSRE-LCMfundedbyFEDER throughCOMPETE2020−ProgramaOperacionalCompetitividade e Internacionalizac¸ão (POCI) − and by national funds through FCT− Fundac¸ãopara a Ciência ea Tecnologia; Project VALOR-COMP,fundedbyFEDERthroughProgrammeINTERREGV-ASpain −Portugal(POCTEP)2014–2020.R.S.RibeiroandR.O.Rodrigues acknowledgetheFCTindividualPh.D.grantsSFRH/BD/94177/2013

andSFRH/BD/97658/2013,respectively,withfinancingfromFCT and the European Social Fund (through POPH and QREN). A.M.T.SilvaacknowledgestheFCTInvestigator2013Programme (IF/01501/2013),withfinancingfromtheEuropeanSocialFundand theHumanPotentialOperationalProgramme.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonline version,athttp://dx.doi.org/10.1016/j.apcatb.2017. 08.013.

References

[1]A.Cesaro,L.Russo,A.Farina,V.Belgiorno,Organicfractionofmunicipalsolid wastefrommechanicalselection:biologicalstabilizationandrecovery options,Environ.Sci.Pollut.Res.23(2016)1565–1575.

[2]H.Shahriari,M.Warith,M.Hamoda,K.J.Kennedy,Anaerobicdigestionof organicfractionofmunicipalsolidwastecombiningtwopretreatment modalities,hightemperaturemicrowaveandhydrogenperoxide,Waste Manage.32(2012)41–52.

[3]CouncilDirective99/31/ECof26April1999ontheLandfillofWaste,Official JournaloftheEuropeanCommunities,TheCounciloftheEuropeanUnion, 1999.

[4]M.Ragazzi,P.Tosi,E.C.Rada,V.Torretta,M.Schiavon,EffluentsfromMBT plants:plasmatechniquesforthetreatmentofVOCs,WasteManage.34 (2014)2400–2406.

[5]J.Fang,H.Zhang,N.Yang,L.Shao,P.He,Gaseouspollutantsemittedfroma mechanicalbiologicaltreatmentplantformunicipalsolidwaste:odor assessmentandphotochemicalreactivity,J.AirWasteManage.Assoc.63 (2013)1287–1297.

[6]MechanicalBiologicalTreatmentofMunicipalSolidWaste,Departmentfor Environment,Food&RuralAffairs,London,2013.

[7]D.Weichgrebe,S.Maerker,T.Böning,H.Stegemann,Intendedprocesswater managementconceptforthemechanicalbiologicaltreatmentofmunicipal solidwaste,WaterSci.Eng.1(2008)78–88.

[8]M.Munoz,Z.M.dePedro,J.A.Casas,J.J.Rodriguez,Preparationof magnetite-basedcatalystsandtheirapplicationinheterogeneousFenton oxidation–areview,Appl.Catal.B176–177(2015)249–265.

[9]R.S.Ribeiro,A.M.T.Silva,P.B.Tavares,J.L.Figueiredo,J.L.Faria,H.T.Gomes, Hybridmagneticgraphiticnanocompositesforcatalyticwetperoxide oxidationapplications,Catal.Today280(2017)184–191.

[10]C.M.Domínguez,A.Quintanilla,J.A.Casas,J.J.Rodríguez,Treatmentofreal winerywastewaterbywetoxidationatmildtemperature,Sep.Purif.Technol. 129(2014)121–128.

[11]Y.Yan,S.Jiang,H.Zhang,Efficientcatalyticwetperoxideoxidationofphenol overFe-ZSM-5catalystinafixedbedreactor,Sep.Purif.Technol.133(2014) 365–374.

(13)

[12]P.R.Gogate,A.B.Pandit,Areviewofimperativetechnologiesforwastewater treatmentI:oxidationtechnologiesatambientconditions,Adv.Environ.Res. 8(2004)501–551.

[13]S.Navalon,M.Alvaro,H.Garcia,HeterogeneousFentoncatalystsbasedon clays,silicasandzeolites,Appl.Catal.B99(2010)1–26.

[14]R.S.Ribeiro,A.M.T.Silva,J.L.Figueiredo,J.L.Faria,H.T.Gomes,Catalyticwet peroxideoxidation:aroutetowardstheapplicationofhybridmagnetic carbonnanocompositesforthedegradationoforganicpollutants.Areview, Appl.Catal.B187(2016)428–460.

[15]P.V.Nidheesh,HeterogeneousFentoncatalystsfortheabatementoforganic pollutantsfromaqueoussolution:areview,RSCAdv.5(2015)40552–40577.

