• Nenhum resultado encontrado

Analise da dentição posterior de primatas = modelo para predição de tamanho de molares

N/A
N/A
Protected

Academic year: 2021

Share "Analise da dentição posterior de primatas = modelo para predição de tamanho de molares"

Copied!
41
0
0

Texto

(1)

Mariana Martins Ribeiro

ANÁLISE DA DENTIÇÃO POSTERIOR DE PRIMATAS:

MODELO PARA PREDIÇÃO DE TAMANHO DE MOLARES.

Orientador: Prof. Dr. Sérgio Roberto Peres Line

PIRACICABA

Dissertação de mestrado apresentada à faculdade de Odontologia de Piracicaba da Universidade Estadual de Campinas para obtenção do Título de Mestre em Biologia Buco-Dental – Área de Histologia e Embriologia

(2)

FICHA CATALOGRÁFICA ELABORADA PELA

BIBLIOTECA DA FACULDADE DE ODONTOLOGIA DE PIRACICABA Bibliotecária: Marilene Girello – CRB-8a. / 6159

R354a

Ribeiro, Mariana Martins.

Análise da dentição posterior de primatas : modelo para predição de tamanho de molares. / Mariana Martins Ribeiro. -- Piracicaba, SP: [s.n.], 2010.

Orientador: Sérgio Roberto Peres Line.

Dissertação (Mestrado) – Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba.

1. Biologia do desenvolvimento. 2. Maxilares. I. Line, Sérgio Roberto Peres. II. Universidade Estadual de Campinas.

Faculdade de Odontologia de Piracicaba. III. Título.

(mg/fop)

Título em Inglês: Primate posterior dentition analysis: model for molar size prediction

Palavras-chave em Inglês (Keywords): 1. Developmental biology. 2. Maxilla Área de Concentração: Histologia e Embriologia

Titulação: Mestre em Biologia Buco-Dental

Banca Examinadora: Sérgio Roberto Peres Line, Narciso Vieira de Almeida, Daniel Saito

Data da Defesa: 23-02-2010

(3)
(4)

Dedico esse trabalho aos meus pais João Carlos e Edna, por serem o começo de tudo.

Aos meus irmãos, pela amizade, companheirismo e apoio.

Ao Gustavo, pela dedicação e companheirismo.

(5)

Agradecimentos

À faculdade de Odontologia de Piracicaba FOP-UNICAMP.

Ao Diretor Prof. Dr. Francisco Haiter Neto.

Ao coordenador da Pós-graduação Prof.Dr. Jacks Jorge Júnior.

Ao Coordenador do Programa de Pós-graduação em Biologia Buco-dental, Prof. Dr. Fausto Bérzin.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, pelo apoio financeiro.

Às secretárias Suzete e Joelma.

A todas as pessoas que participaram, contribuindo para a realização deste trabalho, direta ou indiretamente, meu agradecimento.

(6)

Agradecimentos Especiais

À Deus, o grande criador, pela vida.

Aos meus pais, pelo apoio, incentivo, amor e compreensão.

Aos meus irmãos, João Carlos e João Vítor, por sempre acreditarem em mim e me apoiarem.

Aos meus avós Antônio e Iracema, por terem me acolhido, e por serem meus segundos pais.

À toda minha família, que sempre me incentivou e apoiou.

Ao Gustavo, meu companheiro, amigo, confidente, que sempre compreendeu as horas de estudo e sempre apoiou meu trabalho.

À Jasmim e a Bianca pelo companheirismo diário.

Ao meu orientador, Sergio Roberto Peres Line, pela oportunidade oferecida, pela sua humildade, dedicação, auxílio e apoio.

Ao Professor Daniel Saito, pelas ótimas sugestões.

Ao Professor Narciso Vieira, por ter sido um dos grandes influenciadores da minha carreira, um modelo.

(7)

Às minhas amigas e companheiras de mestrado, e de todas as horas, Aline Planelo e Luciana Mofatto, pelo companheirismo e amizade desde o início do mestrado, espero estar com vocês ainda por muito tempo, vocês tornam o mestrado um pouco mais divertido.

À Glaucia Camargo, amiga, irmã, companheira, por toda sua ajuda, apoio, dedicação durante o mestrado.

Ao amigo Marcelo Marques, pela dedicação, amizade e companherismo.

Ao amigo Gustavo Narvaes, pela ajuda, amizade e apoio.

