• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número6

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número6"

Copied!
7
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Co-extracted

bioactive

compounds

in

Capsicum

fruit

extracts

prevent

the

cytotoxic

effects

of

capsaicin

on

B104

neuroblastoma

cells

Viktorija

Maksimova

a,∗

,

Liljana

K.

Gudeva

b

,

Rubin

Gulaboski

a

,

Karen

Nieber

c aFacultyofMedicalSciences,GoceDelcevUniversity,Stip,Macedonia

bFacultyofAgriculture,GoceDelcevUniversity,Stip,Macedonia

cFacultyofPharmacy,BiologyandPsychology,InstituteofPharmacyUniversityofLeipzig,Leipzig,Germany

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21April2016

Accepted13June2016

Availableonline11August2016

Keywords:

Antioxidants Capsaicin Capsicum Cytotoxicity

Neuroblastomacells

Voltammetry

a

b

s

t

r

a

c

t

TheaimofthisstudywastoinvestigatetheeffectofcapsaicinandethanolicCapsicumextractsonB104 neuroblastomacellsasapotentialanticanceragent.Additionally,thisstudyalsoaimstoexaminethe influenceofco-extractedbioactivecompounds(vitaminE,vitaminCandquercetin)inCapsicumfruit extractsonthecytotoxiceffectsofcapsaicininneuroblastomacells.MTTandLDHassayswereusedto determineviabilityandcelldeathinB104neuroblastomacells.Antioxidativepropertiesofcapsaicin, vitaminE,vitaminCandquercetinwereestimatedbymeansofcyclicandsquarewavevoltammetry. Therewasasignificantcytotoxicityofcapsaicin(100␮mol/l)after24hincubationandforcapsaicin (250␮mol/l),evenwhencellsaretreatedfor1h.Ontheotherhand,ethanolicCapsicumextractswhich containedcapsaicin(0.5–2.1mmol/l)didnotshowanycytotoxiceffect.Wesuggesttherefore,thatother co-extractedcompoundswithintheethanolicextractsinteractantagonisticwiththecytotoxiceffectof capsaicinandtheirinteractionsshouldbefurtherinvestigated.Ourresultsindicatethatcapsaicininhigh concentrationinducescytotoxiceffectsinadosedependentmanner,butotherbioactivecompounds presentinCapsicumfruitspreventthecytotoxiceffectsoftheextractsonneuroblastomacells.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Capsaicin(N-vanillyl-8-methyl-6-nonenamide,1)isthemajor componentofcapsaicinoids.Thisalkaloidisasecondary metabo-liteindifferentspeciesofthegenusCapsicum(Buczkowskaetal., 2013).Itgivesthepungencyofhotpeppersandisresponsiblefor manyphysiologicalandpharmacologicalpropertiesofthisplant. Althoughtopicalcreamswithcapsaicinareusedtotreat periph-eralneuropathicpainconflictingepidemiologicdata,manybasic researchstudiesresultssuggestthatcapsaicincanactasacytotoxic orasacytoprotectiveagent(BodeandDong,2011).Themajority ofresearchstudiessuggestthatcapsaicininducescell-cyclearrest orapoptosisorinhibitsproliferationindifferentmalignantcells includinglungcancer,adenocarcinoma,pancreaticcancer,breast cancerDíaz-LaviadaandRodríguez-Henche(2014)hepatocellular carcinomaBaeketal.(2008),osteosarcomaandmanyothersWon etal.(2013).Variousmechanismsforcapsaicin-induced apopto-sishave beenproposedfor differentcellsystems. Physiological

∗ Correspondingauthor.

E-mail:viktorija.maksimova@ugd.edu.mk(V.Maksimova).

processeslinkedtotheintracellularcalciumincrease,reactive oxy-gen species generation, disruptionof mitochondrial membrane transitionpotentialandactivation ofsometranscriptionfactors areinvolved ClarkandHo-Lee(2016)are closelyrelated tothe capsaicinactivity.

AccordingtoSanchezetal.(2006),capsaicincanactascytotoxic agentthroughevokingapoptosisinprostatecancercellsthrough mechanismwhichincludesincreasedproductionofreactive oxy-genspecies(ROS),disruptionofinnermitochondrial membrane potentialandactivationofcaspase-3.Pramaniketal.(2011)and Zhangetal.(2008)showedthatapoptosisprovokedbycapsaicin in pancreatic cells is accompanied by 4–6fold increase of the concentrationoffreeradicalsandconsequentlydisruptionofthe mitochondrialmembranepotential.Thereforecapsaicinhas pro-vokedaninhibitionofcellproliferationandinducedapoptosisina dosedependentmanner.

Incontrast,hotpeppersfruitsarewidelyusedineveryday nutri-tionandhaveshownmanybenefitsforhumanhealth.Asknown fromtheliterature,beside capsaicin,theseextractsrepresent a complexmixtureofmanyotherbioactivecompoundsasvitamin C(2),vitamin E(3), carotens,quercetinandluteolin (Asninand Park,2015).Thesemoleculesarereportedascompoundswhich

http://dx.doi.org/10.1016/j.bjp.2016.06.009

0102-695X/©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

(2)

haveshownhighantioxidativepotentialandprotectiverolein car-cinogenesis(MaterskaandPerucka,2005).Actingasantioxidants, thesemoleculesarecapabletoneutralizeorscavengethefree radi-calswhichareresponsibleformanydegenerativediseasesaswell asprogressionofcancer(Uttaraetal.,2009).Therefore,thetotal anitoxidativecapacityofpepperextractscanmodulatethe cyto-toxicityofcapsaicinpresentintheextracts.

