• Nenhum resultado encontrado

Two new species of Mycodrosophila (Diptera, Drosophilidae) proposed by molecular and morphological approaches, with a key to American species

N/A
N/A
Protected

Academic year: 2021

Share "Two new species of Mycodrosophila (Diptera, Drosophilidae) proposed by molecular and morphological approaches, with a key to American species"

Copied!
10
0
0

Texto

(1)

ww w . r b e n t o m o l o g i a . c o m

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution

Systematics,

Morphology

and

Biogeography

Two

new

species

of

Mycodrosophila

(Diptera,

Drosophilidae)

proposed

by

molecular

and

morphological

approaches,

with

a

key

to

American

species

João

Junges

a

,

Marco

Silva

Gottschalk

b

,

Elgion

Lucio

da

Silva

Loreto

a

,

Lizandra

Jaqueline

Robe

a,c,∗

aProgramadePósGraduac¸ãoemBiodiversidadeAnimal,UniversidadeFederaldeSantaMaria,SantaMaria,RS,Brazil bDepartamentodeEcologia,ZoologiaeGenética,InstitutodeBiologia,UniversidadeFederaldePelotas,Pelotas,RS,Brazil

cProgramadePós-Graduac¸ãoemBiologiadeAmbientesAquáticosContinentais,InstitutodeCiênciasBiológicas,UniversidadeFederaldoRioGrande,RioGrande,RS,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29August2015 Accepted12November2015 Availableonline14December2015 AssociateEditor:GustavoGraciolli Keywords:

Amazonianforest

CytochromeoxidasesubunitI DNAbarcoding

Mycophagousdrosophilids Pampabiome

a

b

s

t

r

a

c

t

Thereareapproximately130speciesofMycodrosophilaOldenberg,1914worldwide,althoughonlynine specieswererecordedinAmericancountriessofar,threeofwhichareexclusivelyNearctic,five exclu-sivelyNeotropicalandonefoundinbothbiogeographicregions(Mycodrosophilaprojectans).Suchasmall numberofAmericanspeciesislikelyaconsequenceofcollectingbias,whichfavorsthecaptureof fru-givorousdrosophilids,andtothegeneralabsenceofNeotropicalMycodrosophilastudiesinthelast50 years.Here,wedescribetwocommonlysampledspeciesofMycodrosophilafromtheAmazonianand PampaBrazilianbiomes,whichsharemorphologicalsimilaritieswithMycodrosophilaneoprojectansand M.projectans,respectively.Wecomparedsequencesofthemitochondrialgenecytochromeoxidase sub-unitI(COI),externalmorphologycharacteristicsandmaleterminaliaamongthesespecies.Basedona DNAbarcodingapproachcoupledtomorphologicaldifferences,weproposedthedelimitationoftwo newspecies,Mycodrosophilahofmannisp.nov.andMycodrosophilavalentaesp.nov.Anupdatedkeyto identifyingNeotropicalandNearcticMycodrosophilaspeciesisalsoprovided.

©2015SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

MycodrosophilaOldenberg,1914isusuallyknownforits associ-ationwithfungalfructificationbodiesofthegenusPolyporusandis embeddedwithintheZygothricagenusgroup(WheelerandTakada,

1963;Bock,1980;Grimaldi,1990).Therearealmost130described

Mycodrosophila species (Bächli, 2015) and the genus is dis-tributedworldwide,althoughmostofthedescribedMycodrosophila species occurinAfrica, Asiaand Australia (Burla, 1954; Okada,

1956,1965,1968,1986;Bock,1980).Sixspecies(Mycodrosophila

brunnescens,Mycodrosophilaelegans,Mycodrosophilaneoprojectans, Mycodrosophilanigropleura,Mycodrosophilaprojectansand Myco-drosophilapseudoprojectans)havebeenrecordedfortheNeotropics, mostlyinCentralAmericaandBrazil,andallofthemweredescribed orredescribedinWheelerand Takada(1963).Infact,according

toGrimaldi(2010),Wheelerand Takada’sstudycan be

consid-eredthemostimportantworkforidentifyingAmericanspeciesof

∗ Correspondingauthor.

E-mail:lizbiogen@gmail.com(L.J.Robe).

Mycodrosophilabecauseitcharacterizesallspeciesthathavebeen reportedfromthiscontinent,andtherehasbeennootherstudy encompassingthesystematicsortaxonomyofMycodrosophilain thisregionsincethen.Suchadelay,associatedwiththe straight-forwardfruitbaitbiasindrosophilidsampling,canberesponsible forthescarceknowledgeregardingtheNeotropicalMycodrosophila fauna.

Here,wereportthecollectionoftwoMycodrosophila morpho-types,putativelycommontotheBrazilianAmazoniaandPampa biomes, which could not be correctly matched to any species inthekey providedbyWheelerand Takada(1963).After com-paring molecular sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene and re-evaluating the morpho-logical patterns among these and other previously described species, we were able to validate these as two new species. Thus,in thismanuscript,we providethevalidation oftwonew Mycodrosophila in a DNA barcoding like analysis and achieve their description using external morphology and male termi-nalia illustrations. Moreover, we also provide an update to

Wheeler and Takada (1963) key to American Mycodrosophila

species.

http://dx.doi.org/10.1016/j.rbe.2015.11.008

0085-5626/©2015SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Fig.1.FliesrestingoverfungalfructificationbodiesofMycenasp.(Pers.)Roussel 1806(Agaricales,Mycenaceae).

Materialandmethods

DNAmanipulation

Mycodrosophilaspecimenswerecollectedflyingoverorresting onfungifructificationbodies(Fig.1)usingamanualentomological aspirator(Machadoetal.,2014)inforestedareasoffive munici-palitiesdistributedalongAmazoniaandPampabiomes(Table1). Theidentificationwasperformedbyanalysisofexternal morphol-ogyandmaleterminaliapatterns,followingWheelerandTakada

(1963).

TotalDNAwasextractedfromeachof14individuals(Table1) usingNucleoSpinTissueXSkit(Macherey-Nagel,Düren,Germany) andpolymerasechainreactions(PCR)wereperformedusingthe TYJ1460andC1N2329primersdescribedbySimonetal.(1994), for theamplification of approximately900bpof theCOI mito-chondrial gene. PCRproducts werepurified using a solutionof polyethyleneglycol(PEG)13%and NaCl1.6Mandthendirectly sequencedinaMegaBace500automaticsequencer,usingthe DYE-namicET®SequencingKit(Amersham,GEHealthcare,ChalfontSt.

Giles,UK)accordingtothemanufacturer’sprotocol.Both,forward andreversesequencesweredetermined,sothateachbasewasread atleasttwice.

