• Nenhum resultado encontrado

Heterologous expression of a rice metallothionein isoform (OsMTI-1b) in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance

N/A
N/A
Protected

Academic year: 2021

Share "Heterologous expression of a rice metallothionein isoform (OsMTI-1b) in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance"

Copied!
7
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Heterologous

expression

of

a

rice

metallothionein

isoform

(OsMTI-1b)

in

Saccharomyces

cerevisiae

enhances

cadmium,

hydrogen

peroxide

and

ethanol

tolerance

Zahra

Ansarypour,

Azar

Shahpiri

IsfahanUniversityofTechnology,CollegeofAgriculture,DepartmentofBiotechnology,Isfahan,Iran

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received1May2016 Accepted25October2016 Availableonline4February2017 AssociateEditor:GiseleMonteirode Souza Keywords: Cadmium Ethanol Hydrogenperoxide Ricemetallothionein S.cerevisiae

a

b

s

t

r

a

c

t

Metallothioneinsareasuperfamilyoflow-molecular-weight,cysteine(Cys)-richproteins thatarebelievedtoplayimportantrolesinprotectionagainstmetaltoxicityandoxidative stress.Themainpurposeofthisstudywastoinvestigatetheeffectofheterologous expres-sionofaricemetallothioneinisoform(OsMTI-1b)onthetoleranceofSaccharomycescerevisiae

toCd2+,H

2O2andethanolstress.ThegeneencodingOsMTI-1bwasclonedintop426GPDas

ayeastexpressionvector.ThenewconstructwastransformedtocompetentcellsofS. cere-visiae.AfterverificationofheterologousexpressionofOsMTI-1b,thenewstrainandcontrol weregrownunderstressconditions.Incomparisontocontrolstrain,thetransformedS. cerevisiaecellsexpressingOsMTI-1bshowedmoretolerancetoCd2+andaccumulatedmore

Cd2+ionswhentheyweregrowninthemediumcontainingCdCl

2.Inaddition,the

heterolo-gousexpressionofGST-OsMTI-1bconferredH2O2andethanoltolerancetoS.cerevisiaecells.

TheresultsindicatethatheterologousexpressionofplantMTisoformscanenhancethe toleranceofS.cerevisiaetomultiplestresses.

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

The yeast, Saccharomyces cerevisiae, has several properties which have established it as an important tool in the

Abbreviations: MT,metallothionein;Os,Oryzasativa;GST,glutathione-S-transferase;ROS,reactiveoxygenspecies.

Correspondingauthorat:DepartmentofBiotechnology,CollegeofAgriculture,IsfahanUniversityofTechnology,Isfahan84156-83111,

Iran.

E-mail:a.shahpiri@cc.iut.ac.ir(A.Shahpiri).

expression of foreign proteins for research, industrial or medical use.1,2 As afood organism, it ishighly acceptable forthe productionof pharmaceuticalproteins. Incontrast,

Escherichia colihastoxiccellwallpyrogens andmammalian cells maycontainoncogenicorviralDNA,sothatproducts

http://dx.doi.org/10.1016/j.bjm.2016.10.024

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

eukaryote,andcanbemanipulatedalmostasreadilyasE.coli.

Asaeukaryote,S.cerevisiaeisasuitablehostorganismforthe high-levelproductionofsecretedaswellassolublecytosolic proteins.5

Industrialyeaststrainsduringfermentationareexposed tovarious stressessuchas osmoticshock, oxidativestress andtoxicityofsecondarymetaboliteswhichleadtotheloss ofbiologicalproducts.6,7Molecularoxygenisrelatively unre-active and harmless in its ground state, but can undergo partialreductiontoformanumberofreactiveoxygenspecies (ROS),includingthesuperoxideanionandhydrogenperoxide (H2O2),which canfurtherreacttoproducethehighly reac-tivehydroxylradical.8ROSaretoxicagentsthatcandamage awidevarietyofcellularcomponentsresultinginlipid per-oxidation,proteinoxidation,andgeneticdamagethroughthe DNAmodification.8,9YeastcellsmaybeexposedtoROS gener-atedbyneutrophilsandmacrophagesduringimmunological defense mechanisms and followingexposure tonumerous exogenousagentsincludingxenobiotics,carcinogens,UVand ionizingradiation.7

