• Nenhum resultado encontrado

Garibotti Lusa , Maique Weber Biavatti Richetti Amanda Ellen , Everton , Josiane de Athayde Wolff ,Makeli “Arnicas” from Brazil: comparative analysis among ten species

N/A
N/A
Protected

Academic year: 2022

Share "Garibotti Lusa , Maique Weber Biavatti Richetti Amanda Ellen , Everton , Josiane de Athayde Wolff ,Makeli “Arnicas” from Brazil: comparative analysis among ten species"

Copied!
24
0
0

Texto

(1)

RevistaBrasileiradeFarmacognosia29(2019)401–424

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original Article

“Arnicas” from Brazil: comparative analysis among ten species

Amanda Ellen de Athayde

a

, Everton Richetti

b

, Josiane Wolff

b

, Makeli Garibotti Lusa

b

, Maique Weber Biavatti

a,∗

aDepartamentodeCiênciasFarmacêuticas,CentrodeCiênciasdaSaúde,UniversidadeFederaldeSantaCatarina,Florianópolis,SC,Brazil

bDepartamentodeBotânica,CentrodeCiênciasBiológicas,UniversidadeFederaldeSantaCatarina,Florianópolis,SC,Brazil

a r t i c l e i n f o

Articlehistory:

Received26October2018 Accepted6February2019 Availableonline23March2019

Keywords:

Arnica Morphoanatomy Phytochemicalreview Qualitycontrol Asteraceae Ethnopharmacology

a b s t r a c t

The“arnicas”foundinBrazilareexamplesofdifferentspeciesofthefamilyAsteraceaeusedinpopular medicineforitsattributedanti-inflammatoryaction.Amongthespeciesknownandusedas“arnica”

weselected:CaleaunifloraLess.,Chaptalianutans(L.)Polák,LychnophoraericoidesMart.,Lychnophora pinasterMart.,LychnophorasalicifoliaMart.,LychnophoradiamantinanaCoile&S.B.Jones,Porophyllum ruderale(Jacq.)Cass.,Pseudobrickelliabrasiliensis(Spreng.)R.M.King&H.Rob.,Sphagneticolatrilobata(L.) Pruski,andSolidagochilensisMeyen,duetotheirextensiveuse.Thisresearchprovidesnewinformation onleafmorphologyandanatomyandonchemistryofthemajormetabolitesfoundinthesespecies throughhistochemicaltestsandphytochemicalreview.Theresultsrevealedanatomicalcharactersforthe differentiationandqualitycontrolofthevegetaldrugs,beingthese:distinctiveepidermalattachments, epidermiscells,parenchymalcellsofthemesophyll,vascularbundles,midveinpatternsandsecretory structuresofexudationofsecondarymetabolites.Thereviewofchemicalprofilesshoweddifferencesin thechemicalcompositionofthespecies,asdifferentskeletonsofsesquiterpenelactonesinthespecies evaluatedinadditiontootherchemicalclassessuchasterpenes,flavonoids,chromenesandphenolicacids derivate.Basedontheresultsobtainedinthisworkitisimportanttoemphasizethattheinformation aboutthetenspeciesofarnicageneratesubsidiesfordifferentiationandidentificationofcharacteristic markersandforthediagnosisofthespeciesanditcanbeappliedinthe“arnicas”qualitycontrol.

©2019SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Brazilhasahugeplantdiversityandwidesociodiversity.Forthis reason,thecountrypresentsgreatpotentialforthedevelopmentof phytotherapyandcorrelatedsciences.Thepopularuseofmedicinal plantsinBrazilisaprocessofproductionandreproductionofvaried knowledgeandpracticesoriginatedindifferentcultures,resulted fromthesocialinteractionamongseveralgroupsthatcomposes, inthiscase,theBrazilianculture(European,Africanandindige- nouscommunities,amongmanyotherculturalgroups)(Salesetal., 2015).

TheEuropeanimmigrantsthatarrivedtoworkmainlyincof- feeplantationinBrazil(19–20thcenturies)couldnotfindherethe Europeanmedicinalplants,suchastheverywellknownArnica montana, used as topical anti-inflammatory. To meet the need forthisspecies,immigrantsbegantolookforotherspeciesthat could provide the same therapeutic effects; this selection was anecdotallybasedonmorphologicalandsensorialcharactersthat

Correspondingauthor.

E-mail:maique.biavatti@ufsc.br(M.W.Biavatti).

couldresemblethetruearnica(A.montana).Overtheyears,the combination of the European heritage with the miscegenation withotherethnicandculturegroups,ledtoaselectionofseveral plants named popularly as “arnica”,arising from some resem- blance totheA.montana (Semir etal., 2011).Similarprocesses occurredalsoinothercountries,forexampleinMexicoiscom- montheuseofHeterothecainuloidesCass.,Asteraceae,knownas

“arnica-mexicana”(Rodríguez-Chávezetal.,2017).Accordingto Obónet al.(2012),in theIberic peninsulaand BalearicIslands, about32speciesareknownas“arnica”belongtosixbotanicalfam- ilies.Atotalof24speciesareAsteraceae,belongingtoeighttribes:

Anthemideae Cass.(Achillea ageratumL.); Astereae Cass. (Conyza bonariensis (L.) Cronquist); Cardueae Cass. (Centaurea granaten- sisBoiss.ex DC.);CichorieaeLam. &DC. (AndryalaintegrifoliaL., A. ragusinaL.,Crepispaludosa (L.)Moench, C.vesicaria L.subsp.