Moleculardatamatrixassembly

Thesequencessoobtainedwereassembled,visualizedand cor-rectedin theGAP4 programfromtheStaden Package(Staden, 1996),andalignedusingtheClustalWalgorithmasimplemented

inMega5.0(Tamuraetal.,2011).Table1presentsGenBank

acces-sionnumbersforthe14newCOIMycodrosophilasequences,which wereaddedtotheorthologoussequencesfromtheNearctic Myco-drosophila dimidiataand Mycodrosophila claytonae.Additionally, COIsequenceswerealsodownloadedfromGenBankfordifferent species ofAcletoxenus, Amiota,Leucophenga and Ceratitis,which wereusedasoutgroupsbecausetheybelongtodifferent Drosophil-idaesubfamiliesoreventodifferentDipteranfamilies.

Molecularphylogeneticanalyses

The phylogenetic analyses were performed using different methods/algorithms and softwares: Bayesian analysis (BA), as performedinMrBayes3.2.1(Ronquistetal.,2012);maximum like-lihood(ML)analysis,asimplementedinPhyML3.0(Guindonand

Gascuel,2003);maximumparsimony(MP)analysis,asexecutedin

Paup4.0b10(Swofford,2003);andNeighbor-Joining(NJ)analysis, asachievedinMega5.0.BAanalysiswasperformedusing1,000,000 generationsofMarkovChainMonteCarlo(MCMC)search,adopting theGTR+G+ImodelselectedbytheAkaikeinformation(AIC) evalu-ationcriterionimplementedinMrModelTest2.3(Nylander,2004), withtreesamplingevery100generationsanddiscarding25%of theinitialresultsasburn-in.TheMLanalysiswascarriedoutwith theGTR+G+ImodelselectedbytheAICcriteriainModelTest3.7

(PosadaandCrandall,1998),usinganoptimizedNJstartingtree.

TheMPtreeswereinferredbyheuristicsearchwithTree Bisec-tionandReconnectionbranchswappingoptimizationappliedto agroupof100randomstepwiseadditionstartingtrees.Finally, theNJalgorithmwasimplementedusingtheTamura–Nei substi-tutionmodel(TamuraandNei,1993)(themostsimilartoGeneral TimeReversible(GTR)amongMega 5.0optionsavailableforNJ

Table1

Taxonomicposition,geographicalsourceandCOIsequencesGenBankaccessionnumbersforMycodrosophilaspeciesandoutgroupsusedforthemolecularphylogenetic reconstruction.Mycodrosophilasp.1,M.hofmannisp.nov.;Mycodrosophilasp.2,M.valentaesp.nov.

Family Subfamily Species Origin Accessionnumbera

Drosophilidae Drosophilinae Mycodrosophilahofmannisp.nov.1 ColoradodoOeste,RO,Brazil KC987477 Mycodrosophilahofmannisp.nov.2 ColoradodoOeste,RO,Brazil KC987478 Mycodrosophilavalentaesp.nov.1 SantaMaria,RS,Brazil KC987479 Mycodrosophilavalentaesp.nov.2 RioGrande,RS,Brazil KC987481 Mycodrosophilavalentaesp.nov.3 SantaMaria,RS,Brazil KC987480 Mycodrosophilavalentaesp.nov.4 RioGrande,RS,Brazil KC987482 Mycodrosophilavalentaesp.nov.5 RioGrande,RS,Brazil KC987483 M.elegans1WheelerandTakada,1963 DiamantedoNorte,PR,Brazil JX497750 M.elegans2 TeodoroSampaio,SP,Brazil KC987476 M.projectans1WheelerandTakada,1963 SantaMaria,RS,Brazil JX497751 M.projectans2 SantaMaria,RS,Brazil KC987484 M.projectans3 SantaMaria,RS,Brazil KC987485 M.projectans4 SantaMaria,RS,Brazil KC987486 M.projectans5 SantaMaria,RS,Brazil KC987487 M.claytonae LeonCo.,Florida,USA GU597470

M.dimidiata – EU493682

Steganinae AcletoxenusindicusLoew,1864 Hainan,Qionghai,China HQ701131 AmiotasetigeraMalloch,1924 – EU493568 LeucophengaalbfasciataMacquart,1851 – EU493569 L.angustaOkada,1956 Hachioji,Tokyo,Japan HQ842780 L.quadripunctatadeMeijere,1908 Hachioji,Tokyo,Japan HQ842781 L.variaWalker,1849 Florida,LeonCo.,USA GU597446 Tephritidae Dacinae CeratitiscapitataWiedmann,1824 – NC000857

(3)

Table2

Morphologicalcharactersusedforthemorphologicalphylogeneticreconstruction andtheirrespectiveclassandstateintheanalysis.

Morphologicalcharacter Class/states

Cindex Continuous

4vindex Continuous

5xindex Continuous

Acindex Continuous

LengthOr1/LengthOr2 Continuous Setulaeonparaphysis Continuous Outerbranchesonsurstyles Continuous Setaeongonopod Continuous Rowsofacrostichalsetae Categorical–6/8/10

Tergite2–palearea Categorical–presence/absence Tergite3–palearea Categorical–presence/absence Tergite4–palearea Categorical–presence/absence Tergite5–palearea Categorical–presence/absence Tergite6–palearea Categorical–presence/absence CloudbandonapicalCII Categorical–presence/absence Cloudbandon1stcostalbreak Categorical–presence/absence Cloudbandon2ndcostalbreak Categorical–presence/absence Shortpileonparaphysis Categorical–presence/absence

searches)withaGammacorrection,whosealphavaluewassetto 0.17,followingModelTestresults.Cladesupportwasinferredwith abootstraptestwith1000replicationsforML,MPandNJ analy-ses,whileforBA,theposteriorprobability(PP)ofeachcladewas estimated.Moreover,intra-andinterspecificCOIdistanceswere calculatedwiththeKimura2-Parameters(K2P)evolutionarymodel

(Kimura,1980),withstandarderrorestimatedthrough1000

boot-strapreplicates.

Morphologicalphylogeneticanalysis

A morphological phylogenetic analysis was performed with 18 categorical and continuous characters (14 based on exter-nal morphology and four based on male terminalia patterns)

(Table2)obtainedfromthedescriptionsofMycodrosophilaspecies

ofSturtevant(1916),WheelerandTakada(1963)andofthenew

speciespresentedbelow.Weusedtheaverageofeach measure forcontinuouscharacters,becausethis wastheonlydata avail-ableintheliterature.Additionally,continuouscharacterswerefirst categorizedinanascendingorderandlatterweightedininverse proportiontotheirminimumnumberofsteps,usingascaledMP search,asperformedinPaup4.0b10.Otherheuristicsearch prop-ertiesweresetaccordingtothefeaturesdescribedaboveforthe molecularanalysis.Giventhedifficultiesinestablishing homolo-giesforthesecharacterstootherspecies,theNearcticspecieswere usedasoutgroup,whichseemedjustifiablegiventheresultsofour molecularphylogeneticanalysis(seebelow).

