• Nenhum resultado encontrado

Quantização BRST de Teorias com simetria de Gauge Sp(2,R)

N/A
N/A
Protected

Academic year: 2017

Share "Quantização BRST de Teorias com simetria de Gauge Sp(2,R)"

Copied!
94
0
0

Texto

(1)

❯♥✐✈❡rs✐❞❛❞❡ ❞❡ ❙ã♦ P❛✉❧♦

■♥st✐t✉t♦ ❞❡ ❋ís✐❝❛

◗✉❛♥t✐③❛çã♦ ❇❘❙❚ ❞❡ ❚❡♦r✐❛s ❝♦♠ ❙✐♠❡tr✐❛ ❞❡

●❛✉❣❡ ❙♣✭✷✱

R

❏♦ã♦ ❊❞✉❛r❞♦ ❋r❡❞❡r✐❝♦

❖r✐❡♥t❛❞♦r✿ Pr♦❢✳ ❉r✳ ❱✐❝t♦r ❞❡ ❖❧✐✈❡✐r❛ ❘✐✈❡❧❧❡s

❚❡s❡ ❞❡ ❉♦✉t♦r❛❞♦ ❛♣r❡s❡♥t❛❞❛ ❛♦ ■♥st✐t✉t♦ ❞❡ ❋ís✐❝❛ ♣❛r❛ ❛ ♦❜t❡♥çã♦ ❞♦ tít✉❧♦ ❞❡ ❉♦✉t♦r ❡♠ ❈✐ê♥❝✐❛s

❇❛♥❝❛ ❊①❛♠✐♥❛❞♦r❛✿

Pr♦❢✳ ❉r✳ ❱✐❝t♦r ❞❡ ❖❧✐✈❡✐r❛ ❘✐✈❡❧❧❡s ✭■❋❯❙P✮ Pr♦❢✳ ❉r✳ ▼❛r❝❡❧♦ ❖✳ ❈✳ ●♦♠❡s ✭■❋❯❙P✮ Pr♦❢✳ ❉r✳ ❆❞✐❧s♦♥ ❏♦sé ❞❛ ❙✐❧✈❛ ✭■❋❯❙P✮ Pr♦❢✳ ❉r✳ ❉❡♥✐s ❉❛❧♠❛③✐ ✭❋❊●✲❯◆❊❙P✮ Pr♦❢✳ ❉r✳ ◆❡❧s♦♥ ❇r❛❣❛ ✭❯❋❘❏✮

(2)
(3)

❆❣r❛❞❡❝✐♠❡♥t♦s

❊♠ ♣r✐♠❡✐r♦ ❧✉❣❛r✱ ❣♦st❛r✐❛ ❞❡ ❛❣r❛❞❡❝❡r ❛ ❉❡✉s ❛ ♣♦ss✐❜✐❧✐❞❛❞❡ ❞❡ ❡♥✲ ❝❡rr❛r ❡st❛ t❡s❡ ❞❡ ❞♦✉t♦r❛❞♦✳

❊ s❡❣✉✐❞❛✱ ❣♦st❛r✐❛ ❞❡ ❛❣r❛❞❡❝❡r ❛♦s ♠❡✉s ♣❛✐s ❘❡②♥❛❧❞♦ ❡ ▲♦✉r❞❡s✱ ♣❡❧♦ ❛♣♦✐♦ ✐♥❝♦♥❞✐❝✐♦♥❛❧ ❞❛❞♦ ❛♦ ❧♦♥❣♦ ❞♦ ❞❡s❡♥✈♦❧✈✐♠❡♥t♦ ❞❡st❡ tr❛❜❛❧❤♦✳

●♦st❛r✐❛ ❞❡ ♠❛♥✐❢❡st❛r ♠✐♥❤❛ ❣r❛t✐❞ã♦ ❛♦ ♣r♦❢✳ ❱✐❝t♦r✱ ♣❡❧❛ ❛♠✐③❛❞❡ ❡ ❝✉✐❞❛❞♦s❛ ♦r✐❡♥t❛çã♦ ♥❛ r❡❛❧✐③❛çã♦ ❞❡st❡ tr❛❜❛❧❤♦✳

❆s ♠✐♥❤❛s ✐r♠ãs ❘♦sâ♥❣❡❧❛✱ ❘♦s❛♥❡ ❡ ❘♦s❡✱ ♠❡✉s s♦❜r✐♥❤♦s ❙❛♠✉❡❧✱ ❘❛✲ ❢❛❡❧✱ ●❛❜r✐❡❧❛✱❘❡❜❡❝❛ ❡ ❛♦s ♠❡✉s ❝✉♥❤❛❞♦s ❊r❛❧❞♦ ❡ P❛✉❧♦ ♣❡❧♦ ❛♣♦✐♦ ♥♦s ♠♦♠❡♥t♦s ♠❛✐s ❞✐❢í❝❡✐s✳

❆♦ ❝❛r✐♥❤♦ ❡ ♦ ❛♣♦✐♦ ❞❛ ❏❛❝q✱ ❙❛❤r❛ ❡ ❈❧❛r❛✳ ❆ ✈♦❝ês ♠❡✉ ❝❛r✐♥❤♦ ❛ ❛♠♦r✳

❆ ♠✐♥❤❛ s❡❣✉♥❞❛ ❢❛♠í❧✐❛❀ ●r❛ç❛✱ ❇❡t❡✱❙ã♦③✐♥❤❛✱◆❛❞❞✐❛✱ ❉❛✐❛♥❡✱❉♦❞ô✱ ❚♦t✐✱ ●ê✱▲ú❝✐♦✱ ❋❛t✐♥❤❛✱ ❆❢♦♥s♦✱ ▲ú❝✐❛✱ ❈❛r♠❡♠ ❡ ❛ t♦❞♦s ♦s ♠❡✉s s♦❜r✐✲ ♥❤♦s✱ ❝✉♥❤❛❞♦s ❛ ♠✐♥❤❛ ❣r❛t✐❞ã♦ ♣❡❧❛ ❝♦♠♣r❡❡♥sã♦ ❞❛ ❛✉sê♥❝✐❛ ❡♠ ♠✉✐t♦s ♠♦♠❡♥t♦s✳

