• Nenhum resultado encontrado

S˜aoSebasti˜ao,BrasilAugust15,2013 STW2013InhonourofOfeliaAlas PontificiaUniversidadJaverianaBogot´a-Colombia Jos´eG.Mijares AtopologicalRamseyspaceofinfinitepolyhedraandtherandompolyhedron

N/A
N/A
Protected

Academic year: 2022

Share "S˜aoSebasti˜ao,BrasilAugust15,2013 STW2013InhonourofOfeliaAlas PontificiaUniversidadJaverianaBogot´a-Colombia Jos´eG.Mijares AtopologicalRamseyspaceofinfinitepolyhedraandtherandompolyhedron"

Copied!
114
0
0

Texto

(1)

TRS of infinite polyhedra

A topological Ramsey space of infinite polyhedra and the random polyhedron

Jos´e G. Mijares

Pontificia Universidad Javeriana Bogot´a - Colombia

STW 2013

In honour of Ofelia Alas S˜ao Sebasti˜ao, Brasil

August 15, 2013

(2)

TRS of infinite polyhedra Pigeon hole principle

The pigeon hole principle

For every partitionN=C1∪ · · · ∪ Cr there existsi∈ {1, . . . ,r} such thatCiis infinite.

(3)

TRS of infinite polyhedra Pigeon hole principle

The pigeon hole principle

For every partitionN=C1∪ · · · ∪ Cr there existsi∈ {1, . . . ,r}

such thatCiis infinite.

(4)

TRS of infinite polyhedra Pigeon hole principle

Ramsey’s theorem 1929

Notation: A[n]={B⊆A:|B|=n}, A[<∞]=S

nA[n]

A[∞] ={B⊆A:|B|=∞}

Infinite version:For every finite coloring ofN[2]there is A∈N[∞]such thatA[2]is monochromatic.

Finite version:Givenn,r ∈N, there existsM ∈Nsuch that for every coloringc:M[2]→r, there isA∈M[n]tal queA[2]is monochromatic forc.

(5)

TRS of infinite polyhedra Pigeon hole principle

Ramsey’s theorem 1929

Notation: A[n]={B⊆A:|B|=n},

A[<∞]=S

nA[n]

A[∞] ={B⊆A:|B|=∞}

Infinite version:For every finite coloring ofN[2]there is A∈N[∞]such thatA[2]is monochromatic.

Finite version:Givenn,r ∈N, there existsM ∈Nsuch that for every coloringc:M[2]→r, there isA∈M[n]tal queA[2]is monochromatic forc.

(6)

TRS of infinite polyhedra Pigeon hole principle

Ramsey’s theorem 1929

Notation: A[n]={B⊆A:|B|=n}, A[<∞]=S

nA[n]

A[∞] ={B⊆A:|B|=∞}

Infinite version:For every finite coloring ofN[2]there is A∈N[∞]such thatA[2]is monochromatic.

Finite version:Givenn,r ∈N, there existsM ∈Nsuch that for every coloringc:M[2]→r, there isA∈M[n]tal queA[2]is monochromatic forc.

(7)

TRS of infinite polyhedra Pigeon hole principle

Ramsey’s theorem 1929

Notation: A[n]={B⊆A:|B|=n}, A[<∞]=S

nA[n]

A[∞]={B⊆A:|B|=∞}

Infinite version:For every finite coloring ofN[2]there is A∈N[∞]such thatA[2]is monochromatic.

Finite version:Givenn,r ∈N, there existsM ∈Nsuch that for every coloringc:M[2]→r, there isA∈M[n]tal queA[2]is monochromatic forc.

(8)

TRS of infinite polyhedra Pigeon hole principle

Ramsey’s theorem 1929

Notation: A[n]={B⊆A:|B|=n}, A[<∞]=S

nA[n]

A[∞]={B⊆A:|B|=∞}

Infinite version:For every finite coloring ofN[2]there is A∈N[∞]such thatA[2]is monochromatic.

Finite version:Givenn,r ∈N, there existsM ∈Nsuch that for every coloringc:M[2]→r, there isA∈M[n]tal queA[2]is monochromatic forc.

(9)

TRS of infinite polyhedra Pigeon hole principle

Ramsey’s theorem 1929

Notation: A[n]={B⊆A:|B|=n}, A[<∞]=S

nA[n]

A[∞]={B⊆A:|B|=∞}

Infinite version:For every finite coloring ofN[2]there is A∈N[∞]such thatA[2]is monochromatic.

Finite version:Givenn,r ∈N, there existsM ∈Nsuch that for every coloringc:M[2]→r, there isA∈M[n]tal queA[2]is monochromatic forc.

(10)

TRS of infinite polyhedra Pigeon hole principle

Ramsey’s theorem 1929

Notation: A[n]={B⊆A:|B|=n}, A[<∞]=S

nA[n]

A[∞]={B⊆A:|B|=∞}

Generalized infinite version:Givenn∈N, for every finite coloring ofN[n]there isA∈N[∞]such thatA[n]is

monochromatic.

Generalized finite version:Givenm,n,r ∈N, there exists M∈Nsuch that for every coloringc:M[n]→r, there is A∈M[m]tal queA[n]is monochromatic forc.

(11)

TRS of infinite polyhedra Pigeon hole principle

Ramsey’s theorem 1929

Notation: A[n]={B⊆A:|B|=n}, A[<∞]=S

nA[n]

A[∞]={B⊆A:|B|=∞}

Generalized infinite version:Givenn∈N, for every finite coloring ofN[n]there isA∈N[∞]such thatA[n]is

monochromatic.

Generalized finite version:Givenm,n,r ∈N, there exists M∈Nsuch that for every coloringc:M[n]→r, there is A∈M[m]tal queA[n]is monochromatic forc.

(12)

TRS of infinite polyhedra Pigeon hole principle

Ramsey’s theorem 1929

Notation: A[n]={B⊆A:|B|=n}, A[<∞]=S

nA[n]

A[∞]={B⊆A:|B|=∞}

Generalized infinite version:Givenn∈N, for every finite coloring ofN[n]there isA∈N[∞]such thatA[n]is

monochromatic.

Generalized finite version:Givenm,n,r ∈N, there exists M∈Nsuch that for every coloringc:M[n] →r, there is A∈M[m]tal queA[n]is monochromatic forc.

(13)

TRS of infinite polyhedra Ramsey property

Ramsey property

Question:GivenX ⊆N[∞], is thereA∈N[∞]such that A[∞]⊆XorA[∞]∩X =∅?

Answer:Not in general.

Example:ForA,B∈N[∞], A∼Biff |A4B|<∞ (AC) Pick an elementBx of each classx∈N[∞]/∼, Letcl(A)denote the class ofAand define

X ={A∈N[∞]:|A4Bcl(A)| is even}

(14)

TRS of infinite polyhedra Ramsey property

Ramsey property

Question:GivenX ⊆N[∞], is thereA∈N[∞]such that A[∞]⊆XorA[∞]∩X =∅?

