• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número4

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número4"

Copied!
6
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Operculina

macrocarpa:

chemical

and

intestinal

motility

effect

in

mice

Daniele

Michelin

Paganotte

a,e,∗

,

Miriam

Sannomiya

b

,

Daniel

Rinaldo

c

,

Wagner

Vilegas

d

,

Hérida

R.N.

Salgado

a

aProgramadePós-graduac¸ãoemCiênciasFarmacêuticas,DepartamentodeFármacoseMedicamentos,FaculdadedeCiênciasFarmacêuticas,UniversidadeEstadualPaulista

“JúliodeMesquitaFilho”,Araraquara,SP,Brazil

bEscoladeArtes,CiênciaseHumanidades,UniversidadedeSãoPaulo,SãoPaulo,SP,Brazil

cDepartamentodeQuímica,FaculdadedeCiências,UniversidadeEstadualPaulista“JuliodeMesquitaFilho”,Bauru,SP,Brazil

dUniversidadeEstadualPaulista“JúliodeMesquitaFilho”,CampusdoLitoralPaulista,UnidadeSãoVicente,SP,Brazil

eFundac¸ãoHerminioOmetto,CentroUniversitárioHerminioOmetto,Araras,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14July2015 Accepted7March2016 Availableonline2April2016

Keywords:

Batata-de-purga HPLC-UV-PDA Laxative

Operculinamacrocarpa

Phenolicacids

a

b

s

t

r

a

c

t

Operculinamacrocarpa(L.)Urb.,Convolvulaceae,isusedbythepopulationasalaxative.Inthiswork wedescribedtheisolationofthethreephenolicacidspresentinthehydroethanolic extractofthe O.macrocarparoots.Thequantificationofthecaffeic,chlorogenicacidsandofthenewcaffeicdimer inthehydroethanolicandinfusionextractswasperformedbyhigh-performanceliquidchromatography coupledphotodiodearraydetector.Theseanalysesshowedthehighercontentofthechlorogenic,caffeic andthenew3,4′-dehydrodicaffeicacidinhydroethanolicandhydroethanolicextractswithoutresinin whichinfusion.Theacidfoundingreaterquantityiscaffeicacidfollowedbythe3,4′-dehydrodicaffeic acid.Thelaxativeactivitywasevaluatedbydifferentexperimentalmodelsofintestinaltransitwiththe hydroethanolicandinfusionextracts,andtheresinfraction,caffeic,chlorogenicandferulicacids.The resultsshowedallextractsandcompoundstestedhadsignificantactivityintheexperimentalmodel tested.Theseresultsobtainedareessentialforthefuturedevelopmentofapharmaceuticalproductwith safetyandefficacy.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Thetherapybasedonplantsdatesbacktotheoriginsof human-ityand,hasalwayshadanimportantroleinthecommunityhealth over time.AccordingtotheWorld Health Organization(WHO), medicinalplantsarethebestsourcestoobtaindrugs(WHO,2002). MedicinalplantshaveanimportantroleintheBrazilianculture andtradition.Nowadays,themajorityoftheurbanpopulation,as wellastheruralcommunities,usephytomedicinesasmedicinal treatments although a few number of species were studiedby thechemicalandpharmacologicalpointofview.Inthissense,the evaluationofthetherapeuticpotentialandchemicalcomposition oftheseplantscancontributetothedevelopmentoftheBrazilian phytotherapy.Thesecurityandefficiencyintheuseof phytother-apics should be based on the existence of relevant scientific literaturegroundedonthedemonstrationofitspharmacological activity,clinicalefficacyanditstoxicity.Asforsecurity,the knowl-edgethatguaranteestheuseofmanyphytotherapicscomesfrom

∗ Correspondingauthor.

E-mail:danielemichelin@uniararas.br(D.M.Paganotte).

traditionalmedicineandtheethnomedicinalknowledgegathered forcenturies(Carvalho,2005).

Operculina macrocarpa (L.) Urb., Convolvulaceae, popularly known as “batata-de-purga” or “jalapa”, (syn. Ipomoea purga

Hayne)(Xavieretal.,1994)fromthenortheastofBrazil,andwidely used by population due to its laxative, purgative and depura-tiveactivityagainstskindiseasesandintheleucorrheatreatment (Matos,1982;Martinsetal.,2000).

AccordingtoKohlietal.(2010)inAyurveda,O.turpethumhas beenincludedinthegroupof‘tenpurgativeherbs’.Thepresence ofresinglycosidesinConvolvulaceaefamilyhasbeenestablished associatedwiththelaxativepropertiesoftheherbaldrugs.Resin glycosideswereclassifiedintotwogroups:jalapinandconvolvulin. The jalapin group presents the commonstructure of a macro-lactonewithoneacylatedglycosidicacidwhiletheconvolvulin groups areoligomersof glycosidicacids (Pereda-Miranda etal., 2006).Previouslywe havereportedtheintestinalmotilityfrom thedichloromethane,ethylacetateandresidualfractions,andthe powderpreparationofO.macrocarpa(MichelinandSalgado,2004). Xavieretal.(1994)isolatedfromtheleavesofthis speciestwo

C-flavonoids. Despitethepopularuseofthis specieit is funda-mentalameticulousstudyaboutthechemicalcompositionandits

http://dx.doi.org/10.1016/j.bjp.2016.03.003

(2)

laxativeeffect.Thepresentstudyistherefore,aimedtotheisolation thephenoliccompoundspresentsinthehydroethanolicextractof rootsoftheO.macrocarpaandtheevaluationofthelaxativeeffectof theextracts,resinfractionandthecompoundsisolatedofthisplant.