taraxacifolia(Thuill.)Thell.,andHieraciumsp.);DoroniceaePanero (DoronicumcarpetanumBoiss.&Reut.exWillk.&Lange,D.gran- diflorumLam.andD.pardalianchesL.);InulaeaeCass.(Chiliadenus glutinosus(L.)Fourr.,Dittrichiaviscosa(L.)Greuter,Inulabritannica L.,I.helenioidesDC.,I.helveticaGrauer,I.montanaL.,I.salicinaL., Pallensisspinosa(L.)Cass.,Pulicariaodora(L.)Rchb.,andP.palu- dosaLink.);MadieaeJeps.(A.montanaL.).SenecioneaeCass.(Senecio

https://doi.org/10.1016/j.bjp.2019.02.006

0102-695X/©2019SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Thus, this study will provide information about the microanatomical characterization of the most usual “arnicas”

inBrazil,defininganatomicalmarkersandcomparingtheirphyto- chemicalcompositionbasedonpublishedpaperstodifferentiate these species, namely: Calea uniflora Less. (arnica-da-praia), Chaptalia nutans(L.) Polák (arnica-língua-de-vaca), Lychnophora ericoidesMart.(arnica-da-serra),LychnophoradiamantinanaCoile&

S.B.Jones(arnica-da-serra),Lychnophorapinaster(arnica-da-serra) Mart. and Lychnophora salicifolia Mart. (arnica-falsa, arnica- do-cerrado), Porophyllum ruderale (Jacq.) Cass. (arnica-paulista, arnica-da-praia), Pseudobrickellia brasiliensis (Spreng.) R.M.King

& H.Rob. (arnica-do-campo, arnica-do-mato), Solidago chilensis Meyen (arnica-brasileira, arnica-do-campo) and Sphagneticola trilobata(L.)Pruski(arnica-do-mato).

ThespeciesL.ericoidesandL.pinasterareverysimilarspecies andsometimestheseparationbetweenthemisdifficult.Although thespeciesareconsideredbysomeauthorsassynonyms,inthis workweareconsideringasdifferentspecies.Thecharacteristics usedtoidentifyL.ericoides andL.pinasterare described inthe SupplementaryMaterial.

SpeciesofSenecio(“pseudo-arnica”),Asteraceae,arealsousedas arnicabutwerenotincludedinthisworkbecauseitsmedicinaluse shouldbediscouragedduetothepresenceofthetoxicpyrrolizidine alkaloidsinthisgenus(Sandinietal.,2013).

Materialandmethods Plantmaterialusedinthisstudy

Theplantmaterial analyzed wascollectedin SantaCatarina State(SC)andMinasGeraisState(MG),Brazil.Thesampleswere obtainedinfieldorfromexsiccatesdepositedintheFLORHerbar- iumoftheFederalUniversityofSantaCatarinaandfromherborized materialprovidedbyBenoitLoeuille.A.montanawasobtainedof commercialsample inBarcelona,Spain.Wheneverpossible,the leavesusedinthisstudywerecollectedfromtriplicateofthree differentpopulations.Vouchernumberofthespeciescanbefound inTable1.

Anatomicalanalysis

Formorphoanatomicalanalysis,leavesfromthreedistinctpop- ulations (n=3) of species collectedin field were fixed in FAA solution(70%ethanol,40%formalin,glacialaceticacid)undervac- uumconditionstoremoveairfromthetissues(Johansen,1940).

Next,thematerialsweredehydratedinagrowingseriesofethanol (30%,50%,70%)andstoredin70%ethanol.Theherborizedmaterial washydratedusingaSmithandSmith(1942)modifiedmethod (forthis processwasaddedonedropofdetergent).Afterwards, themedianregionoftheleaf(mediumthird)wasselectedandthe sampleswereinfiltratedinPEG1500.Thesampleswerethencross-

c CommercialsampleidentifiedasdescribedintheBrazilianPharmacopoeia5th edition(FarmacopeiaBrasileira,2010).

sectionedwithavariationbetween15␮mand35␮mthickness using a rotary microtome, model RM 2125 RT Leica Microsys- tem,Nussoch, Germany.Topreparethe permanenthistological slides,thecross-sectionswerestainedwith0.05%ToluidineBlue incitrate-phosphatebuffer,pH4.5(Sakai,1973)andaffixedtothe slidesusingsyntheticCanadabalm.Forvisualizationoftheepider- misinfrontalview,dissociationoftheepidermiswasperformed (Johansen,1940).

Histochemicalreactions

Histochemicalreactionswerechosen based onthechemical classesof higher occurrencein theAsteraceaefamily andwere performed on material embedded in PEG 1500. The following chemicalreactionswerecarriedout:SudanIV(Jensen,1962)for lipophiliccompounds;sulphuricacid(GeissmanandGriffin,1971) forsesquiterpenelactones;ferricchloride3%(Johansen,1940)for phenoliccompounds;andRutheniumRedforpecticcompounds.

Thesectionswereexaminedimmediatelyaftereachreaction.Con- trolsectionswereperformedsimultaneoustothehistochemical tests,inaccordancewithstandardprocedure.

Imagescapturing

Allthehistologicalslides,includingthatofhistochemicalreac- tions, were observed of the Leica® Microscope Model DM2500 coupledtotheLeica® ModelDFC29videocamera.Tocapturethe imageswithsulphuricacid wasusedan Olympus® microscope (modelCX21FS1)byattachinga digitalcamera(OlympusT110) toeyepiece.Toverifythecrystals,thehistologicalslideswereana- lyzedunderpolarizedlightusingtheOlympusBX50microscope coupledtotheOlympusDP73camera,throughwhichtheimages werecaptured.

Scanningelectronmicroscopy(SEM)

Toperformthisprocedure,theplantswerefixedusingFAAsolu- tionandincubatedforaperiodof24h(Johansen,1940).Afterthat, thesamplesweredehydratedinagrowingseriesofethanol(30%, 50%,70%,80%,90%and100%)wasperformed20mineach.Sub- sequently,thematerialwasdriedusingtheCO2-criticalmethod and,finally,thesamplesweremetalizedwithgoldforanalysisby SEM(Fernandesetal.,2016)andanalyzedbySEMwiththeJEOL JSM-6390LVScanningElectronMicroscope.