Às amigas do laboratório Simone Caixeta, Naila Francis, Denise Andia, pela amizade, auxílio, e companheirismo.

À Marisi Aidar, que com seu alto astral sempre contagia a todos.

À Carolina Vieira de Almeida, pela amizade e apoio.

À Ana Carolina Martins Ribeiro, pela amizade incondicional e companheirismo.

À Eliene Narvaes, Juliana Neves, José Gomes, Nadia fayez, pela amizade.

À Maria Aparecida Varella (Cidinha), técnica do laboratório de Histologia, pelo seu maravilhoso bom humor, que torna a faculdade um lugar mais divertido.

(8)

“Há grandeza neste modo de ver a vida, com as suas potencialidades, que o sopro do criador originalmente imprimiu em algumas formas ou numa só; e assim, enquanto este planeta foi girando de acordo com a lei imutável da gravidade, a partir de um início tão simples evoluíram inúmeras formas mais belas e mais maravilhosas”.

(9)

Resumo

A evolução dos primatas foi marcada por uma redução em tamanho das mandíbulas e maxilas acompanhada por uma redução geral de tamanho de dentes. Esta redução foi facilitada pela organização da dentição em módulos que são autônomos em função e evolução. Esta redução segue uma regra simples: quanto mais tardio o desenvolvimento do dente maior será sua redução. Modelos foram propostos para explicar as variações no padrão de dentição mamária, porém nenhum destes modelos leva em consideração o tamanho da mandíbula e maxila já que a falta de espaço parece ter gerado esta redução. O objetivo deste trabalho é desenvolver um modelo novo que considera o espaço disponível medindo o palato e área e comprimento de molares. Neste estudo foram medidas 85 maxilas de primatas e os dados submetidos a análises estatísticas. Este estudo além de prover um modelo que pode estimar o tamanho de cada molar e tamanho de palato secundário em primatas também salienta algumas tendências observadas nos primatas estudados como, por exemplo, a presença de um terceiro pré-molar em alguns primatas e a grande variação de tamanho do terceiro molar.

(10)

Abstract

The primate evolution was marked by a reduction in size of the jaws accompanied by a general reduction of teeth size. This reduction was facilitated by the organization of the dentition into modules that are autonomous in function and evolution. This reduction follows a simple rule: the later the tooth develops the greater will be its reduction. Models have been proposed to explain the variations in the pattern of mammalian dentition however none of these models takes into account the jaws size, since the lack of space seems to have triggered this reduction. The aim of this paper is to develop a new model that considers the space available by measuring the palate and molars area and length. In this study 85 upper jaws of primates were measured and statistical analysis was carried out with the data. This study not only provides a model that can estimate the size of each molar and secondary palate in primates but also points out some trends observed in the primates studied as, for instance, the presence of a third premolar in some primates and the great variation in size of the third molar.

(11)

Sumário

Introdução ... 1

Title: Primate posterior dentition analysis: model for molar size prediction. ... 3

Conclusão ... 28

Bibliografia Consultada... 29

(12)

Introdução

O aparato mastigatório dos primatas exibe uma variação considerável de tamanho e forma. Acredita-se que essa variação seja determinada por restrições funcionais impostas principalmente por adaptações dietéticas (Robinson 1954, Smith 1981). A redução em tamanho de maxilas e mandíbulas geralmente é acompanhada por uma redução de tamanho de dente. Este efeito foi particularmente evidente na evolução de hominídeos (Robinson 1954, Sofaer et al 1971, Sofaer 1973). Este padrão harmonioso foi certamente controlado pela seleção natural onde os genótipos produtores de fenótipos discrepantes (dentes grandes para mandíbula e maxíla reduzida, ou dentes pequenos para mandíbulas e maxilas grandes) foram eliminados ao longo de evolução (Sofaer et al 1971). Esta redução parece seguir uma regra simples: quanto mais tardio o desenvolvimento maior será sua redução. O terceiro molar, sendo o último dente a erupcionar, é presumivelmente o dente mais vulnerável, considerando que ele tem que se ajustar ao espaço disponível para ele. (Robinson 1954)

O estabelecimento do fenótipo em módulos, unidades que são autônomas em evolução e função parece ser uma das estratégias para aumentar a capacidade de produzir variação fenotípica adaptável. A dentição vertebrada é um exemplo dessa dissociabilidade, ja que parece estar organizada como campos de morfogenéticos de partes repetidas (Line et al 2001, 2003). A redução da dentição foi uma tendência comum na evolução de vertebrados que foi facilitada por tal organização modular do fenótipo dental. (Stock 2001)

