• Nenhum resultado encontrado

B-N-Acetilhexosaminidase involvment in a-conglutin mobilization in Lupinus albus

N/A
N/A
Protected

Academic year: 2021

Share "B-N-Acetilhexosaminidase involvment in a-conglutin mobilization in Lupinus albus"

Copied!
10
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Plant

Physiology

jou rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p l p h

Biochemistry

␤-N-Acetylhexosaminidase

involvement

in

␣-conglutin

mobilization

in

Lupinus

albus

Cláudia

N.

Santos

a,b

,

Marta

Alves

a

,

António

Oliveira

a

,

Ricardo

B.

Ferreira

a,c,∗ aInstitutodeTecnologiaQuímicaeBiológica,UniversidadeNovadeLisboa,Apartado127,2781-901Oeiras,Portugal

bInstitutodeBiologiaExperimentaleTecnológica,Apartado12,2781-901Oeiras,Portugal cInstitutoSuperiordeAgronomia,UniversidadeTécnicadeLisboa,1349-017Lisboa,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received8November2012

Receivedinrevisedform26February2013 Accepted7March2013

Available online 18 April 2013 Keywords:

␤-N-Acetylhexosaminidase ␣-Conglutin

Lupinusalbus

a

b

s

t

r

a

c

t

Glycosylationisanimportantpost-translationalmodificationinvolvedinthemodulationofawidevariety ofcellularprocesses.Becauseglycosydasesarecentral,theaimofthisstudywastoinvestigatetheglycosyl activitypresentinthecotyledonsoftheseedsofanimportantcroplegume,Lupinusalbus,aswellas potentialnaturalsubstratesofthedetectedenzymes.

Theglycosylactivitydetectedinthecotyledonsbeginningatseedimbibitionandcontinuinguntil9days after,wasduetoa␤-N-acetylhexosaminidase(␤-NAHase),whichwasmolecularlyandbiochemically characterizedafterpurification.Twoisoenzymeswithmolecularmassesof64and61kDaweredetected, eachhavingfiveisoenzymeswithpIs5.3–5.6.The64and61kDaisoenzymeshadthesameproteincore showingdifferentdegreesofglycosylation.TheN-terminalsequenceoftheenzymeproteincorewas determined[VDSEDLI(EN)AFKIYVEDDNEHLQGSVD]andtoourknowledge,isthefirstreportedprotein sequencefromaplant␤-NAHase.

L.albus␤-NAHase hadKm valuesof2.59mMand2.94mMandVvaluesof18.40␮Mmin−1 and

2.73␮Mmin−1,forpNP–GlcNAcandpNP–GalNAc,anoptimumpHof5.0and4.0andtemperatureof 50◦Cand60◦CweredetectedtowardpNP–GlcNAcandpNP–GalNAc.InthepresenceofAgNO3,CoCl2,

CuSO4,FeCl3,CdCl2andZnCl2theenzymaticactivitydecreasedmorethan50%,andwheninthepresence

ofsugars,anactivityreductionofnomorethan25%wasobserved.

Aphysiologicalrolefor␤-NAHaseinL.albusstorageproteinmobilizationwasinvestigated.␤-NAHase hasalreadybeenimplicatedinseveralbiologicalprocesses,namelyinglycoproteinprocessingduring seedgerminationandseedlinggrowth.However,thenaturalsubstratesusedbythisenzymearenotyet completelyclarified.

Bygatheringinvivoandinvitrodatafor␤-NAHaseactivitytogetherwithglobulindegradation,we suggestthatL.albus␤-NAHaseisinvolvedinthemobilizationofstorageproteindegradation,with ␣-conglutinbeingapotentialnaturalsubstrateforthisenzyme.

© 2013 Elsevier GmbH. All rights reserved.

Introduction

Glycosylation,ineukaryotes,isanessentialprocessinvolvedina

numberofcellularprocesses,includingcorrectproteinfoldingand

Abbreviations: DMS, dimethylsuberimidate; DW, dry weight; FW, fresh weight; ␤-ME, ␤-mercaptoethanol; GalNAc, N-acetylgalactosamine; GlcNAc, N-acetylglucosamine;␤-NAHase,␤-N-acetylhexosaminidase;pNP,p-nitrophenyl; pNP–GalNAc, p-nitrophenyl–␤-d-N-acetylgalactosamine; pNP–GlcNAc, p-nitrophenyl–␤-d-N-acetylglucosamine; pNP–(GlcNAc)2, p-nitrophenyl–␤-d-N,N -diacetylchitobiose; pNP–(GlcNAc)3, p-nitrophenyl–␤-d-N,N,N -triacetyl-chitotriose;pNP–Glcp,p-nitrophenyl–␣-d-glucopyranosyde.

∗ Correspondingauthorat:InstitutodeTecnologiaQuímicaeBiológica, Universi-dadeNovadeLisboa,Apartado127,2781-901Oeiras,Portugal.

Tel.:+351214469651;fax:+351214433644. E-mailaddress:rbferreira@itqb.unl.pt(R.B.Ferreira).

proteinprotectionagainstproteolyticdegradation(Bernard,2008;

Aebietal.,2009).Inparticular,N-acetylglucosamine(GlcNAc),an

abundanthexose,isknowntoplaymultiplerolesincellseitheras

amonomeroraspartofmacromolecules,especiallyasaresidueof

oligo-andpolysaccharidesandconjugatedwithlipidsorproteins

(Bernard,2008).

A typical glycoside hydrolase involved in the cleavage of

terminal GlcNAc, and alsoGalNAc, fromthe non-reducing end

ofoligosaccharides is␤-N-acetylhexosaminidase (␤-NAHase; EC

3.2.1.52). This enzyme has been shown to be universally

dis-tributedamongmosttypes oflivingorganisms and,in contrast

to the wellstudied mammalian, insect and fungal ␤-NAHases,

onlylimitedinformationisavailableonthecorrespondingplant

enzymes(Slamovaetal.,2010).

Threeputative␤-NAHasesencodedbytheArabidopsisthaliana

genomewereclonedandanalyzedwithrespecttotheirenzymatic

0176-1617/$–seefrontmatter © 2013 Elsevier GmbH. All rights reserved. http://dx.doi.org/10.1016/j.jplph.2013.03.009

(2)

properties(Liebmingeretal.,2011;Strasseretal.,2007).Sincethese

enzymeswerefoundtobelocatedindifferentsubcellular

compart-ments,theywerehypothesizedtobeinvolvedindifferentcellular

processes(Strasseretal.,2007).

Inhigherplants,␤-NAHasesareinvolved intheformationof

paucimannosidicN-glycans,whicharegeneratedinlatestagesof

theN-glycosylationpathway,bytheremovalofGlcNActerminal

residuesofglycoproteins.PaucimannosidicN-glycansconstitute

themajorityofglycanspresentonvacuolarglycoproteins,suchas

beanphaseolin(Sturmetal.,1987)andoccurinsmalleramountson

extracellularplantglycoproteins(Dirnbergeretal.,2001;Takahashi

etal.,1986)andcellwallboundproteins(Kotakeetal.,2001).The

presenceoflargeamountsoftruncatedpaucimannosidicN-glycans

inplantglycoproteinsindicatesthattheremovalofterminal

Glc-NAc residues from N-glycans by ␤-NAHase, which presumably

takes place in a post-Golgi compartment like vacuoles, plasma

membrane,cellwallorapoplast(Strasser,2009),haveanimportant

roleinplantmetabolism.

Inadditiontotheposttranslationaltrimmingof

oligosaccha-ridechainsofstorageproteinsandlectinsdepositedintheprotein

bodiesduringseeddevelopment(VitaleandChrispeels,1984),

␤-NAHasehasbeenimplicatedinother biologicalprocesses,such

asglycoproteinprocessingandturnoverduringseedgermination

(HarrisandChrispeels,1975;Poultonetal.,1985).Togetherwith

otherglycosydases,␤-NAHasewasproposedtobeinvolvedin

N-glycanmetabolismduringfruitripening(JagadeeshandPrabha,

2002;Jagadeeshetal.,2004;YongandGross,1994),softeningof

climactericand non-climacteric fruits(Meli etal., 2010; Ghosh

etal.,2011)andprocessingofN-glycanspresentinsecretory

glyco-proteinsofvacuolesandplasmamembrane(Strasseretal.,2007).

Withendochitinase,␤-NAHasewassuggestedtoactintheplant

defensesystemagainstfungalpathogens,bydegradingchitin,or

byinhibitingthesporegerminationandmycelialgrowth(Hodge

etal.,1995;Boletal.,1990;Broekaertetal.,1988;Schlumbaum etal.,1986).

However,theexactphysiologicalrolesof␤-NAHaseinplant

N-glycanmetabolism,aswellasthenaturalsubstratesusedbythe

enzyme,arenotcompletelyclarified.

