• Nenhum resultado encontrado

Impact of the removal of N-terminal non-structured amino acids on activity and stability of xylanases from Orpinomyces sp. PC-2

N/A
N/A
Protected

Academic year: 2021

Share "Impact of the removal of N-terminal non-structured amino acids on activity and stability of xylanases from Orpinomyces sp. PC-2"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

International

Journal

of

Biological

Macromolecules

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / i j b i o m a c

Impact

of

the

removal

of

N-terminal

non-structured

amino

acids

on

activity

and

stability

of

xylanases

from

Orpinomyces

sp.

PC-2

Rafaela

Zandonade

Ventorim

a

,

Tiago

Antônio

de

Oliveira

Mendes

b

,

Larissa

Mattos

Trevizano

a

,

Ana

Maria

dos

Santos

Camargos

a

,

Valéria

Monteze

Guimarães

a,∗

aBIOAGRO,UniversidadeFederaldeVic¸osa,Vic¸osa,MG36.570000,Brazil

bDepartamentodeBioquímicaeBiologiaMolecular,UniversidadeFederaldeVic¸osa,Vic¸osa,MG36.570000,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received20April2017

Receivedinrevisedform19July2017 Accepted1August2017

Availableonline3August2017

Keywords: Xylanase Orpinomyces Thermostability

Moleculardynamicssimulation

a

b

s

t

r

a

c

t

Xylanasescatalyzetherandomhydrolysisofxylanbackbonefromplantbiomassandthus,theyhave applicationintheproductionofbiofuels,Kraftpulpsbiobleachingandfeedindustry.Here,xylanases derivedfromOrpinomycessp.PC-2wereengineeredguidedbymoleculardynamicsmethodstoobtain morethermostableenzymes.Basedonthesemodels,27aminoacidresiduesfromtheN-terminalwere predictedtoreduceproteinstabilityandtheimpactofthisremovalwasvalidatedtotwoenzyme con-structs:smallxylanaseWild-Type(SWT)obtainedfromWild-Typexylanase(WT)andsmallxylanase Mutant(SM2)generatedfromM2mutantxylanase(V135A,A226T).Thetailremovalpromotedincrease inspecificactivityofpurifiedSWTandSM2,whichachieved5,801.7and5,106.8Umg−1ofprotein,

respec-tively,whiletheWTactivitywas444.1Umg−1ofprotein.WT,SWTandSM2showedhalf-lifevaluesat

50◦Cof0.8,2.3and29.5h,respectively.Overall,inviewoftheresults,weproposethatthepresenceof non-structuredaminoacidintheN-terminalleadstodestabilizationofthexylanasesandmaypromote lessaccessofthesubstratetotheactivesite.Therefore,itsremovalmaypromoteincreasedstabilityand enzymaticactivity,interestingpropertiesthatmakethemsuitableforbiotechnologicalapplications.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Xylanases(E.C.3.2.1.8)catalyzetherandomhydrolysisofxylan backbone,amainconstituentofplantbiomass,inanendwise man-nertoyieldxylooligosaccharides[1].Duetothisremarkablerole inthedeconstructionofxylan,theseenzymeshavearousedgreat interestfortheproductionofbiofuels,biobleachingofKraftpulps andinthefeedindustry[2].

Xylanasesareclassifiedwithinglycosidehydrolase(GH) fami-lies5,8,10,11,and30accordingtoCarbohydrate-ActiveenZymes (CAZy)database(www.CAZy.org)basedonsimilaritiesofthe cat-alytic domainsequences [3,4]. Comparedto theother families, GH11xylanaseshaveseveralinterestingpropertiesthatmakethem suitableforbiotechnologicalapplications,suchashighsubstrate selectivity,highcatalyticefficiency,andactivityinabroadranges ofpHandtemperature[2].

Xylanases from the same GH family show similar three-dimensional structures, active-site geometries and conserved

∗ Correspondingauthor.

E-mailaddress:vmonteze@ufv.br(V.M.Guimarães).

enzymaticmechanism.Thexylanasefamily11presentacompact globularstructurewithasingle␣-helixandtwoextendedpleated ␤-sheetsformingajelly-rollfold[5].Themainfeatureofthis fam-ilyisthepresenceofalongcleftthatspanstheentiremolecule. Thiscleftcontainstheactivesiteincludingtwoglutamateresidues thatdirectlyparticipateofxylanhydrolysis,inwhichoneactingas acid/basecatalystandtheotherasanucleophile[5,6].

GH11 xylanase (XynA) produced by the anaerobic fungus Orpinomycessp.PC-2showed higherspecific activitycompared with equivalent enzymes from other sources [7]. This native enzymewasmostefficientinthepHrangingfrom5.0to6.5and temperaturesfrom40to50◦C[7,8].However,morestableenzymes arerequiredforbiotechnologicalprocesses,suchaspulpandpaper, animalfeedandbiofuelindustries.Thexylanasesmustbesuitable forthepHandtemperatureconditionsoftheseprocesses, exhibit-inghighthermostabilityandwidepHadaptability[2,9].

Inourpreviouswork,thedirectedevolutionmethodologyusing themutagenictechnique oferror-pronePCRwascarriedoutto improve thethermostability of xylanases derived from Orpino-mycesXynA[9].Thismethodologywaseffectivetoidentifyfour mutantxylanases,whichexhibitedhigherthermostabilityat60◦C comparedtothewild-typeenzyme(WTXynA). However,these

http://dx.doi.org/10.1016/j.ijbiomac.2017.08.015 0141-8130/©2017ElsevierB.V.Allrightsreserved.

(2)

morethermostablemutantenzymesshoweddrasticreductionof activity.AnexceptionwastheM2mutantxylanase(V135A,A226T) thatexhibitedahalf-lifeof33.2minat60◦C,approximatelyfour timeshigherthanthewild-typeenzyme(7.92min)andmaintained similaractivity.Therefore,theM2mutantxylanaseshowedtobe mostpromisingforfutureindustrialapplicationfromthe biotech-nologicalpointofview.