Dentes são um modelo importante no campo da biologia evolutiva do desenvolvimento que conecta as estratégias moleculares que controlam desenvolvimento de órgão e evolução morfológica (Jernvall et al. 2000, Renvoisé 2008). O padrão de dentição é por fim estabelecido por eventos que ocorrem durante o desenvolvimento do dente onde o número, tamanho e forma são determinados."Insights" na evolução da dentição guiaram o estudo da evolução de

(13)

mamíferos (Renvoisé 2008). Características espécie-específicas como dieta, história de vida, maturação e tamanho de cérebro, têm sido relacionadas a diferenças no período de iniciação do desenvolvimento dos dentes molares, mineralização, erupção, tamanho e número. (Kavanagh et al 2007)

Modelos foram propostos ao longo dos anos para explicar variações no padrão de dentição mamária. Sofaer (1973) declarou que interações compensatórias podem ocorrer entre os dentes em desenvolvimento, o dente posteriormente desenvolvido tende a compensar os desvios da normalidade dos vizinhos anteriormente desenvolvidos, e mostrou que genótipos com o potencial para produzir dentes relativamente grandes anteriormente e pequenos posteriormente eram favorecidos pela seleção natural. Recente trabalho propôs que o tamanho relativo em dentes molares depende da interação entre moléculas ativadoras e inibidoras onde inibidoras são moléculas de difusíveis secretadas pelo dente antecessor. Moléculas inibidoras atrasarão o inicio do desenvolvimento do dente, resultando em dentes menores. (Kavanagh et al 2007). Análises adicionais mostraram que este modelo pode predizer proporções de molares em uma extensa gama de mamíferos existentes e extintos.(Polly 2007) Renvoisé (2008) mostrou que alguns animais não ajustam ao modelo de Kavanagh e sugeriu um modelo alternativo que caracterizou uma proporção não linear de molares nos mamíferos estudados.

Embora o tamanho relativo de dentes é dependente do efeito de fatores ativadores locais e inibitórios, é plausível que o tamanho e número destes dentes também dependerão de fatores mais gerais como o tamanho e forma do aparato mastigatório. Isto modulará a ação dos fatores que regularão o número e tamanho dos dentes. O objetivo desse estudo foi desenvolver um modelo que integra o número e o tamanho dos dentes e as dimensões da maxila de primatas.

(14)

Title: Primate posterior dentition analysis: model for molar size prediction. Authors: Ribeiro MM, Line SRP*

Department of Morphology, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil.

*Corresponding author: +551921065333; (fax) +551934210144 E-mail address: serglin@fop.unicamp.br

Introduction

Primate masticatory apparatus exhibits a considerable variation in size and shape. This is believed to be determined by functional constrains imposed mainly by dietary adaptations (Robinson 1954, Smith 1981). The reduction in size of jaws is generally accompanied by a reduction of tooth size. This effect was particularly evident in Hominid evolution (Robinson 1954, Sofaer et al 1971, Sofaer, 1973). This harmonious pattern was certainly controlled by natural selection, where the genotypes producing discrepant phenotypes (large teeth for reduced jaw, or small teeth for large jaws) were eliminated along evolution (Sofaer et al 1971). This reduction seems to follow a simple developmental rule: the later a tooth develops the more it has been reduced. The third molar, being the last tooth to erupt, presumably is the most vulnerable, considering that it has to fit in the space available. (Robinson 1954)

The assembly of the phenotype into modules, units that are autonomous in evolution and function seems to be one of the strategies to increase the capacity to produce adaptive phenotypic variation. The vertebrate dentition is one example of this dissociability, as it seems to be organized as morphogenetic fields of repeated parts (Line et al 2001, 2003). The reduction of the dentition has been a common trend in the evolution of vertebrates, which was facilitated by such modular organization of the dental phenotype. (Stock 2001)

Teeth are an important model in the field of evolutionary developmental biology that connects the molecular strategies that control organ development and

(15)

morphological evolution (Jernvall et al. 2000, Renvoisé 2008). The pattern of dentition is ultimately established by events that occur during tooth development, where the number, size and shape are determined.