Answer:Not in general.

Example:ForA,B∈N[∞], A∼Biff |A4B|<∞ (AC) Pick an elementBx of each classx∈N[∞]/∼, Letcl(A)denote the class ofAand define

X ={A∈N[∞]:|A4Bcl(A)| is even}

(15)

TRS of infinite polyhedra Ramsey property

Ramsey property

Question:GivenX ⊆N[∞], is thereA∈N[∞]such that A[∞]⊆XorA[∞]∩X =∅?

Answer:Not in general.

Example:ForA,B∈N[∞], A∼Biff |A4B|<∞ (AC) Pick an elementBx of each classx∈N[∞]/∼, Letcl(A)denote the class ofAand define

X ={A∈N[∞]:|A4Bcl(A)| is even}

(16)

TRS of infinite polyhedra Ramsey property

Ramsey property

Question:GivenX ⊆N[∞], is thereA∈N[∞]such that A[∞]⊆XorA[∞]∩X =∅?

Answer:Not in general.

Example:ForA,B∈N[∞], A∼Biff |A4B|<∞

(AC) Pick an elementBx of each classx∈N[∞]/∼, Letcl(A)denote the class ofAand define

X ={A∈N[∞]:|A4Bcl(A)| is even}

(17)

TRS of infinite polyhedra Ramsey property

Ramsey property

Question:GivenX ⊆N[∞], is thereA∈N[∞]such that A[∞]⊆XorA[∞]∩X =∅?

Answer:Not in general.

Example:ForA,B∈N[∞], A∼Biff |A4B|<∞ (AC) Pick an elementBx of each classx∈N[∞]/∼,

Letcl(A)denote the class ofAand define

X ={A∈N[∞]:|A4Bcl(A)| is even}

(18)

TRS of infinite polyhedra Ramsey property

Ramsey property

Question:GivenX ⊆N[∞], is thereA∈N[∞]such that A[∞]⊆XorA[∞]∩X =∅?

Answer:Not in general.

Example:ForA,B∈N[∞], A∼Biff |A4B|<∞ (AC) Pick an elementBx of each classx∈N[∞]/∼, Letcl(A)denote the class ofAand define

X ={A∈N[∞]:|A4Bcl(A)| is even}

(19)

TRS of infinite polyhedra Ramsey property

Ramsey property

[a] ={B∈N[∞]:a@B} Metric, product topology [a,A] ={B∈N[∞]:a@B⊆A} Ellentuck’s topology A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A] there isB∈[a,A]such that[a,B]∩X =∅.

I (AC) There is a set without the Ramsey property.

I (Nash-Williams, 1965) clopen sets are Ramsey.

I (Galvin,1968) Open sets are Ramsey.

I (Galvin-Prikry, 1973) Borel sets are Ramsey.

I (Silver, 1970) Analytic sets are Ramsey.

(20)

TRS of infinite polyhedra Ramsey property

Ramsey property

[a] ={B∈N[∞]:a@B} Metric, product topology

[a,A] ={B∈N[∞]:a@B⊆A} Ellentuck’s topology A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A] there isB∈[a,A]such that[a,B]∩X =∅.

I (AC) There is a set without the Ramsey property.

I (Nash-Williams, 1965) clopen sets are Ramsey.

I (Galvin,1968) Open sets are Ramsey.

I (Galvin-Prikry, 1973) Borel sets are Ramsey.

I (Silver, 1970) Analytic sets are Ramsey.

(21)

TRS of infinite polyhedra Ramsey property

Ramsey property

[a] ={B∈N[∞]:a@B} Metric, product topology [a,A] ={B∈N[∞]:a@B⊆A} Ellentuck’s topology

A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A] there isB∈[a,A]such that[a,B]∩X =∅.

I (AC) There is a set without the Ramsey property.

I (Nash-Williams, 1965) clopen sets are Ramsey.

I (Galvin,1968) Open sets are Ramsey.

I (Galvin-Prikry, 1973) Borel sets are Ramsey.

I (Silver, 1970) Analytic sets are Ramsey.

(22)

TRS of infinite polyhedra Ramsey property

Ramsey property

[a] ={B∈N[∞]:a@B} Metric, product topology [a,A] ={B∈N[∞]:a@B⊆A} Ellentuck’s topology A setX ⊆N[∞]has theRamsey property

if for every nonempty[a,A]there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A] there isB∈[a,A]such that[a,B]∩X =∅.

I (AC) There is a set without the Ramsey property.

I (Nash-Williams, 1965) clopen sets are Ramsey.

I (Galvin,1968) Open sets are Ramsey.

I (Galvin-Prikry, 1973) Borel sets are Ramsey.

I (Silver, 1970) Analytic sets are Ramsey.

(23)

TRS of infinite polyhedra Ramsey property

Ramsey property

[a] ={B∈N[∞]:a@B} Metric, product topology [a,A] ={B∈N[∞]:a@B⊆A} Ellentuck’s topology A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]

there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A] there isB∈[a,A]such that[a,B]∩X =∅.

I (AC) There is a set without the Ramsey property.

I (Nash-Williams, 1965) clopen sets are Ramsey.

I (Galvin,1968) Open sets are Ramsey.

I (Galvin-Prikry, 1973) Borel sets are Ramsey.

I (Silver, 1970) Analytic sets are Ramsey.

(24)

TRS of infinite polyhedra Ramsey property

Ramsey property

[a] ={B∈N[∞]:a@B} Metric, product topology [a,A] ={B∈N[∞]:a@B⊆A} Ellentuck’s topology A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]there isB∈[a,A]such that

[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A] there isB∈[a,A]such that[a,B]∩X =∅.

I (AC) There is a set without the Ramsey property.

I (Nash-Williams, 1965) clopen sets are Ramsey.

I (Galvin,1968) Open sets are Ramsey.

I (Galvin-Prikry, 1973) Borel sets are Ramsey.

I (Silver, 1970) Analytic sets are Ramsey.

(25)

TRS of infinite polyhedra Ramsey property

Ramsey property

[a] ={B∈N[∞]:a@B} Metric, product topology [a,A] ={B∈N[∞]:a@B⊆A} Ellentuck’s topology A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A]

there isB∈[a,A]such that[a,B]∩X =∅.

I (AC) There is a set without the Ramsey property.

I (Nash-Williams, 1965) clopen sets are Ramsey.

I (Galvin,1968) Open sets are Ramsey.

I (Galvin-Prikry, 1973) Borel sets are Ramsey.

I (Silver, 1970) Analytic sets are Ramsey.

(26)

TRS of infinite polyhedra Ramsey property

Ramsey property

[a] ={B∈N[∞]:a@B} Metric, product topology [a,A] ={B∈N[∞]:a@B⊆A} Ellentuck’s topology A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A]

there isB∈[a,A]such that[a,B]∩X =∅.