[16]M.Muruganandham,R.P.S.Suri,M.Sillanpää,J.J.Wu,B.Ahmmad,S. Balachandran,M.Swaminathan,Recentdevelopmentsinheterogeneous catalyzedenvironmentalremediationprocesses,J.Nanosci.Nanotechnol.14 (2014)1898–1910.

[17]S.RahimPouran,A.A.AbdulRaman,W.M.A.WanDaud,Reviewonthe applicationofmodifiedironoxidesasheterogeneouscatalystsinFenton reactions,J.CleanerProd.64(2014)24–35.

[18]M.C.Pereira,L.C.A.Oliveira,E.Murad,Ironoxidecatalysts:Fentonand Fenton-likereactions–areview,ClayMiner.47(2012)285–302.

[19]A.Dhakshinamoorthy,S.Navalon,M.Alvaro,H.Garcia,Metalnanoparticlesas heterogeneousFentoncatalysts,ChemSusChem5(2012)46–64.

[20]S.Navalon,A.Dhakshinamoorthy,M.Alvaro,H.Garcia,HeterogeneousFenton catalystsbasedonactivatedcarbonandrelatedmaterials,ChemSusChem4 (2011)1712–1730.

[21]P.V.Nidheesh,R.Gandhimathi,S.T.Ramesh,Degradationofdyesfrom aqueoussolutionbyFentonprocesses:areview,Environ.Sci.Pollut.Res.20 (2013)2099–2132.

[22]Y.Zhang,Z.Yang,D.Yin,Y.Liu,C.Fei,R.Xiong,J.Shi,G.Yan,Compositionand magneticpropertiesofcobaltferritenano-particlespreparedbythe co-precipitationmethod,J.Magn.Magn.Mater.322(2010)3470–3475.

[23]K.Maaz,S.Karim,A.Mumtaz,S.K.Hasanain,J.Liu,J.L.Duan,Synthesisand magneticcharacterizationofnickelferritenanoparticlespreparedby co-precipitationroute,J.Magn.Magn.Mater.321(2009)1838–1842.

[24]R.S.Ribeiro,Z.Frontistis,D.Mantzavinos,D.Venieri,M.Antonopoulou,I. Konstantinou,A.M.T.Silva,J.L.Faria,H.T.Gomes,Magneticcarbonxerogelsfor thecatalyticwetperoxideoxidationofsulfamethoxazoleinenvironmentally relevantwatermatrices,Appl.Catal.B199(2016)170–186.

[25]A.Aguinaco,J.P.Pocostales,J.F.García-Araya,F.J.Beltrán,Decompositionof hydrogenperoxideinthepresenceofactivatedcarbonswithdifferent characteristics,J.Chem.Technol.Biotechnol.86(2011)595–600.

[26]R.S.Ribeiro,A.M.T.Silva,L.M.Pastrana-Martínez,J.L.Figueiredo,J.L.Faria,H.T. Gomes,Graphene-basedmaterialsforthecatalyticwetperoxideoxidationof highlyconcentrated4-nitrophenolsolutions,Catal.Today249(2015) 204–212.

[27]L.S.Clescerl,A.E.Greenberg,A.D.Eaton,StandardMethodsforthe ExaminationofWaterandWastewater,twentiethed.,AmericanPublic HealthAssociation,AmericanWaterWorksAssociation,WaterEnvironment Federation,WashingtonDC,1999.

[28]Y.W.Kang,M.-J.Cho,K.-Y.Hwang,Correctionofhydrogenperoxide interferenceonstandardchemicaloxygendemandtest,WaterRes.33(1999) 1247–1251.

[29]M.Mrkva,Evaluationofcorrelationsbetweenabsorbanceat254nmandCOD ofriverwaters,WaterRes.17(1983)231–235.

[30]ISO6332:1988,WaterQuality–DeterminationofIron–Spectrometric MethodUsing1,10-phenanthroline,InternationalOrganizationfor Standardization,1988.

[31]G.Tchobanoglous,F.L.Burton,H.D.Stensel,WastewaterEngineering: TreatmentandReuse,fourthed.,Metcalf&Eddy,Inc.,McGraw-Hill companies,NewYork,2003,InternationalEdition.

[32]M.Balouiri,M.Sadiki,S.K.Ibnsouda,Methodsforinvitroevaluating antimicrobialactivity:areview,J.Pharm.Anal.6(2016)71–79.

[33]L.E.Lagoeiro,Transformationofmagnetitetohematiteanditsinfluenceonthe dissolutionofironoxideminerals,J.Metamorph.Geol.16(1998)415–423.