❆♦s ❛♠✐❣♦s ❲✐❧s♦♥ ❙❛❝r❛♠❡♥t♦✱ ▼❛r❝✐❛ ❍❛t❛❡✱ ▼♦♥✐❝❛ ❑❛❝❤✐♦✱ ▲❡♦♥❛r❞♦ ❙✐♦✉✜✱ ▼❛r❝✐❛ ▼✐③♦✐✱ ❋❛❜✐❛♥♦ ❈és❛r ❈❛r❞♦s♦✱ ●✉✐❧❤❡r♠♦ ▲❛③♦✱ ❯❧②ss❡s ❈❛r✲ ✈❛❧❤♦ ❛❣r❛❞❡ç♦ ♦ ❛♣♦✐♦✳

❆♦s ❛♠✐❣♦s ❞♦ ❏♦❤r❡✐ ❈❡♥t❡r ❇✉t❛♥tã ❈✐❞❛ ❇❛❧❞✉✐♥♦✱ ▼❛r❣❛r✐❞❛ ❞❡ ❏❡s✉s✱ ❨❛ss✉②♦✱ ❘♦s❛ ❙❡✐❦✐✱ ❋❛❜✐❛♥❛ ▲✐♠❛✱ ❉r✐✱ ●❡r❝✐✱ ■r❡♥❡✱ ❙♦♥✐❛ ❱✐❧❡❧❛✱ ▲♦✉r❞❡s ❡ t♦❞♦s ♦s ❛q✉✐ ♥ã♦ ❝✐t❛❞♦s ♣♦r ❢❛❧t❛ ❞❡ ❡s♣❛ç♦✳ ❚❛♠❜é♠ ❛♦s ❛♠✐❣♦s ❞♦ ❏♦❤r❡✐ ❈❡♥t❡r P♦ç♦s ❞❡ ❈❛❧❞❛s✳

❆♦s ❢✉♥❝✐♦♥ár✐♦s ❞♦ ❞❡♣❛rt❛♠❡♥t♦ ❞❡ ❢ís✐❝❛ ♠❛t❡♠át✐❝❛ q✉❡ ♠✉✐t♦ ❝♦♥✲ tr✐❜✉ír❛♠ ❡♠ ♠✐♥❤❛ ❡st❛❞✐❛ ♥♦ ❞❡♣❛rt❛♠❡♥t♦✱ ❆♠é❧✐❛✱ ❙✐♠♦♥❡✱ ❏♦ã♦✱ ❙✐❜❡❧❡ ❡ ❇❡t❡✳

(4)

❘❡s✉♠♦

◆❡st❡ tr❛❜❛❧❤♦ ❡♠♣r❡❣❛♠♦s ❛ té❝♥✐❝❛ ❞❡ ❇❋❱ ♣❛r❛ q✉❛♥t✐③❛r ✉♠❛ t❡♦r✐❛ ❝♦♠ s✐♠❡tr✐❛ ❞❡ ❣❛✉❣❡ SP(2,R)✳ P❛r❛ ✐ss♦ ❡♠ ♣r✐♠❡✐r♦ ❧✉❣❛r✱ ❛♥❛❧✐s❛♠♦s ♦ ❝r✐tér✐♦ ❞❡ ❛❞♠✐ss✐❜✐❧✐❞❛❞❡ ❞❡ ●♦✈❛❡rts ♣❛r❛ ❛s ❝♦♥❞✐çõ❡s ❞❡ ❣❛✉❣❡ ♣❛r❛ ❛ t❡♦r✐❛ ❞❛ ♣❛rtí❝✉❧❛ r❡❧❛t✐✈íst✐❝❛✱ ❝✉❥♦ ♣r♦♣❛❣❛❞♦r é ❝❛❧❝✉❧❛❞♦ ♥♦s ❣❛✉❣❡s ❝♦✲ ✈❛r✐❛♥t❡✱ ❝❛♥ô♥✐❝♦ ❡ ❞♦ ❝♦♥❡ ❞❡ ❧✉③ ♣♦r ♠❡✐♦ ❞❛ ❞✐s❝r❡t✐③❛çã♦ ❞❛ ✐♥t❡❣r❛❧ ❞❡ tr❛❥❡tór✐❛ ❡ ❡st❛ ♠♦str❛ q✉❡ ❛ ❛çã♦ ❞✐s❝r❡t✐③❛❞❛ ♣❡r❞❡ ❛ ✐♥✈❛r✐â♥❝✐❛ ♣♦r tr❛♥s✲ ❢♦r♠❛çõ❡s ❞❡ ❇❘❙❚❀ ❡ ♣❛r❛ r❡st❛✉r❛r s✉❛ ✐♥✈❛r✐â♥❝✐❛ é ♥❡❝❡ssár✐♦ ♠♦❞✐✜❝❛r ❛s tr❛♥s❢♦r♠❛ç♦❡s ❞❡ ❇❘❙❚✳

❊♠ s❡❣✉♥❞♦ ❧✉❣❛r✱ ❛♣❧✐❝❛♠♦s ❛ té❝♥✐❝❛ ❞❡ ❇❋❱ ♣❛r❛ ✉♠❛ t❡♦r✐❛ ❝♦♠ ❞♦✐s t❡♠♣♦s ❡ s✐♠❡tr✐❛ ❞❡ ❣❛✉❣❡SP(2,R)✱ ❡♠ s❡❣✉✐❞❛✱ ❛♥❛❧✐s❛♠♦s ♦ ❡❢❡✐t♦ ❞❛ ❞✐s✲ ❝r❡t✐③❛çã♦ ❡ ♠♦str❛♠♦s q✉❡ ❛ ❛çã♦ ❞✐s❝r❡t✐③❛❞❛ ♣❡r❞❡ ❛ ✐♥✈❛r✐â♥❝✐❛ ♣♦r tr❛♥s✲ ❢♦r♠❛çõ❡s ❞❡ ❇❘❙❚✳ ◆❡st❡ ❝❛s♦✱ ❛s ♠♦❞✐✜❝❛çõ❡s ♥❡❝❡ssár✐❛s ✐♥❝❧✉❡♠ t❡r♠♦s ❞❡ ♦r❞❡♠ ∆τ

N ♥❛s tr❛♥s❢♦r♠❛çõ❡s ❞❡ ❇❘❙❚ ❡ ❡st❛s ♣❛ss❛♠ ❛ s❡r ♥✐❧♣♦t❡♥t❡s

❛♣❡♥❛s ♦♥✲s❤❡❧❧✳ ❆♦ ✜①❛r♠♦s ✉♠ t❡♠♣♦ ❢ís✐❝♦ ❞❡ ❞✉❛s ❢♦r♠❛s ❞✐❢❡r❡♥t❡s ♦❜✲ t✐✈❡♠♦s ♦ ♣r♦♣❛❣❛❞♦r ❞❡ ✉♠❛ ♣❛rtí❝✉❧❛ r❡❧❛t✐✈íst✐❝❛ ❡♠d❞✐♠❡♥sõ❡s ❡ ❞❡ ✉♠

