• Nenhum resultado encontrado

Surface response methodology for the optimization of lipase production under submerged fermentation by filamentous fungi

N/A
N/A
Protected

Academic year: 2021

Share "Surface response methodology for the optimization of lipase production under submerged fermentation by filamentous fungi"

Copied!
7
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Industrial

Microbiology

Surface

response

methodology

for

the

optimization

of

lipase

production

under

submerged

fermentation

by

filamentous

fungi

Luciane

Maria

Colla

a,∗

,

Andreiza

Lazzarotto

Primaz

a

,

Silvia

Benedetti

a

,

Raquel

Aparecida

Loss

a

,

Marieli

de

Lima

a

,

Christian

Oliveira

Reinehr

a

,

Telma

Elita

Bertolin

a

,

Jorge

Alberto

Vieira

Costa

b

aLaboratoryofFermentations,CourseofFoodEngineering,CollegeofEngineeringandArchitecture,UniversityofPassoFundo,Passo

Fundo,RS,Brazil

bLaboratoryofBiochemicalEngineering,SchollofChemistryandFood,FederalUniversityFoundationofRioGrande,RioGrande,RS,

Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received24March2011 Accepted6January2015 Availableonline2March2016 AssociateEditor:RosaneFreitas Schwan Keywords: Agriculturalresidues Lipase Optimization Submergedbioprocess

a

b

s

t

r

a

c

t

APlackett–BurmanFactorialDesignof16experimentswasconductedtoassesstheinfluence ofninefactorsontheproductionoflipasesbyfilamentousfungi.Thefactorsinvestigated werebrantype(usedasthemaincarbonsource),nitrogensource,nitrogensource concen-tration,inducer,inducerconcentration,fungalstrain(AspergillusnigerorAspergillusflavus

wereselectedasgoodlipaseproducersviasubmergedfermentation),pHandagitation.The concentrationoftheyeastextractandsoybeanoilandthepHhadasignificanteffect(p<0.05) onlipaseproductionandwereconsecutivelystudiedthroughaFullFactorialDesign23,with

theconcentrationofyeastextractandpHbeingsignificant(p<0.05).Thesevariableswere optimizedusingacentralcompositedesign,obtainingmaximumlipolyticactivitieswiththe useof45g/LofyeastextractandpH7.15.Thestatisticalmodelshoweda94.12%correlation withtheexperimentaldata.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Enzymescurrentlyhavevariousindustrialapplications.1The

industrial market for enzymes continues to grow due to thedevelopmentofnewproductiontechnologies,theuseof

Correspondingauthor.

E-mail:lmcolla@upf.br(L.M.Colla).

geneticengineeringduringproductionandemergenceofnew fieldsofapplication.Theglobalenzymemarketin2007was 2.3billionUSdollarsandisexpectedtobe2.7billionUS dol-larsin2012.2Amongtheseenzymes,lipasesarewidelyused.

Their applicationsresultfromtheirabilitytocatalyze reac-tions,mainlythehydrolysisandinter-andtransesterification

http://dx.doi.org/10.1016/j.bjm.2016.01.028

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

of lipids,making these enzymes useful in the detergent,3

medical4andfoodindustries5aswellasinthepharmaceutical

industryasdiagnostictools,incosmetics,inteaprocessing,in medicalapplications,asbiosensors,indegreasingofleather andwastetreatment.6Otherapplicationsincludethe

matura-tionofcheeses,7thesynthesisofaromas,8theproductionof

lipidswithhighlevelsofunsaturatedfattyacids9and

methyl-estersoffattyacids(biodiesel).10

Industrialenzymes areproducedprimarilythrough sub-mergedfermentationinbatchandfed-batchcultures1using

filamentousfungi.Themost-citedgeneraforlipase produc-tionareAspergillus,Rhizopus,Penicillium,Mucor,Geotrichumand

Fusarium.11,12 Submerged processes have some advantages

oversolid-stateprocesses,suchashigherhomogeneityofthe culturemediumandmorefacilitytocontrolparameterslike temperatureandpH.13

Moreover,Mahadiketal.14mentionedthatoneofthe

disad-vantagesofsolidstateprocessesisthecolorofthefermented media,duetothepresenceoffungalspores,andother com-ponentsremainingintheextractaftertheenzymeextraction process.However,submergedfermentationcanpresent dif-ficultyforthe transferofoxygen inliquid media,which is aggravatedinthecaseoffungiduetothefilamentous mor-phologyofhyphaeinliquidmedia.1Coradietal.15mentioned

thatlipaseshavebeenproducedbysubmergedfermentation becausetherecoveryofextracellularenzymesandthe deter-mination ofbiomassare facilitated bybeing performed by simplefiltration orcentrifugation. However,solid-state fer-mentation can improve the use of agricultural waste and demandslesswaterandenergy.

Other factors, such as the types and concentrations of nutrients,pH,agitationandthepresenceandconcentration of inducers can affect the productivity of these biopro-cesses.Researchthatusesisolatedmicroorganismsfromnew environmentsand thatusesagro-industrial residuesinthe compositionofmediaisneededtoobtainhighyieldsatlower costs.

