• Nenhum resultado encontrado

Coherent J/psi photoproduction at forward rapidity in ultra-peripheral Pb-Pb collisions at root s(NN)=5.02 TeV

N/A
N/A
Protected

Academic year: 2021

Share "Coherent J/psi photoproduction at forward rapidity in ultra-peripheral Pb-Pb collisions at root s(NN)=5.02 TeV"

Copied!
15
0
0

Texto

(1)

SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://www.sciencedirect.com/science/article/pii/S0370269319306483

DOI: 10.1016/j.physletb.2019.134926

Direitos autorais / Publisher's copyright statement:

©2019

by Elsevier. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo

CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

(2)

Physics

Letters

B

www.elsevier.com/locate/physletb

Coherent

J

photoproduction

at

forward

rapidity

in

ultra-peripheral

Pb–Pb

collisions

at

s

NN

=

5

.

02 TeV

.

ALICE

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received19April2019

Receivedinrevisedform15August2019 Accepted6September2019

Availableonline10September2019 Editor:M.Doser

TheALICEcollaborationperformedthefirstrapidity-differentialmeasurementofcoherentJ photopro-ductioninultra-peripheralPb–Pb collisions atacenter-of-massenergy√sNN = 5.02 TeV.TheJ is

detectedviaitsdimuondecayintheforward rapidityregion(−4.0<y<−2.5) foreventswherethe hadronicactivityisrequiredtobeminimal.Theanalysisisbasedonaneventsamplecorrespondingto anintegratedluminosityofabout750 μb−1.ThecrosssectionforcoherentJ productionispresented

insixrapiditybins.TheresultsarecomparedwiththeoreticalmodelsforcoherentJphotoproduction. Thesecomparisonsindicatethatgluonshadowingeffectsplayaroleinthephotoproductionprocess.The ratio ofψ to J coherentphotoproduction crosssections was measuredandfound tobeconsistent withthatmeasuredforphotoproductionoffprotons.

©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Ultra-peripheral collisions (UPC) between two Pb nuclei, in whichtheimpactparameterislargerthan thesumoftheir radii, providea usefulwaytostudyphotonuclear reactions [1–4]. Pho-toproduction of vector mesons in these collisions has an easily identifiableexperimentalsignature:thedecayproductsofthe vec-tormeson,inthecaseofthisanalysisa

μ

+

μ

− pair,aretheonly signalsinanotherwiseemptydetector.Thisprocessisakinto ex-clusivevector mesonproductioninelectron–proton collisions, al-readystudiedextensivelyatHERA [5].Theexchangephoton,which carriesamomentumtransfersquaredQ2,istypifiedbyverysmall

valuesofQ2,andmaybedescribedasquasi-real.Theintensityof thephotonfluxscalesasthesquareofnuclearchargeresultingin large crosssections forthe photoproduction ofvector mesons in Pb–Pb collisionsat theCERN LargeHadron Collider(LHC),where themeasurementpresentedinthisLetterwasperformed.

Photoproductionof vectormesons onnucleican beeither co-herent, where the photon couples coherently to the nucleus as a whole, or incoherent, where the photon couples to a single nucleon [2]. Coherent production is characterized by low vector mesontransverse momentum (



pT





60 MeV/c) and by the

tar-getnucleusnotbreakingup.Incoherentproduction,corresponding to quasi-elastic scattering off a single nucleon, is characterized byasomewhathigheraveragetransversemomentum(



pT





500

MeV/c).The target nucleusnormallybreaks up inthe incoherent production,but, except for single nucleons or nuclear fragments

 E-mailaddress:alice-publications@cern.ch.

in the very forwardregion, no other particles are produced. The incoherentproduction canbe accompanied by theexcitation and dissociationof the target nucleonresulting ineven higher trans-verse momenta of the produced vector mesons, extending well above1 GeV/c [6].

Coherent photoproduction of the J

meson, a charm-anti-charm bound state, is of particular interest since, for a leading order QCD calculation [7], its cross section is expected to scale as the square of the gluon parton density function (PDF) in the target hadron. The mass of the charm quark provides an energy scalelargeenough toallowforperturbativeQCD calculations.For thisprocess,a variablecorrespondingtoBjorken-x canbedefined using the mass of the vector meson (mJ) and its rapidity ( y)

asx

= (

mJ

/

sNN

)

exp

(

±

y).Thoughnext-to-leadingordereffects

andscale uncertainties complicate extractionof gluon PDFsfrom J

photoproduction data [8], the related uncertainties are ex-pected tolargely cancelin theratioof coherentphotoproduction cross sections off nucleiand off protons [9]. Thus, coherent J

photoproduction off lead nuclei (

γ

+

Pb

J

+

Pb) provides a powerful tool to studypoorly known gluon shadowing effects at low Bjorken-x values ranging from x

10−5 to x

10−2 at LHC energies [10,11].

The ALICE collaboration has pioneered the study of charmo-nium photoproduction in ultra-peripheral Pb–Pb collisionsat the LHCatacenter-of-massenergypernucleonpair

sNN

=

2

.

76 TeV

[12–14]. Coherent J

photoproduction was studied both at for-wardrapidity (

3

.

6

<

y

<

2

.

6) withtheALICEmuon spectrom-eter and at mid-rapidity (

|

y

|

<

0

.

9) with the central barrel. The CMS collaboration studied coherent J

photoproduction

accom-https://doi.org/10.1016/j.physletb.2019.134926

0370-2693/©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

panied by neutron emission in the semi-forward rapidity range 1

.

8

<

|

y

|

<

2

.

3 [15]. The ALICE and CMS results on J

photo-productionwerecomparedwithpredictionsfrommodelsavailable atthat time, andsuggested that moderateshadowing inthe nu-cleus was necessary to describe themeasurements. In particular, thenucleargluonshadowingfactorRg,i.e.theratioofthenuclear gluondensitydistributiontotheprotongluondistribution,was ex-tracted from the ALICE measurements [10], and found to be, at thescaleofthecharmquark mass, Rg

(x

10−3

)

=

0

.

61+00..0504 and

Rg

(x

10−2

)

=

0

.

74+00..1112.The ALICEcollaboration also measured

thecoherentcrosssectionfor

ψ

photoproductionatmid-rapidity, andtheresults supported, within theexperimental uncertainties, themoderate-shadowingscenario [14].

InthisLetter, we presentthefirst measurementof the coher-entJ

photoproduction inultra-peripheral Pb–Pb collisionsata center-of-mass energyper nucleon pair

sNN

=

5

.

02 TeV. The

measurement was performedwiththe ALICEmuon spectrometer coveringtherapidityrange

4

.

0

<

y

<

2

.

5.Theresultspresented herearebasedon datatakenin2015andin2018, duringRun 2 of the LHC. The recorded data sample is some 200 times larger thanthedatausedinthe

sNN

=

2

.

76 TeVPb–Pb analysis [12].

Thenewresultisbasedontheabsoluteluminosity normalization incontrast toprevious measurement based onthe normalization relative to the continuum

γ γ

μ

+

μ

− cross section predicted by STARlight [16]. Thesetwo improvements implya considerable reduction in the statistical and systematic uncertainties and the possibilitytostudytherapiditydependenceintheforwardregion. 2. Detectordescription

The ALICE detector and its performance are described in [17,18]. Muonsfrom J

decays are measured in the single-arm muonspectrometer,whileotheractivityisvetoedusingtheSilicon Pixel Detector (SPD), the V0 and ALICE Diffractive (AD) detec-tors. The muon spectrometer covers the pseudorapidity interval

4

.

0

<

η

<

2

.

5.It consistsof a teninteraction length absorber followed by five tracking stations, the third of which is placed inside a dipole magnet with a 3 T

·

m integrated magnetic field, a 7.2 interaction length iron wall, and a trigger system located downstreamoftheironwall.Eachtrackingstationismadeoftwo planesofcathodepadchambers,whilethetriggersystemconsists offourplanesofresistiveplatechambersarrangedintwostations. Muon tracks are reconstructed using the tracking algorithm de-scribedin [19].Thecentralregion

|

η

|

<

1.4iscoveredbytheSPD consisting of two cylindrical layers of silicon pixel sensors. The V0detectoriscomposed ofthe V0AandV0Csub-detectors, con-sisting of 32 cells each andcovering the pseudorapidity interval 2

.

8

<

η

<

5

.

1 and

3

.

7

<

η

<

1

.

7, respectively. The newly in-stalledADdetectoriscomposedoftheADCandADAsub-detectors locatedat

19

.