(5)

❆❜str❛❝t

■♥ t❤✐s ✇♦r❦ ✇❡ ❡♠♣❧♦② t❤❡ ❇❋❱ t❡❝❤♥✐q✉❡ t♦ q✉❛♥t✐③❡ ❛ t❤❡♦r② ✇✐t❤ ❣❛✉❣❡ s②♠♠❡tr② Sp(2,R)✳ ❋✐rst✱ ✇❡ ❛♥❛❧②③❡ t❤❡ ❛❞♠✐ss✐❜✐❧✐t② ❝r✐t❡r✐♦♥ ♦❢ ●♦✈❛❡rts ❢♦r ❣❛✉❣❡ ❝♦♥❞✐t✐♦♥s ♦♥ t❤❡ t❤❡♦r② ♦❢ ❛ r❡❧❛t✐✈✐st✐❝ ♣❛rt✐❝❧❡✳ ❚❤❡ ♣r♦♣❛❣❛t♦r ❢♦r t❤❡ r❡❧❛t✐✈✐st✐❝ ♣❛rt✐❝❧❡ ✐s ❝❛❧❝✉❧❛t❡❞ ✐♥ t❤❡ ❝♦✈❛r✐❛♥t✱ ❝❛♥♦♥✐❝❛❧ ❛♥❞ ❧✐❣❤t ❝♦♥❡ ❣❛✉❣❡s✳ ❚❤❡ ❞✐s❝r❡t✐③❛t✐♦♥ ♦❢ t❤❡ ♣❛t❤ ✐♥t❡❣r❛❧ s❤♦✇s t❤❛t t❤❡ ❞✐s❝r❡t✐③❡❞ ❛❝t✐♦♥ ❧♦♦s❡s ✐♥✈❛r✐❛♥❝❡ ❜② t❤❡ ❇❘❙❚ tr❛♥s❢♦r♠❛t✐♦♥s✳ ❚♦ r❡st♦r❡ t❤❡ ✐♥✈❛r✐❛♥❝❡ ✐t ✐s ♥❡❝❡ss❛r② t♦ ✐♥❝❧✉❞❡ ♠♦❞✐✜❡❞ tr❛♥s❢♦r♠❛t✐♦♥s✳

❙❡❝♦♥❞❧②✱ ✇❡ ❛♣♣❧② t❤❡ ❇❋❱ t❡❝❤♥✐q✉❡ t♦ ❛ t❤❡♦r② ✇✐t❤ t✇♦ t✐♠❡s ❛♥❞ ❣❛✉❣❡ s②♠♠❡tr② Sp(2,R✮✳ ❲❡ ❛♥❛❧②③❡ t❤❡ ❡✛❡❝t ♦❢ ❞✐s❝r❡t✐③❛t✐♦♥ ❛♥❞ s❤♦✇ t❤❛t t❤❡ ❞✐s❝r❡t✐③❡❞ ❛❝t✐♦♥ ❧♦♦s❡s t❤❡ ❇❘❙❚ ✐♥✈❛r✐❛♥❝❡✳ ■♥ t❤✐s ❝❛s❡✱ ✐t ✐s ♥❡❝❡ss❛r② t♦ ❝❤❛♥❣❡ t❤❡ tr❛♥s❢♦r♠❛t✐♦♥s ✐♥❝❧✉❞✐♥❣ t❡r♠s ♦❢ ♦r❞❡r ∆τ

N ✱ ✇❤✐❝❤

❜❡❝♦♠❡ ♥✐❧♣♦t❡♥t ♦♥❧② ♦♥✲s❤❡❧❧✳ ❋✐①✐♥❣ t❤❡ ♣❤②s✐❝❛❧ t✐♠❡ ✐♥ t✇♦ ❞✐✛❡r❡♥t ✇❛②s ✇❡ ❣❡t t❤❡ ♣r♦♣❛❣❛t♦r ❢♦r ❛ r❡❧❛t✐✈✐st✐❝ ♣❛rt✐❝❧❡ ✐♥ d❞✐♠❡♥s✐♦♥s ❛♥❞ ❢♦r

(6)

❙✉♠ár✐♦

✶ ■♥tr♦❞✉çã♦ ✶

✷ ❙✐st❡♠❛s ❍❛♠✐❧t♦♥✐❛♥♦s ❱✐♥❝✉❧❛❞♦s ✺

✷✳✶ ❋♦r♠❛❧✐s♠♦ ❍❛♠✐❧t♦♥✐❛♥♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ ✷✳✷ ❱í♥❝✉❧♦s ❞❡ Pr✐♠❡✐r❛ ❈❧❛ss❡ ❡ ❚r❛♥s❢♦r♠❛çõ❡s ❞❡ ●❛✉❣❡ ✳ ✳ ✳ ✼ ✷✳✸ ❋✐①❛çã♦ ❞❡ ●❛✉❣❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽ ✷✳✹ ◗✉❛♥t✐③❛çã♦ ♣♦r ■♥t❡❣r❛✐s ❞❡ ❚r❛❥❡tór✐❛ ❡♠ ▼❡❝â♥✐❝❛ ◗✉â♥t✐❝❛ ✾ ✷✳✺ ◗✉❛♥t✐③❛çã♦ ♣♦r ■♥t❡❣r❛✐s ❞❡ ❚r❛❥❡tór✐❛ ❡♠ ❚❡♦r✐❛s ❞❡ ●❛✉❣❡ ✳ ✶✶ ✷✳✺✳✶ ▼ét♦❞♦ ❞❡ ❋❛❞❞❡❡✈✲P♦♣♦✈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶ ✷✳✺✳✷ ▼ét♦❞♦ ❇❋❱ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷

✸ ◗✉❛♥t✐③❛çã♦ ❇❘❙❚ ❞❛ P❛rtí❝✉❧❛ ❘❡❧❛t✐✈íst✐❝❛ ✶✺

✸✳✶ ■♥tr♦❞✉çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✺ ✸✳✶✳✶ ❈♦♥❞✐çã♦ ❈♦✈❛r✐❛♥t❡ ❞❡ ●❛✉❣❡ λ˙(τ) = f(λ) ✳ ✳ ✳ ✳ ✳ ✳ ✶✽