Newspeciesdescriptions

Aftermorphological and molecular validation regarding the samplingoftwonewspecies,descriptionswereperformedfrom

individuals preservedinethanol 70◦ accordingtothe measure-mentsandnomenclatureofstructuressuggestedbyBächlietal.

(2004). The measurements were performed on a stereoscopic

microscopecoupledwithmicrometricreticulum.Theaverage val-ues for each characteristic are presented accompanied by the maximumandminimumobservedvalues(inbrackets).The post-abdomenof allthespecimens was disarticulatedand themale terminaliaweremountedinpermanentslides withCanada bal-sam.Illustrationsofmaleterminaliaoftheholotypesweremade usingacamaralucidaattachedtoanopticalmicroscope(Olympus BX40)witha40×objectivelensanda10×ocularlens.Weobtained photomicrographsoftheexternalmorphologystructuresandmale terminaliaofflieswithaZeissDiscoveryV.20stereomicroscope.

Wheneverpossible,wephotographedthehostfungiandsent thephotographstoDr.EduardoBernardi(UniversidadeFederalde Pelotas)foridentification.Thetypesseriesofthenewspecieswill bedepositedintheMuseudeCiênciasNaturaisoftheFundac¸ão Zoobotânicado Rio Grandedo Sul(MCNZ,PortoAlegre,Brazil). OneparatypeofeachnewspecieswillbedepositedintheMuseu NacionaldoRiodeJaneiroofUniversidadeFederaldoRiodeJaneiro (MNRJ,RiodeJaneiro,Brazil).

Results

Speciesvalidationandphylogeneticanalyses

The sampledMycodrosophila specimens were determinedto fourmorphotypes:M.projectans,M.elegansandtwoinitially puta-tivenewspecies.Themultiplealignmentsofthe16Mycodrosophila sequences(14new+twoavailableinGenBank)spanned748base pairsfromthe5regionofCOIandcontained170variablesites,of which156wereparsimoniouslyinformative.Thegeneral frequen-ciesforeachnucleotidewereA=29.9,C=16.0,G=17.0andT=37.1, andtheaveragetransition/transversionratiowas0.98.Minimum, maximumandaverageofintraspecificandinterspecificK2PCOI distanceswithstandard errors arepresentedin Table3.In this case,whereasthetwosequencesobtainedforthefirstputativenew species(hereafterM.hofmannisp.nov.,seebelow)exhibited0.4% divergence,theintraspecificdistancesforthesecondputativenew species(hereafterM.valentaesp.nov.,seebelow)sequencesranged from 0.0 to 0.3%. The interspecific distances between thenew speciesandeachoftheothertwosampledcongenericNeotropical speciesweremuchhigher,andalwaysgreaterthan12%.TheK2P distancesbetweenthetwoputativenewspecieswerealsohigh, presentingvaluesoftheorderof13%.

TheCOIsupportedphylogramisdepictedinFig.2,whereitcan beseenthatallthesampledmorphotypesarereciprocally mono-phyleticinregardtoeachother,aresultpresentinghighsupport forallmethods.Concerningtheinterspecificrelationships,the phy-logenydisplaysMycodrosophilaasmonophyleticinregardtothe includedSteganinaespecies(PP=0.97),clusteringthetwoNearctic species(PP=1.00),andthepairM.hofmannisp.nov.andM.valentae

Table3

Intra-andinterspecificK2PCOIdistancesandtheirrespectivestandarderrorsinregardtothecomparisonsinvolvingMycodrosophilahofmannisp.nov.andM.valentaesp. nov.plustheotherevaluatedNeotropicalMycodrosophilaspecies.

Species Distancesvalues

Minimal Average Maximal

Intraspecificdistances M.hofmannisp.nov. – 0.004±0.002 –

M.valentaesp.nov. 0.000±0.000 0.001±0.001 0.003±0.002 Interspecificdistances M.hofmannisp.nov.×M.projectans 0.143±0.017 0.145±0.017 0.149±0.017 M.hofmannisp.nov.×M.elegans 0.163±0.018 0.164±0.018 0.165±0.018 M.valentaesp.nov.×M.projectans 0.127±0.014 0.134±0.015 0.144±0.016 M.valentaesp.nov.×M.elegans 0.146±0.014 0.148±0.015 0.150±0.016 M.hofmannisp.nov.×M.valentaesp.nov. 0.133±0.016 0.135±0.016 0.137±0.016

(4)

Fig.2.COImajority-ruleconsensusphylogenyinferredbyBayesiananalysisusingtheGTR+G+Imodelforthe23nucleotidesequences(Table1).Thevaluesabovethenodes aretheposteriorprobabilitiesinBayesianAnalysisandthevaluesbelowarethebootstrapvaluesforthemaximumlikelihood,maximumparsimonyandNeighbor-Joining trees,respectively.The“-”signalindicatesabsenceofsupportfortheconsideredrelationship.ThistreewasrootedwithCeratitiscapitatasequences.Branchlengthsare proportionaltothescale,giveninsubstitutionspernucleotide.

sp.nov.(PP=0.95)assisterspecies.Althoughwithlowsupport,the treealsorecoveredtheearlyseparationbetweenNeotropicaland Nearcticspecies(PP=0.51),andpresentedM.elegansasanearly Neotropicaloffshoot(PP=0.69).

Themorphologicalweightedparsimonyanalysisrecoveredsix treeswiththesamenumberofsteps(280),allofwhichpresenteda ciof0.85andariof0.68.Withoutconsideringrelationshipsamong

Fig.3. Majority-ruleconsensustreerecoveredthroughmaximumparsimony analy-sisofthemorphologicalcharacterslistedinTable2showingtheexternalsimilarities amongtheeightknownNeotropicalMycodrosophilaspecies.Thistreewasrooted withthethreeNearctic’sspecies(M.claytonae,M.dimidiataandM.stalkeri).The valuesabovethenodesrepresentthepercentageofmaximumparsimonioustrees recoveringtheclade,sothatconflictingrelationshipsarehighlightedby intermedi-atesupportvalues(i.e.50%).

theNearcticspecies,thissetoftreeswasfurtherreducedtotwo, oneofwhichispresentedinFig.3.InsteadofclusteringM.hofmanni sp.nov.andM.valentaesp.nov.,thetwomostparsimonioustrees recoveredM.hofmannisp.nov.asmorphologicallysimilartoM. neoprojectans.Moreover,althoughthepositioningofM.valentae sp.nov.differedbetweenthetwotreeswiththesamenumberof steps,oneofthetopologiespresentedthisspeciesassistertoM. projectans(Fig.3),whosemorphologicalresemblancewasalready recognizedbysomeoftheauthors(MSGandJJ)atafirstsight.