Severalstudieshavedemonstratedtheimpactofunstructured aminoacids,locatedintheN-terminalregion,inthe thermosta-bilityofxylanases[10,11].TheremovalofN-terminalresiduesby strategiesofenzymerationalengineeringcouldpromote enhance-mentofenzymethermostability.Inthiswork,MolecularDynamics (MD) approaches were taken toevaluate alterations in the N-terminalregionofWTxylanasederivedfromOrpinomycesXynA thatcouldpotentiallyaffectproteinstabilityandactivityinorder togenerateimprovedxylanasesandtwoenzymeconstructswere producedtovalidatethesimulationresults.

2. Materialandmethods 2.1. Strains,vectorsandreagents

E.coliBL21-CodonPlus(DE3)-RIPLcompetentcellswere pur-chasedfromStratagene(La Jolla,CA,USA)and usedforprotein expression. The expression vector pET24(b) and the KOD DNA polymerasekitwerepurchased fromNovagen– EMDMillipore (SanDiego, CA,USA).The T4DNA ligasekit and enzymesNdeI andXhoI werepurchasedfromFermentas –ThermoFisher Sci-entific(Waltham,MAUSA).TheGelExtractionDNAkitandDNA plasmidialpurificationMiniprepkitwerepurchasedfromQiagen (Venlo,Germany).TheE.colistrainDH5␣(Stratagene)wasusedfor propagationandmanipulationofplasmids.Beechwoodxylanand xylosewerepurchasedfromSigmaChemicalCo.(St.Louis,MO, USA).

2.2. Predictionofsignalpeptides

TheSignalP4.0server( http://www.cbs.dtu.dk/services/SignalP-4.0/)[12]settledtoEukaryoteswasusedtopredictexport pep-tidesignalandcleavagesitefromOrpinomycesXynAxylanaseand theProtParam tool(http://web.expasy.org/protparam/)[13] was usedtopredictphysicalandchemicalparameters ofwilde-type andmutantproteins.

2.3. Xylanasemoleculardynamics

ThePhyre2 web server(http://www.sbg.bio.ic.ac.uk/phyre2/) [14]wasusedtoobtainthe3DmodeloftheWTXynAcatalytic domainandSWTxylanase.Asinthepreviouswork[9],themodels obtainedwereconstructedbasedonthexylanasefrom Neocallimas-tixpatriciarum(PDBID2C1F,2.1Åresolution)[15]thatshows91% identitywiththecatalyticdomainofOrpinomycesXynA. Consider-ingthisalignment,itwaspossibletoconstructamodelforresidues 13-230ofthewild-typeXynA,withoutsignalpeptide,and2-213of theSWT.Themodelwascheckedfortheirstereochemicaland over-allstructuralqualityusingPhyre2Investigator[14],Procheck[16], Verify3D[17,18],ERRAT[19],RAMPAGE[20],ProSA-web[21]and JPred4[22].Thethree-dimensionalstructureofmodeledprotein wasanalyzedusingthePyMOLMolecularGraphicsSystem(Version 1.8,Schrödinger,LLC).

Moleculardynamicssimulationswerecarriedoutonacomputer clusterequippedwith2IntelXeonprocessorsX5650,2.66GHzand 48GBofRAMonaLinuxPlatform,usingNAMDsoftware(Version 2.11)[23]andperformedwithCHARMMforcefield(Version1.9.2) [24].VMDinterface[25]wasusedtopreparethexylanasemodelsas

wellastomakevisualizationsandanalysisoftrajectories.The sys-temsizewaschosentodistancetheproteinatomsapproximately 5.0Åoftheedgeofthesimulationwaterbox.Thesystemswere minimizedat313or323Kfor1000stepstoequilibratethe posi-tionalrestraintsontheproteinswithsolventmolecules.Thefinal productionofsimulationsweredonefor10nswiththetimestepof 2fsat313and323K.PressurewascontrolledwithaLangevin pis-ton(1atm)andtemperaturebyLangevinthermostat.TheParticle MeshEwald(PME)algorithm[26]wasusedtomodelthe electro-staticinteractions.Trajectoriesweresavedatevery5000steps. 2.4. PrimersconstructionandPCRamplifications

A pair of oligonucleotides, XF1

(5GGCAATTCCATATGGGTCAAAGATTAAGCGTTGG3) and XR1 (5GCCGCTCGAGTTAACGAGGAGCAGAACCTTGTTT3),was synthe-sized toperforme amplification of genesencoding the selected xylanases (SWTand SM2).XF1matchedwiththenucleotide85 andXR1matchedwithantisensenucleotides745-765ofthegene ofxylanaseAfromOrpinomycesPC-2.Theunderlinedand double-underlined nucleotides represent the NdeI and XhoI restriction sites,respectively. TheplasmidpET24(b)withthenon-mutated andmutatedxynAinsertsservedasatemplate.

PCR wasperformed in a 50␮Lvolume containing 5␮L 10X buffer,5␮Mofeachprimer,2.0mMofeachdNTP,1.5unitKOD polymerase, 2.5mM MgCl2, and 2ng plasmid DNA. PCR reac-tionswerecarriedoutinaMastercyclerThermocycler(Eppendorf, Germany)withthefollowingconditions:initialheatingat94◦Cfor 3min,then3cyclesof95◦Cfor20s,37◦Cfor30sand72◦Cfor 60s,then30cyclesof95◦Cfor20s,65◦Cfor30sand72◦Cfor45s, followedbya72◦Cincubationperiodfor10min.

2.5. Cloningandsequenceanalysis

ThePCRproductwasvisualizedona0.8%(w/v)agarosegel, puri-fiedusingtheGelExtractionkit,digestedwithNdeIandXhoIand clonedintotheexpressionvectorspET24b(+)usingtheT4DNA lig-asekit.TheligatedproductwasusedtotransformE.coliDH5␣.The recombinantplasmidialDNAwaspurifiedfromisolatedcolonies andverifiedbyDNAsequencingwithanautomaticMacrogenPCR sequencer(Gasan-dong,Geumchun-gu,SeoulKorea).