✸✳✶✳✷ ❈♦♥❞✐çã♦ ❞❡ ●❛✉❣❡ ❈❛♥ô♥✐❝♦x0 τ = 0 ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✾

✸✳✶✳✸ ❈♦♥❞✐çã♦ ❞❡ ●❛✉❣❡ ❞♦ ❈♦♥❡ ❞❡ ▲✉③x+τ = 0 ✳ ✳ ✳ ✳ ✷✵

✸✳✷ ❆❞♠✐ss✐❜✐❧✐❞❛❞❡ ❞❛s ❈♦♥❞✐çõ❡s ❞❡ ●❛✉❣❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✷ ✸✳✸ Pr♦♣❛❣❛❞♦r ♣❛r❛ ❛ P❛rtí❝✉❧❛ ❘❡❧❛t✐✈íst✐❝❛ ♥♦ ●❛✉❣❡ λ˙ =f(λ) ✷✺

✸✳✸✳✶ ■♥✈❛r✐â♥❝✐❛ ❞❛ ❆❝ã♦ ❉✐s❝r❡t✐③❛❞❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✻ ✸✳✸✳✷ Pr♦♣❛❣❛❞♦r ❉✐s❝r❡t✐③❛❞♦ ♣❛r❛ ♦ ●❛✉❣❡ ❈♦✈❛r✐❛♥t❡λ˙ =

f(λ) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✼

✸✳✹ Pr♦♣❛❣❛❞♦r ♣❛r❛ ❛ P❛rtí❝✉❧❛ ❘❡❧❛t✐✈íst✐❝❛ ♥♦ ●❛✉❣❡ x0τ = 0 ✸✷

✸✳✺ Pr♦♣❛❣❛❞♦r ♣❛r❛ ❛ P❛rtí❝✉❧❛ ❘❡❧❛t✐✈íst✐❝❛ ♥♦ ●❛✉❣❡x+τ = 0 ✸✼

✹ ◗✉❛♥t✐③❛çã♦ ❇❘❙❚ ❡ ❙✐♠❡tr✐❛ ❞❡ ●❛✉❣❡ Sp(2,R) ✹✸

✹✳✶ ■♥tr♦❞✉çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✸ ✹✳✷ ❋♦r♠✉❧❛çã♦ ❈❧áss✐❝❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✸ ✹✳✷✳✶ P❛rtí❝✉❧❛ ❘❡❧❛t✐✈íst✐❝❛ ▲✐✈r❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✼ ✹✳✷✳✷ ❖s❝✐❧❛❞♦r ❍❛r♠ô♥✐❝♦ ❡♠ d2 ❉✐♠❡♥sõ❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✾

✹✳✸ ◗✉❛♥t✐③❛çã♦ ❇❘❙❚ ❈♦♠ ❙✐♠❡tr✐❛ ❞❡ ●❛✉❣❡Sp(2,R) ✳ ✳ ✳ ✳ ✳ ✺✶ ✹✳✹ Pr♦♣❛❣❛❞♦r ♥♦ ❋♦r♠❛❧✐s♠♦ ❇❋❱ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✺

(7)

❙❯▼➪❘■❖ ✐✈

✹✳✹✳✶ ■♥✈❛r✐â♥❝✐❛ ❞❛ ❆çã♦ ❉✐s❝r❡t✐③❛❞❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✺ ✹✳✹✳✷ Pr♦♣❛❣❛❞♦r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✼ ✹✳✹✳✸ Pr♦♣❛❣❛❞♦r ❞❛ P❛rtí❝✉❧❛ ❘❡❧❛t✐✈íst✐❝❛ ❡♠ d ❉✐♠❡♥sõ❡s ✻✺

✹✳✹✳✹ Pr♦♣❛❣❛❞♦r ♣❛r❛ ♦ ❖s❝✐❧❛❞♦r ❍❛r♠ô♥✐❝♦ ❡♠d2❉✐✲

♠❡♥sõ❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✻

✺ ❈♦♥❝❧✉sã♦ ❡ P❡rs♣❡❝t✐✈❛s ✼✵

❆ ◆✐❧♣♦tê♥❝✐❛ ❞❛s ❚r❛♥s❢♦r♠❛çõ❡s ❞❡ ❇❘❙❚ ✼✷

(8)

❈❛♣ít✉❧♦ ✶

■♥tr♦❞✉çã♦

❆ s✐♠❡tr✐❛ ❝♦♥❢♦r♠❡ ❡♠ ✉♠ ❡s♣❛ç♦ ❝♦♠ d ❞✐♠❡♥sõ❡s é r❡❛❧✐③❛❞❛ ♣❡❧♦ ❣r✉♣♦ SO(d,2) ❝✉❥❛ ❛çã♦ ♥❡ss❡ ❡s♣❛ç♦ ♦❝♦rr❡ ❞❡ ❢♦r♠❛ ♥ã♦ ❧✐♥❡❛r✳ ❊♥tr❡t❛♥t♦✱

❡♠ ✶✾✸✻✱ ❉✐r❛❝ ❬✶❪ ✐♥tr♦❞✉③✐✉ ✉♠❛ ❢♦r♠✉❧❛çã♦ ♣❛r❛ ✉♠❛ t❡♦r✐❛ ❞❡ ❝❛♠♣♦s ♠❛♥✐❢❡st❛♠❡♥t❡ ❝♦✈❛r✐❛♥t❡ ♥❛ q✉❛❧ ❡ss❡ ❣r✉♣♦ ❛❣❡ ❞❡ ❢♦r♠❛ ❧✐♥❡❛r ❡ ❡ss❛ ♥♦✈❛ ❢♦r♠✉❧❛çã♦ ❢♦✐ ❞❡s❡♥✈♦❧✈✐❞❛ ❡♠ ✉♠ ❡s♣❛ç♦ ❝♦♠ d+ 2 ❞✐♠❡♥sõ❡s✱ ❝♦♠