S.cerevisiae,likeallorganisms,contains effective antiox-idant defense mechanisms, which detoxify ROS as they are generated and maintain the intracellular redox envi-ronment in a reduced state.9 In response to an oxidant challenge, yeast cells increase the synthesis of a num-ber of antioxidant enzymes involved in the detoxification ofROSincluding glutathionereductase, superoxide dismu-tase, catalase, glutathione peroxidase and thioredoxins.9,10 Inadditiontoantioxidantenzymes,growingamountof evi-dences show aclose relationship between oxidativestress andmetallothioneins(MTs);the lowmolecularweight Cys-richproteinswhich are ubiquitouslypresent ineukaryotes and prokaryotes. In fact a variety of physical and chemi-cal stresses associated with oxidative injury increase MTs synthesis.11–13

MTs belong to a superfamily of intracellular metal-binding proteins which is composed of 15 families.14,15 MTs bind metals through the thiol groups of their Cys residues.14,16 Induction of MTs synthesis by heavy met-als is a very well-known phenomenon and accordingly MTs are regarded as biomarker to reflect heavy metal exposures in ecotoxicological assessment.15,17 MTs have a strong effect in scavenging free radicals, which are pro-duced under various stress conditions.13 In Arabidopsis, it has been demonstrated that different types of MTs exhibitdistinctandoverlappingfunctionsinmaintainingthe homoeostasisofessentialtransitionmetals,detoxificationof toxicmetals, and protectionagainst intracellular oxidative stresses.18–21 Transgenictobaccoandyeastthatoverexpress MTfromcottondisplayedincreasedtoleranceto environmen-talstresses,indicatingtheroleofMTinresponsetoabiotic stresses.22

Previously we heterologously expressed the isoform OsMTI-1b,a riceMT type 1,in E. colias carboxyl-terminal extensionsofglutathione-S-transferase(GST).15,23 Thecells expressing OsMTI-1b showed increased tolerance to Ni2+,

cells.

Inthisstudy,thegeneencodingOsMTI-1bwas heterolo-gouslyexpressedinS.cerevisiae.ThetoleranceoftransgenicS. cerevisiaetocadmium,hydrogenperoxideaswellasethanol wasexaminedandtheaccumulationofcadmiuminthecells wasdetermined.

Materials

and

methods

CloningofgenesencodingGST-OsMTI-1b

In order to clone the gene encoding GST-OsMTI-1b, the plasmid pET41a-OsMTI-1b was used as template.15 The DNA fragment containing GST-OsMTI-1b was ampli-fied using Pfu DNA polymerase (Thermo Scientific) in a reaction mixture containing template plasmid, deoxy nucleotides,reactionbufferandtheprimers5-ATATAAGCTTG CGGATAACAATTCCCCTCT-3,whichcarriesanHindIII restric-tion site atthe 5 end (underlined)of forwardprimer, and 5-ATTTCTCGAGTTAGCAGTTGCAAGGGTT-3 with a restric-tion siteXhoI (underlined) atthe 5 end ofreverse primer. Anadditionoffourbaseswasincludedatthe5 endineach oligonucleotideprimer.Thethermalprofilewasasfollows:1 cycleat92◦Cfor5min;35cyclesat92◦Cfor1min;63◦Cfor 1.5min;72◦Cfor2minand1cycleat72◦Cfor10min.ThePCR productwasthendigestedwithenzymesHindIIIandXhoIand ligated usingT4ligaseinto p426GPD asayeastexpression vector,24afterlinearizationwithHindIIIandXhoI.Theligation mix was used to transform competent E. coli cells (DH5␣). Transformantswere selected onLBmediumsupplemented withampicillin(50mgL−1).Theresultingplasmidwastermed GPD-GST-OsMTI-1b.Theresultingplasmidswerethenverified bysequencing.

HeterologousexpressionofOsMTI-1binS.cerevisae

The competent cells from S. cerevisiae strain CEN.PK 113-5D (5D)were providedbyusing lithiumacetatemethodas previouslydescribed.25Thenewconstructs GPD-GST-OsMTI-1b was transformed to competent cells of5D to givenew strain5D-2527.Acontrolstrainwasprovidedbytransforming emptyGPDtocompetentcells.Transformantswereselected onplatescontainingSC-URAmediumafterincubationat30◦C for2–3days.