Inordertodetermineifmutationpatternsweremaintained,the DNAsequencesweretranslatedintotheirproteinsequencesand comparedtotheinitialsequencesusingtheCLUSTALW(Version 1.81) alignment program (http://www.ebi.ac.uk/clustalw). Plas-midialDNAswerethenextractedfromE.coliDH5␣andtransferred bythermalshockprotocoltoE.coliBL21-CodonPlus(DE3)-RIPL. 2.6. Xylanaseexpression

E.colicultures(1mL)wereinitiallyinoculatedin40mLofLB/Kan medium (triptone 1%, NaCl 1%, yeast extract 0.5%) and shaken overnightat250rpmand37◦C(NewBrunswick,ScientificCo., Edi-son,NJ,USA).Atotalof40mLofthecultureswereinoculatedin 1LofSOB/Kanmedia(triptone2%,yeastextract0.5%,NaCl0.05%, KCl2.5mM,MgSO40.01M,NaOH0.5mM)andshakenat250rpm and37◦CuntiltheOD600reached1.0.Afterthat,2.5mLofIPTG

solution(100mM)wereaddedto1Lcultures(finalconcentration of0.25mM)andshakenat37◦C,250rpmfor4htoinducexylanase expression.

Afterinduction,thecultureswereincubatedonicefor30min andthencentrifuged(15,000×g)at4◦Cfor30min.Thepelletwas resuspendedin25mLofsodiumphosphatebuffer,100mM,pH6.5. Theintracellularxylanasepreparationswereobtainedafter soni-cationcyclesofthirtytimesfor10swithabreakof10sbetween eachsonication.Thissuspensionwasthencentrifugedat4◦Cand

(3)

15,000×gfor20min,andthesupernatantwasusedasancrude enzymeextract.

2.7. Intracellularxylanasespurification

TheintracellularxylanaseswereloadedintoaQ-Sepharoseion exchangecolumn(1.6×2.5cm)(GEHealthcareLifeSciences, Upp-sala,Sweden)previouslyequilibratedwith25mMsodiumborate buffer, pH8.5. The sample wasalsoequilibrated and eluted in thesamebuffer, followedbyalinearsalt gradientconsistingof 25mMsodiumboratebuffer,pH8.5andthesamebuffercontaining 1MNaCl.TheprocesswasperformedbyFastProteinLiquid Chro-matography(ÄKTAProteinPurificationSystem–GEHealthcareLife Sciences,Uppsala,Sweden)withaflowrateof4mL/min.Active fractionswerepooledandanalyzedforpuritybySDS-PAGEusing 12.5%(w/v)acrylamidegel[27].Theproteinbandswerevisualized bysilverstaining[28].

Theproteinconcentrationintheenzymaticextractwas deter-minedbytheCoomassieBluebindingmethodusingbovineserum albumin(BSA)asthestandard[29].

2.8. Massspectrometry

Mass spectrometric analysesof theWT and SWT xylanases werecarried out by matrix-assistedlaser desorption-ionization time-of-flightmassspectrometry(MALDI-TOF-MS)method. Puri-fiedxylanasesweresubjectedtodigestionwithsequencinggrade modifiedtrypsin(Promega,Madison,MI,USA)accordingtotheAn In-SolutionDigestionProtocolofKinterandShermanet[30].The peptidefragmentswereanalyzedonABSCIEXMALDITOF/TOFTM 5800System(AppliedBiosystems,FosterCity,CA,USA).Afterdata acquisition, a list of peaks was obtainedfrom the raw MS/MS datausingthe4000SeriesExploreSoftware(AppliedBiosystems). Thepeptidesequenceswereassociatedtom/zpeaksthroughthe theoreticaldigestionand ionizationpredictedbyMS-digesttool implementedintheProteinProspectorwebserver(Version5.18.1) [31].

2.9. Xylanaseassay

Xylanaseactivitywasdeterminedbymeasuringthereleaseof reducingsugarsfrombeechwoodxylanusingthedinitrosalicylic acidreagent(DNS) [32].The xylanase standard assaywas per-formedin500␮Lreaction volumescontaining400␮L (1%w/v) beechwoodxylandilutedin100mMsodiumphosphatebufferpH 6.5and0–100␮Lofappropriatelydilutedenzymepreparations. Thereactionwascarriedoutfor30minat40◦Candstoppedby theadditionof0.5mLoftheDNSreagent.Testtubeswereboiled for5minandthenchilledonicewaterfor10min.Theamountof reducingsugarsreleasedwasdeterminedat540nm.D-xylosewas usedasthestandard.Oneunitofxylanaseactivitywasdefinedas theamountofenzymethatreleased1␮molofxyloseperminunder standardassayconditions.

Thedataofxylanaseactivitywerepresentedasmeanvalues oftriplicateassaysinwhichthestandarddeviationswerealways lessthan10%andtheresultswereexpressedasmeans±standard deviations.

2.10. EffectofpH,temperatureandthermostabilityonxylanase activity

TheinfluenceofpHonxylanaseactivitywasdeterminedunder standardassayconditions,exceptthatpHrangewasfrom2.0to 11.0.Thebuffersatfinalconcentrationof100mMwere:sodium phosphatebuffer(pHvaluesof2,3,7and8),sodiumcitratebuffer (pH4–6)andsodiumcarbonatebuffer(pH9–11).

Fig.1. Homologymodelofmaturexylanase(WT)catalyticdomain.Thetailthat couldaffectxylanasestabilityintheN-terminalregionisshowninyellowandthe twocatalyticglutamatesareshowninbluesticks.(Forinterpretationofthe refer-encestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthis article.)

Theeffectoftemperatureonenzymeactivitywasdetermined understandardassayconditions,exceptthattemperatureranged from20to80◦C.

Thermalstabilitywasdeterminedby incubatingthepurified dilutedenzymeat50◦Cin100mMsodiumphosphatebuffer,pH 6.5. Afterincubation at differenttimes, aliquots wereremoved andtheresidualxylanaseactivitiesweremeasuredbythe stan-dardassay.Half-lifevalueoftheenzymeswascalculatedusingthe CurveExpertprogram(Version1.4)[33]fromthedataofresidual activitydeterminedat50◦C.