I (AC) There is a set without the Ramsey property.

I (Nash-Williams, 1965) clopen sets are Ramsey.

I (Galvin,1968) Open sets are Ramsey.

I (Galvin-Prikry, 1973) Borel sets are Ramsey.

I (Silver, 1970) Analytic sets are Ramsey.

(27)

TRS of infinite polyhedra Ramsey property

Ramsey property

[a] ={B∈N[∞]:a@B} Metric, product topology [a,A] ={B∈N[∞]:a@B⊆A} Ellentuck’s topology A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A]

there isB∈[a,A]such that[a,B]∩X =∅.

I (AC) There is a set without the Ramsey property.

I (Nash-Williams, 1965) clopen sets are Ramsey.

I (Galvin,1968) Open sets are Ramsey.

I (Galvin-Prikry, 1973) Borel sets are Ramsey.

I (Silver, 1970) Analytic sets are Ramsey.

(28)

TRS of infinite polyhedra Ramsey property

Ramsey property

[a] ={B∈N[∞]:a@B} Metric, product topology [a,A] ={B∈N[∞]:a@B⊆A} Ellentuck’s topology A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A]

there isB∈[a,A]such that[a,B]∩X =∅.

I (AC) There is a set without the Ramsey property.

I (Nash-Williams, 1965) clopen sets are Ramsey.

I (Galvin,1968) Open sets are Ramsey.

I (Galvin-Prikry, 1973) Borel sets are Ramsey.

I (Silver, 1970) Analytic sets are Ramsey.

(29)

TRS of infinite polyhedra Ramsey property

Ramsey property

[a] ={B∈N[∞]:a@B} Metric, product topology [a,A] ={B∈N[∞]:a@B⊆A} Ellentuck’s topology A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A]

there isB∈[a,A]such that[a,B]∩X =∅.

I (AC) There is a set without the Ramsey property.

I (Nash-Williams, 1965) clopen sets are Ramsey.

I (Galvin,1968) Open sets are Ramsey.

I (Galvin-Prikry, 1973) Borel sets are Ramsey.

I (Silver, 1970) Analytic sets are Ramsey.

(30)

TRS of infinite polyhedra Ramsey property

Ramsey property

[a] ={B∈N[∞]:a@B} Metric, product topology [a,A] ={B∈N[∞]:a@B⊆A} Ellentuck’s topology A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A]

there isB∈[a,A]such that[a,B]∩X =∅.

I (AC) There is a set without the Ramsey property.

I (Nash-Williams, 1965) clopen sets are Ramsey.

I (Galvin,1968) Open sets are Ramsey.

I (Galvin-Prikry, 1973) Borel sets are Ramsey.

I (Silver, 1970) Analytic sets are Ramsey.

(31)

TRS of infinite polyhedra Ramsey property

Ramsey property

[a] ={B∈N[∞]:a@B} Metric, product topology [a,A] ={B∈N[∞]:a@B⊆A} Ellentuck’s topology A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A]

there isB∈[a,A]such that[a,B]∩X =∅.

I (AC) There is a set without the Ramsey property.

I (Nash-Williams, 1965) clopen sets are Ramsey.

I (Galvin,1968) Open sets are Ramsey.

I (Galvin-Prikry, 1973) Borel sets are Ramsey.

I (Silver, 1970) Analytic sets are Ramsey.

(32)

TRS of infinite polyhedra Ramsey property

Ellentuck’s theorem – Topological Ramsey theory

[a,A] ={B∈N[∞]:a@B⊆A} (Ellentuck’s topology) A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A] there isB∈[a,A]such that[a,B]∩X =∅.

Ellentuck’s theorem, 1974Xis Ramsey iffX has the Baire property (in Ellentuck’s topology).Xis Ramsey null iffXis meager (in Ellentuck’s topology).

(33)

TRS of infinite polyhedra Ramsey property

Ellentuck’s theorem – Topological Ramsey theory

[a,A] ={B∈N[∞]:a@B⊆A} (Ellentuck’s topology)

A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A] there isB∈[a,A]such that[a,B]∩X =∅.

Ellentuck’s theorem, 1974Xis Ramsey iffX has the Baire property (in Ellentuck’s topology).Xis Ramsey null iffXis meager (in Ellentuck’s topology).

(34)

TRS of infinite polyhedra Ramsey property

Ellentuck’s theorem – Topological Ramsey theory

[a,A] ={B∈N[∞]:a@B⊆A} (Ellentuck’s topology) A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A]

there isB∈[a,A]such that[a,B]∩X =∅.

Ellentuck’s theorem, 1974Xis Ramsey iffX has the Baire property (in Ellentuck’s topology).Xis Ramsey null iffXis meager (in Ellentuck’s topology).

(35)

TRS of infinite polyhedra Ramsey property

Ellentuck’s theorem – Topological Ramsey theory

[a,A] ={B∈N[∞]:a@B⊆A} (Ellentuck’s topology) A setX ⊆N[∞]has theRamsey propertyif for every nonempty[a,A]there isB∈[a,A]such that[a,B]⊆Xor [a,B]∩X =∅.X isRamsey nullif for every nonempty[a,A]

there isB∈[a,A]such that[a,B]∩X =∅.

Ellentuck’s theorem, 1974Xis Ramsey iffX has the Baire property (in Ellentuck’s topology).Xis Ramsey null iffXis meager (in Ellentuck’s topology).

(36)

TRS of infinite polyhedra Ramsey property

Topological Ramsey theory

Pigeon hole principle

Ramsey’s theorem

Ellentuck’s theorem

(37)

TRS of infinite polyhedra Ramsey property

Topological Ramsey theory

Pigeon hole principle

Ramsey’s theorem

Ellentuck’s theorem

(38)

TRS of infinite polyhedra Ramsey property

Topological Ramsey theory

Pigeon hole principle

Ramsey’s theorem

Ellentuck’s theorem

(39)

TRS of infinite polyhedra Ramsey property

Topological Ramsey theory

Pigeon hole principle

Ramsey’s theorem

Ellentuck’s theorem

(40)

TRS of infinite polyhedra Ramsey property

Topological Ramsey theory

Differentpigeon hole principle

Ramsey-liketheorem

Ellentuck-liketheorem

(41)

TRS of infinite polyhedra Ramsey property

Topological Ramsey theory

Differentpigeon hole principle

Ramsey-liketheorem

Ellentuck-liketheorem

(42)

TRS of infinite polyhedra Ramsey property

Topological Ramsey theory

Differentpigeon hole principle

Ramsey-liketheorem

Ellentuck-liketheorem

(43)

TRS of infinite polyhedra Ramsey property

Topological Ramsey theory

DifferentPHP orDifferentR-like theorem

Ellentuck-liketheorem

(44)

TRS of infinite polyhedra Ramsey property

Topological Ramsey theory

DifferentPHP orDifferentR-like theorem

Ellentuck-liketheorem

(45)

TRS of infinite polyhedra Ramsey property

Topological Ramsey theory

Some Ellentuck-like theorems

I Ellentuck / Classical PHP.