Thenewstrain5D-2527andcontrolweregrowninshake flasks containing10mLappropriateminimal medium[10% (NH4)2SO4,12%KH2PO4,5%MgSO4,tracemetals1mLL−1,2% glucose andvitamins]at30◦Cundervigorous agitationfor overnight.Then4mLoftheovernightculturesofcellswere inoculatedin80mLofminimalmediumsupplementedwith 2%glucose.WhentheO.D.600ofcultureswereabout2.5and 3.5,1mLsamplesofculturemediumwereharvestedby cen-trifugationat12,000×gfor15min,andfrozenat−20◦Cuntil use.

(3)

A

B

GPD promoter

XhoI

HindIII

ATG GST.Tag His.Tag S.Tag ATG OsMTI-1b TAA

Fig.1–Aminoacidsequenceandexpressionvectormaps.(A)TheaminoacidsequenceofOsMTI-1b.TheCysresiduesare shownasbold.(B)ThemapofGPD-GST-OsMTI-1b.ThepositionofHis.tag,S.tagandGST.tagisshowningraybox.

Extractionandidentificationofrecombinantproteinswith westernblotanalyses

Theextractionoftotalproteinwasperformedasexplained previously.26Forextractionoftotalproteins,thefrozenpellets werefirstpre-treatedwith2.0MLiAcfor10minatroom tem-perature.Aftercentrifugation(12,000×gfor10min,4◦C),the remainingpelletswereresuspendedin0.4MNaOHfor5min onice,followedbycentrifuging(12,000×gfor10min,4◦C), theremainingpelletswereresuspendedin100␮LSDS sam-plebuffer(0.06MTris–HC1pH6.8,10%(v/v)glycerol,2%(w/v) sodium dodecyl sulfate (SDS), 5% (v/v) 2-mercaptoethanol, 0.0025%(w/v)bromophenolblue)andboiledfor5min.Then, thecelllysatewascentrifugedtoremovethecelldebris.The totalproteinsrecoveredinsupernatantphasewereanalyzed by12%SDS-PAGEandstainedbyCoomasieBrilliantBlue R-250.27

Forwesternblotting,proteinsweretransferredtoaPVDF membrane (Roche AppliedScience) according tothe man-ufacturer’s instructions. The blots were blocked overnight in blocking buffer containing 5% (w/v) skimmed milk in TBST(10mmolL−1NaCl,25mmolL−1 Tris–HCl,pH7.5,0.1% (v/v)Tween20).TherabbitHis-Tagantibody(GenScript),was diluted1:1000inTBST.Theantigen–antibodyinteractionwas carried out at room temperature for 1h. The blots were washed(3× 10min)withTBSTfollowedby(1×10min) TBS (10mmolL−1NaCl,25mmolL−1Tris–HCl,pH7.5).Blotswere thenprobedwithgoat-anti-rabbitIgGconjugatedwithhorse radishperoxidase(GenScript)diluted1:2000inTBSTas sec-ondary antibody. The membranes were washed again, as explainedbefore.Afterwashing,theimmuneblotswere devel-oped using 0.5mgmL−1 diaminobenzidine in 50mmolL−1 Tris–HCl,pH7and0.22%hydrogenperoxide.

ToleranceofS.cerevisiaecellstoCd2+,H

2O2andethanol Tolerance of new strain and control to metals, H2O2 and ethanol inthe growth mediumwas examined indifferent concentrationsofCdCl2·H2O (0.3 and0.9mM), H2O2 (1 and 3mM)andethanol(7(v/v)%and10(v/v)%).Forthese analy-ses,5mLsamplesoftheovernightcultureswereinoculated in 80mL of minimal medium supplemented with 2% glu-cose.Thecultureswereincubatedat30◦Cwithshaking.The

