• Nenhum resultado encontrado

Fusarium and Aspergillus mycotoxins contaminating wheat silage for dairy cattle feeding in Uruguay

N/A
N/A
Protected

Academic year: 2021

Share "Fusarium and Aspergillus mycotoxins contaminating wheat silage for dairy cattle feeding in Uruguay"

Copied!
6
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Food

Microbiology

Fusarium

and

Aspergillus

mycotoxins

contaminating

wheat

silage

for

dairy

cattle

feeding

in

Uruguay

Agustina

del

Palacio,

Lina

Bettucci,

Dinorah

Pan

UniversidaddelaRepública,FacultaddeCiencias-FacultaddeIngeniería,Montevideo,Uruguay

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28September2014 Accepted25February2016 Availableonline4July2016 AssociateEditor:CarlosPelleschi Taborda Keywords: Wheatsilage Mycotoxins Fungi

a

b

s

t

r

a

c

t

WheatisoneofthemostimportantcultivatedcerealsinUruguayforhumanconsumption; however,whenharvestyieldsarelow,wheatisusuallyusedinensilingforanimalfeeding. Ensilingisaforagepreservationmethodthatallowsforstorageduringextendedperiodsof timewhilemaintainingnutritionalvaluescomparabletofreshpastures.Silageis vulner-abletocontaminationbyspoilagemoldsandmycotoxinsbecauseensilagematerialsare excellentsubstratesforfungalgrowth.Theaimofthestudywastoidentifythemycobiota compositionandoccurrenceofaflatoxinsandDONfromwheatsilage.Atotalof220 sam-plesofwheatwerecollectedfromfourfarmsinthesouthwestregionofUruguayweresilage practicesaredeveloped.ThemainfungiisolatedwereFusarium(43%)andAspergillus(36%), withFusariumgraminearumsensulatoandAspergillussectionFlavibeingthemostprevalent species.Aflatoxinconcentrationsinsilobagsrangedfrom6.1to23.3␮g/kg,whereasDON levelsrangedbetween3000␮g/kgand12,400␮g/kg.Whenevaluatingaflatoxigeniccapacity, 27.5%ofAspergillussectionFlavistrainsproducedAFB1,5%AFB2,10%AFG1and17.5%AFG2. AllisolatesofF.graminearumsensulatoproducedDONand15-AcDON.Theresultsfromthis studycontributetotheknowledgeofmycobiotaandmycotoxinspresentinwheatsilage.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Dairyproductsare one ofthe maincommoditiesexported byUruguay.Althoughpasturesconstitute themajorsource fordairycattlefeeding,silagegrainsarealsoused,supplying 125gperliterofmilkproduced.1Ensilingisaforage

preser-vationmethodthatallowsforgrainstorageduringextended

Correspondingauthor.

E-mail:dpan@fing.edu.uy(D.Pan).

periodsoftimewhilemaintaininganutritionalvalue com-parable with that offreshpastures. Grain silagestorageis basedonthechemicalprocessesthatoccurinvegetable tis-sues whentheyare underanaerobic conditionsand inthe presenceoflacticacidbacteria,whichleadstoadecreaseinpH value(4–4.5),thusinhibitingseveralspoilagemicroorganisms. However, silageisvulnerable tocontamination byspoilage moldsbecauseensiledmaterialsareexcellentsubstratesfor

http://dx.doi.org/10.1016/j.bjm.2016.06.004

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

fungalgrowth,whicharepresentassporesinthefield, espe-ciallyinsoil.2Moreover,factorssuchasexcessivemoistureor

dryness,condensation,heat,poorcompressionofthe mate-rials,leakageofrainwaterandinsectinfestationcanleadto undesirablemoldcontamination,mycotoxinproductionand reductionofnutritionalvalue.3–5

Mycotoxins are low molecular weight products of fun-gal secondary metabolism, produced mainly by species of

Aspergillus,PenicilliumandFusarium.Theycancausehuman andanimaldisorderswhenconsumedorinhaled.6,7Exposure

tomycotoxinsthroughcontaminatedfeedisoneofthemajor riskfactorstoruminanthealth.7,8

AspergillusflavusandA.parasiticusarespeciesthatproduce aflatoxins (AFs), the most important carcinogenic myco-toxins. Acute aflatoxicosis in cattle has been thoroughly described.ConsumptionoffeedcontainingAFs mayreduce growth rate, decrease milkproduction,cause liver damage and depress immune function.9 Among AFs, aflatoxin B1