Materialandmethods

Plantmaterial

Operculinamacrocarpa(L.)Urb.,Convolvulaceae,wascollected inthegardenofMedicinalPlantsUniararas,andtheexsiccatewas identifiedand includedin thecollection oftheESA-Agriculture SchoolLuizdeQueirozHerbarium,DepartmentofBiological Sci-encesESALQ/USP,registrationnumberESA114652.

Therootswerepreviouslyshavedanddriedinanairheater,at atemperatureof45◦Cuntilitwasreachedaconstantweight,and thentheywerecrushedinaballgrindertoreducethesizeofthe particles.

Chemicals

Caffeicacid,chlorogenicacidandferulicacid,bothsolidstate, werepurchasedfromSigma(St.Louis,MO,USA).Analyticalgrade aceticacidwaspurchasedfromRiedel-deHaën(Seelze,Germany). Methanol(HPLCgrade)waspurchasedfromMerck (Darmstadt, Germany).HPLC-grade water (18Mcm)wasobtainedusing a DirectQ5Milli-Qpurificationsystem(MilliporeCo.,Bedford,MA, USA).

Extraction

Thepowderoftheroots(200g) ofO.macrocarpa was previ-ouslymoistenedwithethanol70◦GLandmaintainedduring2h. Then,thismixturewastransferredintothepercolatorand com-pletedwith2lofthesolvent.Thereductionofthesolventvolume wasobtainedbytheutilizationofa rotatoryevaporator.During thisprocesswasobservedtheprecipitationofayellowishbrown solid,theresinfraction(5g;2.5%ofyield).Thismaterialwas sep-aratedbydecantation.Afteralltheprocesswereobtained36gof dryhydroethanolicextract(EEtOH;18%ofyield).

Preparationoftheinfusion

Thedryandpulverizedroots(200g)wereheatedandboiledfor 10minin2lofwatertoextracteffectivecomponents,andremoved. Afterfiltration,theinfusionextractwasconcentratedinarotary evaporatoranditwasfrozenandlyophilized,furnishing46.2gof theinfusionextract(23%ofyield).

Chromatographicmethods

ExtractchromatographicprofilebyHPLC-UV-PDA

The analysis of the chemical profile of the O. macrocarpa

extractswereperformedinaHighPerformanceLiquid Chromato-graphwitha Photodiode ArrayDetector(HPLC-UV-PDA),brand VarianTM modelProStar210/330.Theseparationwasperformed ona reverse phase Luna C18 column (250mm×4.6mm, 5␮m) (PhenomenexTM),equipped witha PhenomenexSecurityGuard (4mm×3mm,5␮m).Samplesandpatternswereinjectedthrough aRheodyneTM7125injectorwitha20lloop.

Approximately20mg of each EEtOH and infusion were dis-solvedin 1mlof methanol/water(1:1, v/v).For theremoval of possiblelipophiliccompounds,eachsolutionwaspurifiedbysolid phaseextraction(SPE),usingPhenomenexStrataC18 cartridges (500mg of stationaryphase), previously activatedwith 5ml of methanoland equilibratedwith 5ml ofHPLC-grade water. The

sampleswereelutedfromcartridgesusing5mlof amixtureof methanol/water(1:1,v/v).Thesampleswerethenfilteredthrough a0.45␮mpolytetrafluoroethylene(PTFE)filterandaliquotsof20␮l weredirectlyinjectedintoHPLC.

Themobile phase compositions usedwere water (eluentA) andacetonitrile(eluentB),bothcontaining0.05%trifluoroacetic acid.Thegradientprogrammewasasfollows:28–40%B(20min), 40–70%B(1min),70–100%B(10min)and100%(9min).Totalrun timewas40min.Theflow-rateofthemobilephasewas1.0ml/min. StarLCWorkstationsoftwarewasusedbothfortheoperationofthe detectorandfordataprocessing.

Isolationofphenolicacids

The EEtOHextract (4g) was fractionatedby gel permeation columnchromatography.ThecolumnwaspackedwithSephadex LH-20(57cm×3.0cmi.d.)andsoakedwithmethanol.Thecolumn

wasthenelutedwiththesamesolventmixtureyielded156 frac-tions(5ml each one).AfterTLCanalysis,similarfractionswere combinedtoyield28subfractions.