(3)

A.E.Athaydeetal./RevistaBrasileiradeFarmacognosia29(2019)401–424 403 Phytochemicalreview

Phytochemical investigations of “arnicas” species was per- formedusingtheReaxys,Scifinder,Pubmed,Sciencedirect,Google Scholar and Tropicosdatabases. The dataobtainedwas plotted incomparativetable,correlatingthe“arnica”specieswiththeir respectivemetabolitesaccordingtotheliterature.Phytochemical surveywascarriedoutfromMarch2017toJuly2018.Therewas nominimumdateforinclusionofthedata,soalldatawasincluded untiltheyear2018.

Results

Micromorphologicalcharacterization

Allthesamplesofleavesofthespeciesanalyzedareillustrated inFigs.1(A-J),2(A-F),3(A-I),4(A-J),5(A-G),6(A-G),7(A-H),8(A- H), 9(A-J), 10(A-J), 11(A-G) and the aim characteristics are summarized in Figs. 12–14. The complete morphoanatomical descriptionofthesesamplesfollowsbelow.

Middlevein

Initiallythemiddlevein(MV),incrosssection,wasevaluated.

ThespeciesC.uniflora,C.nutansandS.chilensispresentedtheMV withabiconvexform,withtheabaxial regionmoreprominent (Fig.1A,B,J).ThespeciesL.diamantinana,L.ericoides,L.pinaster and L.salicifolia presented adaxial surface withcentral depres- sionandabaxialfacewithroundedprojection(Fig.1C–F).ForP.

brasiliensisitwasobservedalittledefinedMV,withoutgreatdiffer- entiationofthestrataofparenchyma,andisnotpossibletodiscuss clearlythemformat(Fig.1H).ThespeciesP.ruderaleandS.trilobata

presented,respectively,aconvexandconcave-convexmiddlevein form(Fig.1G,I).

Theepidermalcells,forallspecies,presentuniseriateformand coveredbycuticle.AdjacenttotheepidermisoftheC.unifloraand C.nutanswasobservedanangularcollenchymaturnedtoadax- ialface (Fig.1A and B).For theS. trilobata andS. chilensis was foundangularcollenchymainbothsurfaces(Fig.1I–J).Lychnophora speciespresentedalotofcollenchymacellsinbothsurfaces,being themlamellarcollenchymatoL.ericoidesandsclerehydeifiedcells orfibersassociatedwiththephloem(Fig.1C–F).P.ruderale,showed astratumofangularcollenchymainbothfaceswiththeextension ofthesheathofthecollenchymabundle(Fig.1G).

Internalsecretorystructureswereobservedclosetothevascu- larbundles,dispersedintheparenchymaoftheMV.ThetaxaC.

unifloraandS.trilobatapresentedtwosecretorycavitiesinserted intheparenchymafacingtheabaxialsurface,closetothephloem, andasecretorycavityjustabovethexylem,turnedtoadaxialsur- face(Fig.1AandI).S.chilensispresentedasecretorycavityturned toabaxialface,insertedbelowthephloemoftheMVoftheleaf (Fig.1J).S.trilobatapresentedthreesecretorycavities,twoturned toabaxialface,belowthephloemandonefacingtheadaxialsur- face,abovethexylem;theotherspeciesdidnotpresentcavitiesin theMVregion(Fig.1I).

Thevascularbundlesintransversalsectionpresentinthemiddle vein(MV)ofC.unifloraisorganizedinopenarchform(Fig.1Aand E,respectively).C.nutanspresentsarelativelycilindricvascular bundle(Fig.1B).ThespeciesofLychnophorapresentedthreefree bundleswithcilindricform(Fig.1C,D,F).P.ruderalepresentssmall andstraightvascularpatternwithextensionofthebundlesheath (Fig.1G).P.brasiliensisdoesnotpresentspecificdelimitations,with vascularbundlesdistributedthroughoutthemesophyll(Fig.1H).

S.chilensispresentedacordformatvascularsystemand,thetaxon

Fig.1. Middlevein(MV)incross-sectionsofleavesfullyexpandedof“arnicas”.A–J.Lightmicroscopy.A.Caleauniflora;B.Chaptalianutans;C.Lychnophoradiamantinana;D.

Lychnophoraericoides;E.Lychnophorapinaster;F.Lychnophorasalicifolia;G.Porophyllumruderale;H.Pseudobrickelliabrasiliensis;I.Sphagneticolatrilobata;J.Solidagochilensis.

A.Stainingwithrutheniumred;B–D,F–J.Stainingwithtoluidineblue;E.StainingwithSudan.Abbreviations:COL,collenchyma;XI,xylem;FLO,phloem;PAR,regular parenchyma;ESC,sclerehydes;CV,internalsecretorycavity.A,J,I.presenceofCV;E.presenceofESC.C–F.possiblesclerenchymafibersbelowthephloem.Findings:A, B,J.MVwithbiconvexform;C,F.adaxialfacewithcentraldepressionandabaxialfacewithroundedprojectiontotheMVform;H.undefinedMV;G.convexMVform;

I.concave-convexMVform;A–J.uniseriateepidermalcells,coveredbycuticle;A.openarchvascularbundlesform;B.cordformatvascularbundlesform;C–F.threefree bundleswithcilindricform;G.smallandstraightvascularpatternwithextensionofthebundlesheath;H.undefinedvascularbundlesform;I.cordformatvascularbundles form;J.conicalandsmalldimensionsvascularbundlesform.

(4)

Fig.2. Viewofstomataandepidermalcellsinabaxialsurfaceofleavesfullyexpandedof“arnicas”.A–F.Lightmicroscopy;A.Caleauniflora;B.Chaptalianutans;C.Porophyllum ruderale;D.Pseudobrickelliabrasiliensis;E.Sphagneticolatrilobata;F.Solidagochilensis;A–B.Stainingwithtoluidineblue.C–F.Stainingwithsafranine.Findings:A–F.anomocytic characteristicsbystomata.