Inordertocontributetothisarea,the␤-NAHasepurifiedfromL.

albusseedswasmolecularlyandbiochemicallycharacterized.

Fur-thermore,thisenzymeactivitywasscreenedduringL.albusseed

germinationandseedlinggrowthinthedifferentplantletorgans,

andthepurifiedenzymeincubatedwithoneofthemainstorage

proteinsfromL.albusseeds,␣-conglutin,toevaluatewhetherthis

enzymecanusethisstorageproteinassubstrate.

Materialsandmethods

Chemicals

N-Acetylgalactosamine (GalNAc), N-acetylglucosamine

(GlcNAc), N-acetylglucosamine–asparagine (GlcNAc–Asn),

␤-N-acetylhexosaminidase (␤-NAHase), 4-chloro-1-naphtol,

Concanavalin A (ConA), 3-(cyclohexylamino)-1-propanesulfonic

acid (CAPS), dichitobiose, p-dimethylaminobenzaldehyde,

dimethylsuberimidate(DMS), fucose(Fuc), galactosamine (Gal),

glucosamine(Glc),lactose(Lac),␣-d-mannopyranoside(␣-Man),

4-methylumbelliferyl-N-acetyl-␤-d-glucosamine, p-nitrophenyl

(pNP), p-nitrophenyl–␤-d-N-acetylgalactosamine (pNP–GalNAc),

p-nitrophenyl–␤-d-N-acetylglucosamine (pNP–GlcNAc),

p-nitrophenyl–␤-d-N,N-diacetylchitobiose (pNP–(GlcNAc)2),

p-nitrophenyl–␤-d-N,N,N-triacetylchitotriose (pNP–(GlcNAc)3),

trifluoromethanesulfonic acid (TFMSA) were purchased from

Sigma(St.Louis,MO).ConcanavalinASepharose,MonoSHR5/50,

Superose12HR10/300,MonoQHR5/50,Superose6HR10/300,

PD-10 and ampholytes (pI 3.5–10.0) were obtained from GE

HealthcareBio-SciencesAB(Uppsala,Sweden).Allotherchemicals

wereofreagentgradeorpuregrade.

Plantmaterial

Dryseedsofwhitelupin(LupinusalbusL.cv.Mizak)were

sur-facesterilizedwith1%(w/v)HgCl2and0.02%(w/v)Tween-20for

15minandextensivelywashedwithsterilizedbi-distilledwater.

Germinationwasinitiatedbyseedimmersioninrunningtapwater

for2days,andseedlinggrowthcontinuedinpotsfilledwitha

mix-tureofsandandpeat(1:1)for7moredays.Inthegerminatedseeds,

thecoatswereremovedandtheintactcotyledonsdissectedfrom

theembryosandaxesandthenstoredat−80◦Cuntilrequired.

Enzymepurification

Cotyledonswereground[13mL(gFW)−1]withanaqueous

solu-tion(10mMCaCl2 and10mMMgCl2)at pH8.0and stirredfor

4h.Afterpassingthroughtwolayersofcheesecloth,theextract

wascentrifugedat30,000×gfor1h.Theresultingpelletwasused

fortotalglobulinextractionandthesupernatantfortotalalbumin

extraction.

Forglobulinextraction,thepelletwassuspendedbystirringit

inasolutioncontaining10%(w/v)NaCl,10mMEDTAand10mM

EGTA[13mL(gFW)−1]for12h.Thesuspensionwascentrifugedfor

1hat30,000×gandtheresultingglobulinsolutionconcentrated

byammoniumsulphate(561gL−1)precipitation.Theprecipitated

globulins werecentrifuged at 30,000×g for 20minand

resus-pendedin20mM Tris–HClatpH7.5 andstored at−20◦Cuntil

furtheruse.

Thesupernatant,correspondingtothealbuminfraction, was

subjectedto30–70%(w/v)ammoniumsulphateprecipitation.The

pelletobtainedaftertheprecipitationwasresuspended [0.5mL

(gFW)−1]inabuffersolutionatpH5.0(50mMNaCH3CO2,1mM

CaCl2,1mMMgCl2,0.5MNaCland10mMGlcNAc).Allofthesteps

describedwerecarriedoutat4◦C(Santosetal.,2012;Francoetal.,

1997).

Thesupernatant collectedfromthealbuminfraction, aftera

centrifugationof13,800×gfor15min,wassubjectedtoaffinity

chromatographyonaConA-Sepharosecolumn(elutedwith0.5M

␣-Maninabuffersolutionof50mMNaCH3CO2atpH5.0)atroom

temperature.Fractionscontaining␤-NAHaseactivitywerepooled

andappliedtoaMonoScolumninaFPLCsystem(GEHealthcare,

Uppsala,Sweden)andelutedwithanincreasinggradientofNaCl

(upto1MNaClusing thesamebuffersolution).Fractions

con-taininghigher␤-NAHaseactivitywerepooledanddesaltedbygel

filtrationinaPD-10columnelutedwith50mMTris–HClatpH7.5.

Theresultingfractionsweresubjectedtoanionicchromatography

withaMonoQcolumnelutedwithincreasinggradientofNaCl(up

to1MNaClin50mMTris–HClatpH7.5).Unlessstatedotherwise,

allstepswerecarriedoutat10◦C.Throughoutthepurification

pro-cedure,theenzymeactivitywasmonitoredbythereleaseofpNP

frompNP–GlcNAcasdescribedbelow.Fractionshaving␤-NAHase

activitywerestoredat4◦Cuntilfurtheruse.

Proteindetermination

TheproteinconcentrationwasdeterminedaccordingtoLowry’s

method (Lowry et al., 1951) using bovine serum albumin as

standard. Electrophoresis

SDS–PAGEcarriedoutbythemethodofLaemmli(1970)was

(3)

Tstacking gels.Sampleswereredissolved inSDS–PAGE loading

buffercontaining80mMTris–HClpH6.8,2%(w/v)SDS,0.1M

␤-mercaptoethanol(␤-ME),15%(v/v)glycerol,0.01%(w/v)m-cresol

purple.Thegelsweresilverstained(Blumetal.,1987)orstained

withCALRED(Hongetal.,1993)andscannedusingtheImageQuant

v3.3densitometer(MolecularDynamics,USA).

Determinationofnativemolecularmass

A Superose 12 HR 10/300 column (Amersham Pharmacia

BiotechAB,Uppsala,Sweden)wasequilibratedwith0.1MTris–HCl

atpH7.5usingaflowrateof0.5mLmin−1tocalculatethenative

molecularmassofpurified␤-NAHase.Acalibrationcurvewas

per-formedwithproteinstandards.

Enzymaticassayforˇ-NAHaseactivity

Enzymereactionswereperformedusingadequatediluted

sam-ples (1–30␮L) with 70␮L of a 2mM pNP–GlcNAc in a buffer

solutionof50mMNaCH3CO2,pH5.0at25◦Cfor30minandthe

reactionwasterminatedbyadding200␮Lof1MNa2CO3(Chang

etal.,1998).Thereactionwasmonitoredcolorimetricallyby

mea-suringtheabsorbanceat405nmandoneunitofenzymeactivity

(U)wasdefinedastheamountofenzymethatliberated1␮molof

pNPperhourat25◦C.

Substratespecificity

The enzymatic activity of ␤-NAHase for hydrolysis of other

syntheticsubstrates,wasdeterminedaspreviouslydescribedfor

pNP–GlcNAc.InadditiontoexaminingpNP–GalNAc,theactivity

towardpNP–(GlcNAc)2andpNP–(GlcNAc)3wasalsoassessedusing

2mMofsubstrate.

Enzymekineticstudies

TheMichaelisconstant(Km)andvelocity(V)forpNP–GlcNAc

andpNP–GalNAchydrolysisweredeterminedatsubstrate

concen-trationsrangingfrom0.25to15mM.TheKmandVof␤-NAHasefor

bothsubstrateswerecalculatedusingtheMichaelis–Menten

equa-tionwithHyperv1.1w(CopyrightJSEasterby,Liverpool,UK)and

confirmedbyEZ-FitEnzymeKineticsv5.03(PerrellaScientificInc.,

Amherst,USA)software.

DeterminationofoptimumpHandstability

ForoptimumpHandstabilitystudies,purifiedfractionsof

␤-NAHasewereused.TheoptimumpHwasassayedfrom2to12,

usingBrittonuniversalbufferduringactivitymeasurement(Britton

andRobinson,1931).ToassesspHstabilitytheenzymewas

pre-incubatedinuniversalbufferatdifferentpHfrompH2.6to12.4,

at 25◦C for 30min and the remaining enzymatic activity was

determinedatpH5.0.Theenzymatic assayswereperformedas

previouslydescribed,usingbothsyntheticsubstratespNP–GlcNAc

andpNP–GalNAc.