Part of subfraction 17 (25mg) was refrationated on a sil-icagelcolumnusingthemixtureofchloroform/methanol/water (43:37:20, v/v, organicphase) asmobile phase. This procedure furnishedawhiteprecipitated(13mg,caffeicandprotocatechuic acids).Theothercompoundwasobtainedfromthesubfraction25 (50mg)bycolumnchromatography(CC)usingasmobilephasethe mixtureofethyl acetate/aceticacid/water(15:0.5:0.1, v/v).This procedurefurnisheda whiteprecipitated(14mg,thenew com-pound3,4′-dehydrodicaffeicacid).

Quantitativeanalysisofphenolicacids

The quantitative analysis of phenolic compounds in the

O.macrocarpaextractandinfusionwasperformedby HPLC-UV-PDAusingtheconditionsdescribeinExtractchromatographicprofile byHPLC-UV-PDAsection.

Theseexperimentspermittedthedeterminationofthe chloro-genicandcaffeicacids,andcaffeicdimer.Theidentificationwas performedbycomparisonretentiontime,byspikingwithknown standards,andbycomparisonwithpreviouslyisolatedcompounds underthesameconditions.Methodsusingexternalstandardswere usedtoquantifyeachcompound.

These curves were obtained from seven stock solutions (1000␮g/ml) in the range of concentrations between 1 and 100␮g/ml.Thedilutionsweremadeinwater/methanol(1:1,v/v), andwereinjectedintheHPLC-UV-PDA.Allexperimentsweremade intriplicate.Theanalyticalcurveshadgoodlinearityinthe concen-trationrangestudiedandpresentedcorrelationcoefficients(r)with valuesabove0.999,whichsuggestsasagoodcorrelationbetween theareasandtheconcentrationsstudied.

NMRanalysis

The1H NMR and13C NMR 1Dand 1H NMR2D-NMR13C g -HMBCexperimentswereobtainedusingaBruker® spectrometer

at300MHzfrequency(7.0T)andonaVarianInova®

spectrome-terat500MHzfrequency(11.7T).Thesamplesweredissolvedin dimethylsulfoxide(DMSO-d6)containingTMSforchemical refer-ence.

Direct-injectionESI/MSandESI/MS/MSanalysis

The ESI analysis was carried out on a LCQ FLEET Thermo Scientific®equippedwithaniontrapanalyzersystem:datawere

acquiredusingXcalibur2.1.0.2.40software.Thesource tempera-turewassetat250◦C,andthesourcevoltagewasconstantat3.5kV. Nitrogenwasusedassheathandnebulizergasat5l/minand10psi. Heliumwasintroducedintothesystematanestimatedpressure of6×10−6mbartoimprovetrappingefficiency,andwasprovided

(3)

thefragmentationamplitudevariedbetween0.6and0.9V;theMS operatedinthenegativeionmodewithascanrateof13,000u/s. SampleswereinfusedintotheESIsourcebyuseofasyringepump ataflow-rateof5␮l/min.

Animals

TherewereusedSwissmice(Musmusculus),male,30daysof age,between20and30gofweight,adaptedtotheexperimental animalfacilityfor5daysbeforethebeginofthebiologicaltrials.The animalshadfreeaccesstofoodandwater,andwerekeptinroom temperatureof20±1◦C,controlledhumidityandaphotoperiodof 12hlight/darkness.Thedayofthetrialtheanimalswereinfasting for3h,receivingwateradlibitum.

The animalsused are from theBioterism Centreof the São PauloStateUniversity,Botucatu.Theprocedureswerepreviously approvedbytheEthicsResearchCommitteeoftheSãoPauloState University,Araraquara,approvalnumber25/2006.

Preparationofsoliddispersionfromtheresin

Consideringtheinsolubilityoftheresininwater,asolid dis-persionwaspreparedfororaladministrationinmiceinthetestof intestinalmotility.

Thesolid dispersionwasprepareddissolvingtheresin inan ethanolicsolutionofpolivinilpirrolidone(10%).Theethanolwas evaporatedinrotaryevaporatorat50◦C.Thefinalconcentrationof thesoliddispersionwas12.5mg/mlofresin.

Intestinaltransitwithactivecharcoal

Theanimalswererandomlyseparatedingroupsoftenanimals each,andreceivedthetreatmentbyoralgavageadministration. Acontrolgroupreceivedsalinesolution.After45min,theanimals receivedasuspensionofactivecharcoal10%inasolutionof5% ara-bicgumand0.5ml/animal,bygavageadministration.After45min, themiceweresacrificedinaCO2chamber,anditwasperformed animmediateextirpationoftheintestinefromthepylorustothe beginningofthecaecum.Thereby,itwasmadethemeasurementof thetotallengthofthesmallintestineandthedistancetravelledby theactivecharcoalsuspension.Theresultswereexpressedin per-centageofthetotallengthofsmallintestine.Theintestineswere weightedindividuallyinananalyticalbalance.

Theactivityintheintestinaltransitwasdeterminedaccording toJanssenandJageneau(1957)andWongandWay(1981).