Models have been proposed along the years in order to explain variations in the pattern of mammalian dentition. Sofaer (1973) stated that compensatory interactions can occur between developing teeth, the later developing tooth tending to compensate for the combined deviations of their earlier developing neighbors from the norm, and showed that genotypes with the potential to produce relatively large early and small late developing teeth were favored in natural selection. Recent work has proposed that the relative size on molar teeth depend on the interaction between activators and inhibitors, where inhibitors are diffusible molecules secreted by the predecessor tooth. Inhibitors will delay the initiation of tooth development, resulting in smaller teeth. (Kavanagh et al 2007). Further analysis have shown that this model can predict molar proportions in wide range of extant and extinct mammals (Polly 2007) Renvoisé (2008) showed that some taxa do not fit in Kavanagh’s model and suggested an alternative model of nonlinear molar proportions within the mammals studied.

Although the relative size of molar teeth are dependent on the effect of local activating and inhibitory factors, it is plausible that the size and number of these teeth will also depend on more general factors such as the size and shape of the masticatory apparatus. This will ultimately modulate the action of the factors that regulate the number and size of teeth. The aim of this study was to develop a model that integrates the number and size of teeth and jaw dimensions in primates.

Materials and Methods

Scaled crania photographs of 85 primates were obtained from mammalian crania photographic archive (http://macro.dokkyomed.ac.jp/mammal/en/mammal.html).

(16)

The Image J software (http://rsbweb.nih.gov/ij/) was used for the measurements of upper jaw and teeth. Figure 1 demonstrates how the measurements were made. Total palate length (PALATE) was measured by drawing a parallel line in the end of the tooth row and a perpendicular line connected to the first line was drawn using the straight line tool on image J. Molars length was measured by the greatest mesiodistal length using the straight line tool. Molar length was measured by drawing a line in the greatest mesio-distal length of each upper molar using the straight line tool. Total molar length (ML) was obtained by measuring the distance from the medial surface of the first molar to the distal surface of the last molar. The secondary palate (PALATE 2nd) was the distance from the medial surface of canine to the last premolar measured using the straight line tool on image J, plus molars length. Crown area was measured taking in consideration the occlusal area. Area measurements were obtained using the freehand tool with the use of a pen tablet. Measurements were obtained by the average of the left and right sides in each specimen analysed.

The models proposed in this study were: ML/PALATE vs MnL/ML

Family genera Nº of species Nº of

Callitrichidae 4 15 Cebidae 9 14 Cercopithecidae 11 38 Hominidae 1 1 Hylobatidae 1 5 Lemuridae 2 3 Lorisidae 4 5 Pongidae 3 3 Tarsiidae 1 1 Total 36 85

TABLE 1 - Families studied and the number of genera and species in each family.

(17)

ML/PALATE vs MnA/MA Or,

ML/PALATE 2nd vs MnL/ML ML/PALATE 2nd vs MnA/MA

(ML = molar region length, MA = molar region area, n = position of molar (i.e. =1, 2 or 3, palate).

(18)

Pearson’s linear correlation was performed using the statistical software program BioEstat (http://www.mamiraua.org.br) for each of the models proposed within each tooth firstly removing the family Callitrichidae, and secondly reinserting this family. Next, a scatter graphic was generated. In order to estimate the minimum and maximum values of the dependent variable Y simple linear regression was used. Two XY values were plotted in a excel spreadsheet and a XY scatter graphic was constructed. Finally, the coefficients of variation were obtained for the three teeth, by using the BioEstat software and a dotplot graph was constructed. The D’Agostino test was performed to test if the data had a normal distribution.

Results

The size of molar teeth depends on the relative size of molar field

Pearson’s linear correlation applied in the four models compared the length or area of each molar relative to the total molar region length versus the size or area of the molar field (molar region) in relation to the total palate (primary plus secondary palate lengths) or secondary palate length, respectively. Figures 2 to 5 show the correlation scatter graphs, based on these models. Specimens lacking upper third molars were removed from this analysis. Figures 2A, 3A, 4A and 5A demonstrate that the relative length (Figures 2A and 3A) or area (Figures 4A and 5A) of the first molar has a negative correlation (r = - 0,5234 p < 0,0001 and r = - 0,7558 p < 0,0001, r= - 0,5091 p < 0,0001 e r = - 0.7478 e p < 0,0001 respectively) with the molars length in relation to the total palate or secondary palate length respectively. This shows that as the length of the molar region increases in relation to the palate or the secondary palate, the length and area of the first molar decreases relatively to the total molar length. Figures 2B, 3B, 4B and 5B compare the relative length or area of the second molar with the molar region length in relation to the total or secondary palate length respectively. These analysis