Determinationofoptimumtemperatureandstability

For theoptimum temperature and stability studies, purified

fractionsof␤-NAHasewereused.Theoptimumtemperaturewas

assayedatpH5.0 from0 to100◦C. For theevaluation of

ther-malstability,theenzymesolutionswerepre-incubatedatdifferent

temperatures,from0to100◦C,for30minandtheremaining

enzy-maticactivitydeterminedat25◦Caspreviouslydescribed,using

bothsyntheticsubstratespNP–GlcNAcandpNP–GalNAc.

Effectsofpotentialeffectors

Theeffectsofsalts(AgNO3,CaCl2,CdCl2,CoCl2,CuSO4,FeCl3,

KI, MgCl2, MnSO4,Na2MoO4, NiCl2 and ZnCl2), chelating agent

(EDTAand EGTA)and carbohydrates(Fuc, Gal,Glc,Lac,␣-Man,

GalNAc and GlcNAc) wereevaluatedby measuringtheenzyme

activityafteranincubationof30mininabuffersolutionof50mM

Tris–HClatpH7.5containing0.1mM,1.0mMor10mMofeach

compound.Theenzymatic assayswereperformedaspreviously

describedusingpNP–GlcNAcassubstrate.Theenzymeactivitywas

measuredandexpressedastherelative activitypercentage

cal-culatedfromtheratioofactivityof␤-NAHasetreatedtothatof

␤-NAHaseuntreated.

ˇ-NAHasechemicaldeglycosylation

The purified ␤-NAHase was treated with TFMSA(Tams and

Welinder, 1995). Briefly, anhydrous TFMSA was added to the

lyophilizedproteinsampleand incubatedat−10◦Cfor5minin

aN2-richatmosphere.Thereactionwasneutralizedwithpyridine.

Thedeglycosylated␤-NAHasewasprecipitatedin4volumesofcold

acetonefor2hat−20◦C.Theenzymewasrecoveredafter

centrifu-gation(13,800×gat4◦Cfor10min)andthepelletresuspendedin

SDS–PAGEloadingbuffer.

A glycoprotein detection assay was performed after

chemi-caldeglycosylation.Forthatpurpose,proteinswereseparatedby

SDS–PAGE,electrotransferredontoPVDFmembrane(Amersham

PharmaciaBiotechAB,Uppsala,Sweden)for1hat70Vand4◦C

anddetectedasdescribedbyFayeandChrispeels(1985).Briefly,the

membranewasblockedinTTBS,asolutionofTBS(20mMTris–HCl,

0.5MNaClatpH7.5)containing0.1%(w/v)Tween-20,for1h.The

membranewasincubatedatroomtemperaturewithConA(30␮g

mL−1)inTTBS+Sbuffer(1mMMgC12,1mMCaCl2andTTBS)for

1hfollowedby4washing steps,10mineach,inTTBS+S.

Incu-bationwith50␮gmL−1horseradishperoxidaseinTTBS+Sfor1h

wasfollowedby4washingstepsinTTBS+Sand1inTBS+S.The

membranewasstainedbyincubationwith0.03%(v/v)H2O2and

0.5mgmL−14-chloro-1-naphtolforthecolordevelopingreaction

andphotographed.

Subunitcross-linkingreaction

Tostudythesubunitstructure,across-linkingmethod

accord-ing toDavies and Stark (1970)was used.The protein fraction,

previouslydesaltedinto100mMTris–HClatpH8.5, wasadded

toDMShydrochloridesolution(2:1)dissolvedinthesamebuffer.

Thereactionmixture,incubatedatroomtemperaturefor2h,was

precipitatedin4volumesofcoldacetonefor2hat−20◦C.After

centrifugation(13,800×gat4◦Cfor10min),thepelletwas

resus-pendedintheSDS–PAGE loadingbuffersolution.Sampleswere

analyzedbySDS–PAGEorsubjectedtogelfiltration

chromatog-raphyonaSepharose6columnwith100mMTris–HClatpH7.5

usingaflowrateof0.5mLmin−1.

DeterminationoftheN-terminalaminoacidsequence

The purified ␤-NAHase fractionobtainedfrom theSuperose

12 columnwasadsorbedonaProsorbcartridgepriortothe

N-terminal amino acid sequencing, which was performed on an

Applied Biosystems 477A sequencer (Applied Biosystems,

Fos-ter City,USA). Sequence data were compared withtheprotein

databasesusing theBLAST tool fromUniProtdatabase(October

(4)

Phylogeneticanalysis

A Multiple sequence alignment, using the ClustalW tool

fromGenomeNet(http://www.genome.jp/tools/clustalw)was

per-formedforalltheentriesfoundintheUniProtdatabase(October

2012,http://www.uniprot.org,Jainetal.,2009)forViridiplantae

N-acetylhexosaminidase(SupplementalTable1)andtheN-terminal

aminoacidsequenceobtainedfortheL.albus␤-NAHase(UniProt

databaseaccessionnumber:B3EWR5).

Supplementarymaterial related tothis article found, in the

onlineversion,athttp://dx.doi.org/10.1016/j.jplph.2013.03.009.

ˇ-NAHasetwo-dimensionalelectrophoresis

L.albus purified␤-NAHasefractionswereevaluatedby

two-dimensionalelectrophoresis(2-DE).Forisoelectricfocusing(IEF)

electrophoresis,theIPGphorsystem(AmershamBiosciences,

Upp-sala,Sweden)wasusedwithanon-linearpHgradientgelof3–10

(IPGstrips,GE,Uppsala,Sweden)loadedwith35␮gofprotein

resol-ubilizedin7Murea,2Mthiourea,0.4%(v/v)tritonX-100,4%(w/v)

CHAPS,60mMDTTand1%(v/v)IPGbuffer3–10NL(GE,Uppsala,

Sweden).TheIEFwascarriedoutat30Vfor12h,followedby200V

for1h,500Vfor1.5h,1000Vfor1.5h,and8000Vfor3h,at20◦C.

PriortoSDS–PAGE,theIPGstripswereequilibratedfor2×15minin

abuffersolutioncontaining50mMTris–HClpH8.8,6Murea,30%

(v/v)glyceroland2%(w/v)SDS.SixtymillimolarsDTTwereadded

tothefirstequilibrationstepand135mMiodoacetamidetothe

secondone.TheSDS–PAGEwasperformedonslabgels(Laemmli,

1970).Thegelsweresilverstained(Blumetal.,1987)andscanned

using theImageQuant v3.3 densitometer (Molecular Dynamics,

USA).Afterimaging,thegelswereanalyzedbyImageMaster2D

Platinumsoftwarev5.0(AmershamBiosciences,Uppsala,Sweden).

Purificationof˛-conglutin

L.albusseedglobulinswerepurifiedfrom2daysgerminating

cotyledonsas described above.Samplescontaining theisolated

globulinsweredesaltedat4◦ConaPD-10column(GE,Uppsala,

Sweden)previouslyequilibratedin0.05MTris–HClbufferatpH

7.5.AsampleofdesaltedglobulinswasloadedintoaMonoQHR5/5

column(GE,Uppsala,Sweden),previouslyequilibratedinthesame

buffer.Thebound␣-conglutinwaselutedwithacontinuous,

lin-eargradientbetween0.4and0.45MNaCl(Meloetal.,1994;Franco

etal.,1997).

Turbiditymeasurements

Theturbiditymeasurementsofthe␣-conglutinself-aggregation

weremadeaccordingtoanadaptedprocedurebasedontheone

describedbyOkuboetal.(1976).Briefly,thepurified␣-conglutin

fractionwas resolubilized in 0.05M Tris–HCl buffer, pH 6.5 in

a 1mL silica cuvette containing 0.5mg of proteinmL−1, 5mM

MgCl2 plus5mMCaCl2 and30ngofpurified␤-NAHase.

Turbid-itymeasurementsweremadespectrophotometricallyat590nm

inaBeckmanDU-70spectrophotometer(Beckman,Inc.,Huenden,

Germany)afterincubationperiodsof0,15and30minat25◦C.

N-Acetylglucosaminerelease

Fivemicrograms␣-conglutinwereincubatedwith30ngof

␤-NAHasepurifiedfractionfor1hat25◦C.TheGlcNAcreleasedwas

determinedbythemodifiedElson–Morganmethod(Reissigetal.,

1955).ThespecificityofthemethodwastestedforGlcNAc,GalNAc,

(Glc)2NAcandGlcNAc-Asn.

Statisticalanalysis

Datawerecomparedbyone-wayanalysisofvariance(ANOVA)

followedbytheFisherLSDmethodwhensignificantdifferences

werefound.Independentbiologicaltriplicateswereanalyzed.

Results

Glycosidaseactivity

TheglycosidaseactivitypresentinL.albuswasinvestigatedin

thecotyledons ofgerminatingseeds.For thatpurpose,thetotal

proteinextractofthecotyledonswasassayedwiththree

differ-entsubstrates:pNP–GlcNAc,pNP–␣-ManandpNP–Glcp.Because

pNP–GlcNAcwastheonlysubstrateactivelyhydrolyzed,the

subse-quentstudiesonglycosidaseactivitywerefocusedonthedetection

of␤-NAHase.