(AFB1) isthe most carcinogenic,and it is classified bythe International Agency for Research on Cancer (IARC) as a group1humancarcinogen.10 When animals eatfoodstuffs

containing AFB1, this toxin is metabolized and accumu-lated inmilkas aflatoxin M1(AFM1).11 Many studies have

demonstrated that AFM1 also displays toxic and carcino-genic effects; therefore it too has been included in IARC group1.12

Fusarium spp. are the most frequent wheat contami-nantfungiinUruguayand are particularlyprevalentwhen spring rains occur.13 Trichothecenes produced by Fusarium

speciesalterimmune-mediatedactivitiesinbovines.14 This

toxin isapotentinhibitor ofeukaryoticprotein biosynthe-sis,inducingvomiting,diarrhea,anemiaandfoodrefusalin animals.15–17

Theaimsofthisstudyweretoevaluatethefollowing:(1)the mycobiotacompositionofwheatsilagescollectedduringa4 monthperiod;(2)thetoxigenicabilityofisolatesofAspergillus

sectionFlaviandFusariumgraminearumsensulato(F. gramin-earums.l.)and(3) themycotoxins producedinwheatgrain silage.

Materials

and

methods

Samples

Wheat was harvested from cultivated lands of four farms located in the southwest region of Uruguay, mechanically choppedandenclosedwithinpolystyrenebags.Compaction wasconductedinNovemberof2009,andthesilobagwasfirst openedinJanuary2010.Atotalof220samplesofwheat(4from freshlyharvestedgrainsand216fromstoredgrain)were ana-lyzedfromNovemberof2009atharvesttimeandat60,90and 120daysofensiling.Theremovalofmaterialwasperformed usingacuttingmachine.Samplingwasperformedmanually throughthe silosintransectsatthreelevels.From the cut edge,threepointsfromeachsectionofthesilo(upper,middle andlower)weresampledat50cmhorizontaldepth.Ateach time,1-kgsamplesfromeachsectionwerecollected.Samples belongingtoeach silowerehomogenizedand quarteredto obtain1-kgsub-samplesforanalysis.

Physicalpropertiesofsamples

Twenty-fivegramsofeachsampleweredriedinanSC1oven (SiacS.C.,Montevideo,Uruguay)toconstantweightinaPetri dish at 105◦C, and the moisture content of samples was expressed as percentage values (MC%). Water activity was determined byautomated analysis using anAqualab CX-2 (Decagon Devices,Inc.).pH measurementswere performed byadding90mLofdistilledwaterto10gofsilagematerials andhomogenizingthemixturefor15min.Thehomogenized mixturewasfiltered,andthepHofthefiltratewasmeasured withanOrionStarA211glasselectrodepHmeter(Thermo Scientific).

Analysisofmycobiota

One-hundredwheatgrainparticles fromeach samplewere placedinPetridishescontainingpotatodextroseagar(PDA) andincubatedat25◦Cundera12hwhite/12hblack fluores-centlightphotoperiod.18,19Theemergingcoloniesfromeach

particleofwheatweretransferredtoallowidentificationby meansofmacro-andmicromorphologicalcharacteristics, fol-lowingconventionalmycologicalmethods.20–26

ToconfirmmorphologicalidentificationsoftheisolatesofF. graminearums.l.specificPCRwasperformedusingtheprimers Fg16FandFg16R.27TheITSregionandpartsofthe␤-tubulin

andcalmodulingeneswereamplifiedtoconfirmthe identifi-cationofAspergillussectionFlaviisolates.28

Determinationofmycotoxinsinsilagessamples

The quantitative analyses of DON and aflatoxins in sam-ples were performed using competitive enzyme-linked immunosorbent assays (ELISA) using the Ridascreen® Fast

DONandRidascreen®FastAflatoxinSC(R-BiofarmAG)

com-mercialkits.Theprotocolsforextractionandquantification were performed according to manufacturer recommenda-tions.Thedetectionlimitsofthe techniquewere200␮g/kg forDONand2␮g/kgforaflatoxins.