I Milliken / Hindman’s thm.

I Carlson / Graham-Leeb-Rothschild thm.

I Carlson-Smpson / Dual Ramsey thm.

I Todorcevic / Gowers’ thm.

(46)

TRS of infinite polyhedra Ramsey property

Topological Ramsey theory

Some Ellentuck-like theorems

I Ellentuck / Classical PHP.

I Milliken / Hindman’s thm.

I Carlson / Graham-Leeb-Rothschild thm.

I Carlson-Smpson / Dual Ramsey thm.

I Todorcevic / Gowers’ thm.

(47)

TRS of infinite polyhedra Ramsey property

Topological Ramsey theory

Some Ellentuck-like theorems

I Ellentuck / Classical PHP.

I Milliken / Hindman’s thm.

I Carlson / Graham-Leeb-Rothschild thm.

I Carlson-Smpson / Dual Ramsey thm.

I Todorcevic / Gowers’ thm.

(48)

TRS of infinite polyhedra Ramsey property

Topological Ramsey theory

Some Ellentuck-like theorems

I Ellentuck / Classical PHP.

I Milliken / Hindman’s thm.

I Carlson / Graham-Leeb-Rothschild thm.

I Carlson-Smpson / Dual Ramsey thm.

I Todorcevic / Gowers’ thm.

(49)

TRS of infinite polyhedra Ramsey property

Topological Ramsey theory

Some Ellentuck-like theorems

I Ellentuck / Classical PHP.

I Milliken / Hindman’s thm.

I Carlson / Graham-Leeb-Rothschild thm.

I Carlson-Smpson / Dual Ramsey thm.

I Todorcevic / Gowers’ thm.

(50)

TRS of infinite polyhedra Ramsey property

Topological Ramsey theory

Some Ellentuck-like theorems

I Ellentuck / Classical PHP.

I Milliken / Hindman’s thm.

I Carlson / Graham-Leeb-Rothschild thm.

I Carlson-Smpson / Dual Ramsey thm.

I Todorcevic / Gowers’ thm.

(51)

TRS of infinite polyhedra Ramsey spaces

Topological Ramsey Spaces – Todorcevic, 2010

(R,≤,r) r:N× R → AR

rn(A) :=r(n,A) ARn :={rn(A) :A∈ R} [a,A] ={B∈ R: (∃n)(a=rn(B)) and (B≤A)}

X ⊆ RisRamseyif for every[a,A]6=∅there isB∈[a,A] such that[a,B]⊆ X or[a,B]∩ X =∅.

(R,≤,r)is atopological Ramsey spaceif subsets ofRwith the Baire property are Ramsey and meager subsets ofRare Ramsey null.

(52)

TRS of infinite polyhedra Ramsey spaces

Topological Ramsey Spaces – Todorcevic, 2010

(R,≤,r) r:N× R → AR

rn(A) :=r(n,A) ARn :={rn(A) :A∈ R} [a,A] ={B∈ R: (∃n)(a=rn(B)) and (B≤A)}

X ⊆ RisRamseyif for every[a,A]6=∅there isB∈[a,A] such that[a,B]⊆ X or[a,B]∩ X =∅.

(R,≤,r)is atopological Ramsey spaceif subsets ofRwith the Baire property are Ramsey and meager subsets ofRare Ramsey null.

(53)

TRS of infinite polyhedra Ramsey spaces

Topological Ramsey Spaces – Todorcevic, 2010

(R,≤,r) r:N× R → AR rn(A) :=r(n,A)

ARn :={rn(A) :A∈ R} [a,A] ={B∈ R: (∃n)(a=rn(B)) and (B≤A)}

X ⊆ RisRamseyif for every[a,A]6=∅there isB∈[a,A] such that[a,B]⊆ X or[a,B]∩ X =∅.

(R,≤,r)is atopological Ramsey spaceif subsets ofRwith the Baire property are Ramsey and meager subsets ofRare Ramsey null.

(54)

TRS of infinite polyhedra Ramsey spaces

Topological Ramsey Spaces – Todorcevic, 2010

(R,≤,r) r:N× R → AR

rn(A) :=r(n,A) ARn :={rn(A) :A∈ R}

[a,A] ={B∈ R: (∃n)(a=rn(B)) and (B≤A)}

X ⊆ RisRamseyif for every[a,A]6=∅there isB∈[a,A] such that[a,B]⊆ X or[a,B]∩ X =∅.

(R,≤,r)is atopological Ramsey spaceif subsets ofRwith the Baire property are Ramsey and meager subsets ofRare Ramsey null.

(55)

TRS of infinite polyhedra Ramsey spaces

Topological Ramsey Spaces – Todorcevic, 2010

(R,≤,r) r:N× R → AR

rn(A) :=r(n,A) ARn :={rn(A) :A∈ R}

[a,A] ={B∈ R: (∃n)(a=rn(B)) and (B≤A)}

X ⊆ RisRamseyif for every[a,A]6=∅there isB∈[a,A] such that[a,B]⊆ X or[a,B]∩ X =∅.

(R,≤,r)is atopological Ramsey spaceif subsets ofRwith the Baire property are Ramsey and meager subsets ofRare Ramsey null.

(56)

TRS of infinite polyhedra Ramsey spaces

Topological Ramsey Spaces – Todorcevic, 2010

(R,≤,r) r:N× R → AR

rn(A) :=r(n,A) ARn :={rn(A) :A∈ R}

[a,A] ={B∈ R: (∃n)(a=rn(B)) and (B≤A)}

X ⊆ RisRamseyif for every[a,A]6=∅there isB∈[a,A] such that[a,B]⊆ X or[a,B]∩ X =∅.

(R,≤,r)is atopological Ramsey spaceif subsets ofRwith the Baire property are Ramsey and meager subsets ofRare Ramsey null.

(57)

TRS of infinite polyhedra Ramsey spaces

Topological Ramsey Spaces – Todorcevic, 2010

(R,≤,r) r:N× R → AR

rn(A) :=r(n,A) ARn :={rn(A) :A∈ R}

[a,A] ={B∈ R: (∃n)(a=rn(B)) and (B≤A)}

X ⊆ RisRamseyif for every[a,A]6=∅there isB∈[a,A]

such that[a,B]⊆ X or[a,B]∩ X =∅.

(R,≤,r)is atopological Ramsey spaceif subsets ofRwith the Baire property are Ramsey and meager subsets ofRare Ramsey null.

(58)

TRS of infinite polyhedra Ramsey spaces

Topological Ramsey Spaces – Todorcevic, 2010

(R,≤,r) r:N× R → AR

rn(A) :=r(n,A) ARn :={rn(A) :A∈ R}

[a,A] ={B∈ R: (∃n)(a=rn(B)) and (B≤A)}

X ⊆ RisRamseyif for every[a,A]6=∅there isB∈[a,A]

such that[a,B]⊆ X or[a,B]∩ X =∅.