❞✉❛s ❝♦♠♣♦♥❡♥t❡s t❡♠♣♦r❛✐s✳ ❊♠ ❢✉♥çã♦ ❞❡ ✉♠❛ s✐♠❡tr✐❛ ❞❡ ❣❛✉❣❡ ♣r❡s❡♥t❡ ♥❡st❛ ❢♦r♠✉❧❛çã♦ ❞❡ ❉✐r❛❝✱ ❢♦✐ ♣♦ssí✈❡❧ ❞❡s❝r❡✈❡r t❡♦r✐❛s ❡♠ ✉♠ ❡s♣❛ç♦ ❝♦♠

d ❞✐♠❡♥sõ❡s✳

◆❛ ❞é❝❛❞❛ ❞❡ ✼✵✱ ▼❛r♥❡❧✐✉s ❬✷❪ ❛♦ ❡st✉❞❛r ❛ ❢♦r♠✉❧❛çã♦ ❞❡ ✉♠❛ t❡♦r✐❛ ❝♦♥❢♦r♠❡ ❡♠ ✉♠ ❡s♣❛ç♦ ❝♦♠ d+ 2 ❞✐♠❡♥sõ❡s ♠♦str♦✉ ❛ ❡①✐stê♥❝✐❛ ❞❡ ✉♠❛

❡q✉✐✈❛❧ê♥❝✐❛ ❡♥tr❡ ✉♠❛ ♣❛rtí❝✉❧❛ ♠❛ss✐✈❛ ❡♠ ✉♠ ❡s♣❛ç♦ ❞❡ ▼✐♥❦♦✇s❦✐ ❡♠ d

❞✐♠❡♥sõ❡s ❡ ✉♠❛ ♣❛rtí❝✉❧❛ s❡♠ ♠❛ss❛ q✉❡ s❡ ♣r♦♣❛❣❛ ♥✉♠ ❡s♣❛ç♦ AdSd−1✱

✉t✐❧✐③❛♥❞♦ ♦ ❢♦r♠❛❧✐s♠♦ ✐♥tr♦❞✉③✐❞♦ ♣♦r ❉✐r❛❝ ❬✶❪ ❡ ❛♣❧✐❝❛❞♦ à t❡♦r✐❛ ❞❡ ✉♠❛ ♣❛rtí❝✉❧❛✳ ❆❧é♠ ❞✐ss♦✱ ❞✐✈❡rs❛s ❣❡♥❡r❛❧✐③❛çõ❡s ❢♦r❛♠ ❢❡✐t❛s ❛ ✜♠ ❞❡ ✐♥tr♦❞✉③✐r ❢❡r♠✐♦♥s ♥❛ t❡♦r✐❛ ❬✸✱ ✷✱ ✹❪✳ ❆ ✐♠♣❧❡♠❡♥t❛çã♦ ❞❛ q✉❛♥t✐③❛çã♦ ❞❡ss❡s ♠♦❞❡❧♦s ♣❡❧❛ té❝♥✐❝❛ ❞❡ ❇❘❙❚ ✭❇❡❝❤✐✱ ❘♦✉❡t✱❙t♦r❛✱❚②❧t✐♥✮❢♦✐ ❢❡✐t❛ ❡♠ ❬✺❪✳

◆❛ ❞é❝❛❞❛ ❞❡ ✾✵✱ ❡st❡ ♠♦❞❡❧♦ ❢♦✐ ❡st✉❞❛❞♦ ♥✉♠ ♦✉tr♦ ❝♦♥t❡①t♦ ♣♦r ▼♦♥✲ t❡s✐♥♦s ❬✻✱ ✼❪ ♦ q✉❛❧ ✐♥tr♦❞✉③✐✉ ✉♠❛ s✐♠❡tr✐❛ ❞❡ ❣❛✉❣❡ Sl(2,R✮ ❛ ✜♠ ❞❡ ♦❜t❡r ✉♠❛ t❡♦r✐❛ q✉❡ ❞❡s❝r❡✈❡ss❡ ❛ r❡❧❛t✐✈✐❞❛❞❡ ❣❡r❛❧✳ ❈♦♠ ✐ss♦✱ ♦❜t❡✈❡ ❛s s♦❧✉çõ❡s ❝❧áss✐❝❛s q✉❡ ❞❡s❝r❡✈❡♠✿ ✉♠❛ ♣❛rtí❝✉❧❛ r❡❧❛t✐✈íst✐❝❛ ❝♦♠ ♠❛ss❛ ❡ ✉♠ ♦s❝✐❧❛✲ ❞♦r ❤❛r♠ô♥✐❝♦ ❛♣ós r❡s♦❧✈❡r ❛s ❡q✉❛çõ❡s ❞❡ ♠♦✈✐♠❡♥t♦ ♣❛r❛ ❞✉❛s ❡s❝♦❧❤❛s ❞❡ ❣❛✉❣❡ ❞✐❢❡r❡♥t❡s✳

◆♦ ✜♥❛❧ ❞❡ ❞é❝❛❞❛ ❞❡ ✾✵✱ ❝♦♠ ♦s ❛✈❛♥ç♦s ❞❛s t❡♦r✐❛ ❞❛s ❝♦r❞❛s ♥♦ ❡st✉❞♦ ❞♦s ❛s♣❡❝t♦s ♥ã♦ ♣❡rt✉r❜❛t✐✈♦s✱ ❇❛rs ❡ ❝♦❧❛❜♦r❛❞♦r❡s✱ ♦❜s❡r✈❛r❛♠ ❡✈✐❞ê♥❝✐❛s ❞❡ q✉❡ ❛ ❞❡s❝r✐çã♦ ❞❛s t❡♦r✐❛s ❞❡ ✉♥✐✜❝❛çã♦ ♣♦❞❡r✐❛ ✐♥❝❧✉✐r ❞✉❛s ❝♦♦r❞❡♥❛❞❛s t❡♠♣♦r❛✐s ❬✽✱ ✾✱ ✶✵✱ ✶✶✱ ✶✷✱ ✶✸✱ ✶✹✱ ✶✺✱ ✶✻❪✳ ❆ ♣❛rt✐r ❞❡ss❡ ♠♦♠❡♥t♦✱ ❡❧❡s ❡st✉✲ ❞❛r❛♠ ❝♦♠♦ ✐♠♣❧❡♠❡♥t❛r ❡ss❛s t❡♦r✐❛s ❬✶✼✱ ✶✽❪✳ ❊ ❡♠ ✶✾✾✽✱ r❡❢♦r♠✉❧❛r❛♠ ❛ t❡♦r✐❛ ♣❛r❛ ✉♠❛ ♣❛rtí❝✉❧❛ s❡♠ ♠❛ss❛ ❡ ✐♥tr♦❞✉③✐♥❞♦ ✉♠❛ s✐♠❡tr✐❛ ❞❡ ❣❛✉❣❡