Toxigeniccapacityoffungalisolates

The ability of potentially toxigenic isolates to produce mycotoxinsinvitrowastested.Aflatoxinanalyseswere per-formedusingthemethodologydescribedbyBragulatetal.29

Aspergillus section Flavi strains isolated from silage sam-pleswereincubatedinPetridishesofCoconutExtractAgar (CEA) (20% desiccated coconut; 1.5% agar) and incubated at 25◦C for 14 days in the dark. Then, 3 plugs were cut from each Petri dish and 1mL of methanol was added. After 1h in methanol, an aliquot (200␮L) was derivatized with 700␮L trifluoroacetic acid:acetic acid:water (20:10:70, v/v).Thederivatizedsolutionwasanalyzedusingareversed phase HPLC, consisting of a Shimadzu LC-10ADvp pump, aRF-10Axlfluorescencedetector(Shimadzu;excitationand emission wave lengthof360nm and 440nm, respectively), andaC18reversed-phasecolumn(150mm×4.6mmi.d.,5␮m

particlesize;Nucleodur®,Macherey-Nagel,Düren,Germany)

connected to a precolumn Security Guard (8mm×4mm i.d.,5␮mparticlesize;Nucleodur®,Macherey-Nagel,Düren,

(3)

Germany).Themobilephasewaswater:methanol:acetonitrile (4:1:1,v/v/v)ataflowrateof1.5mLmin−1.Theinjection vol-umewas20␮L.Aflatoxinproductionwasmeasuredinngg−1 ofculturemedium.Thelimitofdetectionwas1ngg−1ofB1 andG1and0.8ngg−1ofB2andG2(TrilogyAnalytical Labora-toryInc.,Washington,MO).

The capacity of F. graminearum s.l. isolates to pro-duce trichothecene was determined using multiplex PCR experiments30andasfollows:25goflonggrainricewasplaced

ina250mLErlenmeyerflaskand10mLofdistilledwaterwas added.Theflaskswereautoclavedtwiceduring2 consecu-tivedaysat121◦Cfor20min.Eachflaskwasinoculatedwith a7-day-culture-carnationleafagar(CLA)plugandincubated inthedarkfor28daysat25◦C.Attheendoftheincubation period,thecontentsoftheflaskweredriedat50◦Cfor24h andthenmilled.Fifteengramsofthedriedsamplewerethen extractedwith40mLacetonitrile:methanol(14:1,v/v),shaken for2hat150rpmandthenfilteredthroughWhatmanN◦1 fil-terpaper.Asyringe(3mLcapacity)pluggedwithglasswool anddry-packedwithalumina:carbon(20:1,w/w,500mg)was usedasamini-cleanupcolumn.A2mLaliquotofextractwas appliedtothecolumn, allowedtodrainundergravity, and the eluent collected. Thecolumn was washed with 500␮L acetonitrile:methanol:water(80:5:15,v/v),andthecombined eluents wereevaporated todrynessunderN2 at50◦C.The

cleanedresiduewasdissolvedin500␮Ltoluene:acetonitrile (95:5,v/v).Thestandardmycotoxinsandextractswereapplied toTLCplates(Merck5553,MerckKGaA,Darmstadt,Germany) andwereresolvedinasolventsystemcontaining8:1:1(v/v/v) chloroform:acetone:2-propanol.Theplatesweredevelopedby sprayingwith20%aluminumchlorideinethanolandheating to100◦Cfor7min.ThepresenceofDON,NIV,3-AcDONand 15-AcDON(TrilogyAnalyticalLaboratoryInc.,Washington,MO) productionwasdeterminedbyvisualcomparisonwithknown amountsofstandardsilluminatedwithUVlightat366nm.31

Dataanalyses

Correlationsbetweenvariableswereanalyzedusingthe Pear-son correlation coefficient. Fisher’s protected LSD testwas usedforcomparingthemeansoffungalpropagules, myco-toxin levels and sample storage time. All analyses were conductedusingSigmaSTATversion2.1(Chicago).

Results

and

discussion

Fungalcontaminationwasobservedinallofthewheat sam-ples.ThemainfungiisolatedwerefromthegeneraFusarium

(43%),Aspergillus(36%),Alternaria(33%),followedbySporothrix

(24%), Eppicoccum (12%) and Penicillium (6%). There was no significantdifferenceinthetotalfungalpropagules(p>0.05) amongthesamplingperiods,whichindicatesgoodprocessing practices.However,somegenera,suchasAlternaria, Eppicoc-cumandFusarium,occurred athigherfrequenciesinfreshly harvested wheat and were significantly different from the remainder ofthe sampling period (p<0.05) (Fig. 1).On the otherhand,Aspergillus, SporothrixandPenicillium, whichare knowntocausespoilageofstoredproducts,werepresentin highfrequenciesafter60daysofstorage(Fig.1).