Descriptions

Basedonthemolecularanalysespresentedaboveandonthe analysisofbodymorphologyandmaleterminaliapatterns,we pro-posetwonewspeciesofMycodrosophila,asdescribedbelow:

Mycodrosophilahofmannisp.nov.

(Figs.4A–C,5A,6A,7A–E)

Typematerial.HOLOTYPE:♂,labeled“Brasil,RO.Coloradodo Oeste13◦0037.7S;60◦3524.9W,Junges,J.col.5.I.2012/M. hof-mannisp.nov.Junges,Gottschalk,Loretoand Robe♂Holótipo”, post-abdomendisarticulatedandtheterminaliamountedonslide with Canada balsam. PARATYPES: ♂, labeled “Brasil, RO. Col-oradodoOeste.Zonarural,13◦0037.7S;60◦3524.9W,Junges, J.col.5.I.2012/M.hofmannisp.nov.Junges,Gottschalk,Loretoand Robe♂Parátipo”,post-abdomendisarticulatedandtheterminalia

(5)

Fig.4.Mycodrosophilahofmannisp.nov.,paratypemale,terminaliaremoved.(A)Lateralview;(B)dorsalview;(C)head,frontalview.Mycodrosophilavalentaesp.nov., paratypemale,terminaliaremoved.(D)Lateralview;(E)dorsalview;(F)head,frontalview.Bars:AandB=0.5mm;DandE=1.0mm;CandF=0.2mm.

mountedonslidewithCanadabalsam;male,slidewithterminalia labeled“Brasil,RO.ColoradodoOeste.Zonarural,13◦0037.7S; 60◦3524.9W,Junges,J.col.5.I.2012/M.hofmannisp.nov.Junges, Gottschalk,LoretoandRobe♂Parátipo”(GenBankaccession num-berKC987477).

Fig.5.IllustrationoftheabdominalpatternsforMycodrosophilaspecies.(A)M. hof-mannisp.nov.;(B)M.valentaesp.nov.DrawingoutlinesbasedonWheelerand Takada(1963).

Typelocality: Amazonianforestfragment,ColoradodoOeste city,RondoniaState,Brazil(13◦0037.7S;60◦3524.9W).

Diagnosis:Maincolordarkbrown.Thoraxwithdorsalregion darkbrownandpleurapaleyellowish(Fig.4AandB).Abdomen

(6)

Fig.7.MaleterminaliaofM.hofmannisp.nov.holotype.(A)Epandrium,cerci,surstylianddecasternum,posteriorview;(B)hypandriumandgonopods,posteriorview; (C–E)aedeagus,aedeagalapodemeandparaphyses,respectivelyinventral,dorsalandlateralviews.InA,arrowindicatesdecasternumposition.Bar=0.1mm.

withdark brownbands covering tergites 2–5, tergite2 with a palecentralareabackwardprojectedcentrally,tergite5withthe darkbandcoveringonlytheposteriormargin,withaslightcentral andanteriorprojection,andtergite6withacentrallongitudinal stripe(Fig.5A).Wingbearingtwocloudedbandsextending dorso-ventrallybelowtoeachcostalveinbreaks(Fig.6A),similartoM. projectans.Aedeagusprojectedanteriorlywithapicalregion bifur-catedandjagged(Fig.7C–E).

Maledescription

Head (Fig. 4C): Frons dark brown. Frontal length=0.24mm (0.21–0.25mm);frontalindex=0.81(0.86–0.91);frontaltapering ratio=1.18(1.13–1.22),lengthratiooforbitalsetae:or2/or1=0.16, or2/or3=0.33, or1/or3=1.00; vertical setae broken; ocellar tri-angle yellowish about 32% (30–33%) of frontal length. Facial carinaproeminentand noselike.Antennaebrown, aristae with 4 dorsal and 1 ventral branches plus terminal fork, flagel-lomere I width to length ratio=0.90 (0.87–0.93). Palpi dark brown.Redeyeswithoutpile.Genaebrown,vibrissalindex=0.60 (0.45–0.75); cheek index=5.47 (4.43–7.00); eye index=1.11 (1.07–1.15).

Thorax(Fig.4A–B):Maincolordarkbrown.Length:0.67mm (0.62–0.70mm),width:0.54mm(0.50–0.57mm).Eightirregular rowsofacrostichals,anteriorpairofdorsocentralsetaeabsent, dis-tancebetweenposteriordorsocentral=0.26mm(0.22–0.30mm); no prescutellar setae. Scutellum dark brown. Basal scutellar setae convergent. Scut index=0.54 (0.45–0.64); scut position index=0.61 (0.50–0.70). Two prominent katepisternal setae.

Sternoindex=0.54 (0.45–0.63).Pleuraebrownishyellow. Halter darkbrown.Legsyellowish.

Wing (Fig. 6A): Yellowish with dark yellow veins, bear-ing two clouded bands extending dorso-ventrally below each costal vein breaks. Length=1.53mm (1.50–1.57mm). Indices: wing index=2.27 (2.17–2.33); C=0.90 (0.88–0.92); ac=5.95 (5.40–6.25);4v=2.04(1.52–2.38);5x=1.85(1.55–2.00);4C=1.79 (1.31–2.15); M=0.51 (0.42–0.70); hb=0.63 (0.60–0.66); prox. x=0.56(0.42–0.69).

Abdomen(Fig.5A):Tergites2–5withdarkbrownbands.Tergite 2withthepaleareaoccupyingalmosthalfoftheanterior mar-gin,withabackwardcentralprojection.Tergite5withtheband coveringonlytheposteriormarginandcontainingaslightcentral projection.Tergite6bearingonecentrallongitudinalstrip.

Bodylength:1.51mm(1.50–1.55mm).

Terminalia(Fig.7):Epandriummicrotrichosewith5upper bris-tles, ventral lobe not microtrichose with 7 large bristles. Cerci microtrichose bearing large bristles, not fused to epandrium. DecasternumasinFig.7A.Surstyliwith12–13prensisetae, 2–3 innerand3–4outersetae.Hypandrium(Fig.7B)inanarc.Gonopods large,fusedtohypandriumandcontainingshortpilesandoneseta. Aedeagus(Fig.7C–E)projectedanteriorly,withtheapicalregion bifurcatedandjagged,internalmarginoftheaedeaguswithrows oftinysetae.Aedeagalapodemeflattenedlaterallyandshorterthan aedeagus.Ventralrodprojectedanteriorlyandfusedwiththe pos-teromedianmarginofthehypandrium.Paraphysesmicrotrichose, fusedtothegonopodsandcontainingthreeinnersetulae.