2.11. Kineticproperties

Thekineticparameters(kM andkcat)ofthepurifiedxylanases weredeterminedbynonlinearcurvefittingusingthe Michaelis-MentenplotandtheCurveExpertprogram(Version1.4)[33].The substratebeechwoodxylanwasusedatconcentrationsbetween 0.25and10mg/mLin100mMsodiumphosphatebuffer,pH6.5 andtheassayswerecarriedoutat40◦Cfor30min.

3. Resultsanddiscussion

3.1. Moleculardynamicssimulationsandsmallxylanase evaluation

Predictionanalyzesoftheexportsignalpeptideandthecleavage sitefromOrpinomycesXynAxylanaseidentifiedaprocessingsite betweenaminoacidresidues18and 19togeneratethemature enzyme.

ThemoleculardynamicsanalysisofthematureWTxylanase revealedthatthefirsttenresiduesintheN-terminalregionhaveno definedsecondarystructure,weaklytointeractwiththeremaining globalstructureandhighmobility,reachingaminoacidsnearthe catalyticsite.Therefore,wesuggestthatremovalofthisN-terminal tailcouldimprovethestabilityofthemolecule.Fig.1showsthe matureWT xylanase3D structure, emphasizingthe N-terminal destabilizingregion.

Inordertoverifyifremovalofthisregionwouldcompromise thexylanaseactivity,aMDtrajectoryof10nswasevaluatedto investigatetheaverageRMSfluctuationsofaminoacids(Fig.2).It isseenthatthemajorityoftheresiduesofthesmallxylanase(SWT –maturexylanasewithoutthefirsttenaminoacids)showing

(4)

dis-Fig.2.AverageRMSfluctuationvalues(Å)asafunctionofaminoacidsequenceupto10nssimulationtrajectoryat313K(A)and323K(B).MaturexylanaseWT(black); smallxylanaseSWT,withouttheN-terminaltail(gray).

Fig.3. Distance(Å)betweenthecatalyticglutamateresiduesofthexylanasesalongamoleculardynamictrajectoryof10nsat313K(A)and323K(B).MaturexylanaseWT (black);smallxylanaseSWT,withouttheN-terminaltail(gray).

Fig.4.Radiusofgyration(Å)ofthexylanasesalongamoleculardynamictrajectoryof10nsat313K(A)and323K(B).MaturexylanaseWT(black);smallxylanaseSWT, withouttheN-terminaltail(gray).

placementslessthan9.0Åat313Kandlessthan5.0Åat323K. Ontheotherhand,theRMSfluctuationsobservedforaminoacids locatedinthemoststableconformationsof␤-sheetsand␣-helix ofmaturexilanase(WT)werehigherthantheobserved displace-mentsforallresiduesofSWT.Thisresultindicatedthatremoval oftheN-terminaltailcouldpromotethestabilizationofindividual residuesandofthewholemolecule.

Thedistancebetweenthecatalyticglutamateresidues(E115 and E203)of theSWTand WT(E124 and E212)wasevaluated (Fig.3).Positioningofthecatalyticresiduesontheactivesite, dur-ingsimulationsatbothevaluatedtemperatures,suggeststhatthe tailremovalpromotedconsiderablestructuralchangesintheactive site,resultinginagainofflexibilityintheSWT,whichprobably ensuresthecatalyticperformanceofthisenzyme.

Theradiusofgyration(Rg)ofthematurexylanaseWTandsmall xylanaseSWTwerepresentedinFig.4.TheRgisaparameterthat describestheequilibriumconformationofatotalsystem,indicating proteinstructurecompactness[34].ThelowerRgvalue,presented bytheSWTstructureat313K,indicatesthatthesmallenzymehasa

morecompactstructurewhichmayhaveimplicationsonthe over-allproteinstability,whileat323Kbothxylanasesacquiredsimilar Rgvalues.

The information obtained from molecular dynamics analy-sesindicatedthatremovaloftheN-terminaltailcouldpromote increasedenzymestability,sincethisN-terminalregionhaveno definedsecondarystructurethatappearshighlyflexible.Besides that,theN-terminaltaillocationnearcatalyticaminoacidsinthe 3Dstructure ofthexylanasemolecule(Fig.1), suggestthatthis tailcanalsoinfluencetheproperpositioningofthesubstrateinthe cavityofthecatalyticsite,whichcouldresultinreducedenzymatic activity.

3.2. N-terminalevaluationbymassspectrometry

InordertoconfirmthedifferencesintheN-terminalregionof thexylanases,thegenesencodingtheWTandSWTwerecloned intotheexpressionvectorpET24(b)andusedtotransformE.coli BL21(DE3)RIPL.Theexpressedenzymeswerepurified,digestedand

(5)

Fig.5. N-terminalregionoftheWTandSWTxylanaseswiththerespectivesignal peptideprocessingsitespredictedbySignalPServerandbyMS.

Fig.6. SDS-PAGE(12.5%)oftheE.coliintracellularcrudeextractandpurified xylanases.1–molecularweightmarker,2–proteinprofilefromexpressionofWT 3–proteinprofilefromexpressionofSWT,4–proteinprofilefromexpressionof SM2,5–molecularweightmarker,6–purifiedWT,7–purifiedSWT,8–purifiedSM2. Proteingelwasstainedwithsilvernitrate.