[34]A.Jafari,S.FarjamiShayesteh,M.Salouti,K.Boustani,Effectofannealing temperatureonmagneticphasetransitioninFe3O4nanoparticles,J.Magn.

Magn.Mater.379(2015)305–312.

[35]R.Liu,L.Wan,S.Liu,Y.Yu,S.Li,D.Wu,Hierarchicalco-assemblyavenueto uniformrhombododecahedralmagneticmesoporousgraphiticcomposites,J. ColloidInterfaceSci.414(2014)59–65.

[36]M.Kosmulski,ThepHdependentsurfacechargingandpointsofzerocharge. VI.Update,J.ColloidInterfaceSci.426(2014)209–212.

[37]M.Kosmulski,pH-Dependentsurfacechargingandpointsofzerocharge.IV. Updateandnewapproach,J.ColloidInterfaceSci.337(2009)439–448.

[38]R.S.Ribeiro,A.M.T.Silva,J.L.Figueiredo,J.L.Faria,H.T.Gomes,Theroleof cobaltinbimetalliciron-cobaltmagneticcarbonxerogelsdevelopedfor catalyticwetperoxideoxidation,Catal.Today(2017),http://dx.doi.org/10. 1016/j.cattod.2017.06.023(inpress).

[39]E.P.Agency,ParametersofWaterQuality:InterpretationandStandards, EnvironmentalProtectionAgency,Ireland,WexfordIreland,2001.

[40]S.Parsons,AdvancedOxidationProcessesforWaterandWastewater Treatment,IWAPublishing,London,UK,2004.

[41]J.DeLaat,T.G.Le,Effectsofchlorideionsontheiron(III)-catalyzed decompositionofhydrogenperoxideandontheefficiencyoftheFenton-like oxidationprocess,Appl.Catal.B66(2006)137–146.

[42]D.R.Lide,CRCHandbookofChemistryandPhysics,eightyfourth,CRCPress, BocaRaton,2003.

[43]F.K.Attiogbe,W.Wang,A.McNeillie,R.C.Francis,Theperoxymonocarbonate anionsaspulpbleachingagents.Part2.Mechanicalpulpbrighteningand effectsofmetalions,Bioresources5(2010)2221–2231.

[44]C.H.Atwood,SurvivalGuideforIntroductoryChemistry,firsted.,Brooks/Cole CengageLearning,Belmont,CA,2009.

[45]C.-H.Liao,S.-F.Kang,F.-A.Wu,Hydroxylradicalscavengingroleofchloride andbicarbonateionsintheH2O2/UVprocess,Chemosphere44(2001)

1193–1200.

[46]M.J.Allen,S.C.Edberg,D.J.Reasoner,Heterotrophicplatecountbacteria– whatistheirsignificanceindrinkingwater?Int.J.FoodMicrobiol.92(2004) 265–274.

[47]J.Bartram,J.Cotruvo,M.Exner,C.Fricker,A.Glasmacher,HeterotrophicPlate CountsandDrinking-waterSafety:theSignificanceofHPCsforWaterQuality andtheHumanHealth,2003,PublishedonbehalfofWorldHealth Organization(WHO)byIWAPublishingLondon.

[48]D.J.Reasoner,HeterotrophicplatecountmethodologyintheUnitedStates, Int.J.FoodMicrobiol.92(2004)307–315.

Referências

Documentos relacionados

Interagiam com comerciantes e ricos mineradores portugueses, auxiliando, muitas vezes, a saúde da família ou a proteção de seus negócios; com ourives, responsáveis pela confecção

Como sugestão de adaptação desta atividade para uma turma de 7o ano ou posterior, por exemplo, o professor pode, antes do 4o momento, pedir para que os alunos meçam o perímetro

O sétimo (A integração entre a Segurança Pública e a mediação de conflitos por meio da polícia comunitária) discute a impor- tância do policiamento comunitário na

Para Maximiano (2000), a premissa básica da teoria dos dois fatores de Herzberg é o fato de que, em situações de trabalho, a satisfação somente é produzida pelos fatores

Convém lembrar que “o consumismo juvenil afunda as próprias raízes no período da infância” (ibid., p. Há um exacerbado consumismo da personalidade entre os jovens.. através do

Examinaremos o contrato de Concessão efetuado através da Parceria Público- Privada no Estado de Minas Gerais para a construção do Complexo Penitenciário Localizado

Foi observado nas análises deste estudo que as variáveis representativas do atributo assimetria informacional constituem um dos determinantes da estrutura de capital das

PEDRO IT; = Carta do ex-Imperador aos Representantes da Nação. SErGNOT-PLA2fCHEIly sua do üuYÍdor, n.. Décimo da Independencia e do Império. eü ; IMPERADOR