ˇ-NAHasepurification

ThetotalproteinextractofL.albusseedcotyledonswasfurther

separatedintoglobulinandalbuminfractions.Because␤-NAHase

activitywasmainlydetectedinalbumins,thisproteinfractionwas

usedforfurtherenzymepurification.Afterammoniumsulphate

precipitation,theproteinfractionobtainedwassubjectedto

affin-itychromatographywithConAsepharose(Fig.1a)andtheactivity

ofthecollectedfractionmonitoredwiththepNP–GlcNAc.The

frac-tionswiththehigherenzymaticactivityweregatheredandapplied

inaMonoSHR5/50columnforcationexchangechromatography

forfurtherpurification(Fig.1b).Again,thefractionsshowingthe

highestglycosidaseactivitywerecollectedandappliedinaMono

QHR5/50columnforanionexchangechromatographytoobtaina

sharppeakofenzymeactivity(Fig.1c).

Thisenzymeactivitywasstablethroughoutallthepurification

stepsandwasfoundtobestableafterlyophilizationorifkeptin

solutioneitherat4◦Corat−20◦Cforseveraldays.Theresulting

purificationwas14.6-fold,witha specificactivityof153Umg−1

proteinandarecoveryyieldof1.3%(Table1).

ASDS–PAGEforthedifferentfractionscollected(albumin

frac-tion,fractionprecipitatedwith30–70%of ammoniumsulphate,

ConA-Sepharosecolumn,MonoScolumnandMonoQcolumn)was

performed(Fig.2).

MolecularcharacterizationofL.albusˇ-NAHase

PurificationbygelfiltrationchromatographywithSuperose12

(Fig. 3a)showeda peak withmolecularmass ofapproximately

153kDaandtheSDS–PAGEofthisfraction(Fig.3b)showedtwo

polypeptideswithapproximatemolecularmassesof64and61kDa.

ThesameSDS–PAGEprofilefortheenzymewasfoundunder

reduc-ing (with ␤-ME) and non-reducing (without ␤-ME) conditions

(datanotshown).EnzymefractionstreatedwithDMS,acovalent

cross-linkingagenttoprotein–proteininteractions,showedno

dif-ferencestotheuntreatedfractionswhenanalyzedbygelfiltration

chromatography(Superose6)orSDS–PAGE(datanotshown).

A2-DEapproachwascarriedoutwiththepurifiedfractionof

theenzymeforfurthercharacterization.TenisoenzymeswithpI’s

between5.3and5.6weredetected(Fig.4),correspondingfiveof

them(a1–5)tothe 64kDapolypeptides and fiveother(b1–5)to

61kDapolypeptides.

Thedeglycosylationof␤-NAHasewasperformedwithTFMSA

and theabsenceof glycidicresidueswas confirmedin a

mem-brane by the ConA/Peroxidase method (Fig. 5a, lane 2). Both

electrophoretic patterns, from native ␤-NAHase (Fig. 5b, lane

1) and deglycosylated enzyme (Fig. 5b, lanes 2 and 3) were

(5)

Table1

Purificationof␤-NAHasefromthecotyledonsofLupinusalbusseeds.

Step Totalactivity(U) Specificactivity(Umg−1) Purification(-fold) Recovery(%)

Totalalbumins 60,800 10.5 1.0 100

Ammoniumsulphateprecipitation(30–70%) 18,200 6.0 0.57 30

ConA-Sepharose 1380 36 3.4 2.3

MonoSHR5/50 790 52 5.0 1.3

MonoQHR5/50 810 153 14.6 1.3

Fig.1. Chromatographicseparationof␤-NAHasefromthecotyledonsofLupinus albusseeds.Chromatographicprofileoftheammoniumsulphatefractionpurified by(a)aConA–Sepharosecolumn.Thefractionsselectedfromtheprevious chro-matographyashavingthehighestenzymeactivitywerefurtherpurifiedby(b) cationexchangechromatography(MonoSHR5/50)and(c)anionexchange chro-matography(MonoQHR5/50).Theblacklinecorrespondstotheabsorptionprofile at280nm,thegreylinetotheNaClgradient,andthedashedlinetothe␤-NAHase activitydetectedforpNP–GlcNAc.Thefractionsselectedforthesubsequentanalysis aremarked( ).

The N-terminal amino acidsequence for L. albus ␤-NAHase

obtained was: VDSEDLI(EN)AFKIYVEDDNEHLQGSVD (UniProt

databaseaccession number:B3EWR5).No significanthomology

foroursequence withthoseannotatedinUniProtdatabasewas

foundwhenasimilarproteinsequencesearch(BLAST)wascarried

out. Thus, a multiplesequence alignment with the94 insilico

translationproteinentriesannotatedinUniProtdataset

(Supple-mentalTable1)wasperformedwithClustalWtool(Supplemental

Fig.1),revealingthatL.albus␤-NAHaseisembeddedinacluster

comprising Ricinus communis(B9T146), Zea mays (B6TP85) and

Vitisvinifera(F6GYZ3andF6H7W3).

Supplementarymaterial related tothis article found, in the

onlineversion,athttp://dx.doi.org/10.1016/j.jplph.2013.03.009.

Fig.2.ProteinelectrophoreticprofilebySDS–PAGEofthedifferentproteinpurified fractionsofLupinusalbusseedcotyledons.Thegellanesrepresent(1,7) molecu-larweightmarkers,(2)thetotalalbuminfraction,(3)thefractionprecipitatedwith 30–70%ammoniumsulphateandthefractionselutedfrom(4)ConA–Sepharose col-umn,(5)cationexchangechromatography(MonoSHR5/50)and(6)anionexchange chromatography(MonoQHR5/50).Thegelwasloadedwith20␮gofproteinper laneandwasstainedwithCALRED.

BiochemicalcharacterizationoftheL.albusˇ-NAHase

Several biochemical parameters for L. albus ␤-NAHase were

characterized:apparentMichaelisconstant(Km),velocity(V),

opti-mumpH,pHstability,optimumtemperature,temperaturestability

andeffectorsinfluenceonenzymaticactivity.

The enzyme was inactive toward pNP–(GlcNAc)2 and

pNP–(GlcNAc)3, evenwhen usingdifferentconcentrations (data

notshown)butwasabletoreleasepNPfrombothpNP–GlcNAc

andpNP–GalNAc(Table2).TheKmandVvaluesforpNP–GlcNAc

andpNP–GalNAcaresummarizedin Table2.L.albus␤-NAHase

showedanoptimumpHof5.0with50%oftheactivityatpH3.0

and6.5towardpNP–GlcNAcandanoptimumpHof4.0with50%

of theactivityat pH2.5 and 5.5 toward pNP–GalNAc(Fig.6a).

␤-NAHase kept90% or more of themaximum enzyme activity

frompH6.5to8.0toward pNP–GlcNAcandfrompH6.0to7.5

towardpNP–GalNAc(Fig.6b).

L. albus ␤-NAHase optimum temperature profiles toward

pNP–GlcNAcandpNP–GalNAcwerequitesimilar,withtheenzyme

optimum temperature of 50◦C toward pNP–GlcNAc and 60◦C

toward pNP–GalNAc, with the enzyme activity higher than

50% between 35◦C and 70◦C. Temperature stability toward

Table2

Kinetic parameters of the Lupinus albus ␤-NAHase toward 2mM p-nitrophenyl–␤-d-N-acetylglucosamine (pNP–GlcNAc) and p-nitrophenyl–␤-d-N-acetylgalactosamine(pNP–GalNAc).

Substrate Km(mM) V(␮Mmin−1)

pNP–GalNAc 2.94±1.16 2.73±0.42

(6)

Fig.3.Chromatographicpurificationof␤-NAHaseresultingfromanionexchange chromatography(MonoQHR5/50)andSDS–PAGEelectrophoreticprofileofthe purifiedfraction.Chromatographicprofileofthefractionpurifiedby(a)Superose 12usingasmolecularstandards(a)ferritin(440kDa),(b)catalase(232kDa),(c) aldolase(158kDa),(d)alcoholdehydrogenase(150kDa),(e)malatedehydrogenase (73kDa),(f)trypsin(23.8kDa)and(g)cytochromec(12.4kDa),and(b)theresulting SDS–PAGEprofile(lane2)loadedwith5␮gofprotein;molecularweightmarkers areinlanes1and3andthegelwassilverstained.

Fig.4. Two-dimensionalelectrophoreticprofileforthe64and61kDaisoenzymes ofL.albus␤-NAHase.Thegelcorrespondsto35␮gofproteinloadedintheIEFand theSDS–PAGEwassilverstained.

pNP–GlcNAcandpNP–GalNAcassays revealedthat␤-NAHaseis

stableunder30◦C.