Fig.3.Viewofstomatainabaxialsurfaceofleavesfullyexpandedof“arnicas”bySEM.A.Caleauniflora;B.Chaptalianutans;C.Lychnophoraericoides;D.Lychnophorapinaster;

E.Lychnophorasalicifolia;F.Porophyllumruderale;G.Pseudobrickelliabrasiliensis;H.Sphagneticolatrilobata;I.Solidagochilensis.Findings:A,B,H.regularlevelofstomatain relationtotheepidermis.C,F–G.belowoftheepidermislevel.D,E,I.abovetheepidermislevel.

(5)

A.E.Athaydeetal./RevistaBrasileiradeFarmacognosia29(2019)401–424 405

Fig.4. Epidermiscells(adaxialvs.abaxialsurface)ofleavesfullyexpandedof“arnicas”bySEM.Adaxialface:A.Caleauniflora;B.Chaptalianutans;C.Lychnophoradiamantinana;

D.Lychnophoraericoides;E.Lychnophorapinaster;F.Lychnophorasalicifolia;G.Porophyllumruderale;H.Pseudobrickelliabrasiliensis;I.Sphagneticolatrilobata;J.Solidagochilensis.

Abaxialface:A.Caleauniflora;B.Chaptalianutans;C.Lychnophoradiamantinana;D.Lychnophoraericoides;E.Lychnophorapinaster;F.Lychnophorasalicifolia;G.Porophyllum ruderale;H.Pseudobrickelliabrasiliensis;I.Sphagneticolatrilobata;J.Solidagochilensis.Findings:A–JandA–J.uniformepidermisoftheleafsurface(bothfaces);A,B,Iand A,B,I.sinuouswallsoftheepidermalcells;G,H,JandG,H,J.straightwalloftheepidermalcells;C–FandC–F.straightwalloftheepidermalcellsintheadaxialface (C–F)beingmoreroundedandtheabaxialcells(C–F)moreelongated.

hypostomaticleafpatternwasobservedtotheC.nutans,L.dia- mantinana,L.ericoides,L.pinasterandL.salicifolia(Fig.4B–F).

Thesinuosityoftheepidermalcellsshowedsignificantdiffer- enceforeachspecies.The“arnicas”presentedtheleafsurface(both faces)withuniformepidermis,whose cellsinfrontalviewpre- sented sinuous wallsto thetaxons C. uniflora,C. nutansand S.

trilobata(Fig.4A–B,I–I).StraightwallwasobservedforP.ruderale (longandstraightcellsinadaxialface),P.brasiliensis(bothsides) andS.chilensis(bothsides)(Fig.4G–H,J–J).FortheLychnophora species,theformofthecellswasidentifiedasstraight,withthe cellsintheadaxialfacebeingmoreroundedandtheabaxialcells moreelongated(Fig.4C–FandC–F).

Thepresenceofglandular(GT)and non-glandulartrichomes (NGT)wereverifiedtotheC.uniflora,C.nutans(NGTonly),L.eri- coides,L.diamantinana,LpinasterandL.salicifolia,S.chilensisand

S.trilobata(Figs.5A–G,6A–G, 6A–Hand 7A–H).ThespeciesP.

ruderaleandP.brasiliensispresentedglabrousleaf.InC.uniflora, theGTareinsertedinsmalldepressionintheepidermisandcan bemulticellularandbicellularorcapitatewithunicellularpedi- celandgloboidhead(Figs.5Aand6A).TheLychnophoraspecies evaluatedshowedGTconcentratedontheabaxialfaceinclosedin crypts(Figs.5B–Eand6B–E).S.chilensispresentedmulticellulartri- chomes,plurisseriateand/orcapitatewithunicellularpedicelwith elongatedterminalcell(Figs.5F–F,6G).S.trilobatapresentedbis- seriedGTindepressionand/ormulticellularunisseriateGTwith elongatedterminalcell(Figs.5G,6F).

Multicellular (5–8 cells) and unisseriate NGT were observed in the species C. uniflora, S. chilensis and S. trilobata (Figs. 7A, G–H and 8A, G–H). C. nutans presented long and numeroustrichomes(Figs.7Band8B).TheLychnophoraspecies

(6)

Fig.5.Glandulartrichome(GT)incross-sectionsofleavesfullyexpandedof“arnicas”.Lightmicroscopy:A.Caleauniflora;B.Lychnophoradiamantinana;C.Lychnophora ericoides;D.Lychnophorapinaster;E.Lychnophorasalicifolia;F,F,F.Solidagochilensis;G,G.Sphagneticolatrilobata;A,F,F,GandG.stainingwithsafranine;F.stainingwith toluidineblue;B,C,D,E.uncolored.Findings:A.GTinsertedinsmalldepressionandmulticellularandbicellularorcapitedwithunicellularpedicelandgloboidhead.B–D.GT inclosedincrypts;F.GTmulticellularplurisseriateand/orcapitatewithunicellularpedicelwithelongatedterminalcell;G.GTbisseriedindepressionand/ormulticellular unisseriatewithelongatedterminalcell.

Fig.6. Glandulartrichome(GT)ofleavesfullyexpandedof“arnicas”bySEM.A.Caleauniflora;B.Lychnophoradiamantinana;C.Lychnophoraericoides;D.Lychnophora pinaster;E.Lychnophorasalicifolia;F.Sphagneticolatrilobata;G.Solidagochilensis.Abbreviations:EP,epidermis;ST,stoma;GT,glandulartrichome;NGT,nonglandular trichome.Findings:A.GTinsertedinsmalldepressionandmulticellularandbicellularorcapitedwithunicellularpedicelandgloboidhead;B–D.GTinclosedincrypts;F.GT multicellularplurisseriateand/orcapitatewithunicellularpedicelwithelongatedterminalcell;G.GTbisseriedindepressionand/ormulticellularunisseriatewithelongated terminalcell.