5 and

+

16

.

9 mfromtheinteractionpointcovering thepseudorapidityranges

7

.

0

<

η

<

4

.

9 and 4

.

7

<

η

<

6

.

3, re-spectively [20].TheV0andADdetectorsarescintillatortilearrays withatimeresolutionbetterthan1ns,allowingonetodistinguish betweenbeam-beamandbeam-gasinteractions.

3. Dataanalysis

Theanalysispresentedinthispublicationisbasedonasample ofevents collected during the 2015and 2018Pb–Pb data taking periodsat

sNN

=

5

.

02 TeV,characterizedbysimilarbeam

con-ditionsandinteractionrates.Themuonspectrometerperformance wasstableduringthewholeRun 2thusallowingforthemerging ofthetwo datasets.Thetrigger requiredtwooppositely charged tracks in the muon spectrometer, and vetoes on V0A, ADA and ADC beam-beam interactions. The single muon trigger threshold

was set to a transversemomentum pT

=

1 GeV/c [21]. The

inte-grated luminosities of 216 μb−1 in2015 and538 μb−1 in2018, with relative systematic uncertainty of 5%, were estimated from the counts of a reference trigger, based on multiplicity selection intheV0detector.Thereferencetriggercrosssectionwasderived from Glauber-model-based estimatesof the inelastic Pb–Pb cross section [22].

Events with only two tracks with opposite electric charge (unlike-sign)inthemuon spectrometerwereselected offline.The pseudorapidity ofeachtrackwas requiredto bewithin therange

4

.

0

<

η

<

2

.

5. The tracks hadto fulfill the requirements, de-scribedin [12],ontheradialcoordinateofthetrackattheendof theabsorberandontheextrapolationtothenominalvertex.Track segmentsinthetrackingchambershadtobematchedwith corre-spondingsegmentsinthetriggerchambers.

Additional offline vetoes on the V0A, ADA and ADC detector signals were applied to ensure the exclusive production of the muon pair. Exclusivity in the muon spectrometer region was as-suredbyrequiringamaximumof2firedcellsinV0C.Onlineand offline veto requirements may result in significant inefficiencies (denoted as veto inefficiencies) in the exclusive J

cross sec-tion measurementsduetoadditional V0andAD detectoractivity induced byindependenthadronicorelectromagneticpile–up pro-cessesaccompanyingthecoherentJ

photoproduction.The prob-abilityofhadronicpile–updidnotexceed0

.

2%,howevertherewas a significant pile–up contribution fromthe electromagnetic elec-tron pair production process

γ γ

e+e−. The veto inefficiency induced by thesepile–up effectsin the V0A,V0C, ADA andADC detectors, was estimated using the events selected with an un-biased trigger based only on the timing of bunches crossing the interaction region. The veto rejection probability, defined as the probability todetect activityinthesesub-detectors, wasfound to scale linearlywith the expected number of collisions per bunch crossingreaching10%inV0A.Thevetoinefficiencycorrection fac-tors were determinedby weightingthe correspondingveto rejec-tion probabilities over periods with different pile–up conditions, taking the luminosity of each period as a weight. The veto in-efficiency of the V0A online and offline selection was found to be pV0A

= (

4

.

6

±

0

.

2

)

%, where the uncertainty is related to the

limited statistics in the unbiased trigger sample. The veto ineffi-ciencies in ADA (pADA) and ADC(pADC) were found to be about

0

.

2%, because these detectors are far away from the interaction pointandarethusmuchlessaffectedbysofte+e− pairs.Theveto inefficiency inV0C,associatedwiththerequirementofmaximum 2 fired cells, was found to be negligible. The average veto effi-ciency correction factor



veto

=

95

.

0%, and thisis applied to raw

J

yields to account for hadronic and electromagnetic pile–up processes,wascalculatedasaproductofindividualveto inefficien-cies



veto

= (

1

pV0A

)(

1

pADA

)(

1

pADC

)

.

The acceptance and efficiency of J

and

ψ

 reconstruction were evaluated using a large sample of coherent andincoherent J

and

ψ

 events generated by STARlight2.2.0 [23] withdecay muonstrackedinamodeloftheapparatusimplementedinGEANT 3.21 [24]. Themodelincludesarealistic descriptionofthe detec-tor performance during datataking as well as its variation with time.Theacceptanceandefficiencyoffeed-down

ψ



J

+

π π

decays were also evaluated using the STARlight generator under theassumptionthatfeed-downJ

mesonsinheritthetransverse polarizationoftheir

ψ

parents,asindicatedbyprevious measure-ments [25]. The same samples were also used for modeling the signalshapeanddifferentbackgroundcontributions.

A sample enriched in coherent candidates was obtained by selecting dimuons with transverse momentum pT

<

0

.

25 GeV/c.

The invariant mass distributions for selected unlike-sign muon pairs are shown in Fig. 1, left, in the full dimuon rapidity range

(4)

Fig. 1. Left:invariant massdistributionformuonpairssatisfyingtheeventselectiondescribedinthetext.Thedashedgreenlinecorrespondstothebackground.Thesolid magentaandredlinescorrespondtoCrystalBallfunctionsrepresentingJandψsignals,respectively.Thesolidbluelinecorrespondstothesumofbackgroundandsignal functions.Right:transversemomentumdistributionformuonpairsintherange2.85<mμμ<3.35 GeV/c2(aroundtheJmass).

4

.

0

<

y

<

2

.

5 and inFig. 2 insixrapidity subranges. The in-variantmassdistributionsare fittedwithafunctionmodelingthe backgroundandtwoCrystalBallfunctions [26] fortheJ

andthe

ψ

peaks.Theshapeofthebackgroundatlargeinvariantmassesis welldescribed by an exponentialdistribution, asexpectedifitis dominatedby theprocess

γ γ

μ

+

μ

−.However, atmasses be-low theJ

,the distribution isstrongly influencedby the muon trigger condition. In order to model this, the whole background distribution is fitted using a template made from reconstructed STARlighteventscorresponding tothe

γ γ

μ

+

μ

− process. The resultsofthefitareparametrizedusingafourth-orderpolynomial, whichturns smoothly into an exponential tailasfrom 4 GeV/c2.

Thecoefficientsofthepolynomialarethenkeptfixedinthefitto theexperimentaldata,whiletheslopeoftheexponentialtermand thenormalizationare left free.The fittedslope isfound toagree within 2.5standard deviations withthe value obtained fromthe generatedsample.

TherawinclusiveJ

and

ψ

yields, N(J

/ψ)

andN



)

,were obtained by fitting the dimuon invariant mass spectrum in the range 2

.

2

<

mμμ

<

6 GeV/c2. The slope parameters in the

Crys-tal Ball functions were fixed from fits to the respective Monte Carlo sets. The width parameter

σ

J was left free for the J

,

andwas fixed to

σ

ψ

=

σ

J

· (

σ

ψMC

/

σ

JMC

)

for the

ψ

, where the

ratio

σ

MC

ψ

/

σ

MC

J

1

.

09 of the

ψ

 totheJ

widths wasobtained

fromthefitstocorrespondingMonteCarlosets.Themass parame-teroftheCrystalBallfunctionwasleftunconstrainedfortheJ

. Duetothe small

ψ

 statistics,the

ψ

 mass wasfixed sothat the differencewithrespecttotheJ

massisthesameasquoted by thePDG [27]. The J

massmJ

=

3

.

0993

±

0

.

0009 GeV/c2,

ob-tainedfromthefit inthefull rapidity range

4

.

0

<

y

<

2

.

5,is inagreementwiththePDGvaluewithin3standarddeviations.

TherawinclusiveJ

yields obtainedfrominvariant massfits containcontributionsfromthecoherentandincoherentJ

pho-toproduction,whichcanbeseparatedintheanalysisoftransverse momentumspectra.The pT distributionsfordimuonsintherange

2

.

85

<

mμμ

<

3

.

35 GeV/c2 are shownin Fig. 1,right, in the full dimuon rapidity range

4

.

0

<

y

<

2

.

5 and in Fig. 3 in six ra-piditysubranges.ThesedistributionswerefittedwithMonteCarlo templates produced using STARlight, corresponding to different productionmechanisms:coherentJ

,incoherentJ

,feed-down J

fromcoherent

ψ

 decays,feed-downJ

fromincoherent

ψ



decaysandcontinuumdimuonsfromthe

γ γ

μ

+

μ

−process.In

order to describe the high-pT tail, the incoherentJ

photopro-ductionaccompanied bynucleon dissociationwasalso takeninto accountinthefitswiththetemplatebasedontheH1 parametriza-tionofthedissociativeJ

photoproduction [28] (denotedas dis-sociativeJ

inthefollowing):

dN dpT

pT



1

+

bpd npd p2T



npd

.