TheactivityprofileofL.albus␤-NAHaseinthepresenceof

var-iousconcentrations(0.1,1.0and10mM)ofpotentialeffectorsand

chelatingagentswasstudiedbymeasuringtheenzymeactivity

towardpNP–GlcNAc (Table 3).No effects wereobserved inthe

enzymeactivityduetothepresenceof0.1mMofCoCl2,MnSO4

andNa2MoO4andhigherconcentrationsofNa2MoO4(10mM).The

othersaltstestedreducedtheenzymeactivity,whichweremore

dramaticwithincreasedsaltconcentrations(Table3).Ofthose,the

onlysaltthatinducedadecreaseofmorethan50%oftheenzyme

activitywasAgNO3at0.1mM.Withincreasingconcentrationsof

thosecations(10mM),areductionofmorethan50%oftheenzyme

Fig.5. PurifiedL.albus␤-NAHaseelectrophoreticprofileafterchemical deglycosyla-tion.Detectionof(a)theglycidicresiduesinmembrane,usingtheConA/peroxidase method,innative␤-NAHase(lane1),deglycosilated␤-NAHase(lane2)and oval-bumin(lane3);(b)SDS–PAGEofnative␤-NAHase(lane1)anddeglycosilated ␤-NAHase,1and5minafterthechemicalreaction,respectively(lanes2and3). Fortheglycidicdetectioninthemembrane5␮gofproteinperlanewereusedand forthegel2.5␮gofproteinperlane;thegelwassilverstained.

Rela

ti

ve

acti

v

it

y (

%)

120

100

80

60

40

20

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

pH

Rela

ti

ve

acti

v

it

y (

%)

120

100

80

60

40

20

0

0

1

2

3

4

5

6

7

8

9

10

11 12

13

pH

a

b

Fig.6. OptimumpHandpHstabilityofLupinusalbus␤-NAHaseusingpNP–GlcNAc and pNP–GalNAc as substrates: (a) optimal pH and (b) pH stability for p-nitrophenyl–␤-d-N-acetylglucosamine(pNP–GlcNAc,)and p-nitrophenyl–␤-d-N-acetylgalactosamine(pNP–GalNAc, ).Verticalbarsrepresent±SD.

activitywasalsoobservedforCoCl2,CuSO4andFeCl3withahuge

reductioninenzymeactivityobservedforCdCl2andZnCl2.By

con-trast,MgCl2 wastheonly saltthat produceda slightactivation

of␤-NAHasewhenpresentinlowconcentrations(0.1mM).

How-ever,increasingconcentrationsofthiscompound(10mM)slightly

(7)

Table3

EffectontheactivityofLupinusalbus␤-NAHasetoward p-nitrophenyl–␤-d-N-acetylglucosamine(pNP–GlcNAc)inthepresenceofdifferentsaltsandsugars. Significantdifferentvaluesarelativelytothecontrolaremarkedas***forP<0.001,

**forP<0.01and*forP<0.05. Relativeactivity(%) 0.1mM 1.0mM 10mM Cations AgNO3 48.8±2.5*** 46.31±0.80*** 38.77±0.79*** CaCl2 90.7±2.0** 86.3±4.4*** 77.58±0.54*** CdCl2 82.8±2.3*** 71.3±2.7*** 10.20±0.32*** CoCl2 98.9±4.4 81.8±4.7*** 42.6±1.4*** CuSO4 82.8±1.9*** 75.6±2.8*** 38.4±2.0*** FeCl3 93.8±3.3 77.5±4.5*** 17.5±1.3*** KI 76.33±0.32*** 82.0±2.4*** 82.7±1.5*** MgCl2 104.9±1.4* 99.9±1.8 86.97±0.47*** MnSO4 96.7±2.7 87.6±1.9*** 82.3±2.4*** Na2MoO4 98.4±2.4 101.1±1.2 100.1±2.3 NiCl2 84.10±0.32*** 75.3±2.4*** 62.6±1.6*** ZnCl2 79.1±5.3*** 52.9±1.8*** 3.22±0.12*** Sugars Fuc 85.4±6.3** 83.96±0.93*** 91.6±2.3* Gal 97.2±1.7 98.6±2.7 93.4±2.3 Glc 84.1±2.4** 87.2±4.5* 95.0±8.3 Lac 81.2±3.5*** 82.1±2.9*** 77.8±2.1*** ␣-Man 81.5±5.9*** 82.6±4.7*** 87.6±2.4** GalNAc 101.4±3.1 96.9±3.4 81.78±0.78*** GlcNAc 103.8±4.0 106.78±0.74 99.2±4.1

aDatawerecomparedbyone-wayanalysisofvariancefollowedbyFisherLSD

methodwhensignificantdifferenceswerefound.

Theinfluenceofseveralcarbohydrates(Fuc,Gal,Glc, Lac,

␣-Man, GalNAcand GlcNAc) wasalsoevaluatedin theactivityof

theenzyme.Thepresenceofdifferentsugarconcentrations

pro-ducednoeffect,asobservedforGlcNAc,GalNAcandGal,orsmall

decreasesinenzymeactivity,withactivityreductionsnomorethan

25%.

Potentialphysiologicalsubstratesforˇ-NAHase

Inanattempttofurtherelucidatethephysiologicalrole ofL.

albus␤-NAHase,theprogression ofits enzymeactivityin early

plant development was examined. No enzymatic activity was

detectedinL.albusleaves.Inthehypocotyls, ␤-NAHaseactivity

ranged from 0.3 to 1.2Umg−1 DW 5–9 days after seed

imbi-bition and in the roots from 0.2 to 0.4Umg−1 DW 3–9 days

afterseed imbibition. In thecotyledons, theenzymatic activity

was foundto ranges from 0.5Umg−1 DW in the dry seedsto

3.5Umg−1DW9daysafterseedimbibition.Bygatheringthe

pre-viouslyknownSDS–PAGE profileof globulindegradation (0–11

daysafterseedimbibiton,Ferreiraetal.,1995)withtheobserved

␤-NAHase activityprofilein the cotyledons, anincrease in the

enzymeactivitywasdetected5daysafterseedimbibition(Fig.7a).

Thisincreasewascoincidentwiththeperiodinwhichthe

degra-dation of these reserve proteinsis more accentuated (Fig.7b).

Thisobservation leadsus to investigatethe possibility of

stor-age proteinsbeing ␤-NAHase substrates.For that purpose, the

well-describedaggregation–disaggregationbehaviorofglobulins

(Ferreiraet al.,1999,2003a),proposedtoparticipateinstorage

proteinmobilization(Santosetal.,2012),wasusedtoevaluate

␤-NAHaseinterference.Inthepresenceofincreasingconcentrations

ofCaCl2andMgCl2globulinsareabletoself-aggregate.However,

thisbehaviorcanbereversedwithevenhigherCaCl2 andMgCl2

concentrations.Thisaggregation–disaggregationbehavior,which

isdescribedtobeelectrostaticinnature,isdependentuponthe

storageproteinexternalenvironment,meaningthatalterationsin

thisproteinpropertycanresultinalteredglobulinself-aggregation.

␣-Conglutin,oneofthemajor,glycosylatedL.albusseed

glob-ulins (Ferreira et al., 2003b) was tested for this behavior. By

Fig.7. Evaluationof␤-NAHaseactivityandglobulinprofileduringLupinusalbus development.Profileof(a)␤-NAHaseactivitydetectedinthecotyledonsofL.albus duringseedgerminationandseedlinggrowth;thedaysthataremarkedcorrespond tothetimeperiodwherethe(b)globulinelectrophoreticprofilewasevaluated whicharefromday5untilday8afterseedimbibitionloadedwith15␮gofprotein perlane,molecularweightmarkersareinlane5;thegelwassilverstained.

promoting␣-conglutin self-aggregationprior totheadditionof

␤-NAHase,noalterationintheglobulinaggregateswasobserved

(Fig.8).However,analterationin␣-conglutinself-aggregationwas

observedwhentheglobulinwasincubatedwith␤-NAHasepriorto

thepromotionofaggregation(Fig.8).

The ability of ␤-NAHase to excise the exogenous sugar

residues fromindividualized ␣-conglutin wasevaluated by the

Morgan–Elsonmethod,whichresultedina releaseofGlcNAcof

3.8±1.8␮gGlcNAch−1.ThismethodologywastestedforGlcNAc,

GalNAc,(Glc)2NAcandGlcNAc-Asn,andwasspecificforGlcNAc

andGalNAc.

Discussion

A␤-NAHaseactivitywasdetectedinbothdryseedsand

germi-natingseedsofL.albuscotyledonsasthemainglycosidaseactivity.

TheSDS–PAGEofthesuccessivepurifiedfractionsallowedusto

visualizethesimplificationoftheproteinpatternsthatculminated

in two polypeptides by the end of this procedure (Fig. 2).The

purifiedenzymewasthenmolecularlyandbiochemically

charac-terized.