Thestatisticaloptimizationofprocesseshasadvantages comparedtotheclassicalpracticeofchangingonevariable at a time,16,17 such as the lower number of experiments

and the possibility of evaluating the interaction effects amongvariables. Numerous researchershave reported the use of these techniques for the production of lipases by microorganisms.18–20 Anefficientandwidelyusedapproach

istheapplicationofPlackett–Burmandesignsthatallow effi-cientscreeningofkeyvariablesforfurtheroptimizationina rationalway.21,22Theaimofthisworkwastoscreensignificant

variablesforlipaseproductionthroughsubmerged fermenta-tionandtooptimizethesevariablesthroughresponsesurface methodology.

Materials

and

methods

Microorganismsandinoculumpreparation

ThefungiusedinthisstudyweretwospeciesofAspergillus

that were isolated from dairy effluent (isolate E-19) and soilcontaminated with diesel oil (isolated O-8)23 and that

were previously selected as good producers of lipase via

submergedfermentation.24Bothisolatesweresubmittedto

geneticidentificationthroughPhred/PhrapandConsed,using themethodologycitedbySmaniotoetal.,25attheCenterof

NuclearEnergyinAgriculture(Cena),UniversityofSãoPaulo (USP),Brazil.

Sequenceswerecomparedto18SrRNAdataobtainedfrom GenBank(http://www.ncbi.nlm.nih.gov).TheisolateE-19was identifiedasAspergillusnigerstrainDAOM(100%identity, Gen-Bankaccessionnumber:KC545858.1),andtheisolateO-8was identifiedasAspergillusflavusstrainDAOM(99%identity, Gen-Bankaccessionnumber:JN938987.1).

The microorganisms were kept in test tubes with PDA (potato-dextrose-agar)at4◦C.Theinoculumwaspreparedby inoculationofthefungiinPetridishescontaining30mLof solidifiedPDAmediumandincubatedat30◦Cfor5days.

Culturemediumandexperimentalapparatus

Theculturemediumwaspreparedwith10%(m/v)bran(wheat orsoybean),whichwasboiledat100◦Cfor30min.Afterwards, themediumwasfiltered,andthesolubleextractwasaddedto a10%(v/v)salinesolutioncontainingalsothenitrogensource, inducer and distilled water to complete the final volume. Thesaline solutioncontained KH2PO4 (2g/L),MgSO4 (1g/L)

and trace solution (10mL/L). Thecomposition of the trace solution wasFeSO4·7H2O(0.63mg),MnSO4 (0.01mg),ZnSO4

(0.62mg)anddistilledwateruptoavolumeof1L.26Theliquid

medium was autoclaved, and the pH was adjustedto val-ues pre-definedbytheexperimentaldesignusingsolutions of1.5mol/LHClor1mol/LNaOH.

Theexperimentswerecarriedoutin300-mLErlenmeyer flaskswith100mLofmedium.Theinoculationwas accom-plishedusing10or20mmdiametercircularareascontaining sporesgrowninPetridishes.TheErlenmeyerflasks, contain-ingtheinoculatedculturemedium,wereincubatedat30◦Cfor 10daysinashakerwithalevelofagitationpre-defined accord-ingtotheexperimentaldesign.Aliquots(10mL)wereremoved at24h,48h,72hand96htomeasurelipolyticactivity.

Experimentaldesign

Theoptimizationoflipaseproductionbysubmerged fermen-tation wascarriedout using threesequentialexperimental designs. The first step aimed to assess the influence of ninevariablesonlipaseproductionusingaPlackett–Burman Designwith16trials(1–16).Thevariablesstudiedwerebran typeusedasacarbonsource(wheatbranorsoybeanbran), nitrogen source (sodium nitrate or yeast extract), nitrogen sourceconcentration(10or30g/L),inducer(soybeanorolive oil),inducerconcentration(10or30g/L),culturemediumpH (5 or 7),fungus strainused (A.niger E-19 orA. flavusO-8), inoculumdiameter(fungalsporesgrowthequalto1or2cm diameterinPetridishescontainingPDA)andagitation(120or 160rpm).Next,a23FullFactorialDesign(FFD)(Trials17–24)

wascarriedouttostudytheinfluenceofyeastextract con-centration(YEC),soybeanoilconcentration(SOC)andpHon lipolyticactivity.Subsequently,thepHandtheconcentration ofyeastextract wereoptimized using aCentralComposite RotationalDesign(CCRD),including4factorialpoints,4axial pointsand3centralpointsforevaluatingthepureerrorfora

(3)

Table1–RealandcodedlevelsofvariablesusedinthePlackett–BurmanDesignandmaximumresiduallipolytic activitiesobtainedinexperimentscarriedoutinsubmergedfermentation.