(1)

The H1 collaboration provided two sets of measurements corre-spondingtodifferentphoton–protoncenter-of-massenergyranges: 25 GeV

<

W γp

<

80 GeV (low-energy data set) and 40 GeV

<

W γp

<

110 GeV (high-energy dataset). The fit parametersbpd

=

1

.

79

±

0

.

12

(

GeV

/c)

−2andn

pd

=

3

.

58

±

0

.

15 fromthehigh-energy

data set were used by default, while the corresponding uncer-taintiesandthelow-energyvaluesbpd

=

1

.

6

±

0

.

2

(

GeV

/c)

−2 and

npd

=

3

.

58

(

fixed

)

wereusedforsystematicchecks.

The templates were fitted to the data leaving the normaliza-tion free for coherent J

, incoherent J

and dissociative J

production.Thenormalizationofthe

γ γ

μ

+

μ

− spectrumwas fixed to the one obtainedfrom the invariant mass fits. The nor-malization of the coherent and incoherent feed-down J

tem-plates was constrained to thenormalization ofprimary coherent and incoherent J

templates, according to the feed-down frac-tions extractedfrom the measurement ofraw inclusive J

and

ψ

 yields,asdescribed below.The extractedincoherentJ

frac-tion fI

=

NN(incoh J(coh J/ψ )/ψ ) forpT

<

0

.

25 GeV/c rangesfrom

(

4

.

9

±

0

.

6

)

%

to

(

6

.

4

±

0

.

8

)

% depending on the rapidity interval andis consis-tent withbeingconstant within theuncertainties ofthe fits.The contributionofincoherentJ

withnucleondissociationwas also takenintoaccountinthisfraction.

4. Resultsanddiscussion

4.1. Ratioofcoherent

ψ

andJ

crosssections

Theobtaineddimuoninvariantmassspectracanbeusedto ex-tract theratio of coherent

ψ

 andJ

cross sections R

=

σσ(J/ψ ))

andthefractionoffeed-downJ

from

ψ

decaysintherawJ

yields.Thefitstotheinvariantmassdistributionsfordimuonswith pair pT

<

0

.

25 GeV/c in thefull rapidity range

4

.

0

<

y

<

2

.

5

resultinthefollowingratioofthemeasuredrawinclusive

ψ

and J

yields:

(5)

Fig. 2. Invariant mass distributions in six rapidity bins for muon pairs satisfying the event selection described in the text.

RN

=

N



)

N

(

J

/ψ )

=

0

.

0250

±

0

.

0030

(

stat

.),

(2) The raw

ψ

 and J

yields in thisratiocontain contributions both fromcoherentandincoherent

ψ

 and J

photoproduction. However, according to the dimuon pT fits, the fraction fI of

in-coherentJ

inthe rawJ

yields doesnot exceed 6% and, ac-cordingtoSTARlight [23] andcalculationswithinthecolordipole approach [29],thefractionofincoherent

ψ

intheraw

ψ

yieldsis expectedtobesimilar.TheRN ratiocanthereforebeconsideredas agoodestimate oftheratioofcoherentJ

and

ψ

 yields,since theincoherentfractionsof

ψ

andJ

yieldslargelycancelinthe

ratio. Besides, the raw J

yields contain significant feed-down contributioncomingfrom

ψ



J

+

anything decays.Takinginto account thisfeed-downcontribution,one can expressthe RN ra-tiointermsofprimarycoherent

ψ

andJ

photoproductioncross sections

σ



)

and

σ

(

J

/ψ)

integratedoveralltransversemomenta intherapidityrange

4

.

0

<

y

<

2

.

5:

RN

=

σ(ψ)B R(ψ→μμ)(ψ)

σ(J/ψ )B R(Jμμ)(J/ψ )+σ(ψ)B R(ψ→J/ψ )(ψ→J/ψ )B R(Jμμ)

(6)

Fig. 3. Transverse momentum distributions in six rapidity intervals for muon pairs satisfying the event selection described in the text. where



(

J

/ψ)

=

12

.

0%,





)

=

15

.

8% and





J

/ψ)

=

7

.

2%

are the efficiency corrections for primary coherent J

,

ψ

 and feed-downJ

fromcoherent

ψ

decaysestimatedwithSTARlight, whileB R(J

μμ

)

= (

5

.

961

±

0

.

033

)

%, B R(ψ

μμ

)

= (

0

.

80

±

0

.

06

)

%, B R(ψ

J

+

anything

)

= (

61

.

4

±

0

.

6

)

% are the corre-spondingbranchingratios [27].Equation (3) canbeusedtoexpress theratio of primary coherent

ψ

 andJ

photoproductioncross sections,R,intermsofthemeasuredyieldratioRN:

R

=

RNB R(Jμμ)(J/ψ )

B R(ψ→μμ)(ψ)RNB R(ψ→J/ψ )(ψ→J/ψ )B R(Jμμ)

(4)

Substituting the measured RN value from Eq. (2) and the corre-spondingefficiencyvaluesandbranchingratios,onegets:

R

=

0

.

150

±

0

.

018

(

stat

.)

±

0

.

021

(

syst

.)

±

0

.

007

(

BR

),

(5)

where the uncertainties on branching ratios B R(J

μμ

)

and

B R(ψ

μμ

)

were addedinquadrature,whilethemainsources of systematic uncertainties are the variation of the fit range, of the signal andbackground shapes, andofthe dimuon transverse momentumcut.

The measured ratio ofthe

ψ

 and J

cross sectionsis com-patiblewiththeexclusivephotoproductioncrosssectionratio R

=

(7)

Table 1

Jyields,efficiencies, fIand fDfractionsandcoherentJcrosssections.

Rapidity range NJ  fD fI dσJcoh/ψ/d y (mb)

(−4.00,−2.50) 21747±190 0.120 0.055 0.055±0.001 2.549±0.022(stat.)+00..209237(syst.) (−4.00,−3.75) 974±36 0.051 0.055 0.064±0.008 1.615±0.060(stat.)+0.135 −0.147(syst.) (−3.75,−3.50) 3217±70 0.140 0.055 0.058±0.004 1.938±0.042(stat.)+00..166190(syst.) (−3.50,−3.25) 5769±98 0.204 0.055 0.060±0.003 2.377±0.040(stat.)+00..212229(syst.) (−3.25,−3.00) 6387±105 0.191 0.055 0.052±0.002 2.831±0.047(stat.)+0.253 −0.280(syst.) (−3.00,−2.75) 4229±85 0.119 0.055 0.049±0.003 3.018±0.061(stat.)+00..259294(syst.) (−2.75,−2.50) 1190±47 0.029 0.054 0.049±0.006 3.531±0.139(stat.)+00..294362(syst.)

H1collaborationinep collisions [30] andwiththeratio R

0

.

19 measured by the LHCb collaboration in pp collisions [31]. The measured ratio also agrees with predictions based on the Lead-ing Twist Approximation [32] for Pb–Pb UPC ranging from 0.13 to 0.18 depending on the model parameters. The

ψ

-to-J

co-herentcross section ratioisexpectedtohavea mild dependence onthecollisionenergyandvectormesonrapidity [32] (at mosta few percent). Therefore the measured ratio can be directly com-pared to the unexpectedly large

ψ

-to-J

coherent cross sec-tion ratio 0

.

34+00..0807, measured by ALICE in the

ψ



l+l− and

ψ



l+l

π

+

π

− channels at central rapidity in Pb–Pb UPC at

sNN

=

2

.

76 TeV [14].Theratioatcentral rapidityismorethan

a factortwo larger butstill stays compatiblewithin 2.5standard deviationswiththe forwardrapiditymeasurement, owingmainly tothelargeuncertaintiesofthecentralrapiditymeasurementthat willbeimprovedbytheanalysisofthemuchlargerUPCdata sam-plecollectedwiththeALICEcentralbarrelinRun2.

ThemeasuredcrosssectionratioR wasusedtoextractthe frac-tionoffeed-downJ

from

ψ

relativetotheprimaryJ

yield:

fD

=

N

(

feed-down J

/ψ )

N

(

primary J

/ψ )

=

R





J

/ψ)



(

J

/ψ )

B R



J

/ψ )

(6)

The fraction fD

=

8

.