culturemediacontaining5D-2527orcontrolstrainwere sup-plementedwithcadmiumatconcentrationsof0.3and0.9mM whenO.D.600reached3.3.Thegrowthwasmonitoredupto14h byO.D.600measurements.Eachdatarepresentsthemean±SD obtainedfromthreeindependentexperimentswithtwo repli-cates. For the analysis ofcadmium in medium,cells from 10mLofcultureat0(T0)and5haftercadmiumaddition(T1) wereprecipitatedbycentrifugationat6000×gfor20min.The supernatantwasanalyzedforCd2+usinginductivelycoupled plasmaatomicabsorptionspectroscopy(PerkinElmer AAna-lyst700).Thecadmiumconcentrationchangesinthemedium of controland 5D-2527 between T1and T0(CT0–CT1)were calculated.Eachdataisthe mean±SDobtainedfromthree independentexperimentswithtworeplicates.Differencesat the5%levelwereconsideredsignificantasanalyzedbythe pairedstudent’st-test(p<0.05).

For analysis of H2O2 and ethanol tolerance, H2O2 and ethanol were added to the culture media after 7h when O.D.600 reached 3.6. The growth was monitored up to 14h by O.D.600 measurements. Each data represents the mean±SD obtained from three independent experiments with two replicates. Differences atthe 5%level were con-sideredsignificantasanalyzedbythepairedstudent’st-test

(p<0.05).

Results

HeterologousexpressionofGST-OsMTI-1binS.cerevisiae

Thefull-lengthcodingsequenceofOsMTI-1bconsistsof219bp encoding a protein with 72 amino acids and theoretical molecular weight (kDa)/pI of 7.13/5.08. The predicted pro-tein consistsof sixC–X–C motifsequally distributed in N-andC-terminals,asotherplanttype1MTproteins(Fig.1A). Theproteinwasexpressedascarboxyl-terminalextensions ofGST.tag,6His.tagandS.tagwhichweentirelynamedGST inthisstudy(Fig.1B).TheuseofGSThastheadvantagesof highsolubilityandstabilityagainstproteolyticdegradation.28 Therefore,theproteinGST-OsMTI-1bispredictedtohave the-oreticalmolecularweight(kDa)/pIof39.94/5.93.Westernblot analysisshowedasharpproteinbandofexpectedmolecular mass(Fig.2,lanes3and4).

(4)

35

25

45

35

25

SDS-Page

Western

blot

Fig.2–SDS-PAGEandwesternblotanalysisoftotal proteinsextractedfromcontrolstrain(lanes1and2)and 5D-2527(lanes3and4)whentheO.D.600ofcellcultures

were2.5(lanes1and3)and3.5(lanes2and4).Thepurified GST-OsMTI-1bobtainedfromheterologousexpressionin

E.coli15wasruninlaneP.

TolerancetoH2O2andethanol

Thecomparisonofgrowthcurvesofstrain5D-2527andcontrol revealsthatintheH2O2/ethanolfreemedium,themaximum O.D.600forcontrolstrain(O.D.max6006.6±0.2)isalmosthigher than that forthe strain 5D-2527 (O.D.max600 6±0.2). How-ever,inthepresenceof1mMH2O2themaximumO.D.600of strain5D-2527(O.D.max 6.2±0.24)washigherthanthatfor thecontrolstrain(O.D.max6004.6±0.2,Fig.3A).Inthe pres-enceof3mMH2O2themaximumO.D.600ofstrains5D-2527 andcontrolstrainwere4.8±0.2and 3.8±0.17,respectively. Inaddition,inthepresenceof7and10%ethanolthe maxi-mumO.D.600valuesforthecontrolstrainwere4.6±0.2and 4.2±0.2, respectively. These valueswere reached5.6±0.18 and 5.1±0.25for 5D-2527inthe same conditions (Fig.3B). Theseresultssuggestthattheheterologousexpressionof GST-OsMTI-1bconfersH2O2andethanoltoleranceinS.cerevisiae cells.

ThecellsexpressingOsMTI-1bhavemoretoleranceto cadmium

Inthepresenceof0.3and0.9mMCd2+themaximumO.D. 600 forcontrol strainwere 3.2±0.25and 3.4±0.2,respectively. Thesevaluesreached4±0.2and4.7±0.15forthestrain 5D-2527whenitwasgrowninthesameconditions.Theseresults suggest that the heterologous expressionofGST-OsMTI-1b conferscadmiumtoleranceinS.cerevisiaecells.