1 2 3

Theaimofthepresentworkwastostudythecytotoxic proper-tiesofcapsaicinonB104neuroblastomacells,andalsotoexamine thetoxicityoftheCapsicumfruitextractsobtainedfromaseveral differentvarietiesofhotpeppers.Thecurrentstudyalsoaimsto addressthepossibleinteractionsandthesynergisticantioxidant effectsoftheco-extractedcompoundswithcapsaicin.Tothebest ofourknowledge,theinfluenceoftheotherco-extractedbioactive compoundsinCapsicumfruitextractsonthecytotoxiceffectsof capsaicinonB104neuroblastomacells,havenotbeenevaluatedso far.

Materialsandmethods

Plantmaterials

CapsicumfruitsfromfourdifferentgenotypesofC.annuumL. Solanaceae,(hotpeppers)weretakenforthisexperiment.Different plantseedswerestoredinthegenbankatGoceDelcev Univer-sity,FacultyofAgriculture,atthecampusofStrumica,Macedonia. Plantnamehasbeencheckedontheweb:www.theplantlist.orgon February10,2015.Theseseedshavebeentakenforcultivationand theirfruitswerecollectedfromthefieldinthephaseofbotanical maturity.Thefruitsfromfourgenotypesofhotpepperswithlocal names:Bombona,Feferona,Vezena,andSivrija,weredriedonroom temperatureforabouttwoweeks.Afterward,theyweregrounded andthepowderwasusedforextraction.

Cellline

Cells of the rat neuroblastoma line B104 (ATCC, Manassas, VA,Schubertetal.1974)weremaintainedinDMEM/Ham’swith l-glutamine (Dulbecco’smodifiedEagle’smedium)(PAAGmbH)

supplementedwith15%fetalbovineserum(FBS),andantibiotics1% penicillin/streptomycinsolution.Themediumwaschangedevery 2–3days.Cellswereincubatedat37◦Cinanatmospherecontaining 5%CO2andsaturatinghumidity.Cellswereallowedtobeadherent for24hbeforetreatmentwithcapsaicinorCapsicumextracts.

Reagents

Stock solutions of capsaicin (1) (>95%, natural capsaicin), vitamin E (2), quercetin and ascorbic acid were freshly pre-paredbyusingstandardsubstancesobtainedfromSigma-Aldrich and 96% ethanol (reagent grade) (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazoliumbromide)(MTT),sodiumdodecylsulfate (SDS),dimethylformamide(DMF),lactate,NAD,diaphorase,HCl, SDSlysisbuffer,DMEM,phosphatebuffersolution)PBS,phosphate buffer(pH7.4),fetalbovineserum,penicillin,streptomycin(PAA GmbH),tritonX,ethanol96%(Sigma–Aldrich).Allsolutionswere storedat4◦C.Inallsolutionsusedforelectrochemical measure-ments,KClwasaddedasanadditionalelectrolyteatconcentration of0.010M.

Methods

Extractionmethod

Extraction wasperformed by maceration using ethanol 96% (v/v) as a solvent (Rafajlovska et al., 2007). Maceration was

performedfor5h,on60◦C,andafterwardtheextractswere fil-teredbygouchfilter,usingavacuumpump.0.2gofthepulverized plantmaterialwasmaceratedwith25mlsolvent.Stocksolution waspreparedbyusingcapsaicin,with96%ethanolandthendiluted toappropriateconcentrations.

Spectrophotometricmethod

UV/VISspectrophotometrywasusedforquantificationof cap-saicininethanolicextractsandstandardssolutions(Peruckaand Oleszek,2000).Theconcentrationofcapsaicinwasmeasuredby usingaCary100spectrometer,instrumentversionno.9.00,ona specificmaximumwavelengthof280nm.Aserialofstandard dilu-tionsofcapsaicin(0.25,0.125,0.0625,0.0312,0.0156mg/ml)were preparedforobtainingtheregressioncurve.Theethanolicextracts weremeasuredandaccordingtotheabsorbanceobtainedforthem, regressionanalysiswasperformedforcalculationofconcentration ofcapsaicinintheextracts.

Cytotoxicitymethods

TheviabilityofB104cellsaftertreatmentwithcapsaicinor Cap-sicumextractswasassessedusingMTTmethod.Fordetermination ofthecelldeath,theLDHmethodwasused.

MTTassay

TheMTT assayinvolvesthe conversionofthewater soluble MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-mide)toaninsolubleformazan.Theformazanisthensolubilized anditsconcentrationwasdeterminedbyopticaldensityat570nm (Mosmann, 1983). MTT cell proliferation assay was performed accordingtotheprotocolgivenbythemanufacturerRoche Diag-nosticsGmbHforCellProliferationKitI.Inbrief,B104cellswere seededin96-wellcellcultureplates(2×104cells/well)and sub-sequentlytreatedwithcapsaicin(0.5,1,10,100and250␮mol/l) ordifferentethanolicCapsicumextractsat37◦Cfor1,6and24h, respectively.