0 10 20 30 40 50 60 70 80 90 100 Alternaria Penicillium Sporotrix Epicocum Aspergillus Fusarium Is o la ti on fr e qu en cy, %

Fig.1–Isolationfrequency(%)offungalgenerainsilage

samples; –harvest; –60daysofstorage; –90daysof

storage; –120daysofstorage.

Fusarium spp. and Aspergillus spp., the main toxigenic molds, were the prevalent genera in wheat silage. These resultsareinagreementwithseveralstudiesthatfound sim-ilarresultsincornandsorghumsilages.3,18,32–34Cornsilages

areheavilystudied,buttherearefewdataonmycofloraand mycotoxincontaminationinwheatsilages.

F.graminearums.l.,F.acuminatum,F.poae,F.sambucinum,F. sporotrichioides,F. oxysporum,F. nygamai,F. lateritium,F. equi-setiandF.subglutinanswereidentified;F.graminearums.l.was theprevalent species,witharelativedensityof93%,which has been reported by other authors forwheat atthe field stage.13,35–37Theseresultsdifferfromthosefoundforcornand

sorghumsilages,inwhichF.verticillioidesisthemostfrequent species.2,18,33,38

WithinthegenusAspergillus,onlyAspergillussectionFlavi, A. niger aggregate and A. clavatus were identified, with

AspergillussectionFlavishowingthehighestrelativedensity (98%)inaccordingwithitsoccurrenceincornandsorghum silagesinArgentina and Brazil.5,18 Onthe other hand,this

result differsfrom resultsreported byanother author who foundhighincidencesofA.fumigatusincornsilages.39The absenceofA.fumigatusinstudysamplesdecreasesthedual hazardsofingestionofpathogenicsporesandpotential myco-toxinproduction.40

TheisolatesofSporothrixschenckii-likemorphogroup41are

notcommonlyfoundinsilages,butinthiswork,theisolate frequencywas23.8%andwasonlyfoundinpost-fermentation silagesamples.ThiscouldbebecauseS.schenckiiisa dimor-phic fungusthatgrowsasayeast(35–37◦C)andasmycelia (25–30◦C)inpresenceofCO2.42,43 Thisspeciesisan

impor-tanthuman-pathogenicfungusandistheetiologicagentof sporotrichosis. The most common clinical presentation of thisdiseaseisthecoetaneousformwithorwithoutregional lymphaticinvolvement.Sporotrichosisisconsideredtobea hazard amongworkerswhoseoccupationsbringthem into frequentandsometimestraumaticcontactwithplant mate-rialorsoil.44

F.graminearums.l.wasthemostfrequentisolateonrecently harvested grains and grains storedup today 60.However,

AspergillussectionFlaviwasrecordedafter60daysofstorage asshowingasignificantnegativecorrelationwithF. gramin-earum s.l. (r=−0.97,p<0.05). F. graminearums.l. exhibited a negativecorrelationwithtimeofstorage(r=−0.97,p<0.05),

(4)

Table1–Physicalpropertiesandmycotoxinlevelsinwheatsilagesduringthestoragetime.

Time(days) aW±SD pH±SD MC%±SD Deoxynivalenol(␮g/kg) Aflatoxins(␮g/kg)

Mean±SD Range Mean±SD Range 60 0.693±0.057 6.39±0.5 11.7±2.3 5300±1691 3000–6800 3±5 nd-11.9 90 0.672±0.051 6.49±0.30 12.4±1.9 5525±1499 3400–6800 12±8 nd-18.1 120 0.709±0.043 6.69±0.30 14.6±3.4 6007±2122 3800–7900 17±9 6–23

aw,wateractivity;SD,standarddeviation;MC,grainmoisturecontent;nd,notdetected.

whileAspergillussection Flavishowedapositivecorrelation (r=0.99,p<0.05).

Thestudyofpre-existingmycobiotainagivensubstrate cansometimesbeusedasabasisforestimating contaminat-ingmycotoxins.Wheat grainsare frequentlycontaminated simultaneouslybyseveralfungi,whichareeachableto pro-duceseveraltoxins.