Exp. X1(TB) X2(NS) X3(I) X4(NSC) X5(IC) X6(pH) X7(fungus) X8(ID) X9(A) LAMR(U)a

1 −1(WB) −1(SN) −1(OO) −1(10) +1(30) +1(7) +1(E-19) +1(2) +1(160) 1.74±0.16

2 +1(SB) −1(SN) −1(OO) −1(10) −1(10) −1(5) −1(O-8) +1(2) +1(160) 0.31±0.13

3 −1(WB) +1(YE) −1(OO) −1(10) −1(10) +1(7) +1(E-19) −1(1) −1(120) 2.03±0.28

4 +1(SB) +1(YE) −1(OO) −1(10) +1(30) −1(5) −1(O-8) −1(1) −1(120) 1.50±0.12

5 −1(WB) −1(SN) +1(SO) −1(10) +1(30) −1(5) +1(E-19) −1(1) +1(160) 0.19±0.07

6 +1(SB) −1(SN) +1(SO) −1(10) −1(10) +1(7) −1(O-8) −1(1) +1(160) 1.21±0.25

7 −1(WB) +1(YE) +1(SO) −1(10) −1(10) −1(5) +1(E-19) +1(2) −1(120) 0.84±0.44

8 +1(SB) +1(YE) +1(SO) −1(10) +1(30) +1(7) −1(O-8) +1(2) −1(120) 2.93±0.88

9 −1(WB) −1(SN) −1(OO) +1(30) +1(30) +1(7) −1(O-8) +1(2) −1(120) 1.62±0.18

10 +1(SB) −1 (SN) −1 (OO) +1(30) −1 (10) −1 (5) +1(E-19) +1(2) −1(120) 1.36±0.02

11 −1(WB) +1(YE) −1(OO) +1(30) −1(10) +1(7) −1(O-8) −1(1) +1(160) 4.08±0.08

12 +1(SB) +1(YE) −1(OO) +1(30) +1(30) −1(5) +1(E-19) −1(1) +1(160) 0.86±0.01

13 −1(WB) −1(SN) +1(SO) +1(30) +1(30) −1(5) −1(O-8) −1(1) −1(120) 0.37±0.24

14 +1(SB) −1(SN) +1(SO) +1(30) −1(10) +1(7) +1(E-19) −1(1) −1(120) 1.39±0.06

15 −1(WB) +1(YE) +1(SO) +1(30) −1(10) −1(5) −1(O-8) +1(2) +1(160) 3.51±0.54

16 +1(SB) +1(YE) +1(SO) +1(30) +1(30) +1(7) +1(E-19) +1(2) +1(160) 1.68±1.00

Exp.,experiment;TB,typeofbran;NS,nitrogensource;I,inducer;NSC,nitrogensourceconcentration(g/L);IC,inducerconcentration(g/L);ID,

inoculumdiameter(cm);A,agitation(rpm);WB,wheatbran;SB,soybeanbran;SN,sodiumnitrate,YE,yeastextract;OO,oliveoil;SO,soybean

oil;LAMR,maximumresiduallipolyticactivity.

a Mean±standarddeviation.

Table2–Codedandreallevelsofthe23FullFactorial

Designandresultsofmaximumresiduallipolytic

activityobtainedfromsubmergedfermentation.

Experiment X1(YEC,g/L) X2(SOC,g/L) X3(pH) LAMR(U)a

17 −1(10) −1(10) −1(5.0) 0.23±0.13 18 +1(30) −1(10) −1(5.0) 0.89±0.01 19 −1(10) +1(30) −1(5.0) 0.00±0.00 20 +1(30) +1(30) −1(5.0) 0.95±0.14 21 −1(10) −1(10) +1(7.0) 0.84±0.01 22 +1(30) −1(10) +1(7.0) 2.00±0.48 23 −1(10) +1(30) +1(7.0) 0.85±0.08 24 +1(30) +1(30) +1(7.0) 0.95±0.06

YEC,yeastextractconcentration(g/L);SOC,soybeanoil

concentra-tion(g/L);LAMR,maximumresiduallipolyticactivity;fixedvariables,

typeofbran(wheatbran),fungus(O-8),inoculumdiameter(2cm)

andagitation(120rpm).

a Mean±standarddeviation.

totalof11experiments(Trials25–35).Allexperimentswere carriedout in replicates.Lipolytic activity wasused asthe responseinallfactorialdesigns.Tables1–3presentcodedand originalvaluesofthePlackett–BurmanDesign,the23Factorial

Designandthe22CCRD,respectively.

Lipolyticactivitydeterminations

Thesampleswere filteredwith cottonwool toremovethe hyphae, and the filtrates were used to measure lipolytic activity. Enzymatic activity was determined following the methodologyofBurkertetal.,18whichisbasedontheNaOH

titration offatty acids released bythe action ofthe lipase enzymeintheenzymaticextractontriacylglycerolsofolive oilemulsifiedinarabicgum.

Oneunit oflipolyticactivity wasdefinedastheamount ofenzymethatreleases1␮moloffattyacidperminuteper

Table3–CodedandactualvaluesofpHandyeast extractconcentration(YEC)usedintheCentral

CompositeRotationalDesign(CCRD)fortheoptimization oflipaseproductionbyAspergillusflavus(O-8)via

submergedfermentation.