Intestinaltransitwithmodifiedactivecharcoal(Maronaand Lucchesi,2004)

Theanimalswererandomlyseparatedingroupsofteneachone, andreceivedtheoraltreatmentbygavageadministration.Acontrol groupreceivedsalinesolution.After90min,theanimalsreceived asuspensionofactivecharcoal10%inanarabicgumsolution5% and0.3ml/animal,bygavageadministrationaswell.After60min, theanimalshadaccessagaintofoodandwater.

Themicewereobservedfor4heach5min,anditwastimed howlongdidittakethemtoeliminateofthefirstfaeceswithactive charcoal.

Intestinaltransitinmetaboliccage

Theanimals were randomlyseparated in groups often and received the oral treatment by gavage administration. A con-trolgroupreceivedsalinesolution.Theanimalswereplacedina

metaboliccage,andafter4hthefaeceswereweightedand com-paredtothecontrolgroup.

Statisticalanalysis

Theexperimentalresultswereexpressedin mean±standard

deviation.ThestatisticalanalysiswascalculatedbyStudentt-test (p<0.05)(DeMuth,1999).

Resultsanddiscussion

The phytochemical study of the EEtOH extract from the O. macrocarparesultedintheisolationofprotocatechuicacid(1), caf-feicacid(2)andthenewcompound3,4′-dehydrodicaffeicacid(3). The1HNMRanalysisofthewhitecrystalrevealedthepresence ofamixtureoftwocompounds.Themajorcompoundwas identi-fiedbythepresenceofthetwodoubletsat7.02ppm(J=2.5Hz,1H) andat6.76ppm(J=8.5Hz,1H)andadoubledoubletat6.95ppm, (J=8.5 and 2.5Hz, 1H), Thiscouplingpattern of three aromatic hydrogenssuggestedtheexistenceof1,3,4-trisubstitutedbenzene. Thetwolargedoubletat6.17ppm(J=16.0Hz,1H)andat7.38ppm (J=16.0Hz,1H)indicatedtransolefinichydrogens.Thesedata char-acterizedthepresenceofthecaffeicacid(2).The13CNMRdata corroboratethiscompoundasthecaffeicacid(Dürüstetal.,2001). Thesamearomaticsubstitutionpatternwasobservedforthe minor compound 1. The signals at 7.34ppm (d, J=2.5Hz, 1H), 7.29ppm(dd,J=8.5and2.5Hz,1H)and6.78ppm(d,J=8.5Hz,1H). The13CNMRspectrumrevealedthepresenceof7signalsbeingone ofthemcorrespondingtoacarbonylcarbonat168.7ppm.The spec-traanalyzeofthetwo-dimensionalHMQCandHMBCexperiments allowtheidentificationoftheminoritycompoundas protocatech-uicacid(1)(Yuetal.,2006).

OH HO

CO2H

2

OH

CO2H

HO

1

Analyzingthe1HNMRspectraofanotherphenolicacid,showed thepresenceofhydrogensignalswithchemicalshiftsfairly con-stantandsimilarcouplingstothoseofthecaffeicacid.However, theyareduplicated.Throughtheintegrationofthesignalsalong withanalysisof13CNMRspectraandtwo-dimensionalHMBCand HMQCexperimentsitwaspossibletoidentifythenewsubstance asthecaffeicdimerboundbypositions3oftheunityIwith4′of theunitII.Thesignalsat7.04ppm(d,J=2.5Hz,1H),6.76ppm(d,

J=8.5Hz,1H)and6.90ppm(m,1H)referstohydrogensH-2,H-5 andH-6,respectivelythearomaticringofunitI.Theseassignments canbemadebythecorrelationsobservedintheHMBCspectrum. ThehydrogensofthetransdoublebondofthatunitIcanbeassigned by thesignals at 6.24ppm (d, J=16.0Hz, 1H) and 7.48ppm (d,

J=16.0Hz,1H),consecutively.Theconfirmationthatthesesignals belongingtoUnitIweregivenbycorrelationsbetweenthesignalat 7.48ppmand6.24ppm(H-␣andH-␤)withasignalofacarbonyl at166.1ppm,aswellasthecorrelationbetweenproton␤ofthe doublebond(7.48ppm)withC-6at121.0ppm.Thesecorrelations allowedtheunambiguousassignmentoftheunitI.Thearomatic partoftheunitIImaybeascertainedthroughsignalsat7ppm(d,

(4)

Table1

PercentageofdistancetravelledbytheactivecharcoalintheintestineofmicetreatedwithOperculinamacrocarpa.