Due to a lack ofunified pre-existing methodologies for mycotoxin analysisinwheat silagesamples,we chosethe mostappropriateavailablemethodsforthesesamples. Mea-suredmycotoxinlevels inwheatsilagesamplesareshown

inTable1. Thepresenceofmycotoxinswas detectedinall

samplesanalyzed.Thelevels ofaflatoxinsrangedfrom 6.1 to23.3␮g/kg,whereas DONlevels werebetween3000␮g/kg and12,400␮g/kg,withrecentlyharvestedsamplesshowing higherandsignificantlydifferentlevels(p<0.05).Therewere nosignificantdifferencesinaflatoxinlevels(p>0.05)among thesamplingperiods.

Freshlyharvestedsamplesdidnotshowaflatoxin contam-ination,butahighpercentageofsilosampleswerepositive foraflatoxinscontamination,suggestingthatAspergillus sec-tionFlaviandaflatoxincontaminationwasenhancedduring storage.However,only16.7%oftheseshowedlevels exceed-ingtherecommendedlimitforfeeddestinedfordairycattle and the maximum permissible level for human food in Uruguay(20␮gkg−1).45,46 Similarresultswerefoundincorn

andsorghumsilagesfromArgentinaandBrazil,18,33while

afla-toxincontaminationwasabsentinwheatsilagesfromIsrael and the Netherlands,47,48 probably duetothe different

cli-maticconditionsinUruguay.

AswheatgrainsarrivetosiloscontaminatedwithF. gramin-earums.l.,theycouldprovidetheinitialDONlevelspresented inthesilage.Duringthestoragetime(120days),areductionof 43%inDONcontaminationwasdetected.Conversely,incorn silages,DONlevelsincreasedduringstorage.33,49Inthisstudy,

thereductionintheoccurrenceofDONcouldbeconsidered anadvantageofusingsilobags.

Fewstudieshavehighlightedtheimportanceof character-izingthetoxicogenic profileoffungalspeciesisolatedfrom silages.AspergillussectionFlaviandF.graminearums.l.werethe dominantspecies,andvariousstrainswere abletoproduce aflatoxins and DON, respectively. The presence of toxico-genicstrainsincommoditiesconstitutesapotentialriskfor animal health because the toxins can be produced in the substrate.Thiswasconfirmedbythepresenceofaflatoxins and DON contaminationin silagesamples. When evaluat-ing aflatoxigenic capacity, 27.5% ofAspergillus section Flavi

strainsproducedAFB1,5%AFB2,10%AFG1and17.5%AFG2. Trichothecenemycotoxin genotypes and chemotypes were

determined forisolatesofF.graminearums.l.Themultiplex PCR assay demonstrated that all isolateswere ofthe DON genotype.Theseassaysdemonstratedthatallstrainswiththe DONgenotypewerealsoofthe15-AcDONgenotype.Allstrains withthe15-AcDONgenotypeproduced15-AcDONandDONas assessedbychemicalanalyses.

Thephysical propertiesofsamples didnotvary signifi-cantlyduringstoragetime(p>0.05).Table1showsthephysical propertiesofthesilages.Wateractivities,pHandMC%ranged from0.693aw to0.709aw,from6.39to6.69andfrom11.7to

14.6,respectively.However,somesampleshadaw,moisture

contentandpHlevelsthatallowedfungalgrowthand myco-toxin production.Fungalgrowth generallyoccurs whenthe siloisnotwellpacked,thewateractivityexceeded0.7–0.8and pHvaluesrangedover6.39,50,51

Itisknownthattheminimalwateractivitynecessaryfor fungal growth isbelow thatrequiredfor theproductionof aflatoxins. Assuch,52Laceyet al.suggests0.78and 0.83as

theminimumwateractivityvaluesthatfavorproliferationof

A.flavusandtheproductionofaflatoxins,respectively.Inour case,althoughvalueswerelowerthanthoserequired,there was alargenumberofAspergillussectionFlavi isolatesand highaflatoxinlevels,probablyduetooxygenpresenceorhigh temperatures.SomefarmersinUruguayremovesilagefor ani-malfeedingbyshoveling;thispracticebreakscompactionof thesilowithintheextractionareaandfavorsaeration,thereby changingtheredoxpotential.

Ontheotherhand,Fusariumisnotveryadaptabletothe anoxic and acidic environmentsof silobags,5 which could

bethereasonwhyF.graminearums.l.wasmainlypresentat harvestandcouldbeanadvantageofusingthistypeofsilo.