Experiment X1(pH) X2(YEC,g/L) LAMR(U)a

25 −1(6.0) −1(20) 1.87±0.12 26 +1(8.0) −1(20) 2.20±0.10 27 −1(6.0) +1(40) 2.98±0.05 28 +1(8.0) +1(40) 2.92±0.12 29 −1414(5.5) 0(30) 1.67±0.10 30 +1414(8.5) 0(30) 2.11±0.07 31 0(7.0) −1414(15.9) 1.96±0.02 32 0(7.0) +1414(44.1) 2.98±0.05 33 0(7.0) 0(30) 2.75±0.02 34 0(7.0) 0(30) 2.93±0.10 35 0(7.0) 0(30) 3.04±0.02

Fixedvariables,type of bran (wheat), fungus (O-8),soybeanoil

concentration(1%),inoculumdiameter(2cm),agitation(120rpm);

LAMR,maximumresiduallipolyticactivity.

a Mean±standarddeviation.

mLofenzymeextract (1U=1␮mol/min/mL)underthe test conditions.

Treatmentofdata

Theresultsofthelipolyticactivityovertimeweresubtracted fromthevaluesoflipolyticactivityobtainedatthebeginning offermentation.Theseactivitiescanbeattributedtothe pres-enceoffreefattyacidsintheculturemediumbeforefungal growthandlipaseproduction.Theresultsofmaximum resid-uallipolyticactivitiesobtainedweresubmittedtoanalysisof variance(Anova).Theestimatedeffectsofvariablesandthe regression coefficientsofthegeneratedmodelswere calcu-lated.

(4)

3.5 3.0 2.5 2.0 1.5 1.0 0.5 50 40 30 20 10 5.0 6.0 7.0 pH YEC (g/l) 8.0 9.0 0.0 >3.0 <3.0 <2.5 <2.0 <1.5 <1.0 <0.5 LA MR (U ) 2.5 2.0 1.5 1.0 0.5 0.0 35 30 25 20 15 10 5 4.5 5.0 5. 5 pH 6.0 6.5 7.0 7.5 LA MR (U) YEC (g/l) >2.0 <1.7 <2.0 <1.4 <1.1 <0.8 <0.5

A

B

Fig.1–Responsesurfaceofthemaximumresiduallipolyticactivity(LAMR)asafunctionofpHandyeastextract

concentration(YEC)forlipaseproductionbysubmergedfermentationaccordingto(A)23FFDand(B)CCRD.

Results

and

discussion

Table1shows themaximumlipolyticactivitiesobtainedin thePlackett–Burman(PB)Designexperiments.Themaximum lipolyticactivitiesforallexperimentswerefoundbetweenthe thirdandfourthdaysofcultivation.Inthisway,thevaluesof lipolyticactivityobtainedatthesetimesofcultivationwere usedtoevaluatetheinfluenceofthevariablesstudiedinthe PBdesignonlipaseproduction.Thehighestlipolytic activi-tieswereobtainedintrials3,8,11and15,allofwhichused yeastextractasthenitrogensource.Inrelationtothetypeof branusedasacarbonsource,trials3,11and15werecarried outwithwheatbran,andtrial8wascarriedoutwithsoybean meal.Intrials3and11,oliveoilwasusedastheinducer,and intrials8and15,theinducerwassoybeanoil.Intrials3,8and 11,apHof7.0wasused,andpH5.0wasusedinexperiment 15.TheisolateE-19(A.niger)wasusedintrial3;theisolateO-8 (A.flavus)wasusedintrials4,11and15.Trials3and8were carriedoutwithanagitationrateof120rpm,andtrials11and 15werecarriedoutwithanagitationrateof160rpm.

The results of lipolytic activity obtained in the Plackett–Burman Design trials were evaluated through analysisofvarianceandshowedthatthetypeofbran(TB), inducer (I), inoculum diameter (ID) and agitation had no significant influence(p>0.10) onlipaseproductionthrough submergedfermentation.Thus,thesevariableswerefixedin thenextstagesofoptimization.

Wheatbranwasusedinthissequenceofstatistical opti-mization oflipase production in submerged fermentation, becauseitprovidedthemosthomogeneousculturemedium after boiling. According to Pinto et al.,27 agro-industrial

residuescanberecoveredandusedinfermentativeprocesses. Theadvantageoftherebeingnodifferencebetweenthetype ofbranusedisthat thebrantypecanbechosenin accor-dancewithmarketconditions,suchasprice,transportation andproductavailability.

Soybeanoilwaschosenastheinducerintheoptimization sequencebecauseitischeaperthanoliveoil.Theresultwas similartothatobtainedinthestudybyBurkertetal.,18who

assessedtheinfluenceofoiltype(oliveoilandsoybeanoil) onlipaseproductionbyGeotrichumsp.andfoundno signifi-cantdifferencebetweentheresultsobtainedusing1%ofthe inducers.