(R,≤,r)is atopological Ramsey spaceif subsets ofRwith the Baire property are Ramsey and meager subsets ofRare Ramsey null.

(59)

TRS of infinite polyhedra Ramsey spaces

AXIOMS

(A.1)[Metrization]

(A.1.1) For anyA∈ R,r0(A) = ∅.

(A.1.2) For anyA,B∈ R, ifA6=Bthen(∃n) (rn(A)6=rn(B)).

(A.1.3) Ifrn(A) =rm(B)thenn=mand(∀i<n) (ri(A) =ri(B)).

(A.2)[Finitization] There is a quasi order≤finonARsuch that:

(A.2.1) A≤Biff(∀n) (∃m) (rn(A)≤finrm(B)).

(A.2.2) {b∈ AR:b≤fina}is finite, for everya∈ AR.

(A.2.3) Ifa≤fin bandcvathen there isdvbsuch thatc≤fin d.

(60)

TRS of infinite polyhedra Ramsey spaces

AXIOMS

(A.1)[Metrization]

(A.1.1) For anyA∈ R,r0(A) = ∅.

(A.1.2) For anyA,B∈ R, ifA6=Bthen(∃n) (rn(A)6=rn(B)).

(A.1.3) Ifrn(A) =rm(B)thenn=mand(∀i<n) (ri(A) =ri(B)).

(A.2)[Finitization] There is a quasi order≤finonARsuch that:

(A.2.1) A≤Biff(∀n) (∃m) (rn(A)≤finrm(B)).

(A.2.2) {b∈ AR:b≤fina}is finite, for everya∈ AR.

(A.2.3) Ifa≤fin bandcvathen there isdvbsuch thatc≤fin d.

(61)

TRS of infinite polyhedra Ramsey spaces

AXIOMS

(A.3)[Amalgamation] GivenaandAwith depthA(a) = n, the following holds:

(i) (∀B∈[n,A]) ([a,B]6=∅).

(ii) (∀B∈[a,A]) (∃A0 ∈[n,A]) ([a,A0]⊆[a,B]).

(A.4)[Pigeonhole Principle] For everyA∈ Rand every O ⊆ AR1there isB≤Asuch thatAR1|B⊆ Oor AR1|B⊆ Oc.

(62)

TRS of infinite polyhedra Ramsey spaces

AXIOMS

(A.3)[Amalgamation] GivenaandAwith depthA(a) = n, the following holds:

(i) (∀B∈[n,A]) ([a,B]6=∅).

(ii) (∀B∈[a,A]) (∃A0 ∈[n,A]) ([a,A0]⊆[a,B]).

(A.4)[Pigeonhole Principle] For everyA∈ Rand every O ⊆ AR1there isB≤Asuch thatAR1|B⊆ Oor AR1|B⊆ Oc.

(63)

TRS of infinite polyhedra Ramsey spaces

Abstract Ellentuck theorem

Abstract Ellentuck theorem.Any(R,≤,r)withRmetrically closed and satisfying (A.1)-(A.4) is a topological Ramsey space.

(64)

TRS of infinite polyhedra

A topological Ramsey space of infinite polyhedra

TRS of of infinite polyhedra, Mijares - Padilla, 2012/2013

Elements:LetP be the collection of pairs(X,SX)such that:

1. X∈N[∞],

2. SX ⊆X[<∞]ishereditary, i.e.,u⊆v&v∈SX ⇒u∈SX, and

3. S

SX =S

{u:u∈SX}=X.

Pre-ordering: (Y,SY)≤(X,SX) ⇔ Y ⊆X&SY ⊆SX. Approximations:r(n,(X,SX)) =rn(X,SX) = (X n,SX n). Theorem:(M-Padilla, 2013+)(P,≤,r)is a TRS.

(65)

TRS of infinite polyhedra

A topological Ramsey space of infinite polyhedra

TRS of of infinite polyhedra, Mijares - Padilla, 2012/2013

Elements:LetP be the collection of pairs(X,SX)such that:

1. X∈N[∞],

2. SX ⊆X[<∞]ishereditary, i.e.,u⊆v&v∈SX ⇒u∈SX, and

3. S

SX =S

{u:u∈SX}=X.

Pre-ordering: (Y,SY)≤(X,SX) ⇔ Y ⊆X&SY ⊆SX.

Approximations:r(n,(X,SX)) =rn(X,SX) = (X n,SX n). Theorem:(M-Padilla, 2013+)(P,≤,r)is a TRS.

(66)

TRS of infinite polyhedra

A topological Ramsey space of infinite polyhedra

TRS of of infinite polyhedra, Mijares - Padilla, 2012/2013

Elements:LetP be the collection of pairs(X,SX)such that:

1. X∈N[∞],

2. SX ⊆X[<∞]ishereditary, i.e.,u⊆v&v∈SX ⇒u∈SX, and

3. S

SX =S

{u:u∈SX}=X.

Pre-ordering: (Y,SY)≤(X,SX) ⇔ Y ⊆X&SY ⊆SX. Approximations:r(n,(X,SX)) =rn(X,SX) = (X n,SX n).

Theorem:(M-Padilla, 2013+)(P,≤,r)is a TRS.

(67)

TRS of infinite polyhedra

A topological Ramsey space of infinite polyhedra

TRS of of infinite polyhedra, Mijares - Padilla, 2012/2013

Elements:LetP be the collection of pairs(X,SX)such that:

1. X∈N[∞],

2. SX ⊆X[<∞]ishereditary, i.e.,u⊆v&v∈SX ⇒u∈SX, and

3. S

SX =S

{u:u∈SX}=X.

Pre-ordering: (Y,SY)≤(X,SX) ⇔ Y ⊆X&SY ⊆SX. Approximations:r(n,(X,SX)) =rn(X,SX) = (X n,SX n).

Theorem:(M-Padilla, 2013+)(P,≤,r)is a TRS.

(68)

TRS of infinite polyhedra

A topological Ramsey space of infinite polyhedra

Subspaces, Mijares - Padilla, 2012/2013

Elements:Givenk ∈N, letP(k)be the collection of pairs (X,SX)such that:

1. X∈N[∞],

2. SX ⊆X[≤k]ishereditary, i.e.,u⊆v&v∈SX ⇒u∈SX, and

3. S

SX =S

{u:u∈SX}=X.

Pre-ordering: (Y,SY)≤(X,SX) ⇔ Y ⊆X&SY ⊆SX. Approximations:r(n,(X,SX)) =rn(X,SX) = (X n,SX n). Theorem:(M-Padilla, 2013+) For eachk,(P(k),≤,r)is a TRS.