WheatsilagesshowedahighpresenceofAspergillus sec-tionFlaviaswellashighcontaminationofDONandaflatoxins, whicharehazardoustohumanandanimalhealth.Thehigh fungalandmycotoxinlevelspresentinsilagecouldaffectthe palatability offeed andcould causeanimal diseaseor pro-duction losses. For dairy cattle, the problem does not end here becausemycotoxinsinfeed canleadtoproductionof metabolicproducts(AFM1)indairyproductsthateventually affecthumanhealth,mainlythatofinfants.Theadoptionof regularscreeningforDONandaflatoxinlevelsinsilagesis rec-ommendedtoavoidexposureofanimalstocontaminatedfeed andintroductionofthesecompoundsintothefoodchain.To date,noinformationexistsaboutthepresenceof mycotox-insandtheir derivativesinmilkfrom Uruguay.Theresults inthepresent studycontributetothe sparseknowledgeof mycobiotaandcontaminationofmycotoxinsinwheatsilage. Furtherstudiesontheecophysiologicalaspectsof contami-nant specieswouldhelptoidentifyfactorsthat needtobe

(5)

controlledto diminishthe development and productionof mycotoxinsinsilostorage.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgement

This work was supported byAgencia Nacional de Investi-gacióneInovación(ANII),projectnumber:INI-X-2010-2-2903.

r

e

f

e

r

e

n

c

e

s

1. DIEA.Anuarioestadísticoagropecuario.Ministeriode

GanaderíaAgriculturayPesca;2013.

2. GaronD,RichardE,SageL,BouchartV,PottierD,LebaillyP.

Mycofloraandmultimycotoxindetectionincornsilages:

experimentalstudy.JAgricFoodChem.2006;54:3479–3484.

3. Reyes-VelázquezW,EspinozaV,RojoF,etal.Occurrenceof

fungiandmycotoxinsincornsilage,JaliscoState,Mexico.

RevIberoamMicol.2008;25:182–185.

4. RichardE,HeutteN,BouchartV,GaronD.Evaluationof

fungalcontaminationandmycotoxinsproductioninmaize

silage.AnimFeedSciTechnol.2009;148:309–320.

5. GonzálezPereyraM,ChiacchieraS,RosaC,SagerR,Dalcero

A,CavaglieriL.Comparativeanalysisofthemycobiotaand

mycotoxinscontaminatingcorntrenchsilosandsilobags.J

SciFoodAgric.2011;91:1474–1481.

6. BullermanL,DraughonF.Fusariummoliniformeand

fumonisinssymposiumintroduction.JFoodProt.1994;57:513.

7. BennettJ,KlichM.Mycotoxins.ClinMicrobiolRev.

2003;16:497–516.

8. KalacP,WoolfordM.Areviewofsomeaspectofpossible

associationsbetweenthefeedingofsilageandanimal

health.BrVetJ.1982;138:305–320.

9. CouncilforAgriculturalScienceandTechnology(CAST).

Mycotoxins:RisksinPlant,AnimalandHumanSystems,Task ForceReportN139;2003.Ames,IA,USA.

10.InternationalAgencyforResearchonCancer(IARC).IARC

MonographsontheEvaluationofCarcinogenicRiskstoHumans.

vol.56;2002:171–176.

11.vanEgmondHP.MycotoxinsinDairyProducts.London,New

York:ElsevierAppliedScience;1989:1–54.

12.InternationalAgencyforResearchonCancer(IARC).IARC

MonographsontheEvaluationofCarcinogenicRiskstoHumans.

vol.56;1993:245–362.

13.PanD,GraneriJ,BettucciL.Correlationofrainfallandlevels

ofdeoxynivalenolinwheatfromUruguay,1997–2003.Food

AdditContamB.2009;2:162–165.

14.BlackR,McVeyU,ChemeF.Inmunotoxcicityinthebovine

animal:areview.VetHumToxicol.1992;34:438–442.

15.DiekmanM,GreenM.Mycotoxinsandreproductionin

domesticlivestock.JAnimSci.1992;70:1615–1627.

16.CoulombeR.Biologicalactionofmycotoxins.JDairySci.

1993;76:880–891.

17.OsweilerGD.Mycotoxins-contemporaryissuesoffood

animalhealthandproductivity.VetClinNAmFoodAnim

Pract.2000;16:511–530.