TengandXu19studiedtheinfluenceofvariablesonlipase

production. Agitation and initial inoculum concentration weresignificantvariablesandinfluencedthemorphologyof mycelia.Theformationofgroupsofclumpswasobservedat anagitationrateof200rpm,andthistypeofmorphologywas determinedtobeimportantforlipasesynthesis.Atagitations lower than150rpm,dispersedmyceliawereobtained.High initialconcentrationsofinoculumledtotheformationof dis-persed mycelia;this formationwasafactor thatdecreased lipasesynthesisbyCandidacylindracea.Theseresultswere con-tradictorytothoseobtainedbyHaacketal.,1whoreportedthat

thepresenceofdispersedhyphae,ratherthanclumpsor pel-lets,facilitatesthesynthesisoflipasebystrainsoffilamentous fungibecausetheothermorphologicalformscausediffusion problemsforthesubstrateandproduct.However,thepresence ofdispersedhyphaecausesincreasedviscosityofthemedium, whichreducesoxygentransfer.Inourstudy,thepresenceof pellets wasnotobserved,but therewasan increaseinthe visual viscosity ofthe mediaduringthe fermentation pro-cess,whichcharacterizesthepresenceofdispersedhyphae.

(5)

Table4–AnalysisofvarianceofthemaximumresiduallipolyticactivityresultsoftheCCRDexperiments.

Effect SS DF MS Fcalculated Fcritical

Regression 5.137 4 1.284 33.077 2.965

Error 0.660 17 0.039

Total 5.797 21

SS,sumofsquares;DF,degreesoffreedom;MS,meansquare.Theeffectofinteraction,whichwasnotsignificant,wasignoredinthe

imple-mentationofanalysisofvariance.

Theproductionoflipaseswasnotaffectedbyagitationorby theinitialinoculumconcentration,asindicatedbythe anal-ysisofvarianceofthePBdesignexperiments(p>0.10).Thus, insubsequentexperiments,theinoculationwascarriedout usinga20mmdiameteroffungalgrowthafterpreparingthe inoculumandusinganagitationrateof120rpm.

Thenitrogensource(NS)andfungusstrainweresignificant (p<0.001 and p=0.012, respectively), having the estimated effectsof1.15and−0.68,respectively.Thismeansthatlipase activityincreasedapproximately1.15Ubyvaryingthe nitro-gensourcefrom thelowest (sodiumnitrate)tothe highest level(yeastextract)ofthePBdesign.However,aftervarying thelevelofthevariablefungusfromthelowest(A.flavus)to thehighestlevel(A.niger),adecreaseof0.68Uwasobservedin thelipolyticactivity.Thus,yeastextract(nitrogensourceused atthetoplevel)andthefungusO-8(A.flavus,corresponding tothelowestlevel)wereusedthroughouttheexperiments.

Quantitative variables (nitrogen source concentration: NSC,soybean oilconcentration:SOC,and pH)thatshowed asignificantinfluenceonlipaseproductionata10%levelof significancewerestudiedusinga23FullFactorialDesign;the resultsareshowninTable2.

Themaximumlipolyticactivityinthe23FFD(2.00U)was

obtainedintrial22,carriedoutwith30g/Lofyeastextractand 10g/LofsoybeanoilatpH7.Comparingthemaximum lipoly-ticactivitiesobtainedintheupperandlowerconcentrations ofyeastextract,it seemsthatincreasingtheconcentration from10g/Lto30g/Lcausedanincreaseinlipolyticactivities. Increasingthesoybeanoilconcentrationfrom10g/Lto30g/L causedadecreaseinlipolyticactivitywhencomparingtrial 17with19and22with24andcausedanincreasewhen com-paringtrials18and20andtrials21and23.Thisseemingly contradictorybehavior could be explainedby alias effects, which are common in PB designs.However, the statistical analysisoftheresultswillbetterexplainiftheeffectofthis variableonlipaseproductionissignificant.Whenassessing theeffectofpH,thebestresultswereobtainedatpH7.0.

TheYECandthepHweresignificantforlipolyticactivity accordingto theanalysis ofthevariance ofthe data, with levels ofsignificance(p) less than 0.001 forboth variables. Theeffects ofthese variables were positive, 0.71 for yeast extractand0.64forpH.Thisresultindicatesthatthegreatest increasesinlipolyticactivitieswereobtainedusinghigher lev-elsofthesevariables,i.e.,30g/LofyeastextractandpH7.0.The concentrationofsoybeanoilandtheinteractionsbetweenthe variableshadnosignificanteffectonlipolyticactivity(p<0.05). Themathematical model of maximum lipolytic activity presenteda determination coefficient (R2) of0.714 and an

Table5–EstimatedeffectsofvariablesusedintheCCRD andsignificancelevels.

Effect Estimatedeffect t-Test p

Mean 2.922 38.204 <0.001

X1(L) 0.225 2.404 0.035

X1(Q) −0.867 −7.775 <0.001

X2(L) 0.838 8.947 <0.001

X2(Q) −0.278 −3.002 0.029

X1,pH;X2,yeastextractconcentration;L,lineareffect;Q,quadratic effect;p,significancelevel.