Fig.7. Nonglandulartrichome(NGT)incrosssectionofleavesfullyexpandedof“arnicas”.A.Caleauniflora;B,B.Chaptalianutans;C.Lychnophoradiamantinana;D.

Lychnophoraericoides;E.Lychnophorapinaster;F.Lychnophorasalicifolia;G,G.Solidagochilensis;H.Sphagneticolatrilobata;Findings:A,G,G,H.stainingwithsafranine;B,C, D,E,F.uncolored;A,G,G,H.multicellular(5–8cells)andunisseriateNGT;B.longandnumerousNGT;C,F.starredtrichomes(3–5arms);G,G.elongatedTNG,withslightly enlargedbaseandslimterminalcell;H.NGTwiththebasalcellofverrucouscuticle.

(7)

A.E.Athaydeetal./RevistaBrasileiradeFarmacognosia29(2019)401–424 407

Fig.8.Non-glandulartrichome(NGT)ofleavesfullyexpandedof“arnicas”bySEM.A,A.Caleauniflora;B,B.Chaptalianutans;C,C.Lychnophoradiamantinana;D.Lychnophora ericoides;E.Lychnophorapinaster;F.Lychnophorasalicifolia;G.Solidagochilensis;H,H,H.Sphagneticolatrilobata;Abbreviations:EP,epidermis;ST,stoma;GT,glandular trichome;NGT,nonglandulartrichome.Findings:A,G–H.multicellular(5–8cells)andunisseriateNGT;B.longandnumerousNGT;C–F.starredtrichomes(3–5arms);G.

elongatedTNG,withslightlyenlargedbaseandslimterminalcell;H.NGTwiththebasalcellofverrucouscuticle.

Fig.9. Intermediateregionofmesophyll(IRM)incrosssectionofleavesfullyexpandedof“arnicas”.A.Caleauniflora;B.Chaptalianutans;C.Lychnophoradiamantinana.D.

Lychnophoraericoides;E.Lychnophorapinaster;F.Lychnophorasalicifolia;G.Porophyllumruderale;H.Pseudobrickelliabrasiliensis;I.Solidagochilensis;J.Sphagneticolatrilobata.

Abbreviations:CUT,cuticule;PP,palisadeparenchyma;LP,lacunarparenchyma;AP,aquiferousparenchyma;PR,regularparenchyma;VB,vascularbundleblond;ESC, sclerehyde;EP,epidermis;GT,glandulartrichome;NGT,non-glandulartrichome;IC,internalcavity.Findings:A–F.stainingwithrutheniumred;G,J.stainingwithtoluidine blue;A,B,G,J.dorsiventralparenchyma;C–F.palisade(adaxial),spongy(abaxial)andaquiferousparenchymastrataclosetothevascularbundleswithextensionofthe bundlesheath;H.homogenousmesophyll;I.isobilateralmesophyllandaquiferousparenchyma(interconnectingthevascularbundles);A–J.collateraltypeofthebundles.

presentedstarredtrichomes(3–5arms)varyinginsizeandwidth, withcellulosicthickeningandconcentratedontheabaxialfaceof theleafbetweencrypts(Figs.7C–Fand8C–F).S.chilensisshowed elongatedTNG,withslightlyenlargedbaseandslimterminalcell (Figs.7G–Gand8G–G).S.trilobatapresentedtrichomeswiththe basalcellofverrucouscuticle(Figs.7Hand8H–H).

Theintermediateregionofthemesophyll(IR)wasdorsiven- tralparenchymaforthespeciesC.uniflora,C.nutans,P.ruderale andS.trilobata(A,B,G,J).TheLychnophoraspeciespresentedpal- isade(adaxial), spongy(abaxial)and aquiferparenchyma strata close to the vascular bundles with extension of the bundle sheath,excepttoL.pinaster(Fig.9C–F).P.brasiliensispresented

(8)

Fig.10. Leafmarginincrosssectionofleavesfullyexpandedof“arnicas”.A.Caleauniflora;B.Chaptalianutans;C,C.Lychnophoradiamantinana;D.Lychnophoraericoides;

E.Lychnophorapinaster;F.Lychnophorasalicifolia;G,G.Porophyllumruderale;H.Pseudobrickelliabrasiliensis;I.Solidagochilensis;J.Sphagneticolatrilobata;A,B,F.staining withferricchloride;C–EandG–I.stainingwithrutheniumred;J.toluidineblue.Findings:A–F,J.roundedandflexedsheetedgefortheabaxialface;C–F.flexionwithafinal marginnarrowing.I.discreteflexionofthemarginwithepidermalprojectionstotheoutsideoftheleaf;G–H.straightmargin,withoutflexionorlittleflexure.G,G.large secretorycavityonthemarginofleaf.

Fig.11.AnalysesofleavesfullyexpandedofArnicamontanabySEM.A.adaxialface;B.abaxialsurface;C.stomata;D.baseoftheNGT;E.peduncleofNGT;F.apexofNGT.

G.GT.

homogenous mesophyll, without distinction between the cells (Fig.9H).S.chilensispresentedmesophylloftheisobilateraltype withpresenceofaquiferparenchymainthemedialregionofthe mesophylland interconnectingthevascularbundles (Fig.9I). In allspecies, the bundles wereof the collateral type, distributed inthe median regionof themesophyll,being surroundedby a parenchymaticsheath. Inthespecies C.unifloraand S.chilensis, these may be associated with secretory ducts (Fig. 9A, I). The Lychnophorapresentedextensionofthesheathofthebundleand

alsolargerdimensionsoftheregionwherethevascularbundles meet(Fig.9C–F).Thepresenceof crystalidioblastswasverified intheL.diamantinana(smalldruses).Theoccurrenceofphenolic, lipophilicandpecticcompoundswasalsoverified(Item4.2).