analyzedbymassspectrometry(MALDI-TOF-MS).Theanalysesof theidentifiedpeptidessuggestthatprocessingofsignalpeptideby E.colioccurredatacleavagesitedifferentfromthatpredictedby SignalP(Fig.5).BasedonthepredictionsofSignalP,thesize dif-ferencebetweenWTandSWTxylanaseswouldbeequivalentto nineaminoacidresidues,which couldformasmallloopatthe N-terminalregionofWT.Ontheotherhand,theanalysesofthe identifiedpeptidesshowedthattheseenzymesexpressedinE.coli exhibitedadifferenceof25aminoacidresidues.Thissequenceof25 aminoacidresiduescouldformanunstructuredloop,whichcould negativelyaffectthepositioningofthesubstrateinthecatalytic cavity, reducing the enzymatic activity of WT.TheMS analyses showedthepeptidesof697.909m/zand807.139m/z,whichwere obtainedfromWTandSWTfragmentation,respectively(Fig.S1). Thesepeptideswereincompatiblewiththeexpectedproductsfrom trypticcleavageofthesexylanases.The697.909m/zwas compat-iblewiththe AITTVAKfragment,which is partof theexpected FLFALAITTVAKpeptide.Similarly,the807.139m/zwasequivalent totheGGQNQHKfragment,whichispartoftheLSVGGGQNQHK peptide.Theseresultsindicatethattheprocessedsignalpeptideof WTcorrespondedtothefirsttenaminoacidresidues,whilethe pro-cessedsignalpeptideofSWTwascorrespondingtothefirsteight aminoacidresidues(Fig.5).Therefore,itispossibletoassumethat thedifferenceinmassbetweentheseenzymeswouldbeequivalent to25aminoacidresidues.ThisvariationinmolecularmassofWT andSWTxylanaseswasconfirmedbySDS-PAGE(Fig.6).The pro-teinbandcorrespondingtopurifiedWTxylanase(lane6)presented highermolecularmasscomparedtopurifiedSWTband(lane7). TheseobservationsareinagreementwiththeWTandSWT molec-ularmassesestimatedbyProtParam,thatwere26,640.48Daand 24,300.89Da,respectively.

3.3. Theeffectoftailremovalonxylanaseproperties

Thespecificactivitydeterminedfromcrudeenzymeextractsof WTand SWTxylanasesweresignificantlydifferent.Thespecific activityofSWTwas3,752.1Umg−1ofprotein,whileatthesame conditionsthespecificactivityofWTwas231.7Umg−1ofprotein. TheproteinprofileoftheintracellularcrudeextractsfromE.coli expressingWTorSWT(Fig.6)showedthatSWTwasthemost

abun-dantproteininthecrudeextract(lane3),whiletheamountofWT wasrelativelylowandsimilartoseveralotherproteinsexpressed fromE.coli(lane2).Inthisway,thehigherconcentrationofSWTin theactiveproteinextractcouldcontributetoitssuperiorspecific activity,howeverotherfactorsareinvolved,whichcouldexplain thedifferenceinthespecificactivityofthesexylanases.

VariousstudieshaveshownthattheN-terminalregionofGH11 xylanasesisrelatedtoenzymestability[11]andrecentmolecular dynamicinformationhasindicatedthatproteinunfoldinginitiates there[35].E.colihastheN-endrulepathway,whichrelatesthe invivohalf-lifeofaproteintotheidentityofitsamino-terminal residue.ItwasshownthatunstableproteinscontainedArg,Lys, Phe,Leu,TrpandTyrattheaminoterminus[36,37].Inourfindings, thepresenceofdestabilizingaminoacidresiduesinthexylanase N-terminalcouldreducetheproteinstability.Infact,theN-terminal region of WT is highly rich in Arg, Lys, Phe and Leu residues (AAD04194).DegradationofWTxylanasecouldoccurpriorto sig-nalpeptideprocessingintheperiplasm,asobservedinexpression systemsofrecombinantproteinsbyE.coli[37,38].Thisamino ter-minusregioncouldpotentiallycontributetolowerstabilityand reduced specificactivityof theWT, howeverother factorsthat affecttheexpressionoftheenzymesmaybeinvolved[11,37].

Theseenzymeswerepurifiedusingionexchange chromatog-raphyandtheelectrophoreticprofileofthesepurifiedxylanases confirmedthepresenceofasingleproteinbandofWTandSWT (Fig. 6). The specific activities of purified SWT and WT were 5,801.7Umg−1 of protein and 444.1Umg−1 of protein, respec-tively. This higher specific activity of SWT indicates that the removalofresiduesin theN-terminalregioncouldpromotean improvement inxylanaseactivity.In sum, itseemsthat the N-terminaltailremovalpositivelyaffectedtheexpressionandactivity ofSWT.

Basedonthis information,wedecidedtousetheN-terminal region removal approach to evaluate its effect on a mutant xylanase,alsoderivedfromOrpinomycesXynA.

3.4. Productionofamutantsmallxylanase

The mutant xylanase M2 (V135A, A226T) was previously obtained by directed evolution [9]. The M2 enzyme presented improvedthermostabilityat50and60◦C,butitsactivityinthe E.coliintracellularcrudeextractwas34.4Umg−1 ofprotein[9]. Inordertoincreasetheexpressionandactivityofamorestable xylanase,theN-terminalregionoftheM2xylanasewasremoved, generatingthesmallxylanaseSM2.Afterintroductionofa methi-onineresidue(startcodon)toensuresuccessfulproteinsynthesis, genesequencingindicatedthatthemutationpatternintroduced previouslywasmaintained.Thenewsmallenzymewasexpressed inE.coliBL21(DE3)RIPLandtheSM2activityintheintracellular crudeextractreached2,846.8Umg−1ofprotein.Afterpurification, theSM2enzymeshowedspecificactivityof5,106.8Umg−1at40◦C, pH6.5.

3.5. Characterizationofxylanases

ThepurifiedWT,SWTandSM2xylanaseshadanoptimum tem-perature at60◦Cand showedsimilarbehavior at temperatures from20to80◦C(Fig.7A).Thisvalueofoptimaltemperaturewasthe sameasthatexhibitedbyM2xylanase[9],andbyBacillussubtilis xylanase[39],andhigherthanseveralfungixylanasesthatpresent optimalactivitiesattemperaturesbelow45◦C[40,41].

TheWT,SWTandSM2showedoptimumpHwithintherange of5–8(Fig.7B).ItisinterestingtohighlightthattheSWTshowed considerableresidualactivitywhenassayedinpH9,about50%, whiletheresidualactivityofWTandSM2werearound10%and 30%,respectively.SM2,WTandSWTenzymesshowedconsiderable

(6)

Fig.7. A–EffectoftemperatureonWT,SWTandSM2activityatpH6.5.Thexylanaseactivitywasmeasuredundertemperaturesrangingfrom20to80◦C.BEffectofpH

onWT,SWTandSM2activityat40◦C.XylanaseactivitywasmeasuredunderpHvaluesrangingfrom2.0to11.0.CThermostabilityat50C.Relativeactivityisexpressed

asapercentageofthemaximumenzymeactivityunderstandardassayconditions.Alldataplottedareaverageoftriplicates.WT(),SWT(䊉),SM2().