R2

adjustedof0.669,asshowninEq.(1)(X1:yeastextract

concen-tration,X3:pH).TheFvalueforregressionwas16.22,andthe

Fcriticalwas3.80,indicatingthatmostofthevariabilityofthe

modelwascausedbyregression,whichstatisticallyvalidates themathematicalmodel.Fig.1(A)showstheresponsesurface ofthemaximumresiduallipolyticactivityasafunctionofpH andyeastextractconcentration;

LAMR=0.839+0.357X1+0.320X3 (1)

Thesignificantvariablesinthe23FFD(pHandyeastextract

concentration)wereoptimizedusingaCCRD,beingthematrix designandtheresultsofmaximumlipolyticactivitypresented inTable3.Astheeffectsofthesevariableswerepositiveinthe 23FFD,theirlevelswereincreasedintheCCRD.Thehighest

lipolyticactivitiesintheCCRDexperimentswereobtainedin 4daysoffermentation,andtheseresultswereusedforthe analysisofvariance.Thelipolyticactivityresultsat4daysof fermentationweresubtractedfromthelipolyticactivityvalues attheinitialtime.

The analysis ofvariance ofmaximum residual lipolytic activity obtained inthe CCRD trials, presented in Table 4, showedthattheFcalculatedvaluefortheregressionwas33.08

whiletheFcriticalvalue(p=0.05,degreesoffreedomfor

regres-sion:4;degreesoffreedomforresidual:17)was2.96,validating thesurfaceresponseobtainedshowninFig.1(B).The mathe-maticalmodelgeneratedisshowninEq.(2),andacoefficient ofdetermination(R2)of0.89 andanadjustedcoefficientof

determination(R2

adjusted)0.86arepresented.

ThepHandyeastextractconcentrationhadsignificant lin-earandquadraticeffects(Table5).Thelineareffectsofboth variableswerepositive,withagreatereffectcausedbythe con-centrationoftheyeastextract(0.838U).Thequadraticeffects ofboth variables were negative,indicatingthe presenceof pointsofmaximumactivityforbothvariables,asshownin

(6)

thesurfaceresponsepresentedinFig.1(B):

LAMR=2.922+0.113pH−0.433pH2+0.419YEC−0.139YEC2

(2)

TheoptimumpHlevelsand yeastextractconcentration toobtainmaximumlipolyticactivitywerealsocarriedoutby equalingthefirstderivativeoflipolyticactivityasafunction ofpHandYECtozero.Themaximumlipolyticactivitieswere obtainedatapHlevelof+0.154andaYEClevelof+1.507,which correspondstoapHof7.15andayeastextractconcentration of45g/L.

Several studies have shown the importance of a nitro-gensourceinlipaseproduction.Sharmaetal.5reviewedthe

conditionsofcultivationtoobtainmaximumlipolyticfungal activitiesandreportedtheuseofmanynitrogensources,such asyeastextract,peptone,soybeanextract,ammonium chlo-ride,andaminoacids,amongothers.

Thesourcesoforganicnitrogenhavebeenusedforthe pro-ductionoflipasesbyfungi,asreportedbyseveral authors. PeptonewasusedbyKaushiketal.17 toproducelipasesin

submergedfermentationusingAspergilluscarneusandbyTeng and Xu19 and Wang et al.20 using Rhizopus chinensis. Yeast

extractandpeptonewere usedincombination byMahadik etal.14fortheproductionoflipasebyA.niger.Mirandaetal.28

evaluatedtheproductionoflipasesusingoilrefinerywaste inthepresenceofnitrogensourcessuchasammonium sul-fate,ureaandammoniumchloride,withthebestresultsbeing obtainedusingammoniumchloride.Forlipaseproductionby

Antrodiacinnamomia,Linetal.29 usedorganicandinorganic

sourcesofnitrogen,includingammoniumandnitratesalts, proteins,peptidesandaminoacids,andhigheractivitieswere obtainedwith sodiumand potassium nitrates,ammonium chlorideand asparagine. In our study,yeastextract gener-atedhigherlipolyticactivitiescomparedtosodiumnitrate,a resultthatcouldbeexplainedbecauseyeastextractcontains othercomponentsbesidesanitrogensourcethatcanactas co-enzymesoftheaerobicmetabolicpathway,forexample, carbonskeletonsandcomplexBvitamins.

SeveralauthorsconsiderpHtobeanimportantvariablein theproductionoflipasebysubmergedfermentation. Muralid-har et al.30 used an initial pH of 6.5 in the culture of C.

cylindracea.TengandXu19studiedtheeffectofpHonthe

pro-ductionoflipasesbyRhyzopuschinensisbetweenpH5and7, andthe bestresultswereachievedatpH5.5.Inthis study, pHprovedtobeanimportantvariablefortheproductionof lipases,withtheoptimalvaluebeingapproximately7.0.This resultisinagreementwithGopinathetal.,31whostudiedpH

4,7and10intheproductionoflipasebyGeotrichumcandidum.

AmongthefactorsstudiedbyWangetal.20fortheproduction

oflipasesbyR.chinensis,pHwasthevariablethathadalower effectonproduction.EachmicroorganismhasapHforoptimal growth.Inthiscase,pHcouldhaveaffectedlipasesynthesis beyondmicroorganismgrowth.