Todeterminewhetherthe enhancedoftoleranceof 5D-2527tocadmiumwasduetoincreasedaccumulationofthis metalioninthe cells,theconcentrationsofcadmiumions intheculturemediainoculatedwiththe5D-2527andcontrol strainsweredeterminedbyatomicabsorptionat0h(T0)and 5h (T1)aftertheadditionofcadmiumtothe cultures.The concentrationofcadmiumionsatT1wassimilartothatatT0

Discussion

S. cerevisiaeisthe mostimportantindustrial yeastand the main microorganismemployedin bioethanolproduction.29 Industrial yeaststrainsduringfermentationare exposedto variousstressessuchasosmoticshock,oxidativestressand toxicity of secondary metabolites which lead to the loss ofbiological products.6,29 During oxidativestress inS.

cere-visiaetheproteinYap1pasatranscriptionfactorplaysakey role in activationoftranscription ofmany genes including

TRX2,30encodingthioredoxin,TRR1thioredoxinreductase,31

GSH2 – glutathione synthase, GPX2 – glutathione peroxi-dase232andTSA1thioredoxinperoxidase133,34viabinding withspecificDNAsequenceslocalizedintheirpromoters.35 Correspondingly the over expression of genes TRX2 and

TRR1 enhanced the resistance of S. cerevisiae to oxidative stress.30,31

EthanolproductionbyS.cerevisiaeisoneofthefirst biotech-nologicalcommoditiesformanyyears.Howevertheinhibitory effect ofethanol accumulationonyeastgrowth during fer-mentation is still an important challenge for bio-ethanol production.36 Depending on yeast strain and condition, ethanolinhibitiononyeastgrowthbeginsatconcentrations of less than 5%.37 The mechanisms that yeasts cope with ethanolstressareverycomplicatedandnotfullyunderstood. Thequantificationofthegrowthbehaviorofallavailable sin-glegenedeletionstrainsofS.cerevisiaeunderethanolstress revealed thatthegrowth of446deletionstrains was defec-tiveindicatingthatmanygenesareinvolvedintheethanol resistanceinyeast.Thedeletionofsomeofthesegeneslike

PEXgeneswhoseproductsareinvolvedinperoxisome trans-portexhibitedtheseverestsensitivitytoethanol.38Recently thegenerationofnewtransgenicS.cerevisiaestrainshasbeen successfullyimplementedtoimproveethanoltolerance.39–42 Forinstance,theoverexpressionofgenesINO1,DOG1,HAL1

and truncated form of MSN2 in S. cerevisiae resulted in remarkably increased tolerance to high concentrations of ethanol.41

In the present work the gene encoding OsMTI-1b was transferredtoS.cerevisiae.MTsareCys-richandlow molec-ularweightproteinscharacterizedasimportantintracellular factorsindetoxificationofheavymetalsinthecellsof prokary-otes and eukaryotes.14,43 However the role of MTs in the protectionofplantandanimalcellsagainstoxidativestress hasbeenrecentlydemonstrated.22,44,45Theisoform OsMTI-1bisknownasariceMTtype1duetothepresenceofsix CysresiduesinN-and C-terminals.Previouslythis isoform was heterologously expressed in E. coli. Transformed cells showedincreasedtolerancetoheavymetalscadmium,zinc andnickelandaccumulatedmoremetalsascomparedtothe controlstrain.15,23 Furthermore,theheterologousexpression ofOsMTI-1bconferredhydrogenperoxidetolerancetoE.coli

cells.15Thedatapresentedhereshowthattheheterologous expressionofOsMTI-1bwassuccessfulwhenitwasexpressed ascarboxy-terminalextensionofGST.TheS.cerevisiaecells

(5)

8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Control (0 mM) Control (1 mM) 5D-2527 (0 mM) 5D-2527 (1 mM) Control (0) Control (7 %) 5D-2527 (0) 5D-2527 (7 %) Control (0) Control (10 %) 5D-2527 (0) 5D-2527 (10 %) Control (0 mM) Control (0.9 mM) 5D-2527 (0 mM) 5D-2527 (0.9 mM) Control (0 mM) Control (0.3 mM) 5D-2527 (0 mM) 5D-2527 (0.3 mM) Time (h) Time (h) 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Control (0 mM) Control (3 mM) 5D-2527 (0 mM) 5D-2527 (3 mM) OD600 OD600 OD600