Treatment Dose(mg/kg) Distancetravelledbytheactivecharcoal(%) Weightoftheintestin(g)

Control(saline) 10ml/kg 72.01±8.15 2.3983±0.25

Infusionextract 1000 83.74±12.20* 2.2830±0.28

Infusionextract 500 75.34±7.43 2.3139±0.31

EEtOHwithoutresin 1000 91.23±13.22* 2.4160±0.44

Resinfraction 400 60.62±5.79 2.5684±0.28

* p<0.05;n=10.

correlationtothedoublebondoftheunitIIofthecaffeicdimer. Sim-ilarlytotheunitI,itwaspossibletoassignallsignalsthroughthe analysisofthe1Hand13CNMRspectraaswellastwo-dimensional experiments(HMBCandHMQC).Toestablishthelinkageposition ofthetwocaffeicunitieswasmeasuredandalongrangecarbon hydrogencorrelationforH-2(unityI)→C-4(unityII)observed.In

ordertocorroboratethisstructurewerealizedtheESI-MS experi-ment.Thisexperimentrevealedthepresenceofapseudomolecular ionm/z341[M−H]−.WhileintheMS2showedabundantionsat m/z179(100)and135(90)whichaccordswiththecaffeicacid.In comparisonourdatawiththosereportedbyShaheenetal.(2011) forthe3,3′-didehydrodicaffeicacidweconfirmedthepresenceof the3,4′-dehydrodicaffeicacid(3)(Plazoni´cetal.,2009).

13CNMR(DMSO-d

6,125MHz)forthe3,4′-dehydrodicaffeicacid was:ıforunityI:114.7(C-␣),114.8(C-2),115.8(C-5),121.0(C-6), 125.5(C-1),145.5(C-3),144.6(C-␤),148.2(C-4),166.1(COOH).For theunityII:114.2(C-␣),114.6(C-2),115.7(C-5),121.3(C-6),125.6 (C-1),145.5(C-3),144.9(C-␤andC-4),148.2(C-4),165.6(COOH).

HO2C OH

O OH

CO2H

3

9' 8'

7' 1' 6'

5' 4'

2' 3'

3 4

5

6

1

7 8

9 2

Evaluationofthelaxativeactivity

SincethepopulationusesO.macrocarpaasalaxative,this activ-itywasevaluatedusingthreeexperimentalmodels.

Thefirstmodelevaluatedwastheonethatusesactivecharcoal asmarker in order toobserve theintestinal transit. The activ-ityisdeterminedbythedistancetravelledbythemarkerinthe smallintestine, compared tothecontrol group.Thismethod is widelyusedtoevaluatetheactivityofvegetalextracts(Michelin andSalgado,2004;Figueiredoetal.,2005;Salgadoetal.,2006).

Thesecondmodel,proposedbyMaronaandLucchesi(2004), usesthesamemethodologyasthefirstone;however,inthismodel theanimalsarenotsacrificed,andcanbeusedlateroninanother experiment,factthathelpswiththewellbeingoftheanimal.

Inthethirdmodel,animalsareplacedinametaboliccageand theactivityisdeterminedanalyzingthefaeces,differentlyofthe

othertwomodels.Inthismodel,theanimalscanalsobeusedagain inotherexperimentssincethereisnoneedtosacrificethem.

Accordingtoliterature,untilnowitisthefirststudyevaluating theactivityofO.macrocarpaintheintestinaltransit,exceptbythe preliminarystudy,previoustothisone,carriedoutbyourresearch group(MichelinandSalgado,2004).

Intestinaltransitwithactivecharcoal

Thistestwascarriedoutin1957byJanssenandJageneau,andit wasevaluatedtheinhibitionofthegastrointestinalpropulsionwith acharcoalsuspensioninmice.Then,WongandWay(1981) eval-uatedtheeffectofaspirinandacetaminophenintheinhibitionof thegastrointestinalpropulsioninducedbymorphineinmice.The trialwasperformedaccordingtothesecondexperimentalmodel developedby JanssenandJageneau(1957)and Wongand Way (1981).

Theinfusionextractandthestandardsofthecaffeic,chlorogenic andferulicacidwereevaluatedusingthisexperimentalmodel.

The results shown in Table 1, demonstrate the significant increaseoftheintestinalmotility,whencomparedtothecontrol group,causedbytheinfusionextractusingadosageof1000mg/kg. Usingadosageof500mg/kgtheresultappearedtobenot signifi-cant.

The EEtOH extract was previously tested using a dosage of 1000mg/kg,andtheresultsshowedasignificantincreaseofthe intestinalmotilityofmice(69.99%)whencomparedtothecontrol group(47.87%)(MichelinandSalgado,2004).Thelow solubility presentedbytheresininwaterimpliedthepreparationofasolid dispersiontotestinmice,howeveritdidnotshowsignificant activ-ityintheconcentrationused.

TheevaluationoftheEEtOHextractaftertheprecipitationofthe resinatthedoseof1000mg/kghasshowedasignificantincrease oftheintestinalmotility.Despitethehigherquantityof1–3 com-pounds,weresubmittedtothesametest.Thethreeacidsshowed asignificantincreaseoftheintestinalmotilityinmicewhen com-paredtothecontrolgroup(Table2).