5%

±

1

.

5% was obtained forthe full rapidity

rangewithoutanypTcut,wherestatistical,systematicand

branch-ingratiouncertainties wereaddedinquadrature.Thefraction re-ducesto fD

=

5

.

5%

±

1

.

0% forpT

<

0

.

25 GeV/c becausefeed-down

J

are characterized by wider transverse momentum distribu-tionscomparedtoprimaryJ

.

4.2. CoherentJ

crosssection

ThecoherentJ

differentialcrosssectionisgivenby:

d

σ

Jcoh

dy

=

N

(

J

/ψ)

(

1

+

fI

+

fD

)



(

J

/ψ)

BR

(

J

μμ

)



vetoLint

y (7)

TherawJ

yieldvalues,efficiencies, fI and fD fractionsand

co-herent J

cross sectionswithrelevantstatistical andsystematic uncertainties are summarized in Table 1. The associated system-aticuncertaintiesarebrieflydescribedinthefollowing.

Thefirstsourceofsystematicuncertaintyisrelatedtothe sep-arationofperipheral andultra-peripheral collisions.Coherent-like J

photoproduction, observed in peripheral collisions of heavy ions [33],maycontributeafew percenttotherawJ

yields in casehadronicactivityisnotdetectedbytheV0andADdetectors. In order to reduce a possible contamination from J

produced inperipheral hadronicevents, theanalysiswas repeatedwithan additionalrequirementthattherebenotrackletsdetectedat mid-rapidity in theSPD (where a trackletis a segment formedby at leastonehitineachofthetwodetectorlayers),resultingin12.6% to 15.0% lower J

yields depending on the rapidity range. The vetoinefficiency associated withthis additionalSPD requirement

wasestimatedwithunbiasedtriggerssimilartowhatwasdonefor the V0and AD vetoinefficiencies. The averagefraction ofevents withatleastoneSPDtrackletwasfoundtobe pSPD

=

9

.

4

±

0

.

2%.

TheyieldscorrectedfortheadditionalSPDvetoinefficiencyof9.4% resultincrosssections3.6%to6.0%lowerthantheonesobtained without the SPD veto. This cross section difference is taken into accountinthesystematicuncertainty.

The systematic uncertainties on the efficiencies obtained by variationofthegeneratedrapidityshapesrangefrom0.1%to0.8%, depending on therapidity interval. The trackingefficiency uncer-taintyof3%wasestimatedbycomparingthesingle-muontracking efficiencyvalues obtainedinMC anddata, witha procedure that exploitstheredundancyofthetracking-chamberinformation [34]. The systematic uncertainty on the dimuon trigger efficiency has two origins: the intrinsic efficiencies of the muon trigger cham-bersandtheresponse ofthetrigger algorithm.Thefirst onewas determined byvarying thetriggerchamberefficiencies intheMC byanamountequaltothestatisticaluncertaintyontheir measure-mentwithadata-drivenmethodandamountsto1.5%.Thesecond onewasestimatedbycomparingthetriggerresponsefunction be-tweendataandMC,resultinginefficiencydifferencesrangingfrom 5% to6%depending ontherapidityinterval.Finally,thereisa1% contributionrelatedtothe precisionrequiredtomatchtrack seg-mentsreconstructedinthetrackingandtriggerchambers.

Severaltestswereperformedtoestimatetheuncertaintyonthe raw J

signal extraction. These include the uncertainty on the J

signalshapeestimatedbyfittingtheCrystalBallslope param-eters instead of fixing them fromMonte-Carlo templates andby replacing the single-sided Crystal Ball witha double-sided Crys-talBallfunction.Thevariationofthecontinuumbackgroundshape duetothe uncertaintyonthetriggerresponse function,variation oftheinvariantmassintervalsby

±

0

.

1 GeV/c2 andofthedimuon

pT selectionby

±

0

.

05 GeV/c werealsoconsidered.Thesystematic

uncertaintyon therawJ

yield, estimatedasrootmeansquare oftheresultsobtainedfromalltests,isabout2%withaslight ra-piditydependence.

Severalsources ofsystematicuncertainties areassociatedwith different contributions to the pT spectrum: the fractionof

feed-down J

,theshape andcontributionofthe

γ γ

μ

+

μ

− tem-plate, the shape for the coherent J

andthe shape for the in-coherent J

with nucleon dissociation. These contributions are shortly detailed in the following. First, the fraction fD of

feed-downJ

withpT below0.25GeV/c wasvariedintherangefrom

4.4to6.4%correspondingtothetotalsystematicuncertaintyofthe measured

ψ

-to-J

crosssection ratio.Second, theshape ofthe

γ γ

μ

+

μ

pTtemplatefromSTARlightdoesnotinclude

possi-blecontributions fromincoherentemission ofphotons, character-izedbymuchwidertransversemomentumdistributionsextending well above 1 GeV/c. In order to account for these contributions, the shape of the

γ γ

μ

+

μ

pT template was changed from

STARlight to that obtained from the side-bands surrounding the J

peakintheinvariant massspectra,resultingin1%systematic

(8)

Source Value Lumi. normalization ±5.0% Branching ratio ±0.6%

SPD, V0 and AD veto from−3.6% to−6.0% MC rapidity shape from±0.1% to±0.8% Tracking ±3.0% Trigger from±5.2% to±6.2% Matching ±1.0% Signal extraction ±2.0% fDfraction ±0.7% γ γyield ±1.2%

pTshape for coherent J ±0.1%

bpdparameter ±0.1% Total from+89..32% to+

8.9

−10.3%

uncertaintyonthemeasured coherentcrosssection. Third,a0.2% systematicuncertaintywasdeterminedviathevariationofthe

γ γ

contribution according to the statistical uncertainty in the back-groundtermcalculatedfromtheinvariantmassfits.Amodification ofthetransversemomentumspectraforthecoherentJ

accord-ing to the model [35], results in a 0.1% systematic uncertainty. Finally,the template shape for the incoherent J

with nucleon dissociationwasvariedbyexchangingtheH1high-energyrun pa-rametersforthosedetermined fromthe low-energyrunresulting ina0.1%systematicuncertaintyonthecoherentcrosssection.

The systematic uncertainties are summarized in Table 2. The totalsystematicuncertaintyisthequadraticsumofallthesources listed in the table. Luminosity normalization, veto efficiencyand branchingratiouncertainties are fullycorrelated. Theuncertainty onthesignalextractionisconsideredasuncorrelatedasafunction ofrapidity.Finally,allother sourcesofuncertaintyare considered aspartiallycorrelatedacrossdifferentrapidityintervals.

4.3.Discussion

The measured differential cross section of coherent J

pho-toproductionin the rapidity range

4

.

0

<

y

<

2

.

5 is shownin Fig. 4 and compared with various models. The covered rapidity range corresponds to a Bjorken-x of gluons either in the range 1

.

1

·

10−5

<

x

<

5

.

1

·

10−5or0

.

7

·

10−2

<

x

<

3

.

3

·

10−2 depending

onwhich nucleusemitted the photon.According to models [32], the fraction of high Bjorken-x gluons(x

10−2) is dominantat

forwardrapiditiesandrangesfrom

60% at y

= −

2

.

5 to

95% at

y

= −

4.

TheImpulseApproximation,takenfromSTARlight [16],isbased on the data from the exclusive J

photoproduction off protons andneglects all nuclear effects except forcoherence. The square rootof theratioofexperimental pointsandthe Impulse Approx-imation cross section is about 0.8, reflecting the magnitude of the nuclear gluon shadowing factor at typical Bjorken-x values around10−2,undertheassumptionthatthecontributionfromlow

Bjorken-x

10−5canbeneglected [10].

STARlightisbasedontheVectorMesonDominancemodeland aparametrizationoftheexistingdataonJ

photoproductionoff protons [23].AGlauber-likeformalismisusedtocalculatetheJ

photoproductioncross section inPb–Pb UPC accountingfor mul-tipleinteractionswithinthenucleusbutnot accountingforgluon shadowingcorrections.TheSTARlightmodeloverpredictsthedata, indicatingtheimportanceofgluonshadowingeffects,butthe dis-crepancyismuchlowerthanfortheImpulseApproximation.