(69)

TRS of infinite polyhedra

A topological Ramsey space of infinite polyhedra

Subspaces, Mijares - Padilla, 2012/2013

Elements:Givenk ∈N, letP(k)be the collection of pairs (X,SX)such that:

1. X∈N[∞],

2. SX ⊆X[≤k]ishereditary, i.e.,u⊆v&v∈SX ⇒u∈SX, and

3. S

SX =S

{u:u∈SX}=X.

Pre-ordering: (Y,SY)≤(X,SX) ⇔ Y ⊆X&SY ⊆SX.

Approximations:r(n,(X,SX)) =rn(X,SX) = (X n,SX n). Theorem:(M-Padilla, 2013+) For eachk,(P(k),≤,r)is a TRS.

(70)

TRS of infinite polyhedra

A topological Ramsey space of infinite polyhedra

Subspaces, Mijares - Padilla, 2012/2013

Elements:Givenk ∈N, letP(k)be the collection of pairs (X,SX)such that:

1. X∈N[∞],

2. SX ⊆X[≤k]ishereditary, i.e.,u⊆v&v∈SX ⇒u∈SX, and

3. S

SX =S

{u:u∈SX}=X.

Pre-ordering: (Y,SY)≤(X,SX) ⇔ Y ⊆X&SY ⊆SX. Approximations:r(n,(X,SX)) =rn(X,SX) = (X n,SX n).

Theorem:(M-Padilla, 2013+) For eachk,(P(k),≤,r)is a TRS.

(71)

TRS of infinite polyhedra

A topological Ramsey space of infinite polyhedra

Subspaces, Mijares - Padilla, 2012/2013

Elements:Givenk ∈N, letP(k)be the collection of pairs (X,SX)such that:

1. X∈N[∞],

2. SX ⊆X[≤k]ishereditary, i.e.,u⊆v&v∈SX ⇒u∈SX, and

3. S

SX =S

{u:u∈SX}=X.

Pre-ordering: (Y,SY)≤(X,SX) ⇔ Y ⊆X&SY ⊆SX. Approximations:r(n,(X,SX)) =rn(X,SX) = (X n,SX n).

Theorem:(M-Padilla, 2013+) For eachk,(P(k),≤,r)is a TRS.

(72)

TRS of infinite polyhedra Ramsey classes

Ramsey classes

Asignature:L=<(Ri)i∈I,(Fj)j∈J > (Ri)i∈I is a setrelation symbols (Fj)j∈J is a set offunction symbols

(73)

TRS of infinite polyhedra Ramsey classes

Ramsey classes

Asignature:L=<(Ri)i∈I,(Fj)j∈J >

(Ri)i∈I is a setrelation symbols (Fj)j∈J is a set offunction symbols

(74)

TRS of infinite polyhedra Ramsey classes

Ramsey classes

Asignature:L=<(Ri)i∈I,(Fj)j∈J >

(Ri)i∈I is a setrelation symbols

(Fj)j∈J is a set offunction symbols

(75)

TRS of infinite polyhedra Ramsey classes

Ramsey classes

Asignature:L=<(Ri)i∈I,(Fj)j∈J >

(Ri)i∈I is a setrelation symbols (Fj)j∈J is a set offunction symbols

(76)

TRS of infinite polyhedra Ramsey classes

Structures

L-structure,A=<A,(RAi )i∈I,(FAj )j∈J >:

•A non empty setA6=∅called theuniverseof the structure;

•a set of relations(RAi )i∈I whereRAi ⊆An(i)for eachi∈I; and

•a set of functions(FjA)j∈J whereFjA:Am(j) -Afor each j∈J.

(77)

TRS of infinite polyhedra Ramsey classes

Structures

AmorphismofL-structuresA π-Bis a mapA π-B

• a1, . . . ,an(i)

∈RAi iff π(a1), . . . , π an(i)

∈RBi; for all a1, . . . ,an(i)∈A.

•π FAj a1, . . .am(j)

=FBj π(a1), . . . , π am(j) for all a1, . . . ,am(j) ∈A.

Whenπis injective we say that it is anembedding. In particular, we say thatAis asubstructureofB, and write A≤BwheneverA⊆Band the inclusion map is an embedding.

(78)

TRS of infinite polyhedra Ramsey classes

Fra¨ıss´e class of finite structure

A non empty class of finite relationalL-structuresC is a Fra¨ıss´e classif it satisfies the following:

1. C is closed under isomorphisms: IfA∈ C andA∼=Bthen B∈ C.

2. C is hereditary: IfA∈ C andB≤AthenB∈ C.

3. C contains structures with arbitrarily high finite cardinality. 4. Joint embedding property: IfA,B∈ C then there isD∈ C

such thatA≤DandB≤D.

5. Amalgamation property: GivenA,B1,B2 ∈ Cand embeddingsA fi -Bi,i∈ {1,2}, there isD∈ C and embeddingsBi gi-Dsuch thatg1◦f1 =g2◦f2.

(79)

TRS of infinite polyhedra Ramsey classes

Fra¨ıss´e class of finite structure

A non empty class of finite relationalL-structuresC is a Fra¨ıss´e classif it satisfies the following:

1. C is closed under isomorphisms: IfA∈ C andA∼=Bthen B∈ C.

2. C is hereditary: IfA∈ C andB≤AthenB∈ C.

3. C contains structures with arbitrarily high finite cardinality. 4. Joint embedding property: IfA,B∈ C then there isD∈ C

such thatA≤DandB≤D.

5. Amalgamation property: GivenA,B1,B2 ∈ Cand embeddingsA fi -Bi,i∈ {1,2}, there isD∈ C and embeddingsBi gi-Dsuch thatg1◦f1 =g2◦f2.

(80)

TRS of infinite polyhedra Ramsey classes

Fra¨ıss´e class of finite structure

A non empty class of finite relationalL-structuresC is a Fra¨ıss´e classif it satisfies the following:

1. C is closed under isomorphisms: IfA∈ C andA∼=Bthen B∈ C.

2. C is hereditary: IfA∈ CandB≤AthenB∈ C.

3. C contains structures with arbitrarily high finite cardinality. 4. Joint embedding property: IfA,B∈ C then there isD∈ C

such thatA≤DandB≤D.

5. Amalgamation property: GivenA,B1,B2 ∈ Cand embeddingsA fi -Bi,i∈ {1,2}, there isD∈ C and embeddingsBi gi-Dsuch thatg1◦f1 =g2◦f2.

(81)

TRS of infinite polyhedra Ramsey classes

Fra¨ıss´e class of finite structure

A non empty class of finite relationalL-structuresC is a Fra¨ıss´e classif it satisfies the following:

1. C is closed under isomorphisms: IfA∈ C andA∼=Bthen B∈ C.

2. C is hereditary: IfA∈ CandB≤AthenB∈ C.

3. C contains structures with arbitrarily high finite cardinality.

4. Joint embedding property: IfA,B∈ C then there isD∈ C such thatA≤DandB≤D.

5. Amalgamation property: GivenA,B1,B2 ∈ Cand embeddingsA fi -Bi,i∈ {1,2}, there isD∈ C and embeddingsBi gi-Dsuch thatg1◦f1 =g2◦f2.