(3)

LDHassay

TheLDHassayoffersasimplewaytomeasureplasma mem-branedamage,basedonthereleaseoflactatedehydrogenase(LDH), astablecytoplasmicenzymepresentinmanycells (Chouetal., 2009).Assaywasperformedaccordingtothemanufacturers pro-tocol (RocheDiagnostics GmbH)given for theLDH cytotoxicity detectionkit. Inbrief,afteradherenceof thecells tothewells, testsubstances(capsaicinindifferentconcentrationsandethanolic extracts)dilutedinanappropriateassaymedium(DMEM),were titratedinaseparatemicroplatebyseveraldilutions(final vol-umeupto200␮l/well). Then, theassaymedium wasremoved and100␮lfreshassaymediumwasaddedtoeachwell.100␮l ofthetestsubstancedilutionsweretransferredinto correspond-ingwellscontainingtheadherentcells.Thereafter,100␮lofthe supernatantwereremovedfromthewellscarefullyandtransferred intocorrespondingwellsofanopticallyclear96-wellflatbottom microplate.To determinethe LDH activityin thesupernatants, 100␮lofthereaction mixture(freshlyprepared)wasaddedto eachwellandincubatedfor30minat+15to+25◦Cinadark atmo-sphere.ThereactionmixturewaspreparedbymixingtheCatalyst (Diaphorase/NAD+mixture)andDyesolution(INTandsodium lac-tate).

Absorbanceofthesampleswasmeasuredat492nmbyanELISA platereader.ThelossofintracellularLDHanditsreleaseintothe culturemediumisanindicatorofirreversiblecelldeathduetocell membranedamage.A0.1%TritonXsolutionwasusedaspositive controlandDMEM(assaymedium)asnegativecontrol.

Voltammetricmethods:cyclicvoltammetryandsquarewave voltammetry

Electrochemicaldeterminationoftheantioxidativepotentialof theextractsanda mixtureofstandard solutionwasperformed bymeansofsquare-wavevoltammetry(SWV),aftershort electro-chemicalcharacterizationoftheelectrochemicalfeaturesbycyclic voltammetry(CV),ataglassycarbonworkingelectrode. Experi-mentsincyclicvoltammetrywereconductedoverapotentialrange from−0.200to1.000V, withascan rateof

v

=10mV/s.

Experi-mentalconditionsforSWVwere:potentialstepdE=0.001V,pulse height(SWamplitude) Esw=0.050Vand frequency of f=10Hz. Priortoeachelectrochemicalexperimenttheworkingelectrode waspolishedbyusingAlCl3onapolishingcloth,followedbyrinsing oftheelectrodewithwaterandacetoneanddryinginair.

Statistics

VarianceanalyseswereperformedbyusingaGraphPadPrism 6.0.ProcessingoftheresultswasdonebyonewayANOVA,for threegroupsofresults(differenttimeofexposition),inwhicheach treatmentofthecellswascomparedbythetreatmentwith neg-ativecontroland/orpositivecontrol.Allgraphsrepresentmeans andstandarddeviationsfortriplicatesamplesfromeachofthree independentexperiments(n=9).Resultswhicharestatistically sig-nificantareshowedonthegraphs,p<0.01.Theregressionanalysis wasperformedusingtheprogramGraphPadPrism6.0,XYanalyses, linearregression.

Results

Determinationofthecapsaicinconcentration

Spectrophotometricmeasurementoftheconcentrationof cap-saicinintheethanolicoleoresinswasdeterminedonthebasisof standardsolutionsofcapsaicin.Theconcentrationofcapsaicinin

3

2

A

R2=0.999

1

0

0.0 0.1 0.2

c (capsaicin) /mg/ml

0.3

Fig.1.CalibrationcurveconstructedforstandardsolutionsofcapsaicinbyUVVIS.

thesampleswerecalculatedusingtheregression curveand lin-earityequation(Fig.1).Becausetheextractswereobtainedwith 96%ethanol,wedilutedtheextractswithDMEMinratio1:100,in ordertoescapeanycytotoxiceffectsofethanolonthecells. Addi-tionally,thedilutionaffectedthecoloroftheextracts.Thecolor comesfromthehighconcentrationofpigments,anditvanished afterthedilution.Therefore,toobviatetheprobabilityofgiving falseresults,extractsweredilutedtoappropriateconcentrations fortreatmentofthecellsgiveninTable1.Bombonagenotype con-tainedthehighestconcentrationofcapsaicinwith2.10mM,forthis extract.Concentrationsofcapsaicincalculatedasmg/gDWarein linewiththeresultsfoundintheliterature(Tilahunetal.,2013).