(19)

resulted in a weak linear correlation (r = - 0,1919 p = 0,1115, r = - 0,2439 p= 0,0418, r = -0,1073 p = 0.3766 e r = -0.0247 p= 0,8389, respectively). As can be seen, the size of the second upper molar relative to the total molar length or area) was approximately 0.35 and did not change significantly as the total molar length varies relatively to the palate or secondary palate length. Figures 2C, 3C, 4C and 5C demonstrate that the relative length (Figures 2C and 3C) or area (Figures 4C and 5C) of the third molar has a positive correlation (r = 0,5019 p < 0,0001 and r = 0,6860 p < 0,0001, r = 0.5145 p < 0,0001 and r = 0.7329 p < 0,0001, respectively) with the molars length in relation to the total palate or secondary palate length, respectively. This shows that as the length of the molar region increases in relation to the palate or the secondary palate, the length and area of the third molar increases relatively to the total molar length.

Figures 6 and 7 show the linear regression lines taking into account the molars length and area, respectively. As can be seen the graphs were very similar, indicating that when the ML or MA/Palate 2nd ratio approximately 0.53-0.54 the first and third molars tend to have similar dimensions. When for larger ration the third molar tends to be larger than the first and vice versa. The D’agostino test for all data resulted in p values > 0.05, indicating that the Mn/ML and ML/PALATE 2nd ratios had a normal distribution.

Table 2 shows the results of the Pearson’s linear correlation and linear regression for palate and palate 2nd. The slope and intercept confidence interval (IC 95%) for palate 2nd was lower than the palate total, indicating that the regression formula including palate 2nd provides the most reliable results.

(20)

PALATE

LENGTH AREA

r (p) Slope (IC 95%) Intecept (IC 95%) r (p) Slope (IC 95%) Intecept (IC 95%)

M1 -0.52 (< 0.0001) -0.34 (± 0.1335) 0.50 (± 0.0615) -0.51 (< 0.0001) -0.57 (± 0.2315) 0.59 (± 0.1065)

M2 -0.19 (0.1115) -0.05 (± 0.0625) 0.38 (± 0.029) -0.11 (0.3766) -0.04 (± 0.0915) 0.39 (± 0.042)

M3 0.50 (< 0.0001) 0.35 (± 0.1455) 0.16 (± 0.067) 0.51 (< 0.0001) 0.60 (± 0.241) 0.03 (± 0.111)

PALATE 2nd

LENGTH AREA

r (p) Slope (IC 95%) Intecept (IC 95%) r (p) Slope (IC 95%) Intecept (IC 95%)

M1 -0.76 (< 0.0001) -0.45 (± 0.094) 0.57 (± 0.0495) -0.7478 (< 0.0001) -0.76 (± 0.164) 0.72 (± 0.0855)

M2 -0.24 (0.0418) -0.06 (±-0.057) 0.39 (± 0.0295) -0.0247 (0.8389) -0.01 (± 0.0845) 0.37 (± 0.0435)

M3 0.69 (< 0.0001) 0.44 (± 0.112) 0.10 (± 0.0585) 0.7329 (< 0.0001) 0.78 (± 0.175) -0.10 (± 0.092)

After the linear regression analysis a model for each molar tooth was postulated based on the formula:

MnL= ML (intercept - slope ML/ PALATE 2nd)

Where n is the position of molar (i.e 1, 2 or 3). Therefore, the estimated lengths for the primate maxillary molars are:

M1L = ML (0,5735 - 0,4487 ML/ PALATE 2nd) M2L = ML (0,3874 - 0,0589 ML/ PALATE 2nd) M3L = ML (0,0955 + 0,4363 ML/ PALATE 2nd)

(21)

0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M 1L /M L ML/PALATE

ML/PALATE vs M1L/ML

0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M 2 L/ M L ML/PALATE

ML/PALATE vs M2L/ML

A

B

(22)

0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M 3 L/ M L ML/PALATE

ML/PALATE vs M3L/ML

0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M 1 L/ M L ML/PALATE 2nd

ML/PALATE 2nd vs M1L/ML

Figure 2 - Scatter graphics of MnL/ML vs ML/PALATE.