(82)

TRS of infinite polyhedra Ramsey classes

Fra¨ıss´e class of finite structure

A non empty class of finite relationalL-structuresC is a Fra¨ıss´e classif it satisfies the following:

1. C is closed under isomorphisms: IfA∈ C andA∼=Bthen B∈ C.

2. C is hereditary: IfA∈ CandB≤AthenB∈ C.

3. C contains structures with arbitrarily high finite cardinality.

4. Joint embedding property: IfA,B∈ Cthen there isD∈ C such thatA≤DandB≤D.

5. Amalgamation property: GivenA,B1,B2 ∈ Cand embeddingsA fi -Bi,i∈ {1,2}, there isD∈ C and embeddingsBi gi-Dsuch thatg1◦f1 =g2◦f2.

(83)

TRS of infinite polyhedra Ramsey classes

Fra¨ıss´e class of finite structure

A non empty class of finite relationalL-structuresC is a Fra¨ıss´e classif it satisfies the following:

1. C is closed under isomorphisms: IfA∈ C andA∼=Bthen B∈ C.

2. C is hereditary: IfA∈ CandB≤AthenB∈ C.

3. C contains structures with arbitrarily high finite cardinality.

4. Joint embedding property: IfA,B∈ Cthen there isD∈ C such thatA≤DandB≤D.

5. Amalgamation property: GivenA,B1,B2∈ C and embeddingsA fi -Bi,i∈ {1,2}, there isD∈ C and embeddingsBi gi-Dsuch thatg1◦f1 =g2◦f2.

(84)

TRS of infinite polyhedra Ramsey classes

Fra¨ıss´e limit

IIfC is Fra¨ıss´e , then there is a unique (up to isomorphism) countably infiniteultrahomogeneousstructureFsuch that

C = the class of finite substructures of F

=:Age(F).

ThisFis theFra¨ıss´e limitofC and we writeF=FLim(C).

(85)

TRS of infinite polyhedra Ramsey classes

Fra¨ıss´e limit

IIfC is Fra¨ıss´e , then there is a unique (up to isomorphism) countably infiniteultrahomogeneousstructureFsuch that

C = the class of finite substructures of F=:Age(F).

ThisFis theFra¨ıss´e limitofC and we writeF=FLim(C).

(86)

TRS of infinite polyhedra Ramsey classes

Fra¨ıss´e limit

IIfC is Fra¨ıss´e , then there is a unique (up to isomorphism) countably infiniteultrahomogeneousstructureFsuch that

C = the class of finite substructures of F=:Age(F).

ThisFis theFra¨ıss´e limitofC and we writeF=FLim(C).

(87)

TRS of infinite polyhedra Ramsey classes

Fra¨ıss´e limit

IIfC is Fra¨ıss´e , then there is a unique (up to isomorphism) countably infiniteultrahomogeneousstructureFsuch that

C = the class of finite substructures of F=:Age(F).

ThisFis theFra¨ıss´e limitofC and we writeF=FLim(C).

(88)

TRS of infinite polyhedra Ramsey classes

Ramsey class of finite structures

A Fra¨ıss´e classC has theRamsey propertyiff, for every integerr>1 and everyA,B∈ C such thatA≤B, there is C∈ C such that for eachr-coloring

c: C

A

-r

of the set C

A

, there existsB0 ∈ C

B

such that B0

A

is monochromatic.

(89)

TRS of infinite polyhedra Ramsey classes

Ramsey class of finite structures

A Fra¨ıss´e classC has theRamsey propertyiff, for every integerr>1 and everyA,B∈ C such thatA≤B,

there is C∈ C such that for eachr-coloring

c: C

A

-r

of the set C

A

, there existsB0 ∈ C

B

such that B0

A

is monochromatic.

(90)

TRS of infinite polyhedra Ramsey classes

Ramsey class of finite structures

A Fra¨ıss´e classC has theRamsey propertyiff, for every integerr>1 and everyA,B∈ C such thatA≤B, there is C∈ C such that

for eachr-coloring

c: C

A

-r

of the set C

A

, there existsB0 ∈ C

B

such that B0

A

is monochromatic.

(91)

TRS of infinite polyhedra Ramsey classes

Ramsey class of finite structures

A Fra¨ıss´e classC has theRamsey propertyiff, for every integerr>1 and everyA,B∈ C such thatA≤B, there is C∈ C such that for eachr-coloring

c: C

A

-r

of the set C

A

,

there existsB0 ∈ C

B

such that B0

A

is monochromatic.

(92)

TRS of infinite polyhedra Ramsey classes

Ramsey class of finite structures

A Fra¨ıss´e classC has theRamsey propertyiff, for every integerr>1 and everyA,B∈ C such thatA≤B, there is C∈ C such that for eachr-coloring

c: C

A

-r

of the set C

A

, there existsB0 ∈ C

B

such that B0

A

is monochromatic.

(93)

TRS of infinite polyhedra Ramsey classes

Extreme amenability

A topological groupGisextremely amenableor hasthe fixed point on compacta property, if for every continuous action of Gon a compact spaceX there existsx∈Xsuch that for every g∈G,g·x=x.

Theorem

(Pestov 2006) LetFbe a countably infinite ultrahomogeneous structure andC =Age(F). The polish groupAut(F)is

extremely amenable if and only ifC has the Ramsey property and all the structures ofC are rigid.

(94)

TRS of infinite polyhedra Ramsey classes

Extreme amenability

A topological groupGisextremely amenableor hasthe fixed point on compacta property, if for every continuous action of Gon a compact spaceX there existsx∈Xsuch that for every g∈G,g·x=x.

Theorem

(Pestov 2006) LetFbe a countably infinite ultrahomogeneous structure andC =Age(F). The polish groupAut(F)is

extremely amenable if and only ifC has the Ramsey property and all the structures ofC are rigid.

(95)

TRS of infinite polyhedra Ramsey classes

Extreme amenability

A topological groupGisextremely amenableor hasthe fixed point on compacta property, if for every continuous action of Gon a compact spaceX there existsx∈Xsuch that for every g∈G,g·x=x.

Theorem

(Pestov 2006) LetFbe a countably infinite ultrahomogeneous structure andC =Age(F). The polish groupAut(F)is

extremely amenable if and only ifC has the Ramsey property and all the structures ofC are rigid.

(96)

TRS of infinite polyhedra Ramsey classes

Finite polyhedra as a Ramsey class

Finite polyhedra as a Ramsey class

ConsiderL=<(Ri)i∈N\{0} >, a signature with an infinite number of relational symbols such that for eachi∈Nthe arity ofRiisn(i) =i.

LetKP the class of finite ordered polyhedra.KP is a class of L∪ {<}-structures.

Facts:

I AP ⊆ KP.