Effectofcapsaicinoncellviabilityandcelldeath

Asshown in Fig.2, capsaicin present in low concentrations (0.5–10␮M)didnotsignificantlyinfluencethecellviability.The concentrationrequired to inhibit 50%of the cells viability was foundtobe61.9␮M,whichisinaccordancewiththeprevious find-ingsforcapsaicin(Richeuxetal.,1999).Inconcentrationof100 and250␮Mitinhibited theviabilityofB104cells comparedto theeffectsof0.1%TritonXsolution,usedaspositivecontroland DMEM(assaymedium)asnegativecontrol.Theincubationof1h resultedinamoderateinhibitionfor100␮M(29±11.5% inhibi-tion,p>0.05),whereastheeffectsweremorepronouncedaftera longerincubationperiodorata higherconcentration.Capsaicin (100␮M)incubatedforaperiodof6hresultedin94±1% inhibi-tion,whileafteranincubationperiodof24h,theinhibitionwas 95±0.1%(p<0.01).Higher concentrationof capsaicin(250␮M)

Table1

ConcentrationofcapsaicininstandardsolutionandextractsofCapsicumusedfor

treatmentofB104cellsinMTTandLDHassays,(extractsweredilutedwithDMEM

inratio1/100).

Standard solutions

Concentration ofcapsaicin [␮M]

Diluted extractsfor treamentof cells

Concentration ofcapsaicinin extracts[mM]

St.solution1 0.5 Solutionof

Vezena

0.51

St.solution2 1 Solutionof

Feferona

0.78

St.solution3 10 Solutionof

Bombona BBBombona

2.1

St.solution4 100 Solutionof

Sivrija

0.65

(4)

120 1h incubation

6h incubation

24h incubation

100

80

60

Vibaility of cells (% of control)

40

20

0

DMEM 0.5 Triton X

#

** ** ** ** **

Concentrations of capsaicin (μm)

1 10 100 250

Fig.2.Effectofdifferentcapsaicinconcentrationsoncellviability(MTTassay)on B104neuroblastomacellsincubatedfor1,6or24h.Thereisasignificantdifference intheresultsfortheeffectof100␮Mcapsaicinfor1hcomparedtotheeffectfor 6h.Significance:#(p<0.05),**(p<0.01)vs.DMEM.

100

80

60

40

20

Viability of cells (% of control) 0

DMEM 0.5 1

Concentrations of capsaicin (μm)

10 100

1h incubation 6h incubation 24h incubation

250

Fig.3. Capsaicinsuppressescellviabilityinatimeanddosedependentmanner. Therewasasignificantcytotoxicityofhigherconcentrationsofcapsaicin(100and 250␮M),after6and24hincubation.IC5061.9␮Mfor6handIC5061.6␮Mfor24h.

resultedin much higher inhibition ofcell viabilityeven for1h

incubation(93±0.5%,p<0.01)andfor6hand24h(94±1%and

95±0.2%,p<0.01,respectively).

TheresultsfromtheMTT assay(Fig.3)showedthatthereis

significantdifferenceintheviabilityofculturedcellswhenthey weretreatedwithcapsaicinfor1h,and6or24h.Thecalculated IC50 valuefor6h(IC5061.9␮M)wasalmostthesameasfound after 24h incubation period (IC50 61.6␮M) indicating that the effectofcapsaicinwasnotpronouncedwithinalongerincubation period.

TheresultobtainedfromtheLDHassayispresentedinFig.4.and itconfirmedtheresultsobtainedfromtheMTTassay.Capsaicin inlowconcentrations(0.5–10␮M)didnotsignificanlyinfluence theLDHrelease.Inconcentrationof100and250␮Mitresulted inhighLDHreleasefromB104cells,indicatingcelldeath.Results werecomparedtotheeffectsof0.1%TritonX solution,usedas positivecontrolandDMEM(assay medium)asnegativecontrol. Concentrationofcapsaicinof100␮Mincubatedfor1hresultedina moderateLDHrelease(13±6%,p>0.05),whereastheeffectswere morepronouncedafteralongerincubationperiodoratahigher concentration.Thesameconcentrationofcapsaicin(100␮M)fora periodof6hincubationresultedin96±2.3%celldeath,whilefor 24htreatment,thecelldeathwasincresedto58±5.1%,(p<0.01). Higher concentration of capsaicin (250␮M) resulted in much higher cytotoxicity of cells even for 1h incubation (100±2.7%, p<0.01),aswellasfor6hand24hconsequently(90±1.38%and 98±6.9%,p<0.01).

120

100

80

60

% of cell death 40

20

0

DMEM 0.5 1 10 100 250

Concentrations of capsaicin (μm) 1h incubation ∗ ∗

∗∗

# ∗∗

∗∗ ∗∗

6h incubation 24h incubation

Fig.4.Effectofcapsaicinindifferentconcentration(0.5,1,10,100,250␮M),

exam-inedbyLDHassayonB104neuroblastomacellsfor1,6or24hofincubation.Treating

oftheneuroblastomacellswithcapsaicin(100and250␮M)for6or24hresulted

inhighincreaseinLDHreleaseindicatingcelldeath.(#p<0.05;*p<0.01).Values

aremeans±SEcomparedwithDMEMasnegativecontrol.n=9foreachgroup.