Leafmargin

In the present study, among the “arnica” specimens, there wasa differenceinleafmargininrelationtoflexion anddistri- butionofparenchymacells. ThespeciesC.uniflora,C.nutans,L.

(9)

A.E.Athaydeetal./RevistaBrasileiradeFarmacognosia29(2019)401–424 409

Fig.12. Flowcharttoqualitycontrolofthe“arnicas”evaluatedusingtheleavesfullyexpanded,throughthemiddlevein.Orange,anatomicalparameters;Blue,anatomical definitionandtarget;Green,specieconfirmation.

Fig.13.Flowcharttoqualitycontrolofthe“arnicas”evaluatedusingtheleavesfullyexpanded,throughthestomata.Orange,anatomicalparameters;Blue,anatomical definitionandtarget;Green,specieconfirmation.

ericoides,L.diamantinana,L.pinaster,L.salicifoliaandS.trilobata showedroundedandrevoluteleafbordertowardtheabaxialface (Fig.10A–F,J).FortheLychnophoraspeciesthereismarkedflexion withafinalmarginnarrowing(Fig.10C–F).S.chilensispresented discreteflexionofthemarginandwithepidermalprojectionsto theoutsideoftheleaf(Fig.10I).Ontheotherside,thespeciesP.

ruderaleand P.brasiliensisshowedastraightmargin,withoutor littleflexion(Fig.10G–H).Inparticular,thereisalargesecretory cavitypresentonthemarginofP.ruderale(Fig.10G–G).Theorga- nizationofthemesophyllcellsfollowsthesamedistributionofthe

intermediateportion,withexceptionforS.chilensiswithpredom- inanceofaquiferparenchyma(Fig.10I).

A.montana(“thetrueArnica”)

Analyses of the A. montana leaveswere performed only by scanningelectronmicroscopy(Fig.11A–G).Weareobservedthe amphistomatic pattern ofthe leaves, witha greaternumber of stomataontheabaxialfaceoftheleaf(Fig.11AandB).Stomawas lightlyprojectedontotheepidermis(Fig.11C).Thenon-glandular trichomes(4–5cells)showedaverrucousapicalcellandsmooth

(10)

Fig.14.Flowcharttoqualitycontrolofthe“arnicas”evaluatedusingtheleavesfullyexpanded,throughthetrichomes.Orange,anatomicalparameters;Blue,anatomical definitionandtarget;Green,specieconfirmation.

cuticletothebasecells(Fig.11A–B,D–F).Theglandulartrichomes arecapitate(Fig.1G).

Identificationflowchartforthe“arnicas”evaluatedinthisstudy

Tosystematizethemicromorphologicalcharacterizationofthe

“arnicas”evaluatedinthisstudy,aflowchartwascreatedtodiffer- entiatethespecies.Diagnosticanatomicalelementswereidentified andplotted makingpossiblethe quickidentificationof species, intactorcrushed(Figs.12–14).

Histochemicalcharacterization

Thehistochemicaltestsrevealedthatsecondarymetabolitesthe mainchemotaxonomicmarkersofthe“Arnicas”weresecretedand accumulatedinspecificssecretorystructuressuchasglandulartri- chomes,epidermalidioblasts,secretory tissuessuchaspalisade andspongychlorophyllparenchyma,themiddleveinintheleaves

and in theinternal secretory structures.The figures showpos- itive reactionsto:lipophilic substances, evidenced bySudan IV (Figs.15and16)inorangetored;sesquiterpenelactonesevidenced bysulphuricacid(Figs.17and18)inredtoorangeandyellowand phenoliccompoundsevidencedbyferricchloride(Figs.19and20) withbrowncolor.

Thehistochemicalreactions,classesofmetabolitesfoundand thesites of secretion in theevaluated species will beshow in Table2.

Chemicalreview

Thephytochemical review of thespecies of “arnica” reveals diversificationofcompounds.Basedonthedataobtained,ispos- sibleverifythemainclassesofmetabolitesineachofthespecies (Fig.21).Table3compilestheliteraryfindingsreferringtothemain substancesdescribedforeachofthespecies.

(11)

A.E.Athaydeetal./RevistaBrasileiradeFarmacognosia29(2019)401–424 411

Fig.15.Histochemicalreactionforlipophilicsubstancesincross-sectionsofleavesof“arnicas”,highlightedbySudan.Lightmicroscopy.Thefigureshowspositivereactions (red)forlipophilicsubstanceswithaccumulationofmetabolitesinglandulartrichomes.A,A.Caleauniflora;B,B.Lychnophoradiamantinana;C.Lychnophoraericoides;D.

Lychnophorapinaster;E.Lychnophorasalicifolia;F.Solidagochilensis;G.Sphagneticolatrilobata.

Fig.16.Histochemicalreactionforlipophilicsubstancesincross-sectionsofleavesof“arnicas”,highlightedbySudan.Lightmicroscopy.Thefigureshowspositivereactions forlipophilicsubstanceswithaccumulationandsecretionofmetabolitesintheepidermalcellsandothersecretorystructuresofleaves.A,A.Caleauniflora;B.Lychnophora diamantinana;C.Lychnophoraericoides;D.Lychnophorapinaster;E.Lychnophorasalicifolia;F.Solidagochilensis;G.Sphagneticolatrilobata.Findings:A,B,C,D,I,F.midvein withaccumulationofmetabolitesinparenchymacells.A,B,B,C,D,D,E,F,G,H,I,J.accumulationofmetabolitesintheepidermisand/orchlorophyllparenchymaofthe mesophyll;A,A,G,I,I.accumulationofmetabolitesintheinternalsecretorystructure.Reactionpatternatthetipofthearrow(red).