(9)

Sp(2,R)❡ ✉♠❛ s✐♠❡tr✐❛ ❣❧♦❜❛❧SO(d,2)❛❣✐♥❞♦ ❧✐♥❡❛r♠❡♥t❡ ♥✉♠ ❡s♣❛ç♦ ❝♦♠

d+ 2 ❞✐♠❡♥sõ❡s ❬✶✾✱ ✷✵✱ ✷✶❪✳ ❉❡st❛ ❢♦r♠❛✱ ♠♦str❛r❛♠ q✉❡ ❡st❛ t❡♦r✐❛ ❡r❛

❝❛♣❛③ ❞❡ ❞❡s❝r❡✈❡r✱ ❡♠ ❡s♣❛ç♦s ❝♦♠ ❞✐♠❡♥sã♦ ♠❛✐s ❜❛✐①❛✱ s✐st❡♠❛s q✉❡ ❛♣❛✲ r❡♥t❡♠❡♥t❡ ♥ã♦ sã♦ r❡❧❛❝✐♦♥❛❞♦s✱ ❝♦♠♦ ❡q✉✐✈❛❧❡♥t❡s✿ ❛ ♣❛rtí❝✉❧❛ r❡❧❛t✐✈íst✐❝❛ ❝♦♠ ♦✉ s❡♠ ♠❛ss❛✱ ♦ át♦♠♦ ❞❡ ❤✐❞r♦❣ê♥✐♦ ❡ ♦ ♦s❝✐❧❛❞♦r ❤❛r♠ô♥✐❝♦✳ ❊s✲ s❡s r❡s✉❧t❛❞♦s ♣❡r♠✐t✐r❛♠ ❛ ❡st❡s ❛✉t♦r❡s ♣r♦♣♦r❡♠ q✉❡ ♦ ♠♦❞❡❧♦ ❝♦♠ ❞♦✐s t❡♠♣♦s ❞❡s❝r❡✈❡ss❡ ❞❡ ❢♦r♠❛ ✉♥✐✜❝❛❞❛ ❡st❡s s✐st❡♠❛s✳ ❆s tr❛♥s❢♦r♠❛çõ❡s ❞❡ ❣❛✉❣❡ q✉❡ ❝♦♥❡❝t❛♠ ❡st❡s ❞✐✈❡rs♦s s✐st❡♠❛s ❢♦r❛♠ ❝❤❛♠❛❞❛s ❞✉❛❧✐❞❛❞❡ ❡ ❡st❛ r❡❢♦r♠✉❧❛çã♦ ❞❡ ❢ís✐❝❛ ❝♦♠ ❞♦✐s t❡♠♣♦s✳ ❆ s✐♠❡tr✐❛ ❞❡ ❣❛✉❣❡ t♦r♥❛ ❛ t❡♦r✐❛ ✉♥✐tár✐❛ r❡♠♦✈❡♥❞♦ ♦s ❡st❛❞♦ ❞❡ ♥♦r♠❛ ♥❡❣❛t✐✈❛ r❡s✉❧t❛♥t❡s ❞❛ ✐♥tr♦✲ ❞✉çã♦ ❞❛s ❞✉❛s ❝♦♦r❞❡♥❛❞❛s t❡♠♣♦r❛✐s✳ ❊♠ s❡❣✉✐❞❛✱ ❇❛rs ❡ ❝♦❧❛❜♦r❛❞♦r❡s ❣❡♥❡r❛❧✐③❛r❛♠ ❛ ❢♦r♠✉❧❛çã♦ ❛ ✜♠ ❞❡ ✐♥tr♦❞✉③✐r ❢ér♠✐♦♥s ♦ q✉❡ ✐♠♣❧✐❝♦✉ ♥❛ ❡①✐stê♥❝✐❛ ❞❡ ✉♠❛ s✉r♣❡rs✐♠❡tr✐❛ ♥❛ ❧✐♥❤❛ ♠✉♥❞♦ ❬✷✷❪ ❡ ♣♦st❡r✐♦r♠❡♥t❡ ♥♦ ❡s♣❛ç♦✲t❡♠♣♦ ❬✷✸❪✳ ❚❛♠❜é♠ ❢♦r❛♠ r❡❛❧✐③❛❞❛s ♣♦r ❡❧❡s ❛♣❧✐❝❛çõ❡s ❞❛ ❢♦r♠✉✲ ❧❛çã♦ ♣❛r❛ t❡♦r✐❛ ❞❡ ❝♦r❞❛s✱ ❜r❛♥❛s ❡ t❡♦r✐❛ ▼ ❬✷✹✱ ✷✺✱ ✷✻❪✳ ❊♠ s❡❣✉✐❞❛✱ ❡❧❡s ❛♣❧✐❝❛r❛♠ ♦ ❢♦r♠❛❧✐s♠♦ ❛ ✜♠ ❞❡ ✐♥❝❧✉✐r ❝❛♠♣♦s ❞❡ ❢✉♥❞♦ ❣r❛✈✐t❛❝✐♦♥❛✐s ❡ ❞❡ ❣❛✉❣❡ ❬✷✼❪ ❡ ✐♥tr♦❞✉③✐r❛♠ ♦ ❢♦r♠❛❧✐s♠♦ ❞❡ s❡❣✉♥❞❛ q✉❛♥t✐③❛çã♦✱ ♦✉ s❡❥❛✱ t❡♦r✐❛ ❞❡ ❝❛♠♣♦s✱ ❞❡s❝r✐t♦ ❡♠ ❬✷✽✱ ✷✾✱ ✸✵✱ ✸✶❪✳