Guzey,KryshenandZhalov[32] providetwocalculations(GKZ), one based onthe EPS09 LOparametrization of theavailable nu-clear shadowing data [42] and the other on the Leading Twist

Fig. 4. MeasuredcoherentdifferentialcrosssectionofJphotoproductionin ultra-peripheralPb–Pb collisionsat√sNN = 5.02 TeV.Theerrorbarsrepresentthe sta-tisticaluncertainties,theboxesaroundthepointsthesystematicuncertainties.The theoreticalcalculations [10,16,23,32,36–41] describedinthetextarealsoshown. ThegreenbandrepresentstheuncertaintiesoftheEPS09LOcalculation.

Approximation (LTA) of nuclear shadowing based on the combi-nationoftheGribov-GlaubertheoryandthediffractivePDFsfrom HERA [43].Both theLTAmodelandtheEPS09curve, correspond-ingtotheEPS09LOcentralset,underpredictthedatabutremain compatiblewithitatthemostforwardrapidities.Thedatatends tofollowtheupperlimitofuncertainties oftheEPS09calculation corresponding to the upper bound of uncertainties on the gluon shadowingfactorintheEPS09LOframework.

Severaltheoreticalgroupsprovidedpredictionswithinthecolor dipoleapproachcoupledtotheColorGlassCondensate(CGC) for-malismwithdifferentassumptionsonthedipole-protonscattering amplitude.PredictionsbyGonçalves,Machadoetal.(GM)basedon IIMand b-CGCmodels forthe scatteringamplitude underpredict thedata [36,37]. PredictionsbyLappi andMäntysaari(LM) based ontheIPsat model [38,39] givereasonable agreementthough the rangeofpredictionsdoesnotspanalltheexperimentalpoints. Re-cent predictions by Luszczak and Schafer (LS BGK-I) within the color-dipole formulation of the Glauber-Gribov theory [44] are in agreement with data at semi-forward rapidities,

|

y

|

<

3, but slightlyunderpredictthedataatmoreforwardrapidities.

Cepila, Contreras and Krelina (CCK) provided two predic-tions based on the extension of the energy-dependent hot-spot model [40] tothenuclearcase:usingthestandardGlauber-Gribov formalism (GG-HS) and using geometric scaling (GS-HS) to ob-tain the nuclear saturation scale [41]. The GG-HS model agrees withdataatmostforwardrapiditiesbutunderpredictsitat semi-forwardrapidities.The GS-HSmodel(notshown)strongly under-predictsthedata.

5. Conclusions

The first rapidity-differential measurement on the coherent photoproductionofJ

inthe rapidityinterval

4

<

y

<

2

.

5 in ultra-peripheral Pb–Pb collisions at

sNN

=

5

.

02 TeV has been

presentedandcomparedwithmodelcalculations.TheImpulse Ap-proximationandSTARlightmodelsoverpredictthedata,indicating the importance of gluon shadowing effects. The model basedon thecentralsetoftheEPS09gluonshadowingparametrization, the LeadingTwist Approximation,andthehot-spotmodelcoupledto

(9)

the Glauber-Gribov formalism underpredict the data but remain compatiblewithitatmostforwardrapidities.Themajorityofcolor dipolemodelsunderpredictthedata.

The nucleargluon shadowing factorof about0.8at Bjorken-x values around 10−2 and a hard scale around the charm quark mass was estimated from the comparison of the measured co-herent J

cross section withthe Impulse Approximation under theassumption that the contributionfromlow Bjorken x

10−5 can be neglected. Future studies on coherent heavy vector me-sonphotoproduction accompaniedbyneutron emissionmayhelp to decouplelow-x andhigh-x contributions andprovidevaluable constraints on poorly known gluon shadowing effects at Bjorken

x

10−5 [45].

The ratio of the

ψ

 and J

cross sections is in reasonable agreement both withthe ratio ofphotoproduction cross sections offprotonsmeasuredbytheH1andLHCbcollaborationsandwith LTApredictionsforPb–Pb UPC.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers andtechnicians fortheir invaluablecontributionstothe construc-tion of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collab-oration gratefully acknowledges the resources and support pro-videdbyall GridcentresandtheWorldwide LHCComputingGrid (WLCG) collaboration. The ALICE Collaboration acknowledges the followingfundingagencies fortheirsupport inbuildingand run-ningtheALICEdetector: A.I. AlikhanyanNationalScience Labora-tory(YerevanPhysicsInstitute)Foundation(ANSL),State Commit-teeofScienceandWorldFederationofScientists(WFS),Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung,Austria; MinistryofCommunicationsandHigh Tech-nologies, National Nuclear Research Center, Azerbaijan; Conselho NacionaldeDesenvolvimentoCientíficoeTecnológico(CNPq), Uni-versidadeFederal doRioGrande doSul(UFRGS), Financiadorade Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Founda-tionof China(NSFC) andMinistryof EducationofChina (MOEC), China; Croatian Science Foundation and Ministry of Science and Education, Croatia; Centro de Aplicaciones Tecnológicas y Desar-rolloNuclear(CEADEN),Cubaenergía,Cuba;MinistryofEducation, YouthandSportsoftheCzechRepublic,CzechRepublic;The Dan-ish Councilfor IndependentResearch NaturalSciences, the Carls-bergFoundationandDanishNationalResearchFoundation(DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commis-sariat à l’Energie Atomique (CEA), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre Na-tional de la Recherche Scientifique (CNRS) andRlégion des Pays de laLoire,France; Bundesministeriumfür Bildung,Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum fürSchwerionenforschungGmbH,Germany;GeneralSecretariatfor ResearchandTechnology,MinistryofEducation,Researchand Re-ligions, Greece; National Research, Development and Innovation Office,Hungary;DepartmentofAtomicEnergy,Governmentof In-dia (DAE), Department of Science and Technology, Government ofIndia (DST), University Grants Commission,Government of In-dia(UGC)andCouncil ofScientific andIndustrialResearch(CSIR), India; Indonesian Institute ofScience, Indonesia;Centro Fermi – MuseoStoricodellaFisica e CentroStudi eRicercheEnrico Fermi andIstitutoNazionalediFisicaNucleare(INFN),Italy;Institutefor Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS)

KAKENHIandJapaneseMinistryofEducation,Culture, Sports, Sci-enceand Technology (MEXT),Japan; Consejo Nacionalde Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Interna-cional enCiencia yTecnología(FONCICYT)andDirección General deAsuntosdelPersonalAcademico(DGAPA),Mexico;Nederlandse OrganisatievoorWetenschappelijkOnderzoek(NWO),Netherlands; The ResearchCouncil ofNorway, Norway;CommissiononScience andTechnology forSustainable Developmentin theSouth (COM-SATS),Pakistan;PontificiaUniversidadCatólicadelPerú,Peru; Min-istry of Science andHigher Education and NationalScience Cen-tre, Poland; Korea Institute of Science and Technology Informa-tion and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education andScientific Research,Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research(JINR), MinistryofEducationandScience oftheRussian Federation, National ResearchCentre KurchatovInstitute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministryof Education,Science, ResearchandSport ofthe Slovak Republic, Slovakia; NationalResearch Foundation of South Africa,SouthAfrica;SwedishResearchCouncil(VR)andKnut& Al-iceWallenbergFoundation(KAW),Sweden;EuropeanOrganization for Nuclear Research, Switzerland;National Science and Technol-ogy Development Agency (NSDTA), Suranaree University of Tech-nology(SUT)andOfficeoftheHigherEducationCommissionunder NRU projectofThailand,Thailand;TurkishAtomicEnergy Agency (TAEK),Turkey;NationalAcademyofSciencesofUkraine,Ukraine; ScienceandTechnologyFacilitiesCouncil(STFC),UnitedKingdom; NationalScienceFoundationoftheUnitedStatesofAmerica(NSF) andUnitedStatesDepartmentofEnergy,OfficeofNuclear Physics (DOENP),UnitedStatesofAmerica.

References

[1]F.Krauss,M.Greiner,G.Soff,Photonandgluoninducedprocessesinrelativistic heavyioncollisions,Prog.Part.Nucl.Phys.39(1997)503–564.

[2]C.A.Bertulani,S.R.Klein,J.Nystrand,Physicsofultra-peripheralnuclear col-lisions,Annu.Rev.Nucl.Part.Sci.55(2005)271–310,arXiv:nucl-ex/0502005 [nucl-ex].

[3]A.J.Baltz,ThephysicsofultraperipheralcollisionsattheLHC,Phys.Rep.458 (2008)1–171,arXiv:0706.3356 [nucl-ex].

[4]J.G.Contreras, J.D. Tapia Takaki,Ultra-peripheral heavy-ioncollisions at the LHC,Int.J.Mod.Phys.A30(2015)1542012.