(12)

Fig.17.Histochemicalreactionforscreeningofsesquiterpenelactonesincross-sectionsofleavesof“Arnicas”,evidencedbysulphuricacid.Lightmicroscopy.Thefigure showspositivereactions(brown/orange)forscreeningofsesquiterpenelactoneswithaccumulationofmetabolitesinglandulartrichomes.A.Caleauniflora;B.Lychnophora diamantinana;C.Lychnophoraericoides;D.Lychnophorapinaster;E.Lychnophorasalicifolia;F.Solidagochilensis;G,G.Sphagneticolatrilobata.

Fig.18.Histochemicalreactionforscreeningofsesquiterpenelactonesincross-sectionsofleavesof“arnicas”,evidencedbysulphuricacid.Lightmicroscopy.Thefigureshows positivereactionsforscreeningofsesquiterpenelactoneswithaccumulationandsecretionofmetabolitesintheepidermalcellsandothersecretorystructuresofleaves.

A.Caleauniflora;B.Lychnophoradiamantinana;C.Lychnophoraericoides;D.Lychnophorapinaster;E.Lychnophorasalicifolia;F.Solidagochilensis;G.Sphagneticolatrilobata.

Findings:B,D,E,F,H.midveinwithaccumulationofmetabolitesinparenchymacells;A,C,F,G,H,I.accumulationofmetabolitesintheepidermisand/orchlorophyll parenchymaofthemesophyll;F,G,H.accumulationofmetabolitesintheinternalsecretorystructure.Reactionpatternatthetipofthearrow(brown/orange).

Discussion

Micromorphologicalcharacterization

Theanatomicaldataobservedinthemiddlevein(MV)forthe speciesC.uniflora,C.nutansandS.chilensisareinagreementwith

thosedescribedbyBudeletal.(2006),EmpinottiandDuarte(2006) andSouzaetal.(2017),respectively.TheMVobservedinS.trilo- bataandP.ruderalewasaccordingtoBaccarinetal.(2009)and Milanetal.(2006),respectively.TheleavesoftheLychnophoraare relativelysimilar:theMVofL.salicifolia,L.pinasterandL.diamanti- nanapresentedadaxialfacewithcentraldepressionandabaxial

(13)

A.E.Athaydeetal./RevistaBrasileiradeFarmacognosia29(2019)401–424 413

Fig.19.Histochemicalreactionforphenolicsubstancesincross-sectionsofleavesof“arnicas”,highlightedbyferricchloride.Lightmicroscopy.Thefigureshowspositive reactions(brown)forphenolicsubstanceswithaccumulationofmetabolitesinglandulartrichomes.A.Caleauniflora;B.Lychnophoradiamantinana;C.Lychnophoraericoides;

D.Lychnophorapinaster;E.Lychnophorasalicifolia;F.Solidagochilensis;G.Sphagneticolatrilobata.

Table2

Histochemicaltestsandsuggestedmetabolicclassesforleafsecretionsof“Arnicas”species.

Species Histochemicaltests SudanIV Sulphuricacid Rutheniumred Ferricchloride

Metabolicclasses Lipophilicsubstances Sesquiterpenelactones Pecticcompounds Phenoliccompounds

Arnicamontana IR,GT,MDSS Notidentified IR,GT,MD,EP IR,MS,MD

Caleauniflora IR,GT,MDSS IR,GT GT,SS IR,GT,MD,SS

Chaptalianutans IREP IR,MD, IR,SS MS

Sphagneticolatrilobata IR,GT,MD,SSEP IR,GT IR,GT,MD,SS IR,GT,MD,SS

Solidagochilensis IR,GTSS IR,GT,MD,SS IR,GT,SS,NGT IR,GT,MD,SS

Porophyllumruderale IR,MD,SS IR,MD,SS IR,MD,SS

Pseudobrickelliabrasiliensis MS SS,MS MS MS

Lychnophoraericoides IR,GT,MD GT,MD IR,MD,NGT IR,GT,MD,NGT

Lychnphorasaicifolia IR,GT,MD GT IR,GT,MD,NGT IR,GT,MD,NGT

Lychnophorapinaster IR,GT,MD GT IR,MD,NGT IR,GT,MD,NGT

Lychnophoradiamantinana IR,GT,MD,NGT GT,MD IR,GT,MD,NGT,EP IR,GT,MD,NGT

IR,intermediatemesophyllregion;EP,epidermalcells;ST,stomata;MV,middlevein;GT,glandulartrichome;NGT,non-glandulartrichome;MS,mesophyll;“–”,negative;

SS,secretorystructure.

surfacewithroundedprojection.L.ericoidespresentedontheadax- ialfacediscretecentraldepressionandabaxialsurfacealsowith roundedprojection.ThroughthecharacterizationoftheMVofthe

“arnica”species,itwaspossibletoobtainapreliminarydifferen- tiationamongtheevaluatedspecies,especiallyinrelationtothe formofMV,beinganimportantanatomicalcharacterforquality control.

Inrelationtoepidermalattachments,weobservevariablestruc- turesof great diagnosticvaluefortaxonomy, suchas glandular trichomes(GT)thatareinvolvedinthesecretionofvariousbioac- tivesubstances(Lusaetal.,2016a,b).Inthepresentstudy,different typesofGTweredescribed,beingabletobeusedforqualitycon- trolofthespecies.ThefindingsregardingS.chilensisdifferfrom thoseregisteredbySouzaetal.(2017)thatdescribes,throughpara- dermalsections,onlythepresenceofnon-glandulartrichomesin theleavesofthespecie,whileweobservedthepresenceofnon- glandulartrichomesandglandulartrichomesincross-sections.InS.

trilobatatheGTwerepresentintwoforms:bisseriateindepression andamulticellularwithelongatedapex,identifiedforthefirsttime.