(7)

Fig.8. Brazilianbiomes,accordingtoIBGE(2013),andtheoccurrencerecordsfromthetwonewMycodrosophilaspecies.StarsindicateM.hofmannisp.nov.,trianglesindicate M.valentaesp.nov.Theblacksymbolsindicatethetypelocalityofeachspecies.

Femaleunknown.

Etymology:Theepithet isa genitive patronymtohonorthe BrazilianDrosophilistPauloRobertoPetersenHofmann,from Uni-versidadeFederaldeSantaCatarina.

Geographicdistribution:M.hofmannisp.nov.wassampledin twofragmentedareasfromBrazilianAmazonForestinColoradodo Oestecity,Rondônia(RO)(13◦0037.7S;60◦3524.9W)(Fig.8).

Ecologicalnotes:Therecordsarerestrictedtothetypelocality, andthetypeseriesspecimenswerecollectedflyingover mush-roomsofMycenasp.(Agaricales,Mycenaceae)(Fig.1).

Mycodrosophilavalentaesp.nov.

(Figs.4D–F,5B,6B,9A–E)

Typematerial. HOLOTYPE: ♂, labeled: “Brasil, RS. Capão do Leão.HortoBotânicoIrmãoTeodoroLuis–UFPel.31◦4602.05S, 52◦2655.34W,Blauth,M.L.andValer,F.col.29.04.2011/M. valen-tae sp. nov. Junges, Gottschalk, Loreto and Robe, ♂ Holótipo”. PARATYPES:3♂,labeled:“Brasil,RS.CapãodoLeão.HortoBotânico Irmão Teodoro Luis – UFPel. 31◦4602.05S, 52◦2655.34W, Blauth,M.L.andValer,F.col.29.04.2011/M.valentaesp.nov.Junges, Gottschalk,LoretoandRobe♂Parátipo”.Allthespecimens (holo-typeandparatypes)hadtheirpost-abdomendisarticulatedandthe terminaliamountedonslideswithCanadabalsam.

Typelocality:HortoBotânicoIrmãoTeodoroLuis,Campusof UniversidadeFederaldePelotas,CapãodoLeãocity,RioGrandedo SulState,Brazil(31◦4602.05S,52◦2655.34W).

Diagnosis:Maincolordarkbrown,notumdarkbrownand pleu-raebrownishyellow(Fig.4DandE).Abdomenwithdarkbrown bandscoveringtergites2–6,tergite4withapalecentralareaasin M.projectans(Fig.5B).Wingbearingtwocloudedbandsbeloweach costalveinbreaks(Fig.6B).Theaedeagushasatubularformwith tinyscalesaroundit,beingapicallybifurcatedandslightlyserrated (Fig.9C–E).

Maledescription

Head(Fig.4F):Fronsdarkbrownwithamedianarealightbrown. Frontal length=0.29mm (0.29–0.30mm); frontal index=0.97 (0.96–1.00), frontal tapering ratio=1.35 (1.30–1.48), length ratiosof orbital setae: or2/or1=0.20 (0.12–0.29), or2/or3=0.21 (0.12–0.38),or1/or3=1.05(0.82–1.3),vtindex=0.99(0.77–1.15), ocellartriangledarkbrownabout35%(29–40%)offrontallength. Facedarkbrown,facialcarinaproeminentandnoselike.Antennae dark brown, aristae with4 or 5 dorsal, 1 ventral and 4 inter-nalbranches,plusterminalfork;flagellomereIwidthtolength ratio=0.44(0.41–0.47).Palpidarkbrown.Redeyeswithoutpile. Genaebrown,vibrissalindex=0.27(0.16–0.33);cheekindex=9.00 (5.00–13.00);eyeindex=1.12(1.05–1.26).

Thorax(Fig.4DandE):Maincolordarkbrown.Length=0.95mm (0.92–1.00mm), width=0.72mm (0.69–0.77mm). Ten irregular rowsofacrostichals,anteriorpairofdorsocentralsetaeabsent, dis-tancebetweenposteriordorsocentral=0.34mm(0.28–0.36mm), noprescutellarsetae.Scutellumdarkbrown.Basalscutellarsetae convergent.Scutindex=0.41(0.36–0.51),scutpositionindex=0.63 (0.41–0.82).Twoprominentkatepisternalsetae,sternoindex=0.54 (0.47–0.59). Pleurae brownish yellow. Halterdark brown. Legs brownishyellow.

Wing (Fig. 6B): Yellow with veins dark yellowish, bearing clouded bands below the two costal vein breaks, extend-ing dorso-ventrally. Length=2.26mm (2.17–2.33mm). Indices: wing index=2.39 (2.17–2.81); C=0.84 (0.80–0.87); ac=5.40 (5.06–5.86);4v=1.90(1.81–1.97);5x=1.42(1.25–1.61);4C=1.78 (1.64–1.86); M=0.48 (0.45–0.50); hb=0.76 (0.72–0.79); prox. x=0.52(0.47–0.54).

Abdomen(Fig.5B):Tergites2,6darkbrown,onlytergite4with ananteriorandmedialpalearea.

Bodylength:2.36mm(2.12–2.61mm).

Terminalia(Fig.9):Epandrium(Fig.9A)highlymicrotrichose, with11 upperbristles.Ventral lobenotmicrotrichose, with10 largebristles.Cercimicrotrichose,bearinglargebristles,notfused

(8)

Fig.9.MaleterminaliaofM.valentaesp.nov.holotype.(A)Epandrium,cerci,surstylianddecasternum,posteriorview;(B)hypandriumandgonopods,posteriorview;(C–E) aedeagus,aedeagalapodemeandparaphyses,respectivelyinventral,dorsalandlateralviews.InA,arrowindicatesdecasternumposition.Bar=0.1mm.

toepandrium. Decasternum as in Fig.9A. Surstyli with6 peg-likeprensisetae,4innerand3outersetae.Hypandrium(Fig.9B) longerthanwide,v-shaped.Gonopodsfusedtohypandrium,longer thanwider,withonelongseta.Aedeagustubularwithtinyscales in themedial half,projected anteriorly, withthetip turnedto the dorsal region. Apex of aedeagus bifurcated, with marginal smallspinesandajaggedaspect.Aedeagalapodemeshorterthan aedeagus.Ventralrodprojectedand fusedwiththe posterome-dianmarginofthehypandrium.Paraphyseslinkedtotheaedeagal apodemebymembranoustissueandcontainingthreetinysetulae internally.

Femaleunknown.

Etymology:Theepithet isa genitive patronymtohonorthe BraziliandrosophilistVeraLúciadaSilvaValente,from Universi-dadeFederaldoRioGrandedoSul.