[5]P.Newman,M.Wing,ThehadronicfinalstateatHERA,Rev.Mod.Phys.86 (3) (2014)1037,arXiv:1308.3368 [hep-ex].

[6]V.Guzey,M.Strikman,M.Zhalov,Nucleondissociationand incoherent J/ψ

photoproductiononnucleiinionultraperipheralcollisionsattheLargeHadron Collider,Phys.Rev.C99 (1)(2019)015201,arXiv:1808.00740 [hep-ph].

[7]M.G.Ryskin,DiffractiveJelectroproductioninLLAQCD,Z.Phys.C57(1993) 89–92.

[8]S.P.Jones,A.D.Martin,M.G.Ryskin,T.Teubner,Exclusive J/ψandϒ photopro-ductionandthelowx gluon,J.Phys.G43 (3)(2016)035002,arXiv:1507.06942 [hep-ph].

[9]V.Guzey,M.Zhalov,Exclusive J/ψ productioninultraperipheralcollisionsat theLHC:constrainsonthegluondistributionsintheprotonandnuclei,J.High EnergyPhys.10(2013)207,arXiv:1307.4526 [hep-ph].

[10]V.Guzey,E.Kryshen,M.Strikman,M.Zhalov,Evidencefornucleargluon shad-owingfrom the ALICEmeasurementsofPbPbultraperipheral exclusive J

production,Phys.Lett.B726(2013)290–295,arXiv:1305.1724 [hep-ph].

[11]J.G.Contreras,Gluonshadowingatsmallx fromcoherentJphotoproduction dataatenergiesavailableattheCERNLargeHadronCollider,Phys.Rev.C96 (1) (2017)015203,arXiv:1610.03350 [nucl-ex].

[12]ALICECollaboration,B.Abelev,etal.,CoherentJ photoproductionin ultra-peripheralPb-Pbcollisionsat √sNN = 2.76 TeV,Phys. Lett.B718(2013)

1273–1283,arXiv:1209.3715 [nucl-ex].

[13]ALICECollaboration,E.Abbas,etal.,Charmoniumande+e−pair photoproduc-tionatmid-rapidityinultra-peripheralPb-Pbcollisionsat√sNN = 2.76 TeV,

Eur.Phys.J.C73 (11)(2013)2617,arXiv:1305.1467 [nucl-ex].

[14]ALICECollaboration,J.Adam,etal.,Coherentψ(2S)photo-productionin ultra-peripheralPbPbcollisionsat √sNN = 2.76 TeV,Phys. Lett.B751(2015)

(10)

[16]S.Klein,J.Nystrand,Exclusivevectormesonproductioninrelativisticheavyion collisions,Phys.Rev.C60(1999)014903,arXiv:hep-ph/9902259 [hep-ph].

[17]ALICECollaboration,K.Aamodt,etal.,TheALICEexperimentattheCERNLHC, J.Instrum.3(2008)S08002.

[18]ALICECollaboration,B.Abelev,etal.,PerformanceoftheALICEexperimentat theCERNLHC,Int.J.Mod.Phys.A29(2014)1430044,arXiv:1402.4476 [nucl -ex].

[19]ALICECollaboration,K.Aamodt,etal.,Rapidityandtransversemomentum de-pendenceofinclusiveJ production inpp collisionsat √s=7 TeV,Phys. Lett.B704(2011)442–455,arXiv:1105.0380 [hep-ex],Erratum:Phys.Lett.B 718(2012)692.

[20]LHCForwardPhysicsWorkingGroupCollaboration,K.Akiba,etal.,LHCforward physics,J.Phys.G43(2016)110201,arXiv:1611.05079 [hep-ph].

[21]ALICECollaboration,F.Bossu,M.Gagliardi,M.Marchisone,Performanceofthe RPC-basedALICEmuontriggersystemattheLHC,J.Instrum.7(2012)T12002, arXiv:1211.1948 [physics.ins-det],PoSRPC2012(2012)059.

[22]C.Loizides,J.Kamin,D.d’Enterria,ImprovedMonteCarloGlauberpredictions at presentand futurenuclearcolliders,Phys. Rev.C97 (5)(2018) 054910, arXiv:1710.07098 [nucl-ex],Erratum:Phys.Rev.C99 (1)(2019)019901.

[23]S.R.Klein,J.Nystrand,J.Seger,Y.Gorbunov,J.Butterworth,STARlight:aMonte Carlo simulation programfor ultra-peripheral collisions of relativistic ions, Comput.Phys.Commun.212(2017)258–268,arXiv:1607.03838 [hep-ph].

[24] R.Brun,F.Bruyant,F.Carminati,S.Giani,M.Maire,A.McPherson,G.Patrick,L. Urban,GEANTdetectordescriptionandsimulationtool.

[25]BESCollaboration,J.Z.Bai,etal.,ψ(2S)π+π−Jdecaydistributions,Phys. Rev.D62(2000)032002,arXiv:hep-ex/9909038 [hep-ex].

[26] J.E.Gaiser,CharmoniumSpectroscopyfromRadiativeDecaysoftheJ and

ψ, PhD thesis, SLAC, 1982, http://inspirehep.net/record/183554/files/slac -r-255.pdf.

[27]Particle Data Group Collaboration, M. Tanabashi, et al., Review of particle physics,Phys.Rev.D98 (3)(2018)030001.

[28]H1Collaboration,C.Alexa,etal.,Elasticandproton-dissociative photoproduc-tionofJmesonsatHERA,Eur.Phys.J.C73 (6)(2013)2466,arXiv:1304.5162 [hep-ex].

[29]M.B.G.Ducati,M.T.Griep,M.V.T.Machado,Diffractivephotoproductionof radi-allyexcitedpsi(2S)mesonsinphoton-PomeronreactionsinPbPbcollisionsat theCERNLHC,Phys.Rev.C88(2013)014910,arXiv:1305.2407 [hep-ph].

[30]H1Collaboration,C.Adloff,etal.,Diffractivephotoproductionofpsi(2S)mesons atHERA,Phys.Lett.B541(2002)251–264,arXiv:hep-ex/0205107 [hep-ex].

[31]LHCbCollaboration, R.Aaij,et al.,Centralexclusiveproduction of J/ψ and

ψ(2S)mesonsinpp collisionsat√s=13 TeV,J.HighEnergyPhys.10(2018) 167,arXiv:1806.04079 [hep-ex].

[33]ALICECollaboration,J.Adam,etal.,Measurementofanexcessintheyieldof

J/ψ atverylowpT inPb-Pbcollisionsat√sNN=2.76TeV,Phys.Rev.Lett.

116 (22)(2016)222301,arXiv:1509.08802 [nucl-ex].

[34]ALICECollaboration,J.Adam,etal.,DifferentialstudiesofinclusiveJ and

ψ(2S)productionatforwardrapidityinPb-Pbcollisionsat√sNN=2.76 TeV,

J.HighEnergyPhys.05(2016)179,arXiv:1506.08804 [nucl-ex].

[35]V. Guzey,M. Strikman, M. Zhalov, Accessingtransversenucleon and gluon distributions inheavynuclei usingcoherentvector meson photoproduction at highenergiesinionultraperipheral collisions,Phys.Rev.C95 (2) (2017) 025204,arXiv:1611.05471 [hep-ph].

[36]V.P. Gonçalves,B.D. Moreira,F.S.Navarra, Investigationofdiffractive photo-production ofJ inhadroniccollisions,Phys.Rev.C90 (1)(2014)015203, arXiv:1405.6977 [hep-ph].

[37]G. Sampaiodos Santos,M.V.T.Machado, Ontheoreticaluncertaintyofcolor dipolephenomenologyinthe J/ψandϒphotoproductioninpAandAA col-lisionsattheCERNLargeHadronCollider,J.Phys.G42 (10)(2015)105001, arXiv:1411.7918 [hep-ph].

[38]T.Lappi,H.Mantysaari,IncoherentdiffractiveJ productioninhighenergy nuclearDIS,Phys.Rev.C83(2011)065202,arXiv:1011.1988 [hep-ph].

[39]T.Lappi,H.Mantysaari,JproductioninultraperipheralPb–Pb andp–Pb col-lisionsat energiesavailableattheCERNLargeHadronCollider,Phys.Rev.C 87 (3)(2013)032201,arXiv:1301.4095 [hep-ph].