Table1

Propertiesofxylanases.Thevaluesofhalf-life(t1/2),kMandkcatconstantsweredeterminedfromactivitystandardassay,usingpurifiedxylanasesandbeechwoodxylanas

substrate.

Enzymes t1/2at50◦C(h) kM(mgmL−1) kcat(min−1) kcat/kM(mL/min−1mg−1)

WT 0.77 1.05 8.0×106 8.0×106

SWT 2.27 0.73 2.3×109 3.3×109

SM2 29.46 0.62 1.8×1010 2.9×1010

residualactivitywhenassayedinawidepHrangefromacidicto

alkalinepHvalues,similartoxylanasesfromothersources[40,41].

TheSM2retainedapproximately45%ofitsmaximalxylanase activ-ityatpH3(Fig.7B).Thesexylanasescouldbemoresuitablefor biotechnologicalapplicationsthatrequireacidic andneutralpH conditions. For industrial applications,it is interesting that the xylanasesexhibitgreateractivityinawidepHrangeandhigh tem-perature.However,naturalxylanasesthatarethermostable and acidoralkalitolerantarelimited[42].

Asexpected,theSM2wastheenzymemorethermostableat 50◦C, followedbySWTandWTxylanase(Fig.7C).Half-life val-uesoftheSM2,SWTandWTat50◦Cwere1,767.6min,136.4min and46.0min,respectively.After20minofincubationat50◦Cthe WTmaintained62.8%ofitsactivity,andafter2hofincubationthis enzymeexhibitedabout26.2%ofitsoriginalactivity.Ontheother hand,theSWTretained88.8%ofitsactivityafter20minof incuba-tionatthesameconditions,andafter2htheresidualactivitywas stillapproximately43.3%.AlreadythexylanaseSM2maintained 90%activityevenafter4hincubation.TheN-terminaltailremoval couldpromote structuralchanges inthesemoleculesthat could increasethethermalstabilityat50◦C.

Chenetal.[8]purifiedandcharacterizedthenativexylanase fromOrpinomycessp.PC-2.Thecrudeculturefluidpresenteda spe-cificactivityof11.2Umg−1ofproteinandthespecificactivityofthe purifiedenzymewas1,560.0Umg−1 ofprotein.Theenzymewas mostactiveattemperaturesof40–50◦CandpHfrom5.0to6.6.So, theexpressionofthexylanasesderived fromOrpinomycesXynA

inE.colicombinedwiththeN-terminaltailremovalpromotedan increaseintheproductionofxylanaseswithgainofactivityand stability.

The kM values of purified xilanases were calculated by the

Michaelis-Menten plotusing beechwoodxylan asthesubstrate (Table1).ThekMvaluesfortheSWTandSM2wereclosetoeach

other(0.73and0.62mgmL−1,respectively)andbothwerelower thanthekMvalueofWTxylanase(1.05mgmL−1),indicatingthat

smallxylanasespresentedhigheraffinityforthesubstrate.Values ofkcat/kM,aparameterthatevaluatesthecatalyticefficiencyofthe

enzymes,were8.0×106forWT,3.3×109forSWTand2.9×1010

forSM2.Theseresultshighlightthattailremovalgreatlyenhanced thecatalyticefficiencyoftheenzymestocatalyzethehydrolysisof beechwoodxylan.

Several studies have focused on changes in the N-terminal regiontoimprovethethermostabilityofxylanases[11,43,44].Yin etal.[43]replacedtheN-terminalsegmentofamesophilicGH11 xylanase fromAspergillus oryzae (AoXyn11) by the correspond-ingregionofahyperthermotolerantGH11xylanase(EvXyn11TS) andthemodifiedxylanasewashighlyimprovedandshowed opti-mumtemperatureat75◦Candhighthermostabilityat65◦C.Song etal.[44]obtainedamoreactivexylanasebytheadditionof17 aminoacidstotheN-terminalofGH11xylanasefrom Thermobacil-lusxylanilyticus.Ontheotherhand,theremovalofun-structured residuesintheN-terminalregionresultedinthereductionofthe optimumtemperatureandthermostabilityofanAspergillusniger GH11xylanase[11].Thus,removalofthisN-terminaltailproved

(7)

to be advantageous, since it promoted an increase in enzyme stability, catalytic efficiency as well as marked an increase in xylanaseproduction,achievingconsiderablelevelsofexpression. Theseimprovedxylanaseswouldhavepotentialfor biotechnolog-icalapplications,especiallyinprocessesthatrequiremoreactive andstableenzymes.

4. Conclusions

Molecular dynamics simulations contributed to the identi-fication and evaluation of a destabilizing N-terminal tail on OrpinomycesWTxylanase.TwoxylanasescodifiedbyxynAgene without these N-terminal destabilizing residues, one mutated (SM2)andtheothernon-mutated(SWT),wereexpressedathigh levelsinE.coli.Theseenzymesweremoreactiveandstablewhen comparedtoWTxylanaseinabroaderrangeofpHand temper-ature.The positive effect oftail removalon xylanases catalytic propertiesreproducedthepredictionsperformedbytheMD ana-lyzes. The properties of these improved xylanases suggest the potentialofapplyinginseveralbiotechnologicalapplications. Conflictofinterest

Theauthorsreportnoconflictsofinterest. Acknowledgments

This work was supported by grants from the Fundac¸ão de Amparo à Pesquisa do Estado de Minas Gerais-FAPEMIG, the Coordenac¸ãodeAperfeic¸oamentodePessoalde Nível Superior-CAPES and Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq,Brazil.TheauthorsthankDr.DouglasB.Jordan fromtheUSDA,ARS,NCAUR,Peoria,IL,andDr.Xin-LiangLifortheir technicalsupport.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.ijbiomac.2017. 08.015.