Geographicdistribution:M.valentaesp.nov.seemstobewidely distributedintheBrazilianstateofRioGrandedoSul(Fig.8).Until now,thisspecieswascollectedinthemunicipalitiesofCapãodo Leão(31◦4602.05S;52◦2655.34W),SantaMaria(29◦4302S; 53◦4334W), Rio Grande (32◦3218.28S; 52◦326.74W) and Viamão,RS,Brazil(30◦0517S;51◦0607W).

Ecologicalnotes:Thisspecies iscommonin Southern Brazil, wherespecimensofthetypeseriesweresampledflyingover mush-roomsofanunidentifiedPolyporaceae.

Discussion

Phylogeneticanalysis

Ourmolecularresultssupportthepresenceoftwonew Neotrop-icalMycodrosophilaspeciesintheBrazilianAmazonianandPampa biomes. In fact, M. hofmanni sp. nov. and M. valentae sp. nov. are reciprocally monophyletic species, which showed a broad barcoding gapbetweenintra-and interspecific distances. Since these are two premises for successful application of DNA bar-codingapproaches(MeyerandPaulay,2005),ourresultssupport thenotionthatthis methodologymayaidinspecies identifica-tion/discoveryissueswithinthisgroup,aspreviouslyshownfor othertaxons(Hebertetal.,2003;vanNieukerkenetal.,2012). Nev-ertheless,weneedtobeawarethattheseresultsmaysufferfrom samplingshortages,relatedtotheunderestimationofintraspecific variationand/ortotheoverestimationofinterspecificdivergence

(Moritzand Cicero,2004;Linares etal.,2009).In fact,whereas

thecompletedistributionrangeofeachof thetwonewspecies isnotyetunderstood,wewerenotabletosamplefourofthe cur-rentlyknownNeotropicalMycodrosophilaspecies(M.brunnescens, M.neoprojectans,M.nigropleuraandM.pseudoprojectans).Evenso, morphologicaldistinction fromthese (seebelow)attests tothe validityofM.hofmannisp.nov.andM.valentaesp.nov.

(9)

Concerningtherecoveredphylogeneticpatterns,interspecific relationshipsaredifficulttoinferbecauseofthelowsupportvalues presentedbyourphylogenies.Moreover,comparisonsinvolvinga singlegenemaynotaccuratelyreflectspeciesphylogeny(Nixon

andCarpenter,1993;vanNieukerkenetal.,2012).Nevertheless,as

somesimilaritieswererecoveredinbothmolecularand morpho-logicalanalyses,wemayusethemtomakeafirstapproximation tothegroup’sphylogeny. Thisis thecase, forexample, forthe clusteringofM.projectans,M.hofmannisp.nov.andM.valentae sp.nov.,whichformedamonophyleticcladesistertoM.elegans inboth,molecularandmorphologicalphylogenies.Theformation ofaNeotropicalMycodrosophilaspeciesgroupindependentofthe NearcticspecieswasinferredthroughCOIphylogeneticanalysis and—despiteitslowsupportvalues—isconcordantwiththe propo-sitionofWheelerandTakada(1963).Inthissense,itisimportantto emphasizethatnomolecularstudy,toourknowledge,hasexplored thephylogenetic relationshipsamong AmericanMycodrosophila species.

TwonewspeciesofNeotropicalMycodrosophila

Thetwonewspeciesdescribedhereareincludedinthe Myco-drosophilagenusbythepresenceofthearistawithasingleventral branch,onlyonepairofdorsocentralsetae,acostallappetandthe entirelycoloredandshiningscutum,withoutspotsatthebasesof thesetae(WheelerandTakada,1963;Grimaldi,1990).M.hofmanni sp.nov.andM.valentaesp.nov.arealsoembeddedwithinthe sub-genusMycodrosophila,withadevelopedcostallappetandacloud bandbelowthesecondcostalvein.

The patterns of the tergites are remarkable in distinguish-ingthetwonewspeciesbetweeneach otherandinrelationto otherMycodrosophilaspecies.Thisdistinctioniscommonlyrelated tothe presence of pale areas between black bands in the ter-gites, which seems to be widespread in Mycodrosophila (Bock,

1980;ChassagnardandLachaise,2000;Okada,1956;Tsacasand

Chassagnard, 1991).In this case, whereas the Nearctic species

presentpaleareasinallthelastsixtergites(WheelerandTakada, 1963),inthespeciesdescribedherethesearerestrictedtosome ofthetergites. Thepresenceofthesepale areasalsoallowsthe distinctionofM.hofmannisp.nov.andM.valentaesp.novfrom M.brunnescens,M.nigropleuraandM.elegans,whichhavetheir abdomencompletelydark(WheelerandTakada,1963).

Althoughthedifferentiationofthetwonewspeciesinregardto theremainingNeotropicalMycodrosophilaspeciesisnotso remark-able,thecolorpatternofthetergitesisalsoveryinformativeinthis task.Inthissense,M.hofmannisp.nov.differsfromM.projectans bytheabsenceofpaleareasintergites3and4,andfromM. pseudo-projectansbyhavingadarkspotontergite6.Infact,assuggestedby ourmorphologicalphenogram,M.hofmannisp.nov.ismostsimilar toM.neoprojectans,althoughbothspeciesdifferbythecolor pat-ternoftergite2,whereapaleareaisencounteredonlyinthenew species.InthecaseofM.valentaesp.nov.,itdiffersfromM. neopro-jectans,M.projectansandM.pseudoprojectansbyhavingapalearea onlyintergite4,whereastheotherthreespecieshaveadditional paleareasintheirabdomens.

Themaleterminaliaofthetwonewspeciesalsopresentsthe regularformfoundinMycodrosophilaflies,withatubular, elon-gatedandapicallybifurcatedaedeagus(Bock,1980;Chassagnard

andLachaise,2000;McEveyandPolak,2005;WheelerandTakada,

1963).Infact,theaedeaguswithabifurcationorbifurcatedand jaggedintheapicalregionis a characteristicsharedby alarge numberofMycodrosophilaspecies,beingfoundineightofthenine previouslyknownAmericanMycodrosophilaspecies(themale gen-italiaofM.brunnescensisunknown),inadditiontothetwonew speciesdescribedhere.TheventrallycurvedaedeagusfoundinM. hofmannisp.nov.is alsoencounteredin Mycodrosophiladiversa

Bock,1980and Mycodrosophila erectaOkada,1968,two species

inhabitingotherZoogeographicalRegions,althoughM.diversahasa paleareaontergite6andathinnerapicalaedeagusregion,whereas M.erectahastheaedeagusmorestraightandwithsomenotched bifurcations. Otherwise, theaedeagus of M.valentaesp. nov. is similartothatfoundinM.claytonae,withastraightformatand tinyspinesintheapicalregion,althoughtheabdominalpatternis largelydifferentamongthesetwospecies.