MolecularcharacterizationofL.albusˇ-NAHase

Themolecularmassofthenativeenzymewasestimatedbygel

(8)

Fig. 8.Monitoring of ␣-conglutin self-aggregation, when in the presence of ␤-NAHase,byturbiditymeasurements.Themeasurementsweremadefor com-binationsof5␮g␣-conglutin,cations(5mMofCaCl2plus5mMMgCl2)and30ng ␤-NAHase.Verticalbarsrepresent±SDandletterssignificantdifferentvaluesfor P<0.001.

Moreover,twopolypeptideswithapproximatemolecularmasses

of64and61kDaweredetectedbySDS–PAGEforthesamefraction

(Fig. 3b).These observationssuggest theexistence of two

sub-unitsin thestructureof thenativeenzyme.However,thesame

SDS–PAGE profile was obtained for the enzyme treated under

reducingandnon-reducingconditionsaswellaswithand

with-outDMS.Therefore,wemayconcludethatweareinthepresence

oftwomonomericisoenzymes.

There are reports for molecular masses of plant ␤-NAHase

thatresultedindifferentdeterminationswhenusingdiverse

tech-niques.Ithasbeenreportedthat␤-NAHasepurifiedfromLupinus

luteusseedshasamolecularmassof69kDawhendeterminedby

SDS–PAGE,62.5kDa byBio-Gel P-60 filtrationand anapparent

molecularweightof15.3kDabyaSephadexG-75filtration(Pocsi

etal.,1990).Thispatternmayarisefromthedescribed

glycopro-teinnatureoftheenzyme.Regardless,there isabroadrangeof

molecularmassesfor␤-NAHase,rangingfrom40kDainL.luteus

(McFarlaneetal.,1984)to236kDainMalusdomestica(Yongand Gross,1994).

Similarly, there is a wide range of subunit compositions

describedfor␤-NAHase,asforinstance,monomersforL.luteus

seeds(McFarlaneet al., 1984), heterodimers for Pisum sativum

seeds(HarleyandBeevers,1987),heterotrimersforBrassica

Oler-acealeaves(Changetal.,1998),homopentamersorhomohexamers

forTrigonellafoenum-graecumseeds(Bouqueletand Spik,1978)

andhomooctamersforM.domestica(YongandGross,1994).There

arealsoseveralreportsfor␤-NAHaseisoenzymes,namelytwofor

Vignaradiataseeds(Prakash,1984),threeforC.annumandL.luteus

seeds(McFarlaneetal.,1984;JagadeeshandPrabha,2002),fivefor

Triticumaestivumleaves(BarberandRide,1989)andsevenforO.

sativaseeds(Jinetal.,2002).

FurthercharacterizationoftheisoenzymesofL.albus␤-NAHase

wasperformed by2-DE (Fig.4).Thefive isoenzymes withpI’s

between5.3and5.6correspondingtothe64kDa(a1–5)andfive

otherforthe61kDa(b1–5)polypeptidesmayarise froma

num-berofdifferentposttranslationalmodifications.ThepI’sdescribed

forotherplant␤-NAHasesareintheacidicrangeas5.13–5.36for

Triticumaestivum(Barberand Ride,1989), 5.5forCaricapapaya

(Chenetal.,2011)and6forZeamays(Oikawaetal.,2003).

␤-NAHaseasaglycosylatedproteincanbeardifferentglycosyl

residuesattachedtotheproteincore.Sincetheelectrophoretic

pro-teinpatternobtainedforthedeglycosylated␤-NAHaseissimilar

forboth64and61kDaisoenzymes(Fig.5),the3kDadifference

detectedbetweenthesetwoisoformssuggestsdistinctdegreesof

glycosylationofthesameproteincore.Withrespecttotheprotein,

theN-terminalsequenceforL.albus␤-NAHasewasobtained

(VDS-EDLI(EN)AFKIYVEDDNEHLQGSVD),andcomparedwiththeother

plant␤-NAHases.ThisisthefirstN-terminalsequencereportedfor

aplant␤-NAHase(UniProtdatabaseaccessionnumber:B3EWR5).

Fromthe94insilicoproteinsequencesannotatedintheUniProt

databaseforviridiplantaeN-acetylhexosaminidase(Supplemental

Table1),noneresultedfromadirectproteinsequence.Allofthem

werepredictedproteins,ofwhich22werefoundattranscriptional

level.ThismayjustifytheabsenceofhomologyfortheN-terminal

sequenceofL.albus␤-NAHasewiththeproteinsannotatedinthis

database.ThemultiplesequencealignmentrevealedthatL.albus

␤-NAHase(SupplementalFig.1),isembeddedina cluster

com-prisingenzymesofimportantcropplants,R.communis(B9T146),Z.

mays(B6TP85)andV.vinifera(F6GYZ3andF6H7W3).TheL.albus

N-terminalsequencealignsafewaminoacidsafterthebeginning

ofseveralinsilicotranslatedproteinsequences,suggesting

post-translationprocessinguntilthematureprotein.Thisobservationis

furtherreinforcedbythefactthattheN-terminalaminoacidofthis

enzymeisnotmethionine.

BiochemicalcharacterizationoftheL.albusˇ-NAHase

L.albus␤-NAHaseactivitytowardpNP–GlcNAcandpNP–GalNAc

andtheinabilitytoremovedimmerand trimmerresiduesfrom

pNP–(GalNAc)2 and pNP–(GalNAc)3 is consistent with an

exo-glycosidase activity for this enzyme. Many other crop plant

␤-NAHases,likethoseofC.annuum(Ghoshetal.,2011),O.sativa

(Jinetal.,2002),R.communis(SuzanneandHarry,1985)andT.

foenum-graecum(Bouqueletand Spik,1978), arereportedtobe

abletohydrolyzedbothpNP–GlcNAcandpNP–GalNAc.Forthe

␤-NAHaseofT.foenum-graecumalowactivitytowardpNP–(GlcNAc)2

wasreportedwhencomparedtopNP–GlcNAc(BouqueletandSpik,

1978),whereasforO.sativa,nohydrolysisofchitinwasobserved

(Jinetal.,2002).

TheKmvalueobtainedforL.albus␤-NAHasewithpNP–GlcNAc

isintherangereportedforthissubstrate(JagadeeshandPrabha,

2002;BouqueletandSpik,1978)whereasforpNP–GalNAcisabove (BouqueletandSpik,1978;HarleyandBeevers,1987).Thefactthat

KmvaluesweresimilarforbothsubstrateswhiletheVvaluefor

pNP–GlcNAcwasoversixtimeslargerthanthatforpNP–GalNAc

reflectsahighercatalyticefficiencytowardpNP–GlcNAc.

The optimum pH and pH stability, as well as the optimum

temperatureand temperaturestabilityprofilesobservedforthis

enzymeareanalogoustothosedescribedintheliteratureforother

cropplant␤-NAHases(JagadeeshandPrabha,2002;Yi-Chingetal.,

2004;BouqueletandSpik,1978;Gers-Barlagetal.,1988;Jinetal., 2002;Changetal.,1998).

Thestability of ␤-NAHaseto awide range of pHs and

tem-peraturescanbeattributedtotheenzymeglycosylationcontent,

sinceN-glycansaredescribedtohaveanimportantcontributionfor

enzymefolding(Shental-BechorandLevy,2008)andthusstability.

Generally, inhibitory effects of AgNO3, CaCl2, CdCl2, CoCl2,

CuSO4,FeCl3,KI,MgCl2,MnSO4,Na2MoO4,NiCl2 andZnCl2 onL.

albus␤-NAHaseareinagreementwiththose reportedforother

plant␤-NAHases,suggestingsimilarreactionmechanisms

proba-blyduetocommonactivesitesoftheenzymes(LiandLi,1970;

Chenetal.,2011;Oikawaetal.,2003;Orlacchioetal.,1985;Yi,

1981).Inhibitoryeffects ofAgNO3,CdCl2 and CuSO4 are

indica-tivethatsulfhydrylgroupscanbeimportantfortheactivityand/or

conformationalstabilityofL.albus␤-NAHaseactivesite,similarto

whatwaspreviouslyreportedforP.sativum␤-NAHase,wherethe

sulfhydrylgroupsweredescribedtoparticipateintheenzymatic

(9)

Thereareseveralreportsofenzymaticactivationinthe

pres-enceof MgCl2 as for C. annuum (Jagadeesh and Prabha, 2002)

andP.sativum(HarleyandBeevers,1987).Despitethefactthat

MgCl2 canactasanenzymaticactivator,theactivityofL.albus

␤-NAHaseisnotdependentonthiscation,sincethepresenceof

chelatingagents(EDTAandEGTA)doesnotaffectenzyme

activ-ity.