[40]J. Cepila,J.G.Contreras, J.D.TapiaTakaki, Energydependenceofdissociative J photoproductionasasignatureofgluonsaturationattheLHC,Phys.Lett. B766(2017)186–191,arXiv:1608.07559 [hep-ph].

[41]J.Cepila,J.G.Contreras,M.Krelina,CoherentandincoherentJphotonuclear production inanenergy-dependenthot-spot model,Phys. Rev.C97 (2018) 024901,arXiv:1711.01855 [hep-ph].

[42]K.J.Eskola,H.Paukkunen,C.A.Salgado,EPS09:anewgenerationofNLOand LOnuclearpartondistributionfunctions,J.HighEnergyPhys.04(2009)065, arXiv:0902.4154 [hep-ph].

[43]L. Frankfurt, V.Guzey,M. Strikman, Leading twist nuclearshadowing phe-nomenainhardprocesseswithnuclei,Phys.Rep.512(2012)255–393,arXiv: 1106.2091 [hep-ph].

[44]A.Luszczak,W.Schafer,CoherentphotoproductionofJ innucleus-nucleus collisionsinthecolordipoleapproach,arXiv:1901.07989 [hep-ph].

[45]Z.Citron,etal.,Futurephysicsopportunitiesforhigh-densityQCDattheLHC with heavy-ionand protonbeams,in: HL/HE-LHCWorkshop:Workshopon thePhysicsofHL-LHC,andPerspectivesatHE-LHCGeneva,Switzerland,June 18-20,2018,2018,arXiv:1812.06772 [hep-ph].

ALICECollaboration

S. Acharya

141

,

D. Adamová

93

,

S.P. Adhya

141

,

A. Adler

74

,

J. Adolfsson

80

,

M.M. Aggarwal

98

,

G. Aglieri Rinella

34

,

M. Agnello

31

,

N. Agrawal

10

,

Z. Ahammed

141

,

S. Ahmad

17

,

S.U. Ahn

76

,

S. Aiola

146

,

A. Akindinov

64

,

M. Al-Turany

105

,

S.N. Alam

141

,

D.S.D. Albuquerque

122

,

D. Aleksandrov

87

,

B. Alessandro

58

,

H.M. Alfanda

6

,

R. Alfaro Molina

72

,

B. Ali

17

,

Y. Ali

15

,

A. Alici

10

,

53

,

27

,

A. Alkin

2

,

J. Alme

22

,

T. Alt

69

,

L. Altenkamper

22

,

I. Altsybeev

112

,

M.N. Anaam

6

,

C. Andrei

47

,

D. Andreou

34

,

H.A. Andrews

109

,

A. Andronic

144

,

M. Angeletti

34

,

V. Anguelov

102

,

C. Anson

16

,

T. Antiˇci ´c

106

,

F. Antinori

56

,

P. Antonioli

53

,

R. Anwar

126

,

N. Apadula

79

,

L. Aphecetche

114

,

H. Appelshäuser

69

,

S. Arcelli

27

,

R. Arnaldi

58

,

M. Arratia

79

,

I.C. Arsene

21

,

M. Arslandok

102

,

A. Augustinus

34

,

R. Averbeck

105

,

S. Aziz

61

,

M.D. Azmi

17

,

A. Badalà

55

,

Y.W. Baek

40

,

S. Bagnasco

58

,

X. Bai

105

,

R. Bailhache

69

,

R. Bala

99

,

A. Baldisseri

137

,

M. Ball

42

,

R.C. Baral

85

,

R. Barbera

28

,

L. Barioglio

26

,

G.G. Barnaföldi

145

,

L.S. Barnby

92

,

V. Barret

134

,

P. Bartalini

6

,

K. Barth

34

,

E. Bartsch

69

,

F. Baruffaldi

29

,

N. Bastid

134

,

S. Basu

143

,

G. Batigne

114

,

B. Batyunya

75

,

P.C. Batzing

21

,

D. Bauri

48

,

J.L. Bazo Alba

110

,

I.G. Bearden

88

,

C. Bedda

63

,

N.K. Behera

60

,

I. Belikov

136

,

F. Bellini

34

,

R. Bellwied

126

,

V. Belyaev

91

,

G. Bencedi

145

,

S. Beole

26

,

A. Bercuci

47

,

Y. Berdnikov

96

,

D. Berenyi

145

,

R.A. Bertens

130

,

D. Berzano

58

,

L. Betev

34

,

A. Bhasin

99

,

I.R. Bhat

99

,

H. Bhatt

48

,

B. Bhattacharjee

41

,

A. Bianchi

26

,

L. Bianchi

126

,

26

,

N. Bianchi

51

,

J. Bielˇcík

37

,

J. Bielˇcíková

93

,

A. Bilandzic

103

,

117

,

G. Biro

145

,

R. Biswas

3

,

S. Biswas

3

,

J.T. Blair

119

,

D. Blau

87

,

C. Blume

69

,

G. Boca

139

,

F. Bock

34

,

94

,

A. Bogdanov

91

,

L. Boldizsár

145

,

A. Bolozdynya

91

,

M. Bombara

38

,

G. Bonomi

140

,

M. Bonora

34

,

H. Borel

137

,

A. Borissov

144

,

91

,

M. Borri

128

,

H. Bossi

146

,

E. Botta

26

,

C. Bourjau

88

,

L. Bratrud

69

,

P. Braun-Munzinger

105

,

M. Bregant

121

,

T.A. Broker

69

,

M. Broz

37

,

(11)