KeytoAmericanspeciesofMycodrosophila(updatedfrom

WheelerandTakada,1963)

1. Darkbandsoftergites2and3broadlyinterruptedmediallyandall tergiteswithpaleareas;Nearcticspecies...2

1 Darkbandsoftergites2and3withoutbroadmedianinterruptions;

Neotropicalspecies...4

2. Darkbandoftergite4broadlyinterruptedmedially,thusappearing liketheprecedingones;terminaliaasinWheelerandTakada,1963: 396,figs.3–6...M.dimidiataLoew,1862

2. Darkbandoftergite4notinterrupted,mediallyshapedlikean

invertedV;terminalianotasabove...3

3. Costalindexabout2.0,tergite6darkorwithsmallpaleareasinthe lateralregion.AbdominalpatternasshowninWheelerandTakada, 1963:394,fig.2;terminaliaasinWheelerandTakada,1963:396,figs. 7–10...MycodrosophilastalkeriWheelerandTakada,1963

3. Costalindexabout1.7,tergite6withlargepaleareasinthelateral.

AbdominalpatternasshowninWheeler&Takada,1963:394,fig.2; terminaliaasinWheelerandTakada,1963:396,figs.11–14)...M. claytonaeWheelerandTakada,1963

4. Wingwithfiveprominentblackclouds,includingoneoverdm-Cu crossvein;R2+3bentabruptlytoCosta;terminaliaasinWheelerand

Takada,1963:397,figs.31–34)...M.elegansWheelerandTakada, 1963

4. Winglessclouded,posteriorcrossvein(dm-Cu)neverinacloud;R2+3

veinapproachingCostagradually;terminalianotasabove...5 5. Pleuralargelybrown,withawhitishareaextendingobliquelyfromthe

axillararea(wingbase)tothepronotum(prosternum);legsbrown. Male:unknown...M.brunnescensWheelerandTakada,1963

5. Pleurapaleyellowish,atmosttheanepimeron(pteropleura)dark;legs

mostlypale...6

6. Anepimeron(pteropleura)dark,formingashortobliquebandfromthe baseofthehalteretothekatepisternum(sternopleural)corner; abdomenblack;terminaliaasinWheelerandTakada,1963:396,figs. 27–30...M.nigropleuraWheelerandTakada,1963

6. Anepimeron(pteropleura)yellowishpaleorbrownishpale;some

tergiteswithpaleareas...7 7. Tergite6wholeshiningblack...8

7. Tergite6yellowwithandelongate,narrow,medianblackstripe;

tergite5withanapicaldarkbandexpandedbasallyinmidline...9 8. Tergites3,4and6shiningblack,tergite5withparamedianbasalpale

areas;humeralbreak(costalincision)weak,lappetscarcely developed;terminaliaasinWheelerandTakada,1963:396,figs. 23–26...M.pseudoprojectansWheelerandTakada,1963

8. Tergites3and4oronlytergite4withsomepaleareas;tergites5and6

shiningblack;costallappetlargeandblack;terminalianotasabove... 10

9. Tergite2withoutpaleareas;darkbandintergite5nottouchingthe lateralmargin;terminaliaasinWheelerandTakada,1963:397,figs. 19–20)...M.neoprojectansWheelerandTakada,1963

9. Tergite2withapaleareaintheanteriormarginandadarkbandwith

bilobedaspect(Fig.5A;terminaliaasinfig.7A–E...M.hofmannisp. nov.

10. Bothtergites3and4withpaleareasintheanteriormargin;tergite3 withapaleandroundedcentralareaandtergite4withanexpanded palearea;terminaliaasinWheelerandTakada,1963:396,figs.15–18 ...M.projectansSturtevant,1916

10. Onlytergite4withapaleareaexpandedintheanteriormargin,tergite

3darkbrown(Fig.5B);terminaliaasfig.9A–E...M.valentaesp.nov.

Conflictsofinterest

(10)

Acknowledgements

The authors are grateful to Ronaldo Golombiesky, Pedro Mesquita Fonseca and Francine Cenzi de Ré for helping with themolecularprocedures;to Monica LanerBlauth, Felipe Berti ValerandStelaMachado,forkindlyproviding somespecimens; toEduardoBernardiforfungalidentifications;andtothe Brazil-ianFundingAgenciesCoordenac¸ãodeAperfeic¸oamentodePessoal deNívelSuperior(CAPES)andConselhoNacionalde Desenvolvi-mentoCientíficoeTecnológico(CNPq)forfinancialsupport.The collections here performedwere authorized by theSistema de Autorizac¸ão e Informac¸ão em Biodiversidade (SISBIO), and we thank themto theircommitmentwithethicalguides and con-servation efforts as concerns Brazilian scientific activities.This studywassupportedbyUniversal-CNPq14/2013,processnumbers 471174/2013-0and472973/2013-4.

References

Bächli,G.,2015.TaxoDros:TheDatabaseonTaxonomyofDrosophilidae,Available fromhttp://www.taxodros.unizh.ch(accessed23.08.15).

Bächli,G.,Vilela,C.R.,Escher,S.A.,Saura,A.,2004.TheDrosophilidae(Diptera)of FennoscandiaandDenmark.FaunaEntomol.Scand.39,1–362.

Bock,I.,1980.DrosophilidaeofAustralia.IV.Mycodrosophila(Insecta:Diptera).Aust. J.Zool.28,261–269.

Burla,H.,1954.ZurKentnnisDerDrosophilidenderElfenbeinküste(Französisch, West-Afrika).Rev.SuisseZool.61,1–218.

Chassagnard,M.T.,Lachaise,D.,2000.Mycodrosophilamatilei,nouvelleespèce mycophageafrotropicaledécouverteparLoïcMatile(Diptera,Drosophilidae). Rev.Fran.Entomol.22,177–182.

Grimaldi,D.A.,1990.Aphylogeneticrevisedclassificationofgenerainthe Drosophil-idae(Diptera).Bull.Am.Mus.Nat.Hist.197,1–139.

Grimaldi,D.A.,2010.Drosophilidae(smallfruitflies,pomaceflies,vinegarflies).In: Brown,B.V.,Borkent,A.,Cumming,J.M.,Wood,D.M.,Woodley,N.E.,Zumbado, M.A.(Eds.),ManualofCentralAmericanDiptera.NRCResearchPress,Ottawa, pp.1197–1206.

Guindon,S.,Gascuel,O.,2003.Asimple,fast,andaccuratealgorithmtoestimate largephylogeniesbymaximumlikelihood.Syst.Biol.52,696–704.

Hebert,P.D.N.,Cywinska,A.,Ball,S.L.,deWaard,J.R.,2003.Biologicalidentifications throughDNAbarcodes.Proc.R.Soc.B:Biol.Sci.270,313–332.

IBGE–InstitutoBrasileirodeGeografiaeEstatística,2013.MapasMurais:Biomas, Availablefrom ftp://ftp.ibge.gov.br/CartaseMapas/MapasMurais/ (accessed 20.02.13).