A

B

C

Fig.3–EffectsofheterologousexpressionofGST-OsMTI-1bonthetoleranceofS.cerevisiaeto(A)H2O2(1and3mM),(B)

ethanol(7%and10%)and(C)Cd2+(0.3and0.9mM).Eachdataisthemean±SDobtainedfromthreeindependent

experimentswithtworeplicates.Differencesatthe5%levelwereconsideredsignificantasanalyzedbythepairedstudent’s

t-test(p<0.05).

expressingGST-OsMTI-1bwereabletoremoveefficiently cad-miumfromculturemediumand showedmoretolerancein themediumcontainingcadmium ascomparedtothe con-trol strain. In addition, the cells expressing GST-OsMTI-1b

conferredH2O2tolerancetoS.cerevisiae.Similarresultshave been previouslyreportedfortransgenicyeasts overexpress-ingcottonMTtype3(GhMT3)inresponsetoH2O2stress22or MTtype3fromTamarixhispida(ThMT3)inresponsetometal

(6)

125 120 115 110 Control (T0) 5D-2527(T0) Cd 2+ (ppm) 5D-2527 (T1) Control (T1)

Fig.4–Cadmiumconcentrationvariationinthemediumof controlstrainandstrain5D-2527betweenT1(5hafter additionCdCl2tomedium)andT0(startingpointof

additionCdCl2).Eachdataisthemean±SDobtainedfrom

threeindependentexperimentswithtworeplicates. Asterisksindicatestatisticallysignificantdifferencesfrom thecorrespondingcontrolasanalyzedbythepaired student’st-test(p<0.05).

toxicity.45 Herewe alsofound that the expression of GST-OsMTI-1benhancestheresistanceoftransgenicS.cerevisiae

againstethanol.

Taken together on the basisofour results, the heterol-ogousexpressionof isoform OsMTI-1bconferred improved toleranceagainstH2O2,metalsandethanol.Thereforeplant genesencodingMTisoformsmaybeusefulforaugmentingthe genetictoolboxforgeneratingnewstrainswithmultiplestress resistancewhichcouldbeveryefficientforbiofuelproduction.

Conflicts

of

interest

The authors declare that there is no conflict of interest regardingthepublicationofthispaper.

Acknowledgment

IranNationalScienceFoundationisthankedforfinancial sup-port(grantNo.91001342).

r

e

f

e

r

e

n

c

e

s

1. GellissenG,HollenbergCP.Applicationofyeastsingene

expressionstudies:acomparisonofSaccharomycescerevisiae,

HansenulapolymorphaandKluyveromyceslactis.Gene.

1997;190:87–97.

2. SchmidtFR.Recombinantexpressionsystemsinthe

pharmaceuticalindustry.ApplMicrobiolBiotechnol.

2004;65:363–372.

3. TerpeK.Overviewofbacterialexpressionsystemsfor

heterologousproteinproduction:frommolecularand

biochemicalfundamentalstocommercialsystems.Appl

MicrobiolBiotechnol.2006;72:211–222.

6.Gomez-PastorR,Pérez-TorradoR,CabiscolE,RosJ,Matallana

E.EngineeredTrx2pindustrialyeaststrainprotectsglycolysis

andfermentationproteinsfromoxidativecarbonylation

duringbiomasspropagation.MicrobCellFact.2012;11:1–15.

7.HalliwellB.Reactivespeciesandantioxidants.Redoxbiology

isafundamentalthemeofaerobiclife.PlantPhysiol.

2006;141:312–322.

8.JamiesonDJ.Oxidativestressresponsesoftheyeast

Saccharomycescerevisiae.Yeast.1998;14:1511–1527.

9.MoranoK,GrantCh,Moye-RowleyW.Theresponsetoheat

shockandoxidativestressinSaccharomycescerevisiae.

Genetics.2012;190:1157–1195.

10.GrantCM,MaclverFH,DawesIW.Mitochondrialfunctionis

requiredforresistancetooxidativestressintheyeast

Saccharomycescerevisiae.FEBSLett.1997;410:219–222.