Severaleffectsaredescribedforsugars’influenceinplants

␤-NAHasesactivity that goesfrom inhibition to activation.These

generallyonlyslightlyaffecttheenzymeactivity(Gers-Barlagetal.,

1988;JagadeeshandPrabha,2002),similartoobservationsforL.

albus␤-NAHaseinthepresenceofFuc,Gal,Glc,Lac,␣-Man,GalNAc

andGlcNAc.

Potentialphysiologicalsubstratesforˇ-NAHase

The prevailing and higher enzymatic activity found in the

cotyledons during seed germination and seedling growth

sug-geststhatthemainphysiologicalactionofthisenzymeoccursin

theseorgans at thesestages of development.These are

impor-tantreservoir organs thatcontainessential storageproteinsfor

seed germination and seedling growth. A relatively large

frac-tionofthesereservesinL.albusiscomposedofglobulins,which

aredescribed asglycosilated proteins(Durantietal., 1981).An

increasein␤-NAHaseactivitycoincidentwithglobulin

degrada-tion(Fig.7)suggeststhat theseeventscouldbephysiologically

relatedduringseedgerminationandseedlinggrowth.Inorderto

testthishypothesisstudieswereconductedtoevaluatethe

possi-bilityof␤-NAHaseusingglobulinsasnaturalsubstrates.Ourinvitro

studyrevealedthat␤-NAHasewasabletodisturbtheaggregation

of␣-conglutin,aprocessassociatedtostorageprotein

mobiliza-tion(Fig.8)(Santosetal.,2012).Moreover,␤-NAHasewasable

toliberateGlcNAcfrom␣-conglutinwhennotintheaggregated

form.

Together, these observations indicate the activity of this

enzyme as hexosaminidase toward this potential natural

sub-strate.

Conclusions

Duringseedgermination,storageproteinshavetobemobilized

tonourishtheembryo.Thepartialproteolysisofstorageproteins

byproteinaseAwasreportedasanimportantregulatorypointfor

storageproteinmobilization.Nevertheless,severalgapsremainto

beelucidatedinthisprocess(Müntzetal.,2001).The(i)

detec-tionof␤-NAHaseactivityinthedryseeds,togetherwiththe(ii)

highestactivitydetectedintheplantletcotyledonsandwiththe

(iii)increasingenzymeactivityintheseorgans beingcoincident

withglobulindegradation,in additiontothe(iv)invitroability

of␤-NAHasetoexciseexogenoussugarmoietiesfrom

individual-ized␣-conglutin,stronglyindicatethat␤-NAHaseisinvolvedin

theremovalofGlcNAcofaL.albusstorageproteinduringseedling

growth.

The presence of ␤-NAHase in dry seeds, together with the

invitroinabilityofthisenzymetoassess␣-conglutinaggregates

maysuggestthat␤-NAHaseand storageproteinaggregatescan

betiledwithoutanyeffectiveglobulin–enzymeinteraction.Upon

seedgermination,globulindisaggregationmayleadtotherelease

ofindividualizedconglutins(Santosetal.,2012),whichinturncan

beusedasapotentialsubstrateof␤-NAHasefortheremovalof

Glc-NAcresidues.Thisisthefirstreportthathasputativelyidentified

aphysiologicalsubstratefor␤-NAHase.However,furtherstudies

shouldbeperformedtogaindeeperinsightinto␤-NAHase

involve-mentinthemobilizationanddegradationoflegumeseedstorage

proteins,forinstanceraisingpolyclonalantibodiesfortheenzyme

andconglutinsforsubcellularco-localization.Moreover,transcript

expressionduringtheseprocessescouldbefollowedbyRT-PCRby

usingdegeneratedoligonucleotidesdesignedbasedontheprotein

sequenceobtained.

Acknowledgements

ThisworkwassupportedfinanciallybytheFundacãopara a

Ciência ea Tecnologiathroughgrant PEst-OE/EQB/LA0004/2011

andalsobyfinancialsupportofC.N.S.(SFRH/BPD/84618/2012)as

wellasM.A.(SFRH/BPD/76646/2011).

References

AebiM,BernasconiR,ClercS,MolinariM.N-glycanstructures:recognitionand processingintheER.TrendsBiochemSci2009;35:74–82.

BarberMS,RideJP.Purificationandpropertiesofawheatleaf N-acetyl-beta-d-hexosaminidase.PlantSci1989;60:163–72.

BernardM.TheroleofGlcNAcinformationandfunctionofextracellularmatrices. CompBiochemPhysiolBBiochemMolBiol2008;149:215–26.

BlumH,BeierH,GrossHJ.Improvedsilverstainingofplantproteins,RNAandDNA inpolyacrylamidegels.Electrophoresis1987;8:93–9.

BolJF,LinthorstHJM,CornelissenBJC.Plantpathogenesis-relatedproteinsinduced byvirus-infection.AnnRevPhytopathol1990;28:113–38.

Bouquelet S,Spik G. Properties of four molecular forms of N-acetyl-beta-d-hexosaminidase isolated from germinating seeds of fenugreek (Trigonella foenumgraecum).EurJBiochem1978;84:551–9.

BrittonH,RobinsonR.Universalbuffersolutionsandthedissociationconstantof veronal.JChemSoc1931;CXCVIII:1456–62.

BroekaertWF,VanparijsJ,AllenAK,PeumansWJ.Comparisonofsomemolecular, enzymaticandantifungalpropertiesofchitinasesfromthorn-apple,tobaccoand wheat.PhysiolMolPlantPathol1988;33:319–31.

Chang CT, Young FP, Chang MH, Sung HY. Purification and properties of beta-N-acetylhexosaminidasefromcabbage.BiochemMolBiolInt1998;45: 371–80.

Chen L-C, Chung Y-C,Chang Y-M, Chang C-T. Characterisation of a beta-N-acetylhexosaminidasefromacommercialpapayalatexpreparation.FoodChem 2011;124:1404–10.

DaviesGE,StarkGR.Useofdimethylsuberimidate,across-linking reagent,in studyingthe subunitstructure ofoligomericproteins. Proc Natl AcadSci 1970;66:651–6.

DirnbergerD,SteinkellnerH,AbdennebiL,RemyJ-J,vandeWielD.Secretionof biologicallyactiveglycoformsofbovinefolliclestimulatinghormoneinplants. EurJBiochem2001;268:4570–9.

DurantiM,RestaniP,PoniatowskaM,CerlettiP.TheseedglobulinsofLupinusalbus. Phytochemistry1981;20:2071–5.

FayeL,ChrispeelsMJ.CharacterizationofN-linkedoligosaccharidesbyaffinoblotting withconcanavalinA-peroxidaseandtreatmentoftheblotswithglycosidases. AnalBiochem1985;149:218–24.

FerreiraRB,MeloTS,TeixeiraAN.Catabolismoftheseedstorageproteinsfrom Lupinusalbus:fateofglobulinsduringgerminationandseedlinggrowth.AustJ PlantPhysiol1995;22:373–81.

FerreiraRB,FrancoE,TeixeiraAR.Calcium-andmagnesium-dependentaggregation oflegumeseedstorageproteins.JAgricFoodChem1999;47:3009–15. FerreiraRB,FreitasRL,TeixeiraAR.Self-aggregationoflegumeseedstorageproteins

insidetheproteinstoragevacuolesiselectrostaticinnature,ratherthan lectin-mediated.FEBSLett2003a;534:106–10.

FerreiraRB,FreitasRL,TeixeiraAR.ThestructureofLupinusseedstorageproteins. Recentdevelopments.CurrTopPlantBiol2003b;4:139–50.

FrancoE,FerreiraRB,TeixeiraAR.Utilizationofanimprovedmethodologytoisolate Lupinusalbusconglutinsinthestudyoftheirsedimentationcoefficients.JAgric FoodChem1997;45:3908–13.

Gers-BarlagH,BartzI,RudigerH.beta-N-Acetylhexosaminidasefromsoybean. Phy-tochemistry1988;27:3739–41.

Ghosh S, Meli VS, Kumar A, Thakur A, Chakraborty N, Chakraborty S, etal. TheN-glycanprocessingenzymesalpha-mannosidaseand beta-d-N-acetylhexosaminidase are involvedinripening-associated softeninginthe non-climactericfruitsofcapsicum.JExpBot2011;62:571–82.

HarleySM,BeeversL.Isozymesofbeta-N-acetylhexosaminidasefrompeaseeds (PisumsativumL.).PlantPhysiol1987;85:1118–22.

HarrisN,ChrispeelsMJ.Histochemicalandbiochemicalobservationsonstorage proteinmetabolismandproteinbodyautolysisincotyledonsofgerminating mungbeans.PlantPhysiol1975;56:292–9.

HodgeA,AlexanderIJ,GoodayGW.ChitinolyticactivitiesofEucalyptuspilularisand Pinussylvestrisrootsystemschallengedwithmycorrhizalandpathogenicfungi. NewPhytol1995;131:255–61.