18.daSilvaJ,PozziC,MallozziM,OrtegaE,CorreaB.Mycoflora

andoccurrenceofaflatoxinB1andfumonisinB1during

storageofBraziliansorghum.JAgricFoodChem.

2000;48:4352–4356.

19.UegakiR,KobayashiH,InoueH,TohnoM,TsukiboshiT.

Changesoffumonisinproductioninricegrainduring

ensiling.AnimSciJ.2013;84:48–53.

20.EllisM.MoreDematiaceousHyphomycetes.Surrey,England:

C.A.B.InternationalMycologicalInstituteKew;1976.

21.NelsonP,ToussonT,MarasasW.FusariumSpecies.An

IllustratedManualforIdentification.Univ.Park,Pennsylvania:

PennsylvaniaStateUniv.Press;1983.

22.KlichM,PittJ.ALaboratoryGuidetoCommonAspergillusSpecies

andTheirTeleomorphs.Australia:CSIRODivisionofFood

Processing;1988.

23.KlichM.IdentificationofCommonAspergillusSpecies.Utrecht,

TheNetherlands:CBS;2002.

24.BurgessL,LiddellC,SummerellB.LaboratoryManualfor

FusariumResearch.UniversityofSydney;1994:156.

25.SamsonA,HoekstraE,FrisvadJ,FiltenborgO.Mycological

mediaforfood-bornefungi.In:SamsonA,HoekstraE,

FrisvadJ,FiltenborgO,eds.IntroductiontoFood-BorneFungi.

4thed.Baarn,TheNetherlands:CentraalbureaVoor

Schimmelcultures;1995:308.

26.LeslieJ,SummerellB.TheFusariumLaboratoryManual.Ames,

IA,USA:BlackwellProfessional;2006.

27.NicholsonP,SimpsonD,WestonG,etal.Detectionand

quantificationofFusariumculmorumandFusarium

graminearumincerealsbyusingPCRassays.PhysiolMolPlant Pathol.1988;53:17–37.

28.VargasJ,FrisvadJ,SamsonR.Twonewaflatoxinproducing

species,andanoverviewofAspergillussectionFlavi.Stud

Mycol.2011;69:57–80.

29.BragulatM,AbarcaM,CabesF.Aneasyscreeningmethodfor

fungiproducingochratoxinAinpureculture.IntJFood

Microbiol.2001;71:139–144.

30.QuartaA,MitaG,HaidukowskiM,LogriecoA,MuleG,

ViscontiA.MultiplexPCRassayfortheidentificationof

nivalenol,3-,and15-acetyldeoxynivalenolchemotypesin

Fusarium.FEMSMicrobiolLett.2006;259:7–13.

31.MoltoG,GonzalezH,ResnikS,Pereyra-GonzalezC.

Productionoftrichothecenesandzearalenonebyisolatesof

Fusariumspp.fromArgentinianmaize.FoodAdditContamA.

1997;14:263–268.

32.CastellariC,MarcosValleF,MuttiJ,CardosoL,BartosikR.

Toxigenicfungiincorn(maize)storedinhermeticplastic

bags.In:10thInternationalWorkingConferenceonStoredProduct

Protection.2010.

33.Gonzalez-PereyraM,AlonsoV,SagerR,etal.Fungiand

mycotoxinsfrompre-andpostfermentedcornsilage.JAppl

Microbiol.2008;104:1034–1041.

34.RichardE,HeutteN,SageL,etal.Toxigenicfungiand

mycotoxinsinmaturecornsilage.FoodChemToxicol.

2007;45:2420–2425.

35.AckermanM,PereyraS,StewartS,MieresJ.Fusariosisdela

espigadetrigoycebada.BoletíndedifusióndelInstituto

NacionaldeInvestigaciónAgropecuaria(INIA);2002:79.

36.GoswamiR,KistlerH.Pathogenicityandinplantamycotoxin

accumulationamongmembersoftheFusariumgraminearum

speciescomplexonwheatandrice.Phytopathology.

2005;95:1397–1404.

37.BensassiF,MahdiC,BachaH,HajlaouiM.Surveyofthe

mycobiotaoffreshlyharvestedwheatgrainsinthemain

productionareasofTunisia.AfrJFoodSci.2011;5:292–

329.

38.El-ShanawanyA,EmanA,MostafaM,BarakatA.Fungal

populationsandmycotoxinsinsilageinAssiutandSohag

governoratesinEgypt,withaspecialreferenceto

characteristicAspergillitoxins.Mycopathologia.