Ethanolic capsicum extracts

DMEM

120

100

80

60

40

Viability of cells (% of control)

20

0

V

ez

ena

F

ef

erona

Bombona

Sivr

ija

T

riton X

1h incubation 6h incubation 24h incubation

Fig.5. EffectofethanolicCapsicumextracts(obtainedfromCapsicumgenotypes:

Vezena,Feferona,Bombona,Sivrija)oncellviability(MTTassay)treatedfor1,6or

24h.Viabilityofthecellswascomparedtonegativecontrol(DMEM).

EffectofethanolicCapsicumextractsoncellviabilityandcell death

Incontrasttocapsaicin,theethanolicCapsicumextractsdidnot influencesignificantlyneitherthecellviabilitynorthecelldeath.In theMTTassay(Fig.5)therewasnosignificantinhibitionofthecell viabilityaftertreatmentofthecellswiththeextracts.The incu-bationtimeperiod hadnot effectonthecellviability.TheLDH assay(Fig.6)confirmedtheresultsofMTTassay.Noeffectsonthe LDHreleasewasfound,indicatingthattheextractdidnothaveany cytotoxiceffects.

Antioxidativepotentialofcapsaicinandotherco-extracted bioactivecompoundspresentintheethanolicCapsicumextracts

Abriefelectrochemicalcharacterizationofcapsaicin,vitaminE, ascorbicacidandquercetinhasbeenperformedbymeansofcyclic voltammetry(resultsnotshown),whiletheirpotentialsynergistic antioxidativeeffecthasbeenanalyzedbymeansofsquare-wave voltammetry.TypicalnetSWvoltammogramsofcapsaicin, vita-min E, quercetin, and ascorbic acid (each at concentration of 10␮mol/l)recordedataglassycarbonelectrodeinabuffer solu-tionatpH=7.0aregiveninFig.7.ThenetSWpeaksofvitaminE andquercetinarecloselypositionedatpotentialsofEp,net=0.146V

(5)

Ethanolic capsicum extracts

DMEM

120

100

80

60

40

% of cell death

20

0

Vezena Feferona

Bombona

Sivrij

a

1h incubation 6h incubation 24h incubation

T

riton

X

Fig.6.EffectofethanolicCapsicumextractsoncelldeath(LDHassay)treatedfor

1,6or24h.TherewasnosignificantdifferencewithethanolicCapsicumextracts

comparedtothenegativecontrol(DMEM).

5.0

4.5

4.0

3.5

3.0

I

/

μ

A

E/V (v.s Ag/AgCI) c

d b

a e

2.5

2.0

1.5

–0.20 –0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Fig.7.Square-wavevoltammogramof:(A)vitaminE;(B)quercetin,(C)ascorbicacid

and(D)capsaicin(10␮M),(E)equimolarmixturecontainingvitaminE,quercetin,

ascorbicacidandcapsaicinatconcentrationof10␮M,recordedataglassy

car-bonelectrodeinabuffersolutionatpH=7.1.Instrumentalparameterswere:step

potentialdE=0.001V,square-waveamplitudeEsw=0.05Vandfrequencyof10Hz.

locatednearbythecapsaicinpotential(atEp,net=0.409Vfor

ascor-bicacidand Ep,net=0.352V forcapsaicin).VitaminEelevatesto

thehighestnetpeak current(Ip,net=1.894␮A) comparedtothe maximalpeakcurrentsofquercetin,ascorbicacidandcapsaicin (0.580␮Aforquercetin,0.193␮Aforascorbicacidand0.086␮A forcapsaicin).Theobtainedsquare-wavevoltammogramsforthe equimolar mixture of 10␮mol/l of each compound show that thevoltammetricresponseconsistsofasingleSWVpeakatthe potentialabout0.128V,whichisbetweenthetypicalpeakof Vita-minE and quercetin. Themeasured netpeak current obtained for the mixture of all four compounds was Ip,net=3.313␮A, Fig.7(e).

Discussion

It is well known that capsaicin has different carcinogenic effects onneuronal and non-neuronalcells (Chouet al., 2009). However, capsaicin induced cytotoxicity on pancreatic neu-roendocrine tumor cells Skrzypski et al. (2014), human skin fibroblasts Kim et al. (2004), human gastric adenocarcinoma cell line (Yi-Ching et al., 2005). Ethanolic extracts of several spices,inwhichchillipepperwasincluded,inhibitedcellgrowth at concentrations of 0.2–1mg/ml in vitro (Unnikrishnan and

4

3.5 y=0.304x+0.368

R2=0.987 3

2.5

2

1 1.5

I

pa/

μ

A

0.5

0

0 2 4

Equimolar concentration of all compounds in mixture μmol/I

6 8 10 12

Fig.8. Dependenceontheanodicpeakcurrentandtheconcentrationofequimolar

mixturescontainingvitaminE,quercetin,ascorbicacidandcapsaicinat

increas-ingconcentrationfrom1to10␮M,inaphosphatebufferatpH=7.1(dE=0.001V,

Esw=0.050Vandfrequencyof10Hz).

Ramadasan,1988).Otherauthorsconfirmedthatethanolic Cap-sicum extracts (0.01–1000␮g/ml) didnot alter endothelial cell survival(Chularojmontrietal.,2010).