❊♠ ✷✵✵✶✱ ❇❛rs ❡ ❝♦❧❛❜♦r❛❞♦r❡s ❝♦♠❡ç❛r❛♠ ❛ ❡st✉❞❛r ❛ r❡❧❛çã♦ ❞❛ ❢♦r♠✉✲ ❧❛çã♦ ❞❡ ❢ís✐❝❛ ❝♦♠ ❞♦✐s t❡♠♣♦s ❬✸✷✱ ✸✸✱ ✸✹✱ ✸✺✱ ✸✻❪ ❝♦♠ ♦s t✇✐st♦rs ♣r♦♣♦st♦s ♣♦r P❡♥r♦s❡ ❬✸✼❪ ❡ ❡♠ ✷✵✵✻✱ ♦❜t✐✈❡r❛♠ ✉♠❛ ❢♦r♠✉❧❛çã♦ q✉❡ ❞❡s❝r❡✈❡ ♦ ♠♦✲ ❞❡❧♦ ♣❛❞rã♦ ❞❛s ♣❛rtí❝✉❧❛s ❝♦♠♦ ✉♠❛ ❡s❝♦❧❤❛ ❞❡ ❣❛✉❣❡ ❞❛ ❢♦r♠✉❧❛çã♦ ❝♦♠ ❞♦✐s t❡♠♣♦s❬✸✽❪✳❖✉tr❛s ❛♣❧✐❝❛çõ❡s ❞❛ t❡♦r✐❛ ❝♦♠ ❞♦✐s t❡♠♣♦s ❢♦r❛♠ ♦❜t✐❞❛s ❡♠ ❬✸✾✱ ✹✵✱ ✹✶✱ ✹✷✱ ✹✸✱ ✹✹✱ ✹✺✱ ✹✻✱ ✹✼✱ ✹✽✱ ✹✾❪ ❡ ❛❧❣✉♠❛s r❡✈✐sõ❡s q✉❡ ❞✐s❝✉t❡♠ ♦ ❞❡s❡♥✈♦❧✈✐♠❡♥t♦ ❞♦ ❢♦r♠❛❧✐s♠♦ ❡stã♦ ❞❡s❝r✐t❛s ❡♠ ❬✺✵✱ ✺✶❪✳ ❊♥tr❡t❛♥t♦✱ t♦❞♦s ♦s r❡s✉❧t❛❞♦s ♦❜t✐❞♦s ♣♦r ❡st❛ ❢♦r♠✉❧❛çã♦ ✉t✐❧✐③❛♠ ♦ ♠ét♦❞♦ ❞❡ q✉❛♥✲ t✐③❛çã♦ ❞❡ ♦♣❡r❛❞♦r❡s✳ ◆❡st❡ tr❛❜❛❧❤♦ ✐♥tr♦❞✉③✐♠♦s ♦ ❢♦r♠❛❧✐s♠♦ ❞❡ ✐♥t❡❣r❛✐s ❞❡ tr❛❥❡tór✐❛ ♣❛r❛ ♦ ♠♦❞❡❧♦ ♠❛✐s s✐♠♣❧❡s ❝♦♠ ❞♦✐s t❡♠♣♦s✳

(10)

◗✉❛♥t♦ à ✐♠♣❧❡♠❡♥t❛çã♦ ❞♦ ❢♦r♠❛❧✐s♠♦ ❇❋❱ ♣❛r❛ ✉♠❛ t❡♦r✐❛ ❞❛ ♣❛r✲ tí❝✉❧❛ r❡❧❛t✐✈íst✐❝❛ ❡st❛ ❢♦✐ r❡❛❧✐③❛❞❛ ♣♦r ❍❡♥♥❡❛✉① ❡ ❚❡✐t❡❧❜♦✐♠❬✻✶❪✳ ❊♠ s❡✉ tr❛❜❛❧❤♦✱ ♦s ❛✉t♦r❡s ❝❛❧❝✉❧❛r❛♠ ♦ ♣r♦♣❛❣❛❞♦r ❞❛ ♣❛rtí❝✉❧❛ r❡❧❛t✐✈íst✐❝❛ ✉s❛♥❞♦ ✉♠❛ ❡s❝♦❧❤❛ ❞❡ ❣❛✉❣❡ ❝♦✈❛r✐❛♥t❡✳ ◆✉♠ ♦✉tr♦ tr❛❜❛❧❤♦✱ ❚❡✐t❡❧❜♦✐♠ ❬✻✷❪ ♠♦str♦✉ q✉❡ ❞❡✈✐❞♦ à s✐♠❡tr✐❛ ❞❡ ❣❛✉❣❡ ❞❛ t❡♦r✐❛ ❞❛ ♣❛rtí❝✉❧❛ r❡❧❛t✐✈ís✲ t✐❝❛✱ ❛s ú♥✐❝❛s ❡s❝♦❧❤❛s ❞❡ ❣❛✉❣❡ ♣♦ssí✈❡✐s ❡r❛♠ ❛s ❞♦ t✐♣♦ ❝♦✈❛r✐❛♥t❡✳ ❊ss❡ r❡s✉❧t❛❞♦ ❡①❝❧✉✐✉ ❛s ❝♦♥❞✐çõ❡s ❞❡ ❣❛✉❣❡ ❝❛♥ô♥✐❝❛s✳

◆❛ ❞❡❝❛❞❛ ❞❡ ✽✵✱ ●♦✈❛❡rts ❬✻✸✱ ✻✹✱ ✻✺❪ ✐♥tr♦❞✉③✐✉ ✉♠ ♦✉tr♦ ❝r✐tér✐♦ ❞❡ ❛❞♠✐ss✐❜✐❧✐❞❛❞❡ ♣❛r❛ ❛s ❡s❝♦❧❤❛s ❞❡ ❣❛✉❣❡ ♥♦ ❢♦r♠❛❧✐s♠♦ ❇❋❱✳ ❊♠ s❡✉s tr❛✲ ❜❛❧❤♦s✱ ❡❧❡ ♣r♦♣ôs ✉♠❛ r❡❧❛çã♦ ❡♥tr❡ ❛ ❛❞♠✐ss✐❜✐❧✐❞❛❞❡ ❡ ❛ ❡①✐stê♥❝✐❛ ❞❡ ❝ó♣✐❛s ❞❡ ●r✐❜♦✈ ❬✻✻❪✳ ❆✐♥❞❛ s♦❜r❡ ♦ tr❛❜❛❧❤♦ ♦r✐❣✐♥❛❧ ❞❡ ❝ó♣✐❛s ❞❡ ●r✐❜♦✈ ♣♦❞❡✲s❡ ❡♥❝♦♥tr❛r ✉♠❛ r❡✈✐sã♦ ❡♠ ❬✻✼❪✳