I For everyA∈ KP there is(a,Sa)∈ APsuch that A∼= (a,Sa). Actually,KP is the closure ofAP under isomorphisms.

(97)

TRS of infinite polyhedra Ramsey classes

Finite polyhedra as a Ramsey class

Finite polyhedra as a Ramsey class

ConsiderL=<(Ri)i∈N\{0} >, a signature with an infinite number of relational symbols such that for eachi∈Nthe arity ofRiisn(i) =i.

LetKP the class of finite ordered polyhedra.

KP is a class of L∪ {<}-structures.

Facts:

I AP ⊆ KP.

I For everyA∈ KP there is(a,Sa)∈ APsuch that A∼= (a,Sa). Actually,KP is the closure ofAP under isomorphisms.

(98)

TRS of infinite polyhedra Ramsey classes

Finite polyhedra as a Ramsey class

Finite polyhedra as a Ramsey class

ConsiderL=<(Ri)i∈N\{0} >, a signature with an infinite number of relational symbols such that for eachi∈Nthe arity ofRiisn(i) =i.

LetKP the class of finite ordered polyhedra.KP is a class of L∪ {<}-structures.

Facts:

I AP ⊆ KP.

I For everyA∈ KP there is(a,Sa)∈ APsuch that A∼= (a,Sa). Actually,KP is the closure ofAP under isomorphisms.

(99)

TRS of infinite polyhedra Ramsey classes

Finite polyhedra as a Ramsey class

Finite polyhedra as a Ramsey class

ConsiderL=<(Ri)i∈N\{0} >, a signature with an infinite number of relational symbols such that for eachi∈Nthe arity ofRiisn(i) =i.

LetKP the class of finite ordered polyhedra.KP is a class of L∪ {<}-structures.

Facts:

I AP ⊆ KP.

I For everyA∈ KP there is(a,Sa)∈ APsuch that A∼= (a,Sa). Actually,KP is the closure ofAP under isomorphisms.

(100)

TRS of infinite polyhedra Ramsey classes

Finite polyhedra as a Ramsey class

Finite polyhedra as a Ramsey class

ConsiderL=<(Ri)i∈N\{0} >, a signature with an infinite number of relational symbols such that for eachi∈Nthe arity ofRiisn(i) =i.

LetKP the class of finite ordered polyhedra.KP is a class of L∪ {<}-structures.

Facts:

I AP ⊆ KP.

I For everyA∈ KP there is(a,Sa)∈ APsuch that A∼= (a,Sa). Actually,KP is the closure ofAP under isomorphisms.

(101)

TRS of infinite polyhedra Ramsey classes

Finite polyhedra as a Ramsey class

Finite polyhedra as a Ramsey class

Theorem

The classKP of all finite ordered polyhedra is Ramsey.

Corollary

LetP=FLim(KP), the Fra¨ıss´e limit ofKP. Then,Aut(P)with the Polish topology inherited from Sis extremely amenable.

(102)

TRS of infinite polyhedra The random polyhedron

The random polyhedron

Consider a countably infinite setω. Define a family Sω ⊆ω[<∞], as follows:

Hold a coin. Define a familyTω ⊆ω[<∞]probabilistically in the following way: for everyu∈ω[<∞]such that|u|>1 flip the coin, and say thatuis inTωif and only if you get heads. Set

Sω :=ω[1]∪ {v: (∃u∈Tω)v⊆u} (1) (ω,Sω)is an infiniterandompolyhedron.

(103)

TRS of infinite polyhedra The random polyhedron

The random polyhedron

Consider a countably infinite setω.

Define a family Sω ⊆ω[<∞], as follows:

Hold a coin. Define a familyTω ⊆ω[<∞]probabilistically in the following way: for everyu∈ω[<∞]such that|u|>1 flip the coin, and say thatuis inTωif and only if you get heads. Set

Sω :=ω[1]∪ {v: (∃u∈Tω)v⊆u} (1) (ω,Sω)is an infiniterandompolyhedron.

(104)

TRS of infinite polyhedra The random polyhedron

The random polyhedron

Consider a countably infinite setω. Define a family Sω ⊆ω[<∞], as follows:

Hold a coin. Define a familyTω ⊆ω[<∞]probabilistically in the following way: for everyu∈ω[<∞]such that|u|>1 flip the coin, and say thatuis inTωif and only if you get heads. Set

Sω :=ω[1]∪ {v: (∃u∈Tω)v⊆u} (1) (ω,Sω)is an infiniterandompolyhedron.

(105)

TRS of infinite polyhedra The random polyhedron

The random polyhedron

Consider a countably infinite setω. Define a family Sω ⊆ω[<∞], as follows:

Hold a coin.

Define a familyTω ⊆ω[<∞]probabilistically in the following way: for everyu∈ω[<∞]such that|u|>1 flip the coin, and say thatuis inTωif and only if you get heads. Set

Sω :=ω[1]∪ {v: (∃u∈Tω)v⊆u} (1) (ω,Sω)is an infiniterandompolyhedron.

(106)

TRS of infinite polyhedra The random polyhedron

The random polyhedron

Consider a countably infinite setω. Define a family Sω ⊆ω[<∞], as follows:

Hold a coin. Define a familyTω ⊆ω[<∞]probabilistically in the following way: for everyu∈ω[<∞]such that|u|>1 flip the coin, and say thatuis inTωif and only if you get heads.

Set

Sω :=ω[1]∪ {v: (∃u∈Tω)v⊆u} (1) (ω,Sω)is an infiniterandompolyhedron.

Referências

Outline

Documentos relacionados

Após a publicação no Diário Oficial do Estado das listas geral e especial, no prazo de 5 (cinco) dias úteis a contar da data da convocação publicada no Diário Oficial do Estado,

A relação provisória dos candidatos que se inscreveram para as vagas reservadas, o período para recursos e a relação final de candidatos negros (pretos e pardos) e indígenas (PPI)

Cabral Letras V Encontro Nacional das Licenciaturas / IV Seminário Nacional do PIBID Natal - RN 08/12/14 a 12/12/14 PASSAGEM TERRESTRE(*E M TRAMITAÇÃO) Priscila Sousa

apenas um tipo de procedimento indevido, porém em harmonia com o princípio do &#34; favorecimento do negócio&#34;, estes contratos podem ser validados pela conversão, na medida

A  partir  de  diferentes  bases  de  informação  georreferenciada  (cartografia  de  base  e  dados  censitários),  tratadas  e  modeladas  com  recursos 

De acordo com o Decreto-Lei n.º 95/2004, de 22 de abril, um Medicamento Manipulado (MM) é definido por “qualquer fórmula magistral ou preparado oficinal

O exercício do voto, uma das formas de exercido do direito dado ao cidadão de escolher seus representantes nos regimes democráticos envolvem uma complexa estrutura em

According to the author, this can be illustrated with reference to medical technologies: the fate of vegetative patients, for instance, is often surrounded by tragic (public)