Byevaluatingthevaluesoflipolyticactivityreached dur-ing the experimental designs, A. flavus showed maximum lipolyticactivitiesof4UinthePlackett–BurmanDesignand 2U inthe23 FullFactorial Design,which canbeattributed

to theloss ofthefungi’sability toproducelipases. Accord-ing to Makhsumkhanov et al.,32 this result may berelated

tothe depletion ofthe maintenanceresourcesduring stor-age. Furthermore,theremaybeanaccumulationofcertain metabolites,decreasingtheculture’sproductivity.Thelossof the fungi’s abilitycan besolved duringperiodsof mainte-nancebyusingreactivationmediacontainingvegetableoilas thesoleassimilablecarbonsource.32However,themaximum

lipolyticactivityobtainedintheCCRDwas3.04U,whilethe valuepredictedbythestatisticalmodelforthehighest lipoly-ticactivityofthefungusO-8was3.24U.Inexperimentscarried outpreviouslyfortheselectionoflipase-producingfungiby submergedfermentation,thefungusA.flavushadalipolytic activityofapproximately2Ufor4daysofcultivation,andthe lipolyticactivityatbaselinewas1U,meaning1Uofenzyme wasproducedduringthistime.Comparedwiththeamount oflipolyticactivityobtainedafteroptimization,therewasan increase,whichmeansthattheoptimizationofvariableswas successfullyperformed.

Conclusion

The optimization of lipase production in submerged fer-mentation was possible through the use of sequential experimentaldesign.Theoptimizedconditionswereobtained using thefungusA. flavus,100g/Lwheatbranasthemain componentoftheculturemedium,45g/Lyeastextractasthe nitrogensource,20g/LsoybeanoilastheinducerandpH7.15. TheoptimizationofpHandyeastextractconcentrationusing acentralcompositedesignledtoamathematicalmodelwith acorrelationcoefficientof94.12%withtheexperimentaldata.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

WeacknowledgefundingprovidedbyCNPq,Brazil.Wearealso verygratefultotheresearchersFabioRodrigoDuarteandSiu MuiTsai,fromCena/USP,whocarriedouttheidentificationof thefungiusedinthiswork.

r

e

f

e

r

e

n

c

e

s

1.HaackMB,OlssonL,HansenK,LantzAE.Changeinhyphal morphologyofAspergillusoryzaeduringfed-batch

cultivation.ApplMicrobiolBiotechnol.2006;70:482–487.

2.IyerPV,AnanthanarayanL.Enzymestabilityand stabilization–aqueousandnon-aqueousenvironment.

ProcessBiochem.2008;43:1019–1032.

3.SaisubramanianN,EdwinoliverNG,NandakumarN,Kamini NR,PuvanakrishnanR.EfficacyoflipasefromAspergillus nigerasanadditiveindetergentformulations:astatistical approach.JIndMicrobiolBiotechnol.2006;33:669–676.

4.HasanF,ShahAA,HameedA.Industrialapplicationsof microbiallipases.EnzymeMicrobTechnol.2006;39:235–251.

(7)

5.SharmaR,ChistiY,BanerjeeYC.Production,purification, characterization,andapplicationsoflipases.BiotechnolAdv.

2001;19:627–662.

6.SinghAK,MukhopadhyayM.Overviewoffungallipase:a review.ApplBiochemBiotechnol.2012;166:486–520.

7.DupuisC,CorreC,BoyavalP.Lipaseandesteraseactivitiesof

Propionibacteriumfreudenreichiisubsp.freudenreichii.Appl EnvironMicrobiol.1993;59:4004–4009.

8.SalahRB,GhamghuiH,MiledN,MejdoubH,GargouriY. Productionofbutylacetateesterbylipasefromnovelstrain ofRhizopusoryzae.JBiosciBioeng.2007;103:368–372.

9.ReshmaMV,SarithaSS,BalachandranC,ArumughanC. Lipasecatalyzedinteresterificationofpalmstearinandrice branoilblendsforpreparationofzerotransshorteningwith bioactivephytochemicals.BioresourTechnol.

2008;99:5011–5019.

10.ParkEY,SatoM,KojimaS.Fattyacidmethylesterproduction usinglipase-immobilizingsilicaparticleswithdifferent particlesizesanddifferentspecificsurfaceareas.Enzyme MicrobTechnol.2006;39:889–896.

11.D’AnnibaleA,SermanniGG,FedericiF,PetruccioliM. Olive-millwastewaters:apromisingsubstrateformicrobial lipaseproduction.BioresourTechnol.2006;97:1828–1833.

12.HaqI,IdreesS,RajokaMI.ProductionoflipasesbyRhizopus oligosporousbysolid-statefermentation.ProcessBiochem.

2002;37:637–641.

13.PandeyA,SoccolCR,MitchellD.Newdevelopmentsinsolid statefermentation:I.Bioprocessesandproducts.Process Biochem.2000;35:1153–1169.

14.MahadikND,BastawdeKB,PuntambekarUS,KhireJM, GokhaleDV.Productionofacidiclipasebyamutantof

AspergillusnigerNCIM1207insubmergedfermentation.

ProcessBiochem.2004;39:2031–2034.

15.CoradiGV,Visitac¸ãoVL,LimaEA,etal.Comparing submergedandsolid-statefermentationofagro-industrial residuesfortheproductionandcharacterizationoflipaseby

Trichodermaharzianum.AnnMicrobiol.2013;63:533–540.

16.BoxGEP,HunterWG,HunterJS.Statisticsforexperimenters:an introductiontodesign,dataanalysis,andmodelbuilding.New York:JohnWiley&Sons;1978.