References

[1]X.Jia,W.Qiao,W.Tian,X.Peng,S.Mi,H.Su,Y.Han,Biochemical characterizationofextra-andintracellularendoxylansefromthermophilic bacteriumCaldicellulosiruptorkronotskyensis,Sci.Rep.6(2016)1–12. [2]G.Paës,J.G.Berrin,J.Beaugrand,GH11xylanases:

structure/function/propertiesrelationshipsandapplications,Biotechnol.Adv. 30(2012)564–592.

[3]B.Henrissat,M.Vegetales,F.Grenoble,Aclassificationofglycosylhydrolases basedsequencesimilaritiesaminoacid,Biochem.J.280(1991)309–316. [4]V.Lombard,H.GolacondaRamulu,E.Drula,P.M.Coutinho,B.Henrissat,The

carbohydrate-activeenzymesdatabase(CAZy)in2013,NucleicAcidsRes.42 (2014)490–495.

[5]J.Álvarez-Cervantes,G.Díaz-Godínez,Y.Mercado-Flores,V.K.Gupta,M.A. Anducho-Reyes,Phylogeneticanalysisof␤-xylanaseSRXL1ofSporisorium reilianumanditsrelationshipwithfamilies(GH10andGH11)ofAscomycetes andBasidiomycetes,Sci.Rep.6(2016)1–9.

[6]D.S.Vieira,L.Degrève,R.J.Ward,Characterizationoftemperaturedependent andsubstrate-bindingcleftmovementsinBacilluscirculansfamily11 xylanase:amoleculardynamicsinvestigation,Biochim.Biophys.Acta1790 (2009)1301–1306.

[7]X.-L.Li,L.G.Ljungdahl,H.Chen,Orpinomycesxylanaseproteinsandcoding sequences,5,824,533(Patent),1998.

[8]H.Z.Chen,X.-L.Li,L.G.Ljungdahl,Purificationandcharacterizationofan endoxylanaseformtheanaerobicpolycentricrumenfungusOrpinomycessp. strainPC-2,SAASBull.Biochem.Biotechnol.12(1999)7–14.

[9]L.M.Trevizano,R.Z.Ventorim,S.T.deRezende,F.P.S.Junior,V.M.Guimarães, ThermostabilityimprovementofOrpinomycessp.xylanasebydirected evolution,J.Mol.Catal.B:Enzym.81(2012)12–18.

[10]H.Xue,J.Zhou,C.You,Q.Huang,H.Lu,Aminoacidsubstitutionsinthe N-terminus,cordand␣-helixdomainsimprovedthethermostabilityofa family11xylanaseXynR8,J.Ind.Microbiol.Biotechnol.39(2012)1279–1288. [11]L.Liu,X.Sun,P.Yan,L.Wang,H.Chen,Non-structuredamino-acidimpacton

GH11differsfromGH10xylanase,PLoSOne7(2012)1–6.

[12]T.N.Petersen,S.Brunak,G.vonHeijne,H.Nielsen,SignalP4.0:discriminating signalpeptidesfromtransmembraneregions,Nat.Methods(2011)785–786. [13]E.Gasteiger,C.Hoogland,A.Gattiker,S.Duvaud,M.R.Wilkins,R.D.Appel,A.

Bairoch,ProteinidentificationandanalysistoolsontheExPASyserver, Proteom.Protoc.Handb.(2005)571–607.

[14]L.A.Kelley,S.Mezulis,C.M.Yates,M.N.Wass,M.J.E.Sternberg,ThePhyre2 webportalforproteinmodelling,predictionandanalysis,Nat.Protoc.10 (2015)845–858.

[15]M.Vardakou,C.Dumon,J.W.Murray,P.Christakopoulos,D.P.Weiner,N.Juge, R.J.Lewis,H.J.Gilbert,J.E.Flint,Understandingthestructuralbasisfor substrateandinhibitorrecognitionineukaryoticGH11xylanases,J.Mol.Biol. 375(2008)1293–1305.

[16]R.A.Laskowski,M.W.MacArthur,D.S.Moss,J.M.Thornton,PROCHECK:a programtocheckthestereochemicalqualityofproteinstructures,J.Appl. Crystallogr.26(1993)283–291.

[17]J.U.Bowie,R.Luthy,D.Eisenberg,Amethodtoidentifyproteinsequencesthat foldintoaknownthree-dimensionalstructure,Science253(1991)164–170. [18]R.Luthy,J.U.Bowie,D.Eisenberg,Assessmentofproteinmodelswith

three-dimensionalprofiles,Nature356(1992)83–85.

[19]C.Colovos,T.O.Yeates,Verificationofproteinstructures:patternsof nonbondedatomicinteractions,ProteinSci.2(1993)1511–1519. [20]S.C.Lovell,I.W.Davis,W.B.Adrendall,P.I.W.deBakker,J.M.Word,M.G.

Prisant,J.S.Richardson,D.C.Richardson,StructurevalidationbyCalpha geometry:phi,psiandCbetadeviation,Proteins-Struct.Funct.Genet.50 (2003)437–450.

[21]M.Wiederstein,M.J.Sippl,ProSA-web:interactivewebserviceforthe recognitionoferrorsinthree-dimensionalstructuresofproteins,Nucleic AcidsRes.35(2007)407–410.

[22]A.Drozdetskiy,C.Cole,J.Procter,G.J.Barton,JPred4:aproteinsecondary structurepredictionserver,NucleicAcidsRes.43(2015)W389–W394. [23]J.C.Phillips,R.Braun,W.Wang,J.Gumbart,E.Tajkhorshid,E.Villa,C.Chipot,

R.D.Skeel,L.Kalé,K.Schulten,ScalablemoleculardynamicswithNAMD,J. Comput.Chem.26(2005)1781–1802.