C

(23)

0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M 2 L/ M L ML/PALATE 2nd

ML/PALATE 2nd vs M2L/ML

0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M 3 L/ M L ML/PALATE 2nd

ML/PALATE 2nd vs M3L/ML

B

C

(24)

0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M 1 A /M A ML/PALATE

ML/PALATE vs M1A/MA

0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M 2 A /M A ML/PALATE

ML/PALATE vs M2A/MA

A

B

(25)

0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M 3A /M A ML/PALATE

ML/PALATE vs M3A/MA

0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M 1 A /M A ML/PALATE 2nd

ML/PALATE 2nd vs M1A/MA

Figure 4 - Scatter graphics of MnA/MA vs ML/PALATE

C

(26)

0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M 2A /M A ML/PALATE 2nd

ML/PALATE 2nd vs M2A/MA

0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M 3 L/ M L ML/PALATE 2nd

ML/PALATE 2nd vs M3A/MA

B

C

(27)

0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M n L/ M L ML/PALATE

ML/PALATE vs MnL/ML

M 1 M 2 M 3 0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M n L/ M L ML/PALATE 2nd

ML/PALATE 2nd vs MnL/ML

M 1 M 2 M 3

A

B

(28)

Size variability of molar teeth.

Figure 8 A illustrates a dot plot graph with the relative length of each molar. Second molar had the smaller variation coefficient (0.0401), followed by the first molar (0.1032), and the third molar was the teeth that showed the bigger variation (0.117). The comparison between the variation coefficients of first and second

0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M n A /M A ML/PALATE

ML/PALATE vs MnA/MA

M 1 M 2 M 3 0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M n A /M A ML/PALATE 2nd

ML/PALATE 2nd vs MnA/MA

M 1 M 2 M 3

A

B

(29)

molar was statistically significant so as the second molar and the third. Only the comparison between first and third molar lead to a non significant statistic, this is because the variation coefficients of these teeth are very similar. Figure 8 B summarizes the minimum, medium and maximum relative sizes of the molars encountered in this study.

(30)

The loss of third molar is compensated by an increase in the relative length of first and second molars.

Figure 9 shows the correlation dot plot of Mn/PALATE 2nd versus MnL/ PALATE 2nd including all 85 species analyzed. It was possible to notice that the loss of third molar in the family Callitrichidae was accompanied by a 20-25% increase in the M1L/ PALATE 2nd ratio when comparing with animals with third molar. A smaller increase in M2L/ PALATE 2nd can also be noted. There is a limit of relative size of molar region in relation to secondary palate that determines the absence of the third molar, species lacking upper third molars have a ML/ PALATE 2nd ratio smaller than 0.4.

Figure 8 - A. Dot plot graph for each molar tooth. B. Variations of relative sizes of molars. The solid

line indicates the maximum value reached by each tooth, dashed line represents the medium relative size and dotted line represents the minimum relative size.

(31)

0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.53 0.58 0.63 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M 1 L/ M L ML/PALATE 2nd

ML/PALATE 2nd vs M1L/ML

0.28 0.33 0.38 0.43 0.48 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M 2 L/ M L ML/PALATE 2nd

ML/PALATE 2nd vs M2L/ML

A

B

(32)

The presence of a third premolar is inversely related with the molar region length in relation to the secondary palate

Figure 10 shows the dot analysis of the ML/ PALATE 2nd ratio in animals with two and three premolars. Animals with larger ML/ PALATE 2nd ratio (< 0.51) tend to have 2 premolars per hemi-arch, while animals with smaller ration tend to have 3 premolars (Spearman rank 0.83, p < 0,0001) . The figure 11 summarized the three major phenotypes patterns observed in this study. Figure 11A represents animals with large molar field. Animals in this group tend to have third molars larger than first molars and 2 premolars in each hemi-arch. Figure 11B represents the animals with a small molar field, where the first molar is larger than third molar and 3 premolars in each hemi-arcade. Figure 11C represent animals lacking third molars (i.e. Callitrichidae family). Animals in this group tend to have large first molars and 3 premolars per hemi-arch.

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.33 0.38 0.43 0.48 0.53 0.58 0.63 M 3 L/ M L ML/PALATE

ML/PALATE 2nd vs M3L/ML

C

Figure - 9 Scatter graphics of MnL/ML vs ML/PALATE 2nd including the

(33)
(34)

Discussion

Regression analysis showed that higher correlation values and smaller confidence intervals for regression slopes and intercepts were obtained with secondary palate rather than total palate length. This result may be explained by the presence of a space (diastema) that accommodates mandibular canines, which can vary considerably among primate species.