11.BaumanJW,LiuJ,LiuYP,KlaassenCD.Increasein

metallothioneinproducedbychemicalthatinduced

oxidativestress.ToxicolApplPharmacol.1991;110:347–354.

12.HidalgoJ,CampanyL,BorrasM,GarveyJS,ArmarioA.

Metallothioneinresponsetostressinrats:roleinfreeradical

scavenging.AmJPhysiol.1988;255:518–524.

13.KagiJHR.Overviewofmetallothionein.MethodsEnzymol.

1991;205:613–626.

14.CobbettC,GoldsbroughP.Phytochelatinsand

metallothioneins:rolesinheavymetaldetoxificationand

homeostasis.AnnuRevPlantBiol.2002;53:159–182.

15.MohammadiNezhadR,ShahpiriA,MirlohiA.

Discriminationbetweentworicemetallothioneinisoforms

belongingtotype1andtype4inmetalbindingability.

BiotechnolApplBiochem.2013;60:275–282.

16.FreisingerE.Structuralfeaturesspecifictoplant

metallothioneins.JBiolInorgChem.2011;16:1035–1045.

17.WongCKC,YeungHY,CheungRYH,YungKKL,WongMH.

Ecotoxicologicalassessmentofpersistentorganicandheavy

metalcontaminationinHongKongcostalsediment.Arch

EnvironContamToxicol.2000;38:486–493.

18.Garcia-HernandezM,MurphyA,TaizL.Metallothioneins1

and2havedistinctbutoverlappingexpressionpatternsin

Arabidopsis.PlantPhysiol.1998;118:387–397.

19.LeeJ,ShimD,SongWY,HwangI,LeeY.Arabidopsis

metallothioneins2aand3enhanceresistancetocadmium

whenexpressedinViciafabaguardcells.PlantMolBiol.

2004;54:805–815.

20.MillerJD,ArtecaRN,PellEJ.Senescence-associatedgene

expressionduringozone-inducedleafsenescencein

Arabidopsis.PlantPhysiol.1999;120:1015–1024.

21.RobinsonNJ,TommeyAM,KuskeC,JacksonPJ.Plant

metallothioneins.BiochemJ.1993;295:1–10.

22.XueT,LiX,ZhuW,WuC,YangG,ZhengC.Cotton

metallothioneinGhMT3a,areactiveoxygenspecies

scavenger,increasedtoleranceagainstabioticstressin

transgenictobaccoandyeast.JExpBot.2009;60:339–349.

23.MohammadiNezhadR,ShahpiriA,MirlohiA.Heterologous

expressionandmetal-bindingcharacterizationofatype1

metallothioneinisoform(OsMTI-1b)fromrice(Oryzasativa).

ProteinJ.2013;32:131–137.

24.MumbergD,MullerR,FunkM.Yeastvectorsforthe

controlledexpressionofheterologousproteinsindifferent

geneticbackgrounds.Gene.1995;156:119–122.

25.GietzRD,WoodsRA.Transformationofyeastbylithium

acetate/single-strandedcarrierDNA/polyethyleneglycol

method.MethodsEnzymol.2002;350:87–96.

26.ZhangT,LeiJ,YangH,XuK,WangR,ZhangZh.Animproved

methodforwholeproteinextractionfromyeast

(7)

27.SambrookJ,FritchEF,ManiatisT.ManiatisMolecularCloning:

ALaboratoryManual.2nded.NewYork:ColdSpringHarbor

LaboratoryPress;1989.

28.EspositoDC,ChatterjeeDK.Enhancementofsolubleprotein

expressionthroughtheuseoffusiontags.CurrOpin

Biotechnol.2006;17:353–358.

29.MatsushikaA,InoueH,KodakiT,SawayamaSh.Ethanol

productionfromxyloseinengineeredSaccharomyces

cerevisiaestrains:currentstateandperspectives.Appl

MicrobiolBiotechnol.2009;84:37–53.

30.KugeS,JonesN.YAP1dependentactivationofTRX2is

essentialfortheresponseofSaccharomycescerevisiaeto

oxidativestressbyhydroperoxides.EMBOJ.1994;13:655–664.