Theacidsweretestedindosagesof10and20mg/kg.Thecaffeic acidpresentedactivityinthedosageof20mg/kg,andtravelleda distanceof86.80%ofthesmallintestine,whileinthecontrolgroup ittravelledadistanceof81.53%.Theferulicacidshowed signifi-cantactivityinthetesteddosages,travelling86.43and91.45%of thesmallintestinesusingthedosagesof10and20mg/kg, respec-tively.Finally,theresultsobtainedforthechlorogenicacid,were

Table2

Percentageofthedistancetravelledbytheactivecharcoalinthesmallintestineofmicetreatedwithcaffeic,ferulicandchlorogenicacids.

Treatment Dose(mg/kg) Distancetravelledbytheactivecharcoal(%) Weightofthesmallintestin(g)

Control(saline) 10ml/kg 81.53±9.75 1.5632±0.19

Caffeicacid 10 79.70±13.05 1.6160±0.15

Caffeicacid 20 86.80±10.99a 1.6400±0.37

Ferulicacid 10 86.43±16.63a 1.4864±0.09

Ferulicacid 20 91.65±13.60a 1.5282±0.17

Chlorogenicacid 10 78.62±9.34 1.3862±0.07

Chlorogenicacid 20 86.08±7.16a 1.4385±0.20

(5)

Table3

Elimination time ofthe faeces with marker in mice treatedwith Operculina

macrocarpa.

Treatment Dose(mg/kg) Timetoeliminatethefaeces

withmarker(min)

Control(saline) 10ml/kg 194.6±30.37

EEtOHextract 1000 156.4±23.29a

Infusionextract 1000 65.1±4.70a

ap<0.05;n=10.

Table4

WeightofthefaeceseliminatedbymicetreatedwithOperculinamacrocarpa.

Treatment Dose(mg/kg) Weightofthefaeces(g)

Control(saline) 10ml/kg 1.80±0.23

EEtOHextract 1000 2.01±0.60a

Infusionextract 1000 3.98±0.71a

ap<0.05;n=10.

significantinthedoseof20mg/kg,havingtravelledadistanceof 86.08%.

Basedontheseresults,itcanbesuggestedthatphenolicacids havestimulant activityoftheintestinalmotility,sincetheyare presentintheEEtOHandinfusionextractsofO.macrocarpa,where thisactivitywasalsofound.

Intestinaltransitwithmodifiedactivecharcoal(Maronaand Lucchesi,2004)

In this model were evaluated the EEtOH and the infusion extractsofO.macrocarpa.Thismodelofintestinaltransitalsouses activecharcoalas marker,however itwasmodified in2004by MaronaandLucchesitoimprovethewellbeingoftheanimal,since inthismodeltheanimalsarenotsacrificedandcanbeusedagain inotherexperiments.

Theresultsdisplayed inTable3,showasignificantdecrease oftheeliminationtimeofthemarkerwhenitiscomparedtothe controlgroup.

Intestinaltransitinmetaboliccage

In this model were evaluated the EEtOH and the infusion extractsofO.macrocarpa.Itisimportanttohighlightthatinthis model,animals areplaced in a metaboliccageand theactivity isdeterminedbytheweightofthefaeceseliminatedduringthe observationperiod,thusanimalsarenotsacrificedandcanbeused againinotherexperiments.

Table4showstheresults.Itcanbeobservedasignificant dif-ferenceoftheweightofthefaecesbetweenthetreatedgroupsand thecontrolgroup,indicatingthattheEEtOHandinfusionextracts ofO.macrocarpaalsohavestimulantactivityoftheintestinetransit inthismodel.

200

150

100

1 (14.4 min)

3 (27.0 mn) 4

(27.6 min)

5 (27.9 min)

2 (15.2 min)

50

0

5 10 15 20

Time (min)

25 30 35

Fig.1.HPLCseparationchromatogram,inanalyticmode(210nm)oftheEEtOH extract of Operculina macrocarpa. 1. clorogenic acid; 2. caffeicacid; 3. 3,4′ -dehydrodicaffeicacid;4and5.Notidentified.

20

15

1 (14.4 min) 2 (15.2 min)

3 (27.1 mn) 4 (27.5 min) 5

(28.0 min)

10

Response (mA

U)

5

0

5 10 15 20

Time (min)

25 30 35

Fig.2.HPLCseparationchromatogram,inanalyticmode(210nm)oftheinfusion extract of Operculina macrocarpa. 1. clorogenic acid; 2. caffeicacid; 3. 3,4′ -dehydrodicaffeicacid;4and5.Notidentified.