Kavanagh et al (2007) showed that the proportions of molar teeth depend on the interaction between activators and inhibitors, where inhibitors are diffusible molecules secreted by the predecessor tooth. Inhibitors will delay the initiation of tooth development. Delayed initiation will result in smaller teeth. Our results show

Figure 11 -. Representative drawings of the phenotypes studied in this paper. A. maxilla

with a larger molar region, B. maxilla with smaller molar region, C. maxilla that does not have the M3.

C

(35)

that the proportions between molar teeth are dependent on the relative size of molar area in respect to the secondary palate length. Therefore, in animals with large ML/PALATE 2nd rations (>0.53) the M1 tends to be smaller than the third, the opposite happens when the molars region is smaller, the M1 being larger than the third. The size of the M2 does not depend on the relative size of the molar region regarding the palate size, been approximately 1/3 of the molar region for both, the area and length. The same proportion was seen by Kavanagh et al (2007) when studying lower molar of rodents.

The variation of relative size of molar region in primates seems to be determined to dietary constrains. Relatively large molars are found in leaf and grass-eaters, whereas relatively small molars are found in primates with insectivorous and frugivorous preferences (Kay 1975, Pirie 1978). Similar to rodents (Kavanagh et al 2007), the proportions among the molar teeth in primates is not related to dietary preferences, and seems to respond to a developmental default mechanism. The ubiquity of this mechanism indicated that it was already present in the first placental mammals. The robustness of this system is evidenced by observing the abrupt increase in the size of the first and M2 relative sizes in the animals that have lost the M3 (i.e. Callitrichidae).

It is assumed that the size of jaw is maintained by strict selective constrains and the number and size of teeth are accommodated on the available space (Robinson 1954, Sofaer et al 1971, Sofaer 1973). In developmental terms the relative size of molar regions is determined by the position of the first permanent molar on the jaws. This position is ultimately determined by the number and size of predecessor teeth (i.e. deciduous canine and deciduous molars, DCM). Large DCM region may result from large deciduous teeth or by the presence of 3 deciduous molars. These deciduous teeth are about the same size magnitude of the replacement permanent (Swindler 2002), so the size occupied by the permanent teeth can be an estimate of the size of deciduous teeth. The sizes of

(36)

this case the relative molar region will be small and M3 will be smaller than M1. In fact, our results show that the ML/PALATE 2nd ration is inversely related with the number of premolars. This model will fit into previously described models for molar proportions (Kavanagh 2007, Renvoisé 2008), as larger molar regions implicate in larger distances between molar buds with consequent weaker effects of diffusing inhibitory factors and vice-versa.

These model presented here can also be used to estimate palate and secondary palate in primate taking into account only the molar morphometrical parameters. This may be of help in the analysis of fragmented or incomplete fossil specimens.

Conclusion

In conclusion, when the size of the molars region increases in relation to the total palate or secondary palate the M3 is larger than the M1, and when this region decreases in size, the M1 increases in size while the M3 decreases, possibly to fit in a reduced space. When the family Callitrichidae was included it was observed that these primates that do not have M3 have the second and the M1 increased in size, probably to fill out the space left by the absence of the M3. It is possible to conclude also that the primates that have decreased molars region have a third premolar; the same is observed with the primates that do not have the M3 (family Callitrichidae). The variation coefficient was higher in the M3 indicating the vulnerability of this tooth in size variation. This study provided a model that can be used to estimate absolute values for each tooth by knowing molars region size and secondary palate length.

Acknowledgments

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES – for the financial support.

(37)

References

1. Kavanagh KD, Evans AR, Jernvall J. Predicting evolutionary patterns of mammalian teeth from development. Nature. 2007;449(7161):427-32.

2. Kay RF. The functional adaptations of primate molar teeth. Am J Phys Anthropol. 1975;43(2):195-216.

3. Line SR. Molecular morphogenetic fields in the development of human dentition. J Theor Biol. 2001;211(1):67-75.

4. Line SR. Variation of tooth number in mammalian dentition: connecting genetics, development, and evolution. Evol Dev. 2003;5(3):295-304.

5. Polly PD. Evolutionary biology: Development with a bite. Nature. 2007;449:413-5 6. Renvoise E, Evans AR, Jebrane A, Labruere C, Laffont R, Montuire S. Evolution of mammal tooth patterns: new insights from a developmental prediction model. Evolution. 2008;63(5):1327-40.