31.MorganBA,BanksGR,TooneWM,RaittD,KugeS,Johnston

LH.TheSkn7responseregulatorcontrolsgeneexpressionin

theoxidativestressresponseofthebuddingyeast

Saccharomycescerevisiae.EMBOJ.1997;16:1035–1044.

32.SugiyamaK,IzawaS,InoueY.TheYap1p-dependent

inductionofglutathionesynthesisinheatshockresponseof

Saccharomycescerevisiae.JBiolChem.2000;275:15535–15540.

33.GrantCM,CollinsonLP,RoeJ-H,DawesIW.Yeastglutathione

reductaseisrequiredforprotectionagainstoxidativestress

andisatargetgeneforyAP-1transcriptionalregulation.Mol

Microbiol.1996;21:171–179.

34.InoueY,MatsudaT,SugiyamaK,IzawaS,KimuraA.Genetic

analysisofglutathioneperoxidaseinoxidativestress

responseofSaccharomycescerevisiae.JBiolChem.

1999;274:27002–27009.

35.TooneWM,JonesN.AP-1transcriptionfactorsinyeast.Curr

OpinGenetDev.1999;9:55–61.

36.StanleyD,BandaraA,FraserS,ChambersPJ,StanleyGA.The

ethanolstressresponseandethanoltoleranceof

Saccharomycescerevisiae.JApplMicrobiol.2010;109:13–24.

37.PinaC,CoutoJA,HoggT.Inferringethanoltoleranceof

Saccharomycesandnon-Saccharomycesyeastsby

progressiveinactivation.BiotechnolLett.2004;26:

1521–1527.

38.YoshikawaK,TanakaT,FurusawaC,NagahisaK,HirasawaT,

ShimizuH.Comprehensivephenotypicanalysisfor

identificationofgenesaffectinggrowthunderethanolstress

inSaccharomycescerevisiae.FEMSYeastRes.2009;9:32–44.

39.AlperH,MoxleyJ,NevoigtE,FinkGR,StephanopoulosG.

Engineeringyeasttranscriptionmachineryforimproved

ethanoltoleranceandproduction.Science.

2006;314:1565–1568.

40.HisashiY,HitoshiI,HiroshiU.DisruptionofURA7andGAL6

improvestheethanoltoleranceandfermentationcapacityof

Saccharomycescerevisiae.Yeast.2007;24:551–560.

41.HongM,LeeK,YuB,etal.Identificationofgenetargets

elicitingimprovedalcoholtoleranceinSaccharomyces

cerevisiaethroughinversemetabolicengineering.JBiotechnol.

2010;149:52–59.

42.WatanabeM,WatanabeD,AkaoT,ShimoiH.Overexpression

ofMSN2inasakeyeaststrainpromotesethanoltolerance

andincreasesethanolproductioninsakebrewing.JBiosci

Bioeng.2009;107:516–518.

43.PalmiterRD.Theelusivefunctionofmetallothioneins.Proc

NatlAcadSciUSA.1998;95:8428–8430.

44.CoyleP,PhilcoxJC,CareyLC,RofeAM.Metallothionein:the

multipurposeprotein.CellMolLifeSci.2002;59:627–647.

45.YangJ,WangY,YangC,LiC,LiuG.Tamarixhispida

metallothionein-likeThMT3,areactiveoxygenspecies

scavenger,increasestoleranceagainstCd2+,Zn2+,Cu2+and

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Material e Método Foram entrevistadas 413 pessoas do Município de Santa Maria, Estado do Rio Grande do Sul, Brasil, sobre o consumo de medicamentos no último mês.. Resultados

Using an Aloka SSD 2200 echocardiograph fitted with a 2.5 MHz probe with pulsed, contin- uous-wave and color Doppler, a Doppler echo- cardiographic study was made of 30

In this context, the aim of the present study was to determine and compare arsenic, cadmium, lead concentrations in 104 samples of yerba mate (Ilex paraguariensis) marketed,

With the perspective of continuing to perform the evaluations of metal contamination in the fishes in the study region, the purpose of this work was to evaluate cadmium

In this context, the objective of the present study was to evaluate the tolerance to cadmium (Cd) of sunflower genotypes grown in greenhouse conditions, and the

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to