In order to relate the pharmacological activity observed with the metabolites found in this plant was performed the chromatographic profile by HPLC-UV-PAD from theEEtOH and infusionextractsof O.macrocarpa.TheUVdatashowedintense bands inthespectral range between190–220and 260–280nm confirmingthepresenceoffive phenolicacidsin theseextracts (Saldanhaetal.,2013)(Figs.1and2).Foreachcompound assign-ment,we usedthecomparisonof retentiontime ofthesample chromatogramwiththoseofstandards,additionallywecomparing theabsorptionspectraforpeaksobtainedwiththoseofstandards analyzedunderthesamechromatographicconditions.Itwas per-formedbyco-injectionoftheauthenticpatternsorthemetabolites isolatedfromthisplant(Figs.1and2).Thecompounds4and5 observed inthechromatographic profileof EEtOHand infusion extractswerenotidentified,butcouldbequantifiedthroughthe sameprofiledisplayedontheUVabsorptionspectra.According tothequantificationofphenolicacidsintheEEtOHextractthere wasagreatercaffeicacidconcentration(4.7mg/g),followedbythe

Table5

QuantityofphenolicacidsdeterminedintheextractsofOperculinamacrocarpa.a

Substances Concentration(mg/g)±standarddeviation

EEtOHextract EEtOHwithoutresin Infusionextract

Caffeicacid,2 4.7±2.9 5.1±4.1 2.4±3.1

Chlorogenicacid,1 1.1±5.1 1.1±9.8 0.4±5.5

3,4′-Dehydrodicaffeicacid,3 1.9±2.9 1.5±1.7 0.4±2.9

NI1 1.2±2.4 1.0±4.2 0.3±1.5

NI2 2.4±1.2 1.9±4.7 0.3±3.5

(6)

3,4′-dehydrodicaffeicacid(1mg/g)andchlorogenicacid(1.1mg/g) (Table5).TheEEtOHextractwithouttheresinshowedahigher concentrationofcaffeicacid(5.1mg/g)andalowerconcentration of3,4′-dehydrodicaffeicacid(1.5mg/g).Itwaspossibletoobserve thesamelevelofchlorogenicacidinbothEEtOHextractasinEETOH extractwithoutresin.Theinfusionhasasignificantreductioninthe contentofbothquantifiedacids.

Conclusions

ThephytochemicalanalysisoftheEEtOHextractoftheroots ofO.macrocarpaguidedtotheisolationandidentificationofthe caffeicandprotocatechuicacidsandthenew3,4′-dehydrodicaffeic acid.

The EEtOH and infusion extracts were subjected to HPLC-UV-PDA chemical profiling and 5 principal peaks (1–5) were detected(Figs.1and2).Thecaffeicandchlorogenicacidsand3,4′ -dehydrodicaffeicacidwerequantifiedinO.macrocarpaextracts. Thecaffeicacidwasfoundtobethecharacteristiccomponentof thesesextracts.

Theresultsobtainedwiththethreeexperimentalmodelstested showedthelaxativeactivitywithincreasingtheintestinalmotility ofallextractsofO.macrocarpa.Thecaffeic,ferulic,chlorogenicacids andthe3,4′-dehydrodicaffeicacidevaluatedshowedthelaxative action.Thiseffectisdirectlyrelatedtothecontentofcaffeic, chloro-genicacidsandthe3,4′-dehydrodicaffeicacidintheextract.The correlationbetweenthephenolicacidsstructuresandtheintestinal motilitywecansuggestthatactivityinvolvetheskeletonwiththe conjugatedacidportionand/orthephenolicwithoutnecessarily withtheorto-dihydroxisystem.Ourresultsconfirmthetraditional useofthisspeciealaxative.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thattheproceduresfollowedwereinaccordancewiththe regula-tionsoftherelevantclinicalresearchethicscommitteeandwith thoseoftheCodeofEthicsoftheWorldMedicalAssociation (Dec-larationofHelsinki).

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat nopatientdataappearinthisarticle.

Authors’contributions

DMPcontributionincludedtheexecutionofintestinalmotility effectin mice, theisolation of the compoundsand elaboration the paper. MS contribution included the identification of the compounds,analyzing the resultsand preparing the paper.DR contributionincludedtheanalysischromatographicby HPLC-UV-PDA.WVandHRNScontributionincludedtotheprovisionofall

laboratoryequipmentandinfrastructureforthedevelopmentof allexperimentalpartofthephytochemicalandpharmacological testsofthiswork.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

FAPESPandCNPq–Brazil.

References

Carvalho,J.C.T., 2005.Formulário Médico-Farmacêuticode Fitoterapia.Ciência Brasilis,Alfenas.

DeMuth,J.E.,1999.BasicStatisticalandPharmaceuticalStatisticalApplications. Dekker,NewYork.

Dürüst,N.,Özden,S.,Umur,E.,Dürüst,Y.,Küc¸ükislamoglu,M.,2001.Theisolation ofcarboxylicacidsfromtheflowersofDelphiniumformosum.Turk.J.Chem.25, 93–97.

Figueiredo,M.E.,Michelin,D.C.,Sannomiya,M.,Silva,M.A.,dosSantos,L.C.,de Almeida,L.F.R.,SouzaBrito,A.R.M.,Salgado,H.R.N.,Vilegas,W.,2005.Avaliac¸ão química e da atividade antidiarréica dasfolhas de Byrsonima cinera DC. (Malpighiaceae).Braz.J.Pharm.Sci.41,79–83.