17.KaushikR,SaranS,IsarJ,SaxenaRK.Statisticaloptimization ofmediumcomponentsandgrowthconditionsbyresponse surfacemethodologytoenhancelipaseproductionby

Aspergilluscarneus.JMolCatalBEnzym.2006;40: 121–126.

18.BurkertJFM,MaugeriF,RodriguesMI.Optimizationof extracellularlipaseproductionbyGeotrichumsp.using factorialdesign.BioresourTechnol.2004;91:77–84.

19.TengY,XuY.Cultureconditionimprovementforwhole-cell lipaseproductioninsubmergedfermentationbyRhizopus

chinensisusingstatisticalmethod.BioresourTechnol.

2008;99:3900–3907.

20.WangD,XuY,ShanT.Effectsofoilsandoil-related substratesonthesyntheticactivityofmembrane-bound lipasefromRhizopuschinensisandoptimizationofthelipase fermentationmedia.BiochemEngJ.2008;41:30–37.

21.RajendranA,PalanisamyA,ThangaveluV.Evaluationof mediumcomponentsbyPlackett–Burmanstatisticaldesign forlipaseproductionbyCandidarugosaandkinetic modeling.ChinJBiotechnol.2008;24:436–444.

22.RodriguesMI,IemmaAF.Experimentaldesignandprocess optimization.NewYork:CRCPress;2014.

23.CollaLM,RezzadoriK,CâmaraSK,etal.Asolid-state bioprocessforselectinglipase-producingfilamentousfungi.

ZNaturforschCBiosci.2009;64:131–137.

24.CollaLM,PrimazAL,BenedettiS,etal.Selectionof lipase-producingmicroorganismsthroughsubmerged fermentation.ZNaturforschCBiosci.2010;65:483–488.

25.SmaniottoA,SkovronskiA,RigoE,etal.Syntheticlipase’ productionfromanewlyisolatedSporidioboluspararoseus

strainbysubmergedfermentation.BrazJMicrobiol.

2012;43:1490–1498.

26.BertolinTE,CostaJAV,PasqualiGDL.Glucoamylase productioninbatchandfed-batchsolidstatefermentation: effectofmaltoseorstarchaddition.JMicrobiolBiotechnol.

2001;11:13–16.

27.PintoGAS,BritoES,AndradeAMR,FragaSLP,TeixeiraRB. Fermentac¸ãoemestadosólido:umaalternativaparao aproveitamentoevalorizac¸ãoderesíduosagroindustriais tropicais.Embrapa,Fortaleza.ComunicadoTécnico.

2005;102:1–5.

28.MirandaOA,SalgueiroAA,PimentelMCB,LimaFilhoJL,Melo EHM,DuránN.LipaseproductionbyaBrazilianstrainof

Penicilliumcitrinumusinganindustrialresidue.Bioresour Technol.1999;69:145–147.

29.LinES,WangCC,SungSC.Cultivatingconditionsinfluence lipaseproductionbytheedibleBasidiomyceteAntrodia cinnamomeainsubmergedculture.EnzymeMicrobTechnol.

2006;39:98–102.

30.MuralidharRV,ChirumamilaRR,MarchantR,NigamP.A responsesurfaceapproachforthecomparisonoflipase productionbyCandidacylindraceausingtwodifferentcarbon sources.BiochemEngJ.2001;9:17–23.

31.GopinathSCB,HildaA,PriyaTL,AnnaduraiG,AnbuP. PurificationoflipasefromGeotrichumcandidum:conditions optimizedforenzymeproductionusingBox-Behnken design.WorldJMicrobiolBiotechnol.2003;19:681–689.

32.MakhsumkhanovAA,YakubovIT,DavranovK.Conditions forcultivationofthefungusPenicilliummeliniiUzLM-4andits biosynthesisoflipases.ApplBiochemMicrobiol.2003;39:40–43.

Referências

Documentos relacionados

Similar to these data, our work presented high cellulase production when wheat bran and soybean were used as substrates, and the binary mixture of wheat bran (1/2) with soybean

The biomass yield was best with rice bran based medium with sodium nitrate as the nitrogen source for single cell protein production. Anupama acknowledges UGC-CSIR, New Delhi

Figure 2 - α -amylase activity of Bacillus sp in liquid medium containing 1% peptone, 0.5% yeast extract and soluble starch (a) or maltose (b) as a carbon source.. Carbon

Effect of organic nitrogen source, carbon source and mineral salts on amylase production of Fusarium sp.. Different nitrogen sources, including soybean meal, casamino

By applying the conventional “one-variable-at-a-time” approach and the response surface methodology, the effect of four fermentation parameters (type of carbon source, initial

Similar to these data, our work presented high cellulase production when wheat bran and soybean were used as substrates, and the binary mixture of wheat bran (1/2) with soybean

produced a xylanase activity when grown in the presence of banana stalk or wheat bran as the carbon source.. Since xylanases with useful pH optima and high temperature stabilities

The xylitol production from synthetic medium and sugarcane bagasse hemicellulosic hydrolysate treated with resins or activated charcoal by Candida  guilliermondii was