S. Bufalino

31

,

O. Bugnon

114

,

P. Buhler

113

,

P. Buncic

34

,

O. Busch

133

,

i

,

Z. Buthelezi

73

,

J.B. Butt

15

,

J.T. Buxton

95

,

D. Caffarri

89

,

A. Caliva

105

,

E. Calvo Villar

110

,

R.S. Camacho

44

,

P. Camerini

25

,

A.A. Capon

113

,

F. Carnesecchi

10

,

J. Castillo Castellanos

137

,

A.J. Castro

130

,

E.A.R. Casula

54

,

F. Catalano

31

,

C. Ceballos Sanchez

52

,

P. Chakraborty

48

,

S. Chandra

141

,

B. Chang

127

,

W. Chang

6

,

S. Chapeland

34

,

M. Chartier

128

,

S. Chattopadhyay

141

,

S. Chattopadhyay

108

,

A. Chauvin

24

,

C. Cheshkov

135

,

B. Cheynis

135

,

V. Chibante Barroso

34

,

D.D. Chinellato

122

,

S. Cho

60

,

P. Chochula

34

,

T. Chowdhury

134

,

P. Christakoglou

89

,

C.H. Christensen

88

,

P. Christiansen

80

,

T. Chujo

133

,

C. Cicalo

54

,

L. Cifarelli

10

,

27

,

F. Cindolo

53

,

J. Cleymans

125

,

F. Colamaria

52

,

D. Colella

52

,

A. Collu

79

,

M. Colocci

27

,

M. Concas

58

,

ii

,

G. Conesa Balbastre

78

,

Z. Conesa del Valle

61

,

G. Contin

128

,

J.G. Contreras

37

,

T.M. Cormier

94

,

Y. Corrales Morales

26

,

58

,

P. Cortese

32

,

M.R. Cosentino

123

,

F. Costa

34

,

S. Costanza

139

,

J. Crkovská

61

,

P. Crochet

134

,

E. Cuautle

70

,

L. Cunqueiro

94

,

D. Dabrowski

142

,

T. Dahms

117

,

103

,

A. Dainese

56

,

F.P.A. Damas

137

,

114

,

S. Dani

66

,

M.C. Danisch

102

,

A. Danu

68

,

D. Das

108

,

I. Das

108

,

S. Das

3

,

A. Dash

85

,

S. Dash

48

,

A. Dashi

103

,

S. De

49

,

85

,

A. De Caro

30

,

G. de Cataldo

52

,

C. de Conti

121

,

J. de Cuveland

39

,

A. De Falco

24

,

D. De Gruttola

10

,

N. De Marco

58

,

S. De Pasquale

30

,

R.D. De Souza

122

,

S. Deb

49

,

H.F. Degenhardt

121

,

A. Deisting

105

,

102

,

K.R. Deja

142

,

A. Deloff

84

,

S. Delsanto

26

,

131

,

P. Dhankher

48

,

D. Di Bari

33

,

A. Di Mauro

34

,

R.A. Diaz

8

,

T. Dietel

125

,

P. Dillenseger

69

,

Y. Ding

6

,

R. Divià

34

,

Ø. Djuvsland

22

,

U. Dmitrieva

62

,

A. Dobrin

68

,

34

,

B. Dönigus

69

,

O. Dordic

21

,

A.K. Dubey

141

,

A. Dubla

105

,

S. Dudi

98

,

M. Dukhishyam

85

,

P. Dupieux

134

,

R.J. Ehlers

146

,

D. Elia

52

,

H. Engel

74

,

E. Epple

146

,

B. Erazmus

114

,

F. Erhardt

97

,

A. Erokhin

112

,

M.R. Ersdal

22

,

B. Espagnon

61

,

G. Eulisse

34

,

J. Eum

18

,

D. Evans

109

,

S. Evdokimov

90

,

L. Fabbietti

117

,

103

,

M. Faggin

29

,

J. Faivre

78

,

A. Fantoni

51

,

M. Fasel

94

,

P. Fecchio

31

,

L. Feldkamp

144

,

A. Feliciello

58

,

G. Feofilov

112

,

A. Fernández Téllez

44

,

A. Ferrero

137

,

A. Ferretti

26

,

A. Festanti

34

,

V.J.G. Feuillard

102

,

J. Figiel

118

,

S. Filchagin

107

,

D. Finogeev

62

,

F.M. Fionda

22

,

G. Fiorenza

52

,

F. Flor

126

,

S. Foertsch

73

,

P. Foka

105

,

S. Fokin

87

,

E. Fragiacomo

59

,

A. Francisco

114

,

U. Frankenfeld

105

,

G.G. Fronze

26

,

U. Fuchs

34

,

C. Furget

78

,

A. Furs

62

,

M. Fusco Girard

30

,

J.J. Gaardhøje

88

,

M. Gagliardi

26

,

A.M. Gago

110

,

A. Gal

136

,

C.D. Galvan

120

,

P. Ganoti

83

,

C. Garabatos

105

,

E. Garcia-Solis

11

,

K. Garg

28

,

C. Gargiulo

34

,

K. Garner

144

,

P. Gasik

103

,

117

,

E.F. Gauger

119

,

M.B. Gay Ducati

71

,

M. Germain

114

,

J. Ghosh

108

,

P. Ghosh

141

,

S.K. Ghosh

3

,

P. Gianotti

51

,

P. Giubellino

105

,

58

,

P. Giubilato

29

,

P. Glässel

102

,

D.M. Goméz Coral

72

,

A. Gomez Ramirez

74

,

V. Gonzalez

105

,

P. González-Zamora

44

,

S. Gorbunov

39

,

L. Görlich

118

,

S. Gotovac

35

,

V. Grabski

72

,

L.K. Graczykowski

142

,

K.L. Graham

109

,

L. Greiner

79

,

A. Grelli

63

,

C. Grigoras

34

,

V. Grigoriev

91

,

A. Grigoryan

1

,

S. Grigoryan

75

,

O.S. Groettvik

22

,

J.M. Gronefeld

105

,

F. Grosa

31

,

J.F. Grosse-Oetringhaus

34

,

R. Grosso

105

,

R. Guernane

78

,

B. Guerzoni

27

,

M. Guittiere

114

,

K. Gulbrandsen

88

,

T. Gunji

132

,

A. Gupta

99

,

R. Gupta

99

,

I.B. Guzman

44

,

R. Haake

146

,

34

,

M.K. Habib

105

,

C. Hadjidakis

61

,

H. Hamagaki

81

,

G. Hamar

145

,

M. Hamid

6

,

J.C. Hamon

136

,

R. Hannigan

119

,

M.R. Haque

63

,

A. Harlenderova

105

,

J.W. Harris

146

,

A. Harton

11

,

H. Hassan

78

,

D. Hatzifotiadou

10

,

53

,

P. Hauer

42

,

S. Hayashi

132

,

S.T. Heckel

69

,

E. Hellbär

69

,

H. Helstrup

36

,

A. Herghelegiu

47

,

E.G. Hernandez

44

,

G. Herrera Corral

9

,

F. Herrmann

144

,

K.F. Hetland

36

,

T.E. Hilden

43

,

H. Hillemanns

34

,

C. Hills

128

,

B. Hippolyte

136

,

B. Hohlweger

103

,

D. Horak

37

,

S. Hornung

105

,

R. Hosokawa

133

,

P. Hristov

34

,

C. Huang

61

,

C. Hughes

130

,

P. Huhn

69

,

T.J. Humanic

95

,

H. Hushnud

108

,

L.A. Husova

144

,

N. Hussain

41

,

S.A. Hussain

15

,

T. Hussain

17

,

D. Hutter

39

,

D.S. Hwang

19

,

J.P. Iddon

128

,

R. Ilkaev

107

,

M. Inaba

133

,

M. Ippolitov

87

,

M.S. Islam

108

,

M. Ivanov

105

,

V. Ivanov

96

,

V. Izucheev

90

,

B. Jacak

79

,

N. Jacazio

27

,

P.M. Jacobs

79

,

M.B. Jadhav

48

,

S. Jadlovska

116

,

J. Jadlovsky

116

,

S. Jaelani

63

,

C. Jahnke

121

,

M.J. Jakubowska

142

,

M.A. Janik

142

,

M. Jercic

97

,

O. Jevons

109

,

R.T. Jimenez Bustamante

105

,

M. Jin

126

,

F. Jonas

144

,

94

,

P.G. Jones

109

,

A. Jusko

109

,

P. Kalinak

65

,

A. Kalweit

34

,

J.H. Kang

147

,

V. Kaplin

91

,

S. Kar

6

,

A. Karasu Uysal

77

,

O. Karavichev

62

,

T. Karavicheva

62

,

P. Karczmarczyk

34

,

E. Karpechev

62

,

U. Kebschull

74

,

R. Keidel

46

,

M. Keil

34

,

B. Ketzer

42

,

Z. Khabanova

89

,

A.M. Khan

6

,

S. Khan

17

,

S.A. Khan

141

,

A. Khanzadeev

96

,

Y. Kharlov

90

,

A. Khatun

17

,

A. Khuntia

118

,

49

,

B. Kileng

36

,

B. Kim

60

,

B. Kim

133

,

D. Kim

147

,

D.J. Kim

127

,

E.J. Kim

13

,

H. Kim

147

,

J. Kim

147

,

J.S. Kim

40

,

J. Kim

102

,

J. Kim

147

,

J. Kim

13

,

M. Kim

102

,

S. Kim

19

,

T. Kim

147

,

T. Kim

147

,

S. Kirsch

39

,

I. Kisel

39

,

S. Kiselev

64

,

A. Kisiel

142

,

J.L. Klay

5

,

C. Klein

69

,

J. Klein

58

,

S. Klein

79

,

C. Klein-Bösing

144

,

S. Klewin

102

,

A. Kluge

34

,

M.L. Knichel

34

,

A.G. Knospe

126

,

C. Kobdaj

115

,

M.K. Köhler

102

,

T. Kollegger

105

,

A. Kondratyev

75

,

N. Kondratyeva

91

,

E. Kondratyuk

90

,

P.J. Konopka

34

,

L. Koska

116

,

O. Kovalenko

84

,

V. Kovalenko

112

,

M. Kowalski

118

,

Referências

Documentos relacionados

Diante do exposto nestes resultados, verifica-se a importância da feira agroecológica como circuito curto de comercialização e as vantagens oportunizadas aos agricultores

Clinical studies consistently indicate that the intake of phytosterols (2 g/day) is associated with a significant reduction (8-10%) in levels of low-density lipoprotein cholesterol

Através do estudo dos modelos de previsões existentes e da análise de trabalhos similares, foi definido que o método mais adequado a se usar seria o da suavização

Nessas idéias estão contidos padrões de monogamia, de dissociação do sexo com outros valores que não da reprodução e do prazer, de sexo como entrega do corpo, ou seja, o corpo

Os elevados valores para a Bio_Acum na Chapada do Araripe, se deve ao fato de que a área com cobertura de árvores é responsável por aproximadamente 70% da biomassa estimada, onde o

(For a definition of many performability measures and solution techniques, we refer the reader to [14].) We first consider transient measures. This assumptiol1 is

anônima. 85 BULGARELLI, Waldirio. Regime Jurídico de Proteção às Minorias nas S/A.. Em posição diametralmente oposta, há quem defende que o prêmio de controle e o ágio pertencem

Outro tipo de utilização do sistema fotovoltaico está relacionado com os sistemas híbridos que são aqueles que, desconectado da rede convencional, apresentam várias fontes