HongHY,ChoiJK,YooGS.Detectionofproteinsonpolyacrylamidegelsusing cal-concarboxylicacid.AnalBiochem1993;214:96–9.

Jagadeesh BH, Prabha TN. beta-Hexosaminidase, an enzyme from ripening bell capsicum (Capsicum annuum var. variata). Phytochemistry 2002;61: 295–300.

(10)

JagadeeshBH,PrabhaTN,SrinivasanK.Activitiesofbeta-hexosaminidaseand alpha-mannosidaseduring developmentandripeningofbellcapsicum(Capsicum annuumvar.variata).PlantSci2004;167:1263–71.

JainE,BairochA,DuvaudS,PhanI,RedaschiN,SuzekBE,etal.Infrastructureforthe lifesciences:designandimplementationoftheUniProtwebsite.BMCBioinform 2009;10:136.

JinYL,JoYY,KimKY,ShimJH,KimYW,ParkRD.Purificationand characteri-zationofbeta-N-acetylhexosaminidasefromriceseeds.JBiochemMolBiol 2002;35:313–9.

KotakeT,TonariA,OhtaM,MatsuuraF,SakuraiN.Smallcomplex-typeN-linked glycansareattachedtocell-wallboundexo-beta-glucanasesofbothmungbean andbarleyseedlings.PhysiolPlant2001;112:308–14.

LaemmliUK.Cleavageofstructuralproteinsduringtheassemblyoftheheadof bacteriophageT4.Nature1970;227:680–5.

LiSC,LiYT.Studiesontheglycosidasesofjackbeanmeal,3.Crystallizationand propertiesofbeta-N-acetylhexosaminidase.JBiolChem1970;245:5153–60. Liebminger E, Veit C, Pabst M, Batoux M, Zipfel C, Altmann F, et al.

beta-N-AcetylhexosaminidasesHEXO1andHEXO3areresponsibleforthe for-mationofpaucimannosidicN-glycans in Arabidopsisthaliana.JBiolChem 2011;286:10793–802.

LowryOH,RosebroughNJ,FarrAL,RandallRJ.ProteinmeasurementwiththeFolin phenolreagent.JBiolChem1951;193:265–75.

McFarlane EF, McFarlane DR, Kennedy IR. Isolation of beta-N-acetyl-d-hexosaminidasesfromlupinseed.Phytochemistry1984;23:2431–3. MeliVS,GhoshS,PrabhaTN,ChakrabortyN,ChakrabortyS,DattaA.Enhancement

offruitshelflifebysuppressingN-glycanprocessingenzymes.ProcNatlAcad Sci2010;107:2413–8.

MeloTS,FerreiraRB,TeixeiraAN.TheseedstorageproteinsfromLupinusalbus. Phytochemistry1994;37:641–8.

MüntzK,BelozerskyMA,DunaevskyYE,SchlerethA,TiedemannJ.Stored pro-teinasesandtheinitiationofstorageproteinmobilizationinseeds during germinationandseedlinggrowth.JExpBot2001;52:1741–52.

OikawaA,ItohE,IshiharaA,IwamuraH.Purificationandcharacterizationof beta-N-acetylhexosaminidasefrommaizeseedlings.JPlantPhysiol2003;160:991–9. OkuboK,MyersDV,IacobucciGA.Bindingofphyticacidtoglycinin.CerealChem

1976;53:513–24.

Orlacchio A, Maffei C, Emiliani C, Reinosa JA. On the active site of beta-hexosaminidasefromlatexofFicusglabrata.Phytochemistry1985;24:659–62. PocsiI,KissL,NanasiP.StudiesontheN-acetyl-beta-d-hexosaminidaseBfrom

ger-minatingLupinusluteusL.seeds.I.Purificationandcharacterization.Biochim BiophysActa1990;1039:110–8.

PoultonJE,ThomasMA,OttwellKK,McCormickSJ.Partialpurificationand charac-terizationofabeta-N-acetylhexosaminidasefromblackcherry(Prunusserotina EHRH.)seeds.PlantSci1985;42:107–14.

PrakashMD.Occurrenceofglycoproteinglycosidasesinmatureseedsofmungbean (Vignaradiata).Phytochemistry1984;23:257–60.

ReissigJL,StormingerJL,LeloirLF.Amodifiedcolorimetricmethodfortheestimation ofN-acetylaminosugars.JBiolChem1955;217:959–66.

SantosCN,AlvesM,BentoI,FerreiraRB.Missingpiecesinproteindepositionand mobilizationinsidelegumeseedstoragevacuoles:calciumandmagnesiumions. SeedSciRes2012;22:249–58.

SchlumbaumA,MauchF,VogeliU,BollerT.Plantchitinasesarepotentinhibitorsof fungalgrowth.Nature1986;324:365–7.

Shental-BechorD,LevyY.Effectofglycosylationonproteinfolding:acloselookat thermodynamicstabilization.ProcNatlAcadSci2008;105:8256–61. SlamovaK,BojarovaP,PetraskovaL,KrenV.beta-N-Acetylhexosaminidase:what’s

inaname...?BiotechnolAdv2010;28:682–93.

StrasserR.LocalizationofplantN-glycanprocessingenzymesalongthesecretory pathway.PlantBiosyst2009;143:636–42.

Strasser R, BondiliJS, Schoberer J, SvobodaB, Liebminger E, Glossl J, et al. Enzymatic properties and subcellular localization of Arabidopsis beta-N-acetylhexosaminidases.PlantPhysiol2007;145:5–16.

SturmA,VanKuikJA,VliegenthartJF,ChrispeelsMJ.Structure,position,and biosyn-thesisofthehighmannoseandthecomplexoligosaccharidesidechainsofthe beanstorageproteinphaseolin.JBiolChem1987;262:13392–403.

SuzanneHM,HarryB.Characterizationandpartialpurificationofthreeglycosidases fromcastorbeanendosperm.Phytochemistry1985;24:1459–64.

TakahashiN,HottaT,IshiharaH,MoriM,TejimaS,BlignyR,etal.Xylose-containing commonstructuralunitinN-linkedoligosaccharidesoflaccasefromsycamore cells.Biochemistry1986;25:388–95.

TamsJW,WelinderKG.Mildchemicaldeglycosylationofhorseradishperoxidase yieldsafullyactive,homogeneousenzyme.AnalBiochem1995;228:48–55. VitaleA,ChrispeelsMJ.TransientN-acetylglucosamineinthebiosynthesisof

phy-tohemagglutinin:attachmentintheGolgiapparatusandremovalinprotein bodies.JCellBiol1984;99:133–40.

YiCK.Increaseinbeta-N-acetylglucosaminidaseactivityduringgerminationof cot-tonseeds.PlantPhysiol1981;67:68–73.

Yi-ChingC,Wei-LiangL,Hui-ChingH,Yung-AnL,Chiang-SanC.Purificationand characterizationofisoformsofbeta-N-acetylhexosaminidasefrommungbean seedlings.BotBullAcadSin2004;45:275–83.

YongCS,GrossKC.N-Acetyl-beta-d-glucosaminidasefromgoldendeliciousapples. Phytochemistry1994;36:1–6.

Imagem

Fig. 2. Protein electrophoretic profile by SDS–PAGE of the different protein purified fractions of Lupinus albus seed cotyledons
Fig. 5. Purified L. albus ␤-NAHase electrophoretic profile after chemical deglycosyla- deglycosyla-tion
Fig. 7. Evaluation of ␤-NAHase activity and globulin profile during Lupinus albus development
Fig. 8. Monitoring of ␣-conglutin self-aggregation, when in the presence of

Referências

Documentos relacionados

In 2006, the restoration site was evaluated to meet seven key criteria for restoration (sensu Fonseca et al., 1998b ; Calumpong and Fonseca, 2001 ): (1) Had the same water depths

Uma melhor integração e um melhor ordenamento do território ocorrem em função das seguintes características: distribuição dos polos com seus equipamentos,

Apesar de que a análise do discurso que permitiria classificar o texto como pertencente a um ou outro género excede os objectivos do presente trabalho, apresentarei algumas

Optou-se por um estudo de natureza qualitativa e descritiva, centrado numa escola da área de Lisboa e no contexto dos exames de 9.º ano de Língua Portuguesa. A estratégia de

Os dados foram recolhidos tendo como principal objetivo analisar as aprendizagens dos alunos no que diz respeito à noção de declive nas funções afim, linear

de seguida, apresentam-se os resultados para as variáveis “idade com que consumiu a primeira bebida alcoólica”, “Local onde consumiu a primeira bebida alcoólica”, “o que

The precise determination of the relation of the impacted tooth to the adjacent teeth and relevant structures is imperative to be avoided during treatment (11). Any one or

A distribuição espacial dos resultados da modelação da dispersão dos poluentes emitidos pelos transportes no que diz respeito aos óxidos de azoto podem ser