Kimura, M.,1980. Asimplemethod forestimating evolutionaryrate of base substitutionsthroughcomparativestudiesofnucleotidesequences.J.Mol.Evol. 16,111–120.

Linares,M.C.,Soto-Calderon,I.D.,Lees,D.C.,Anthony,N.M.,2009.Highmitochondrial diversityingeographicallywidespreadbutterfliesofMadagascar:atestofthe DNAbarcodingapproach.Mol.Phylogenet.Evol.50,485–495.

Machado,S.,dosSantos,J.P.J.,Robe,L.J.,Loreto,E.L.S.,2014.Anefficientandcheap entomologicalaspiratortocollectmycophylicandanthophilicadult Drosophil-idaeflies.Drosoph.Inf.Serv.97,169–171.

McEvey,S.F.,Polak,M.,2005.Mycodrosophila(Diptera:Drosophilidae)ofFijiand Vanuatuwithdescriptionofninenewspecies.Occas.Pap.BerniceP.BishopMus. 84,35–67.

Meyer,C.P.,Paulay,G.,2005.DNAbarcoding:errorratesbasedoncomprehensive sampling.PLoSBiol.3,2229–2238.

Moritz,C.,Cicero,C.,2004.DNAbarcoding:promiseandpitfalls.PLoSBiol.2,e354.

Nixon,K.C.,Carpenter,J.M.,1993.Onoutgroups.Cladistics9,413–426.

Nylander, J.A.A., 2004. MrModeltest v2. Program Distributed by the Author. Evolutionary Biology Center, Uppsala University, Available from

https://github.com/nylander/MrModeltest2(accessed10.10.12).

Okada,T.,1956.SystematicStudyofDrosophilidaeandAlliedFamiliesofJapan. Gihodo,pp.183.

Okada,T.,1965.DrosophilidaeoftheOkinawaIslands.Kontyû33,327–350.

Okada,T.,1968.AdditiontothefaunaofthefamilyDrosophilidaeofJapanand adjacentcountries(Diptera).II.GeneraParamycodrosophila,Mycodrosophila, Lio-drosophilaandDrosophila,includinganewsubgenusPsilodorha.Kontyû26, 324–340.

Okada,T.,1986.ThegenusMycodrosophilaOldenberg(Diptera,Drosophilidae)of SoutheastAsiaandNewGuineaII.Atypicalspecies.Kontyû54,291–302.

Oldenberg,L.,1914.BeitragzurKenntnisdereuropäischenDrosophiliden(Dipt.). Arch.Nat.80,1–42.

Posada,D.,Crandall,K.A.,1998.Modeltest:testingthemodelofDNAsubstitution. Bioinformatics14,817–818.

Ronquist,F.,Teslenko,M.,vanderMark,P.,Ayres,D.L.,Darling,A.,Höhna,S.,Larget, B.,Liu,L.,Suchard,M.A.,Huelsenbeck,J.P.,2012.MrBayes3.2:efficientBayesian phylogeneticinferenceandmodelchoiceacrossalargemodelspace.Syst.Biol. 61,538–542.

Simon,C.,Frati,F.,Beckenbach,A.,Crespi,B.,Liu,H.,Flook,P.,1994.Evolution, weighting,andphylogeneticutilityofmitochondrialgenesequencesanda com-pilationofconservedpolymerasechainreactionprimers.Ann.Entomol.Soc.Am. 87,651–701.

Staden,R.,1996.TheStadensequenceanalysispackage.Mol.Biotechnol.5,233–241.

Sturtevant,A.H.,1916.NotesonNorthAmericanDrosophilidaewithdescriptionsof twenty-threenewspecies.Ann.Entomol.Soc.Am.9,323–343.

Swofford,D.L.,2003.PAUP: PhylogeneticAnalysisUsingParsimony(andOther Methods).Version4.SinauerAssociates,Massachusetts,Availablefromhttp:// www.sinauer.com/paup-phylogenetic-analysis-using-parsimony-and-other-methods-4-0-beta.html(accessed10.10.12).

Tamura,K.,Nei,M.,1993.Estimationofthenumberofbasenucleotidesubstitution inthecontrolregionofmitochondrialDNAinhumansandchimpanzees.Mol. Biol.Evol.1,512–526.

Tamura, K., Peterson, D., Peterson, N., Stecher, G.,Nei, M., Kumar, S., 2011.

Molecularevolutionarygeneticsanalysisusingmaximumlikelihood, evolu-tionarydistance,andmaximumparsimonymethods.Mol.Biol.Evol.28,2731– 2739.

Tsacas,L.,Chassagnard,M.T.,1991.DipteraDrosophilidaedeNouvelle-Calédonie. 2. Leucophenga, Mycodrosophila et Paramycodrosophila, avec une note sur les genitália de Leucophenga. Mem. Mus. Natl. d’hist. Nat. 149a, 302–328.

vanNieukerken,E.J.,Doorenweerd,C.,Stokvis,F.R.,Groenenberg,D.S.J.,2012.DNA barcodingoftheleaf-miningmothsubgenusEctoedemias.str.(Lepidoptera: Nepticulidae)withCOIandEF1-␣:twoarebetterthanoneinrecognisingcryptic species.Contrib.Zool.81,1–24.

Wheeler,M.R.,Takada,H.,1963.ArevisionoftheAmericanspeciesofMycodrosophila (Diptera,Drosophilidae).Ann.Entomol.Soc.Am.56,392–399.

Referências

Documentos relacionados

ii) Avaliar os efeitos da atividade física sobre o comportamento doentio dos camundongos, através dos testes comportamentais de suspensão pela cauda e campo aberto;..

Como se deve tomar o banho f Depois de des- pido, é bom ficar em toilette de banho alguns minu- tos sobre a areia da praia ; durante este tempo, o ar ambiente acha-se em contacto

Para determinar o teor em água, a fonte emite neutrões, quer a partir da superfície do terreno (“transmissão indireta”), quer a partir do interior do mesmo

Os resultados deste estudo mostram que os resultados de ensaios de concentração- resposta não são bons preditores das respostas populacionais, e que o efeito

This paper explores the link between the rhetoric of resentment and the demands for recognition of Quebecois identity through an analysis of political discourses presented during

In this context, the aims of this study were: (1) to assess folate and vitamin B-12 status, as well as the frequency of elevated Hcy levels among children, elderly, and pregnant

Assim, “a Paris mística não é só a capital da França, mas a de um século, como definiu Walter Benjamin, além de se tornar a referência imagética, o porto de ancoragem para

nho sobre o meu nome. Não sei se estas narrativas, lançadas em lingua- gem simplicissima e despidas de qualquer preten- são, conseguiram interessar o publico da capital ; do