ForC.uniflora,theGTareaccordingtodescriptionmadebyBudel etal.(2006).FortheLychnophoragenus,GTweredetectedonthe

abaxialsurface,betweenthecrypts.Thesedataarecorrelatewith those described by Lusa et al. (2016a,b)for otherLychnophora species.NoglandulartrichomeswasfoundinthespeciesP.rud- eraleandC.nutans,inagreementwithdescribedbyEmpinottiand Duarte(2006)andDuarteetal.(2007),respectively.InP.brasiliensis noGTwasobservedeither.

Someanatomical diagnosticfeatures wereobservedthrough nonglandulartrichomes(NGT).InP.ruderale,aleafglabrouswas observed,withoutthetrichomespreviouslydescribedbyDuarte etal.(2007).TheabsenceofhairswasalsoobservedforP.brasilien- sis.InC.nutansnumerousNGTwerefoundpredominantlyonthe abaxialsurface(EmpinottiandDuarte,2006).InrelationtoS.chilen- sis,S.trilobata and C.uniflora,similaranatomical findings were describedbySouzaetal.(2017),Baccarinetal.(2009)andBudel etal.(2006).

AccordingtoMetcalfeandChalk(1988)anomocyticstomataare characteristicoftheAsteraceaefamily,asweobservedpredomi- nantly.FortheLychnophoraitwasnotpossibletocharacterizethe typeofstomataduetotheinnumerablepresenceofnon-glandular trichomesandalsobythestomata beinginsertedinthecrypts, makingtheirvisualizationevenmoredifficult.

(14)

Fig.20. Histochemicalreactionforphenolicsubstancesincross-sectionsofleavesof“arnicas”,highlightedbyferricchloride.Lightmicroscopy.Thefigureshowspositive reactionsforphenolicsubstanceswithaccumulationandsecretionofmetabolitesintheepidermalcellsandothersecretorystructuresofleaves.A.Caleauniflora;B.

Lychnophoradiamantinana;C.Lychnophoraericoides;D.Lychnophorapinaster;E.Lychnophorasalicifolia;F.Solidagochilensis;G.Sphagneticolatrilobata.Findings:A,B,C,D,E, F,F,I,J.midveinwithaccumulationofmetabolitesinparenchymacells;A,B,C,D,G,G,H,I,J.accumulationofmetabolitesintheepidermisand/orchlorophyllparenchyma ofthemesophyll;A,G,I,J.accumulationofmetabolitesintheinternalsecretorystructure.Reactionpatternatthetipofthearrow(brown).

(15)

A.E.Athaydeetal./RevistaBrasileiradeFarmacognosia29(2019)401–424415 Table3

Reviewofmaincompoundsdescribedfortheknownspeciesofthe“arnicas”inBrazil.

Compounds A.mon-

tana

S.trilo- bata

S.

chilensis C.

uniflora

P.rud- erale

C.

nutans P.

brasiliensis

L.eri- coides

L.salici- folia

L.

pinaster L.

diamantinana Flavone

Apigenin x(F,G)

Apigeninglycosylated x(F,G)

Chrysin x(F) x(K) x(K) x(G)

Chrysinglycosyl x(F,G)

Luteolin x(k) x(a) x(C)

Luteolinglycosil x(F)

3,4,7-Trihydroxi-flavone-7-O-␤- glucopyranosyl

x(s)

5,4-Dihydroxy-7-methoxyflavone x(j)

5,3,4-Trihydroxy-7- methoxyflavone

x(j) 5,7-Dihydroxy-4-methoxyflavone

(acacetin)

x(F) 3,7,4-Trihydroxyflavanone

(garbanzol)

x(F)

3-Methyl-galangin x(F)

Flavanone

Naringenin x(F,G)

Pinocembrin x(F,G) x(K) x(K) x(G)

Pinostrobin x(F,G) x(K) x(K) x(G)

Naringenin x(F,G)

Pinocembrin x(F,G) x(K) x(K) x(G)

Pinobanksin x(F,G) x(K) x

Flavonol

Afzelechin x(a)

Galangin x(F)

Kaempferol x(N) x(a)

Resokaempferol x(F)

Patuletin x(N) x(a)

Quercetin x(N) x(k) x(b) x(s) x(v) x(A) x(C) x(F,G) x(J) x(M)

Quercetinheterozyl x(N) x(k) x(a) x(s)

Quercetin-7,3,4-trimethylether x(J)

Quercetol x(F,G)

Rutin x(N) x(v)

Chalcone

Buteinchalcona x(r)

Butein4-O-glucopyranosyl x(r)

␣-Hydroxy-butein x(r)

2,4-Hihydroxy-3-methoxy- chalcone-4-O-␤-glucopyranosyl

x(s)

2,4,3,4-␣-Pentahydroxychalcone x(s)

Pinostrobinchalcone x(F,G)

Referências

Documentos relacionados

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Seguindo uma abordagem qualitativa, um paradigma interpretativo, e um design de estudo de caso (Yin, 2003), esta investigação debruçou-se sobre a prática avaliativa da

Conclui-se que o atendimento humanizado, principalmente nos setores de urgência e emergência, é um ato a ser seguido, a fim de melhorar a assistência à saúde,

[27] Assim, a análise do sistema foi realizada com base em 9 indicadores, selecionados conforme os domínios e aspetos de avaliação de desempenho, tendo

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

financeiras, como ainda por se não ter chegado a concluo entendimento quanto à demolição a Igreja de S. Bento da Ave-Maria, os trabalhos haviam entrado numa fase

Com base nos resultados, concluiu-se que os setores de Indústria da Transformação e Agricultura, Pecuária, Produção Florestal, Pesca e Aquicultura são os de maior

Os dois métodos de recuperação para o 1,2-carbonato de propileno apresentaram as mesmas porcentagens de recuperação, porém, quando se utilizou o processo de recuperação