Ourresultsshowedthatthecytotoxicactivityofcapsaicinon neuroblastomaB104cellswaspronouncedatconcentrationsof100 and200␮M.TheIC50valueswerefoundtobe61.9␮Mfor incuba-tiontimeperiodof6hand61.6␮Mfor24h,respectively,indicating thattheefficiencyunderthegivenconditionsdidnotchangewhen theincubationtimeperiodwasextendedform6hto12h. Previ-ousfindingsofcapsaicincytotoxicityhaveshowna similarIC50 valuebutit wasobtainedfor5daystreatmentofthecells with capsaicin(Richeuxetal.,1999).Lowerconcentrationsofcapsaicin (Figs.2and4)didnotshowanycytotoxicactivity.Interestingly,the extractsobtainedfromdifferentgenotypes(Figs.5and6)which containedevenhigherconcentrationofcapsaicindidnotinduce theexpectedcytotoxicity.

(6)

we could report that vitamin E and quercetin can eventually neutralizethe ROS produced bycapsaicin atthe mitochondrial membrane.

Huetal.(2008)haveshownthatTRPV1receptorisincluded incapsaicininducedCa2+influxbygenerationofreactiveoxygen species(ROS),depolarizationofthemitochondrialmembrane,and ultimatelycelldeathonthesynovialfibroblastsinrats.Huangetal. (2009)havedemonstratedthattheapoptoticprocesson hepatocel-lularcancerwasalsoaccompaniedbyincreasingoftheintracellular Ca2+level,increasedproductionofROS,anddisruptionof mito-chondrialmembranepotential.Thisapoptoticmechanismwasalso confirmedformanyothertypesofcancer.

Therefore,weassumethathighantioxidativepotentialofthese co-extractedcompoundspresentintheethanolicextractscould haveanantagonisticeffecttocapsaicincytotoxicmechanism.This hypothesis enforced us toconsider that thesynergistic antiox-idativeeffectofthecomplexcompositionofhotpepperfruitsis responsiblethatethanolicCapsicumextractshavenotshown cyto-toxicactivity,besideitshighconcentrationofcapsaicin.

Conclusions

Thisstudyexhibitedthatcapsaicincanactascytotoxicagent inneruoblastomacellsinadosedependentmanner.Knowingthat capsaicincanbeeasilyextractedandisolatedfromCapsicumfruits offersthechance for discovering a phytochemicalagent which possessesastrongpharmacologicalactivityinantitumortherapy. Incontrast,Capsicumextractsdidnotshowanyanti-proliferative activity.Therefore,additionalelectrochemicalexperimentswere performedtoexplainthesynergisticeffectsbetweencapsaicinand vitaminE,quercetinandascorbicacid,presenttogetherina com-plexmixture.Asshownintheliterature,acommonmechanismof capsaicincytotoxicityisachievedthroughproductionofreactive oxygenspeciesoncellularlevel.Thisleadstodisruptionof mito-chondrialmembranepotential,activationofcaspase-3activityand successiveapoptosis.Weassumedthatthisphenomenonof syner-gismbetweenthestudiedcompoundscouldbeapossiblereasonfor antagonisticeffectsoftheotherco-extractedphytochemicalsfrom thehotpepperfruitsonthecytotoxicityofcapsaicin.Inorderto ensureinthishypothesisfurtherexperimentsareneededtoobtain moredetailedresultsofthemechanismofcytotoxicityofcapsaicin whenitisinamixturewithotherbioactivecompoundsfoundin peppers.

Ethicaldisclosures

Protection of human subjects and animals in research.The authorsdeclarethatnoexperimentswereperformedonhumans oranimalsforthisstudy.

Confidentialityofdata. Theauthorsdeclarethattheyhave fol-lowed theprotocolsof theirworkcenter onthe publicationof patientdata.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat nopatientdataappearinthisarticle.

Authorcontributions

VM(PhDstudent)contributedincollectionandidentification ofthepepperfruits,preparationoftheextracts,runningthe lab-oratory experiments in (spectrophotometry, cytotoxic analyses and voltammetry), analysesof the dataand preparation ofthe manuscript.LKGcontributedintheUVanalysesandsupervised theextractionprocedures.RGdesignedthestudyofthe

antioxida-tiveanalysesinvoltammetryandsupervisedallthevoltammetric experimentandresults.KNdesignedthestudyofcytotoxicity anal-yses and supervised allthe experimentsperformed onthecell cultures.Allcoauthorscontributedwiththeircritical readingof themanuscript.Alltheauthorshavereadthefinalmanuscriptand approveditforpublication.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

WethanktoDAADorganizationforcollaborationbetweenGoce DelcevUniversity,Stip,RepublicofMacedoniaandUniversityof Leipzig,Leipzig, Germany,throughtheprojectMatCatNet, 2013. Someexperiments were performedin theframe of studystay, whichwasfinanciallysupportedwithascholarshipbyDAAD foun-dation.

References

Asnin,L.,Park,S.W.,2015.IsolationandanalysisofbioactivecompoundsinCapsicum

peppers.Crit.Rev.FoodSci.Nutr.55,254–289.