Janssen,P.,Jageneau,A.H.,1957.Anewseriesofpotentanalgesics.PartI–chemical structureandpharmacologicalactivity.J.Pharm.Pharmacol.9,381–400. Kohli,K.R.,Nipanikar,S.U.,Kadbhane,K.P.,2010.AcomprehensivereviewonTrivrit

[Operculinaturpethumsyn.Ipomoeaturpethum].Int.J.Pharm.Bio.Sci.1,443–452.

Marona,H.R.N.,Lucchesi,M.B.B.,2004.Protocoltorefineintestinalmotilitytestin mice.Lab.Anim.38,1–4.

Martins,E.R.,Castro,D.M.,Castelani,D.C.,Dias,J.E.,2000.Plantasmedicinais.UFV, Vic¸osa.

Matos,F.J.A.,1982.Aproveitamentodeplantasmedicinaisdaregiãonordeste.Rev. Bras.Farm.63,132–140.

Michelin,D.C.,Salgado,H.R.N.,2004.Avaliac¸ãodaatividadelaxantedeOperculina

macrocarpaL.(Convolvulaceae).Rev.Bras.Farmacogn.14,105–109.

Pereda-Miranda,R.,Fragoso-Serrano,M.,Escalante-Sanchez,E.,Hernanders-Carlos, B.,Linares,E.,Bye,R.,2006.ProfilingoftheresinglycosidecontentofMexican jalaprootswithpurgativeactivity.J.Nat.Prod.69,1460–1466.

Plazoni´c,A.,Bucar,F.,Maleˇs,Z.,Mornar,A.,Nigovi´c,B.,Kujundˇzi´c,N.,2009. Iden-tificationandquantificationofflavonoidsandphenolicqcidsinburrparsley

(CaucalisplatycarposL.),usinghigh-performanceliquidchromatographywith

diodearraydetectionandelectrosprayionizationmassspectrometry.Molecules 14,2466–2490.

Saldanha,L.L.,Vilegas,W.,Dokkedal,A.L.,2013.Characterizationofflavonoidsand phenolicacidsinMyrciabellacambess.UsingFIA-ESI-IT-MSnand HPLC-PAD-ESI-IT-MScombinedwithNMR.Molecules18,8402–8416.

Salgado,H.R.N.,Roncari,A.F.F.,Michelin,D.C.,Moreira,R.R.D.,2006.Evaluationof antidiarrhoealeffectsosPsidiumguajavaL.(Myrtaceae)leafextractinmice. Rev.Ciênc.Farm.Bás.Aplic.27,89–92.

Shaheen,U.Y.,Hussain,M.H.,Ammar,H.A.,2011.Cytotoxicityandantioxidant activ-ityofnewbiologicallyactiveconstituentsfromSalvialanigraandSalviasplenden. Pharmacogn.J.3,36–48.

Wong,C.L.,Way,M.K.,1981.Effectsofaspirinandparacetamolonnaloxonereversal ormorphine-inducedinhibitionofgastrointestinalpropulsioninmice.Eur.J. Pharmacol.73,11–19.

WHO,2002,May.TraditionalMedicineGrowingNeedsandPotential–WHO Pol-icyPerspectivesonMedicines,No.002.WorldHealthOrganization,Geneva, Switzerland.

Xavier,H.S.,Soares,L.A.L.,D’Angelo,L.C.A.,1994.C-glicosilflavonóidesdeOperculina macrocarpaUrban(Convolvulaceae).XIIISimpósiodePlantasMedicinaisdo Brasil,Fortaleza,Brasil.

Yu,Y.,Gao,H.,Tang,Z.,Song,X.,2006.SeveralphenolicacidsfromthefruitofCapparis

Imagem

Fig. 2. HPLC separation chromatogram, in analytic mode (210 nm) of the infusion extract of Operculina macrocarpa

Referências

Documentos relacionados

O “upgrade” está na possibilidade da construção coletiva de saberes e na subversão do fluxo de informação, transformando o “eu” em transmissor e

Adicionalmente, os prescritores podem receitar um número ilimitado de diferentes medicamentos, com um limite de 6 (seis) embalagens para medicamentos destinados a tratamentos de

Este relatório relata as vivências experimentadas durante o estágio curricular, realizado na Farmácia S.Miguel, bem como todas as atividades/formações realizadas

Quadro 1 - Bases de dados eletrônicas utilizadas para as buscas de publicações científicas e suas principais finalidades Quadro 2 - Descritores e seus respectivos termos utilizados

In ragione di queste evidenze, il BIM - come richiesto dalla disciplina comunitaria - consente di rispondere in maniera assolutamente adeguata alla necessità di innovazione dell’intera

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Os referenciais teóricos se alternam principalmente entre os estudos feministas de Henrietta Moore 2000; 2004 para a compreensão das relações de poder que circundam as

The author shows that not only is the foreign inscribed in the gaze, a gaze that cannot be reduced to the visible, but that it lies at the very heart of the human subject..

The results showed that the higher effi ciency in light energy uptake, paired with better photochemical performance and better CO 2 fi xation in plants under direct sunlight