2005;159:281–289.

39.AlonsoV,PereyraC,KellerL,etal.Fungiandmycotoxinsin

(6)

40.KellerL,KellerK,MongeM,etal.Gliotoxincontaminationin

pre-andpostfermentedcorn,sorghumandwetbrewer’s

grainssilagesinSaoPauloandRiodeJaneiroState,Brazil.J

ApplMicrobiol.2012;112:865–873.

41.deMeyerE,deBeerZ,SummerbellR,MoharramdeHoogG,

VismerH,WingfieldM.Taxonomyandphylogenyofnew

wood-andsoil-inhabitingSporothrixspeciesinthe

Ophiostomastenoceras–Sporothrixschenckiicomplex.Mycologia.

2008;100:647–661.

42.TravassosL,LloydK.Sporothrixschenckiiandrelatedspecies

ofceratocystis.MicrobiolRev.1980;44:683–721.

43.RestoS,Rodríguez-delValleN.YeastcellcycleofSporothrix

schenckii.JMedVetMycol.1988;26:13–24.

44.Vásquez-del-MercadoE,ArenasR,Padilla-DesgarenesC.

Sporotrichosis.ClinDermatol.2012;30:437–443.

45.Mercosur/Gmc/Res.N◦25/02.ReglamentotécnicoMercosur

sobrelímitesmáximosdeaflatoxinasadmisiblesenleche,maníy maíz;2002.

46.GMP.CertificationSchemeAnimalFeedSector,2006.Version Marzo2008.Appendix1:ProductStandards(IncludingResidue Standards).TheHague:ProductschapDirvoeder;2008:1–39.

47.DriehuisF,SpanjerM,ScholtenJ,TeGiffelM.Occurrenceof

mycotoxinsinmaize,grassandwheatsilagefordairycattle

intheNetherlands.FoodAdditContamB.2008;1:41–50.

48.ShimshoniaJ,CuneahaO,SulyokbM,etal.Mycotoxinsin

cornandwheatsilageinIsrael.FoodAdditContamA.

2013;30:614–1625.

49.KellerL,Gonzalez-PereyraC,KellerK,etal.Fungaland

mycotoxinscontaminationincornsilages:monitoringrisk

beforeandafterfermentation.JStoresProdRes.2013;52:

42–47.

50.GotilebA.Causesofmycotoxinsinsilages.Proceedingsofthe

NationalSilageProductionConferenceed.Hershey,PA.vol.99.

Ithaca,NY:NortheastRegionalAgriculturalExtension

Services;1997:213–221.

51.MaganN,AldredD.Post-harvestcontrolstrategies:

minimizingmycotoxinsinthefoodchain.IntJFoodMicrobiol.

2007;119:131–139.

52.LaceyC,RamakrishnaN,HamerA,MaganN,MarfleetC.

Grainfungi.In:AroraD,MukerJiK,MarthE,eds.Handbookof

Referências

Documentos relacionados

Pretende-se também estudar algumas propriedades mecânicas do concreto de alto desempenho, tais como: resistência à compressão, resistência à tração, módulo de

De esta suerte, quienes escribimos en español y portugués hemos comentado nuestra desagradable sensación ante la aparente invisibilidad (o falta de escucha) a la

The enantioselectivity (E) of native lipases from Aspergillus niger, Aspergillus terreus, Fusarium oxysporum, Mucor javanicus, Penicillium solitum and Rhizopus javanicus in

Mas, se você fracassa na álgebra escolar...” LINS & GIMENEZ, 1997a, p.164 Os Parâmetros Curriculares Nacionais PCN ao apresentarem a atual situação do ensino da álgebra, sustentam

26 ژولوردددتپ ی ، لاس ،مهد هرامش ملهچ ، اتسمز ن 1398 هدوت همین نیرذآ یاه فرژ هب تروص کدیاد و کوتدسا نورد گنس هدرک ذوفن یناشفشتآ یاه لکش( دنا 1 ندیا .) دحاو

Este texto constitui uma das bases para um Projecto de Investigação cujo programa e itinerário decorrerão dentro do Grupo de Trabalho sobre as Antigas Sociedades Camponesas, no

Sabemos que o sucesso da amamentação parece estar dependente da interligação de múltiplas variáveis, sendo preponderante uma mãe e um pai fortemente motivados, e pessoal de