[24]A.MacKerell,D.Bashford,M.Bellot,R.Dunbrack,J.Evanseck,M.Field,S. Fischer,J.Gao,H.Guo,S.Ha,D.Joseph-McCarthy,L.Kuchnir,K.Kuczera,F.Lau, C.Mattos,S.Michnick,T.Ngo,D.Nguyen,B.Prodhom,W.Reiher,B.Roux,M. Schlenkrich,J.Smith,R.Stote,J.Straub,M.Watanabe,J.Wiorkiewicz-Kuczera, D.Yin,M.Karplus,All-atomempiricalpotentialformolecularmodelingand dynamicsstudiesofproteins,J.Phys.Chem.B102(1998)3586–3616. [25]W.Humphrey,A.Dalke,K.Schulten,VDM:visualmoleculardynamics,J.Mol.

Graph.14(1996)33–38.

[26]T.Darden,D.York,L.Pedersen,ParticlemeshEwald:anNlog(N)methodfor Ewaldsumsinlargesystems,J.Chem.Phys.98(1993)10089.

[27]U.K.Laemmli,Cleavageofstructuralproteinsduringtheassemblyofthehead ofbacteriophageT4,Nature227(1970)680–685.

[28]H.Blum,H.Beier,H.J.Gross,Improvedsilverstainingofplantproteins,RNA andDNAinpolyacrylamidegels,Electrophoresis8(1987)93–99. [29]M.M.Bradford,Arapidandsensitivemethodforthequantitationof

microgramquantitiesofproteinutilizingtheprincipleofprotein-dyebinding, Anal.Biochem.72(1976)248–254.

[30]M.Kinter,N.E.Sherman,Thepreparationofproteindigestsformass spectrometricsequencingexperiments,in:D.M.Desiderio,N.M.M.Nibbering (Eds.),ProteinSeq.Identif.UsingTandemMassSpectrom,firstedition, Wiley-Interscience,Inc.,NewYork,2000,pp.147–165.

[31]R.J.Chalkley,P.R.Baker,K.F.Medzihradszky,A.J.Lynn,A.L.Burlingame, In-depthanalysisoftandemmassspectrometrydatafromdisparate instrumenttypes,Mol.Cell.Proteom.7(2008)2386–2398.

[32]G.L.Miller,Useofdinitrosalicylicacidreagentfordeterminationofreducing sugar,Anal.Chem.3(1959)426–428.

[33]D.G.Hyams,CurveExpert.http://www.curveexpert.net(2010). [34]M.Y.Lobanov,N.S.Bogatyreva,O.V.Galzitskaya,Radiusofgyrationasan

indicatorofproteinstructurecompactness,Mol.Biol.42(2008)623–628. [35]M.Purmonen,J.Valjakka,K.Takkinen,T.Laitinen,J.Rouvinen,Molecular

dynamicsstudiesonthethermostabilityoffamily11xylanases,ProteinEng. Des.Sel.20(2007)551–559.

[36]J.W.Tobias,T.E.Shrader,G.Rocap,TheN-endruleinbacteriaUb-X-Pgal, Science254(1991)1374–1377.

[37]M.Fakruddin,R.M.Mazumdar,K.S.BinMannan,A.Chowdhury,M.N.Hossain, Criticalfactorsaffectingthesuccessofcloning,expression,andmass productionofenzymesbyrecombinantE.coli,ISRNBiotechnol.2013(2013) 1–7.

[38]L.C.Simmons,D.G.Yansura,Translationallevelisacriticalfactorforthe secretionofheterologousproteinsinEscherichiacoli,Nat.Biotechnol.14 (1996)629–634.

[39]M.Saleem,F.Aslam,M.S.Akhtar,M.Tariq,M.I.Rajoka,Characterizationofa thermostableandalkalinexylanasefromBacillussp.anditsbleachingimpact onwheatstrawpulp,WorldJ.Microbiol.Biotechnol.28(2012)513–522. [40]A.Krisana,S.Rutchadaporn,G.Jarupan,E.Lily,T.Sutipa,K.Kanyawim,

Endo-1,4-␤-xylanaseBfromAspergilluscf.nigerBCC14405isolatedin Thailand:purification,characterizationandgeneisolation,J.Biochem.Mol. Biol.38(2005)17–23.

(8)

[41]S.Leskinen,A.Mäntylä,R.Fagerström,J.Vehmaanperä,R.Lantto,M. Paloheimo,P.Suominen,Thermostablexylanases,Xyn10AandXyn11A,from theactinomyceteNonomuraeaflexuosa:isolationofthegenesand

characterizationofrecombinantXyn11Apolypeptidesproducedin Trichodermareesei,Appl.Microbiol.Biotechnol.67(2005)495–505. [42]B.K.Bajaj,M.Sharma,S.Sharma,Alkalistableendo-␤-1,4-xylanaseproduction

fromanewlyisolatedalkalitolerantPenicilliumsp.SS1usingagro-residues,3 Biotec1(2011)83–90.

[43]X.Yin,J.-F.Li,J.-Q.Wang,C.-D.Tangaand,M.-C.Wu,Enhancedthermostability ofamesophilicxylanasebyN-terminalreplacementdesignedbymolecular dynamicssimulation,J.Sci.FoodAgric.93(2013)3016–3023.

[44]L.Song,C.Dumon,B.Siguier,I.André,E.Eneyskaya,A.Kulminskaya,S. Bozonnet,M.J.O’Donohue,ImpactofanN-terminalextensiononthestability andactivityoftheGH11xylanasefromThermobacillusxylanilyticus,J. Biotechnol.174(2014)64–72.

Referências

Documentos relacionados

In this study, to obtain additional information on the relationship between ligand structure and chelation, the metal stability constants of two amino acids that are

The reactions between the functional groups of the polymeric carrier and the amino acid (AA) residues on enzyme surface determine the stability and activity of the

In order to improve the affinity of humanized antibody, in the refined antibody, these five key residues were back mutated to rat amino acids from human amino acids..

É nesta mudança, abruptamente solicitada e muitas das vezes legislada, que nos vão impondo, neste contexto de sociedades sem emprego; a ordem para a flexibilização como

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

ABSTRACT - The objective of this research was to determine the chemical composition and ruminal degradation of the crude protein (CP), total and individual amino acids of leaves

The aim of this study was to evaluate the effect of thermal processing on urease and trypsin inhibitor activity, protein solubility, amino acid profile, and in vivo protein