Baek,Y.M.,Hwang,H.J.,Kim,S.W.,Hwang,H.S.,Lee,S.H.,Kim,J.A.,Yun,J.W.,2008.

Acomparativeproteomicanalysisforcapsaicin-inducedapoptosisbetween humanhepatocarcinoma(HepG2)andhumanneuroblastoma(SK-N-SH)cells. Proteomics8,4748–4767.

Barros, L.,Falcao, S., Baptista, P., Freire, C., Vilas-Boas, M.,Ferreira, I., 2008.

AntioxidantactivityofAgaricussp.mushroomsbychemical,biochemicaland electrochemicalassays.FoodChem.111,61–66.

Bode,A.M.,Dong,Z.,2011.Thetwofacesofcapsaicin.CancerRes.71,2809–2814.

Buczkowska,H.,Dyduch,J.,Agnieszcka,N.,2013. Capsaicinoidsin hotpepper

dependingonfruitmaturitystageandharvestdate.ActaSci.Pol.Hortorum Cultus.12,183–196.

Chou, C.C., Wu, Y.C., Wang, Y.F., Chou, M.J., Kuo, S.J., Chen, D.R., 2009.

Capsaicin-induced apoptosisin human breast cancerMCF-7 cells through caspase-independentpathway.Oncol.Rep.21,665–671.

Chularojmontri,L.,Suwatronnakorn,M.,Wattanapitayakul,K.S.,2010.Influenceof

Capsicumextractandcapsaicinonendothelialhealth.J.Med.Assoc.Thai.93, 92–100.

Clark,R.,Ho-Lee,S.,2016.Anticancerpropertiesofcapsaicinagainsthumancancer.

AnticancerRes.36,837–844.

Daood,H.G.,Vinkler,M.,Markus,F.,Hebshi,E.A.,Biacs,P.A.,1996.Antioxidant

vita-mincontentofspiceredpepper(paprika)asaffectedbytechnologicaland varietalfactors.FoodChem.55,365–372.

Díaz-Laviada,I.,Rodríguez-Henche,N.,2014.Thepotentialantitumoreffectsof

cap-saicin.Prog.DrugRes.68,181–208.

Dobes,J.,Zitka,O.,Sochor,J.,Ruttkay-Nedecky,B.,Babula,P.,Beklova,M.,Kynicky,

J.,Hubalek,J.,Klejdus,B.,Kizek,R.,Adam,V.,2013.Electrochemicaltoolsfor

determinationofphenoliccompoundsinplants.Areview.Int.J.Electrochem. Sci.8,4520–4542.

Hu,F.,Sun,W.W.,Zhao,X.T.,Cui,Z.J.,Yang,W.X.,2008.TRPV1mediatescelldeathin

ratsynovialfibroblaststhroughcalciumentry-dependentROSproductionand mitochondrialdepolarization.Biochem.Biophys.Res.Commun.369,989–993.

Huang,S.P.,Chen,J.C.,Wu,C.C.,Chen,C.T.,Tang,N.Y.,Ho,Y.T.,Lo,C.,Lin,J.P.,Chung,

J.G.,Lin,J.G.,2009.Capsaicin-inducedapoptosisinhumanhepatomaHepG2

cells.AnticancerRes.29,165–174.

Kim,S.J.,Won,Y.H.,Kim,J.K.,2004.Cytotoxicityofcapsaicinonculturedhumanskin

fibroblast.Exp.Dermatol.13,588.

Krinsky,N.I.,2001.Carotenoidsasantioxidants.Nutrition17,815–817.

Krinsky,N.I.,1994.Thebiologicalpropertiesofcarotenoids.PureAppl.Chem.66,

1003–1010.

Materska,.M.,Perucka,I.,2005.Antioxidantactivityofthemainphenoliccompounds

isolatedfromhotpepperfruit(CapsicumannuumL.).J.Agric.FoodChem.53, 1750–1756.

Matsufuji,H.,Nakamura,H.,Chino,M.,Takeda,M.,1998.Antioxidantactivityof

capsantinandthefattyacidestersinpaprika(Capsicumannuum).J.Agric.Food Chem.46,3468–3472.

Mosmann,T.,1983.Rapidcolorimetricassayforcellulargrowthandsurvival:

appli-cationtoproliferationandcytotoxicityassays.J.Immunol.Methods65,55–63.

Palevitch,D.,Craker,L.E.,1995.Nutritionalandmedicinalimportanceofredpepper

(Capsicumspp.).J.HerbsSpicesMed.Plants3,55–83.

Perucka,I.,Oleszek,W.,2000.Extractionanddeterminationofcapsaicinoidsinfruit

ofhotpepperCapsicumannuumL.byspectrophotometryandhigh-performance liquidchromatography.FoodChem.71,287–291.

Pohanka,M.,Hynek,D.,Kracmarova,A.,Kruseova,J.,Ruttkay-Nedecky,B.,Sochor,J.,

(7)

assayforassessmentofoxidativestresslinkedpathologiesinbraintumor suf-feredchildhoodpatients.Int.J.Electrochem.Sci.7,11978–11992.