7. Robinson JT. Prehominid dentition and hominid evolution. Evolution. 1954;8:324-34.

8. Smith RJ. On the definition of variables in studies of primate dental allometry. Am J Phys Anthropol. 1981;55(3):323-9.

9. Stock DW. The genetic basis of modularity in the development and evolution of the vertebrate dentition. Philos Trans R Soc Lond B Biol Sci. 2001;356(1414):1633-53.

10. Swindler DR. Primate dentition: an introduction to the teeth of non-human primates. Cambridge: Cambridge University Press; 2002.

(38)

12. Sofaer JA. A model relating developmental interaction and differential evolutionary reduction of tooth size. Evolution. 1973;27: 427-34.

(39)

Conclusão

Conclui-se que quando a região de molares aumenta de tamanho em relação ao palato total ou secundário o terceiro molar é maior que o primeiro, e quando esta região diminui, o primeiro molar aumenta de tamanho enquanto o terceiro diminui, possivelmente se ajustar a um espaço reduzido. Quando a família Callitrichidae foi incluída foi observado que estes primatas que não possuem terceiro molar têm o segundo e o primeiro aumentado em tamanho, provavelmente para preencher o espaço deixado pela ausência do terceiro molar. É possível também concluir que os primatas que possuem região de molares diminuída tenham um terceiro pré-molar; o mesmo é observado com os primatas que não têm o terceiro molar (família Callitrichidae). O coeficiente de variação mais alto foi o do terceiro molar, o que indica a vulnerabilidade deste dente em variação de tamanho. Este estudo proveu um modelo que pode ser usado para estimar valores absolutos para cada molar a partir do tamanho da região de molares e comprimento de palato secundário.

(40)

Bibliografia Consultada

1. Bailit, HL, Friedlaender JS. Tooth size reduction: a hominid trend. American Anthropologist. 1966;68:666-72.

1. Fitch WT. Skull dimensions in relation to body size in nonhuman mammals: The causal bases for acoustic allometry. Zoology. 2000;103:40-58.

5. Gingerich PD. Size variability of the teeth in living mammals and the diagnosis of closely related sympatric fossil species. Journal of Paleontology. 1974;48:895-903. 1. Gingerich PD. Correlation of tooth size and body size in living hominoid primates, with a note on relative brain size in Aegyptopithecus and Proconsul . Am. J.Phys. Anthrop. 1977;47(3): 395-8.

3. Gingerich PD. Patterns of tooth size variability in the dentition of primates. Am. J.Phys. Anthrop. 1979;51:457-66.

2. Gingerich PD, Smith BH, Rosenberg K. Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. Am.J. Phys. Anthrop. 1982;58(1): 81-100.

1.Kanazawa E, Rosenberger A. Reduction index of the upper M2 in marmosets. Primates. 1988;29(4):525-33.

1. Kanazawa E, Rosenberger A. Interspecific allometry of the mandible, dental arch, and molar area in anthropoid primates: Functional morphology of masticatory components. Primates. 1989;30(4):543-60.

4. Pilbeam D, Gould SJ. Size and Scaling in Human Evolution. Science. 1974;186(4167):892-901.

1. Pirie P. Allometric scaling in the postcanine dentition with reference to primate diets. Primates.1978;19(3):583-91.

(41)

Referências

Documentos relacionados

Alguns ensaios desse tipo de modelos têm sido tentados, tendo conduzido lentamente à compreensão das alterações mentais (ou psicológicas) experienciadas pelos doentes

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to

Além disso, o Facebook também disponibiliza várias ferramentas exclusivas como a criação de eventos, de publici- dade, fornece aos seus utilizadores milhares de jogos que podem

O presente estudo incide sobre a estrutura e atividade das unidades orgânicas dos ramos das Forças Armadas (FFAA) dedicadas à auditoria e inspeção, previstas nas novas

(1984) analisando povoamentos de Eucalyptus saligna, aos 8 e 9 anos de idade, respectivamente, verificaram que em média 85% da biomassa aérea encontrava- se no fuste (madeira

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

e application of the Leggett-Williams �xed point theorem for proving multiplicity of solutions for boundary value problems on time scales was �rst introduced by Agarwal and

Dentre essas variáveis destaca-se o “Arcabouço Jurídico-Adminis- trativo da Gestão Pública” que pode passar a exercer um nível de influência relevante em função de definir