Pramanik,K.C.,Boreddy,S.R.,Srivastava,S.K.,2011.Roleofmitochondrialelectron

transportchaincomplexesincapsaicinmediatedoxidativestressleadingto apoptosisinpancreaticcancercells.PLoSONE6,e20151.

Rafajlovska,V.,Slaveska-Raicki,R.,Koleva-Gudeva,L.,Klopceska,J.,2007.Spice

paprikaoleoresinextractionunderdifferentconditionsinvolvingacetoneand ethanol.J.FoodAgric.Environ.5,65–69.

Richeux,F.,Cascante,M.,Ennamany,R.,Saboureau,D.,Creppy,E.E.,1999.

Cytotoxic-ityandgenotoxicityofcapsaicininhumanneuroblastomacellsSHSY-5Y.Arch. Toxicol.73,403–409.

Sanchez,A.M.,Sanchez,M.G.,Malagarie-Cazenave,S.,Olea,N.,Diaz-Laviada,I.,2006.

InductionofapoptosisinprostatetumorPC-3cellsandinhibitionofxenograft prostatetumorgrowthbythevanilloidcapsaicin.Apoptosis11,89–99.

Skrzypski,M.,Sassek,M.,Abdelmessih,S.,Mergler,S.,Grötzinger,C.,Metzke,D.,

Wojciechowicz,T.,Nowak,K.W.,Strowski,M.Z.,2014.Capsaicininduces

cyto-toxicityinpancreaticneuroendocrinetumorcellsviamitochondrialaction.Cell. Signal.26,41–48.

Sukrasno,N.,Yeoman,M.M.,1993.Phenylpropanoidmetabolismduringgrowthand

developmentofCapsicumfrutescensfruits.Phytochemistry32,839–844.

ThePlanList,www.theplantlist.org(accessedFebruary,2015).

Tilahun,S.,Paramaguru,P.,Rajamani,K.,2013.Capsaicinandascorbicacidvariability

inchilliandpaprikacultivarsasrevealedbyHPLCanalysis.J.PlantBreed.Genet. 1,85–89.

Unnikrishnan,M.C.,Ramadasan,K.,1988.Cytotoxicityofextractsofspicesto

cul-turedcells.Nutr.Cancer11,251–257.

Uttara,B.,Singh,V.A.,Zamboni,P.,Mahajan,R.T.,2009.Oxidativestressand

neu-rodegenerativediseases:areviewofupstreamanddownstreamantioxidant therapeuticoptions.Curr.Neuropharmacol.7,65–74.

Won,H.C.,Hyun,J.L.,Yoon,J.C.,Joo,H.O.,Han,S.K.,Hwan,W.S.C.,2013.Capsaicin

inducesapoptosisinMG63humanosteosarcomacellsviathecaspasecascade andtheantioxidantenzymesystem.Mol.Med.Rep.8,1655–1662.

Yi-Ching,L.,Yuan-Chieh,Y.,I-Chen,W.,Fu-Chen,K.,Chi-Ming,L.,Hao-Wei,W.,

Chao-Hung,K.,Jeng-Yi,W.,Deng-Chyang,W.,2005.Capsaicin-inducedcell

deathinahumangastricadenocarcinomacellline.WorldJ.Gastroenterol.11, 6254–6257.

Zhang,R.,Humphreys,I.,Sahu,R.P.,Shi,Y.,Srivastava,S.K.,2008.Invitroand

Imagem

Fig. 1. Calibration curve constructed for standard solutions of capsaicin by UV VIS.
Fig. 3. Capsaicin suppresses cell viability in a time and dose dependent manner.
Fig. 8. Dependence on the anodic peak current and the concentration of equimolar mixtures containing vitamin E, quercetin, ascorbic acid and capsaicin at  increas-ing concentration from 1 to 10 ␮M, in a phosphate buffer at pH = 7.1 (dE = 0.001 V, E sw = 0.

Referências

Documentos relacionados

Duas boas dicas de leitura que retratam tanto a indústria dos gibis quanto a vida da comunidade judaica nos Estados Unidos daquela época são No coração da tempestade, autobiografia

Fusarium napiforme – colônias com micélio aéreo branco no início, tornando–se púrpura claro, com a parte central branca e espessa (CC e E/C), porém de crescimento e

This study aimed to analyse the physical and physic-chemical characteristics, centesimal composition, occurrence and concentration of carotenoids, vitamin C, vitamin E and mineral

This study examined the physical and physicochemical characteristics, proximate composition, concentration of carotenoids, vitamin C, vitamin E and minerals in the pulp and kernels

Table 3 shows the correlation coefficient between vitamin C, carotenoid, anthocyanin, yellow flavonoid and Table 2 – Bioactive compounds and antioxidant capacity of cashew apples

Para este efeito pensámos entrevistar: uma especialista em psicologia positiva, no sentido de percebermos de que forma poderíamos fomentar o optimismo nas

The present study evaluated the effects of supplementation with a combination of vitamin C and vitamin E on NADH-diaphorase-positive (NADH-d + ) and neuronal

In the current study, response surface methodology (RSM) was used to assess the effects of extraction time and temperature on the content of bioactive compounds and