◆✉♠ ♦✉tr♦ ♠♦♠❡♥t♦✱ ❱❡r❣❛r❛ ❡ ❝♦❧❛❜♦r❛❞♦r❡s ❞❡s❡♥✈♦❧✈❡r❛♠ ✉♠ ♠ét♦❞♦ ♣❛r❛ ✐♠♣❧❡♠❡♥t❛r ❛s ❝♦♥❞✐çõ❡s ❞❡ ❣❛✉❣❡ ❝❛♥ô♥✐❝❛s ❬✻✽✱ ✻✾❪ ❡ ✉♠❛ ♦✉tr❛ ❛❜♦r✲ ❞❛❣❡♠ ❢♦✐ ❢❡✐t❛ ♣♦r ■❦❡♠♦r✐❬✼✵❪✳ P❛r❛ ❝❛❧❝✉❧❛r ♦ ♣r♦♣❛❣❛❞♦r✱ ❡❧❡ ❛♥❛❧✐s♦✉ ♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❞❛ t❡♦r✐❛ ❛♣ós ❛ ❞✐s❝r❡t✐③❛çã♦✳ ◆❡ss❛ ❛♥á❧✐s❡✱ ■❦❡♠♦r✐ ♦❜s❡r✲ ✈♦✉ q✉❡ ❛ ❛çã♦ ❞✐s❝r❡t✐③❛❞❛ ♣❡r❞❡ ❛ ✐♥✈❛r✐â♥❝✐❛ ❡♠ r❡❧❛çã♦ às tr❛♥s❢♦r♠❛çõ❡s ❞✐s❝r❡t✐③❛❞❛s ❞❡ ❢♦r♠❛ ✐♥❣ê♥✉❛✳ P❛r❛ s♦❧✉❝✐♦♥❛r ❡ss❡ ♣r♦❜❧❡♠❛✱ ❡❧❡ s✉❣❡r✐✉ ♠♦❞✐✜❝❛r ❛s tr❛♥s❢♦r♠❛çõ❡s ❞❡ ❣❛✉❣❡ ❞✐s❝r❡t✐③❛❞❛s✳ ❊ss❛ ✐❞é✐❛ t❛♠❜é♠ ❢♦✐ ❛♣❧✐❝❛❞❛ ❛ ✉♠❛ t❡♦r✐❛ ❞❛❞❛ ❡♠ ❬✼✶✱ ✼✷❪✳ ❈♦♠ ❡ss❛ ❛♥á❧✐s❡✱ ♠♦str♦✉ ✉♠ ❝á❧✲ ❝✉❧♦ ❡①♣❧í❝✐t♦ ❞♦ ♣r♦♣❛❣❛❞♦r ❞❛ ♣❛rtí❝✉❧❛ r❡❧❛t✐✈íst✐❝❛ ♥✉♠ ❣❛✉❣❡ ❝❛♥ô♥✐❝♦ ❬✼✵❪ s❡♠ ❛s ♠♦❞✐✜❝❛çõ❡s ❢❡✐t❛s ♣♦r ❱❡r❣❛r❛ ❡ ❝♦❧❛❜♦r❛❞♦r❡s✳

❊♠ ♥♦ss♦ tr❛❜❛❧❤♦✱ ✈❛♠♦s ❡♠ ♣r✐♠❡✐r♦ ❧✉❣❛r ❞✐s❝✉✐r ♦ ❝r✐tér✐♦ ❞❡ ❛❞♠✐s✲ s✐❜✐❧✐❞❛❞❡ ♣r♦♣♦st♦ ♣♦r ●♦✈❛❡rts ❬✻✸✱ ✻✹✱ ✻✺✱ ✼✸❪✳ ❊♠ s❡❣✉✐❞❛✱ ❝❛❧❝✉❧❛♠♦s ♦ ♣r♦♣❛❣❛❞♦r ❞❛ ♣❛rtí❝✉❧❛ r❡❧❛t✐✈íst✐❝❛ ✉t✐❧✐③❛♥❞♦ ♦ ♠ét♦❞♦ ❇❋❱ ❡ s❡❣✉✐♥❞♦ ❛ ❛♥á❧✐s❡ ✐♥tr♦❞✉③✐❞❛ ♣♦r ■❦❡♠♦r✐ ❬✼✵❪✳ ◆✉♠ s❡❣✉♥❞♦ ♠♦♠❡♥t♦✱ ❛♣❧✐❝❛♠♦s ❛s té❝♥✐❝❛s ✉s❛❞❛s ♥♦ ❝❛s♦ ❞❛ ♣❛rtí❝✉❧❛ r❡❧❛t✐✈íst✐❝❛ ♣❛r❛ ♦ ❝❛s♦ ❞❛ t❡♦r✐❛ ❝♦♠ ❞♦✐s t❡♠♣♦s✱ ♦✉ s❡❥❛✱ ❝♦♠ s✐♠❡tr✐❛ ❞❡ ❣❛✉❣❡ Sp(2,R) ❬✼✹❪✳

◆♦ ❈❛♣ít✉❧♦ ✷✱ ❢❛③❡♠♦s ✉♠❛ r❡✈✐sã♦ ❞♦s ❝♦♥❝❡✐t♦s ❞❛ t❡♦r✐❛ ❞❡ ✈í♥❝✉❧♦s ❬✼✺✱ ✼✻❪✱ s✉❛ r❡❧❛çã♦ ❝♦♠ ❛s s✐♠❡tr✐❛s ❞❡ ❣❛✉❣❡ ❡ ❞✐s❝✉t✐♠♦s s✉❛ q✉❛♥t✐③❛çã♦ ♣♦r ♠❡✐♦ ❞❛ ✐♥t❡❣r❛çã♦ ❞❡ tr❛❥❡tór✐❛✳ ❊♠ ✉♠ ♣r✐♠❡✐r♦ ♠♦♠❡♥t♦✱ ❞❡✜♥✐♠♦s ❛ ✐♥t❡❣r❛❧ ❞❡ tr❛❥❡tór✐❛ ♣❛r❛ ❛ ♠❡❝â♥✐❝❛ q✉â♥t✐❝❛ ❡ ❞❡♣♦✐s ❛♣r❡s❡♥t❛♠♦s ♦s ♠ét♦❞♦s ❞❡ ❋❛❞❞❡❡✈ ❡ ❇❛t❛❧✐♥✱ ❋r❛❞❦✐♥ ❡ ❱✐❧❦♦✈✐s❦✐✳

◆♦ ❈❛♣ít✉❧♦ ✸✱ ❢❛r❡♠♦s ❛ ❛♣❧✐❝❛çã♦ ❞♦ ♠ét♦❞♦ ❇❋❱ ♣❛r❛ ♦ ❝❛s♦ ❞❛ ♣❛r✲ tí❝✉❧❛ r❡❧❛t✐✈íst✐❝❛✳ P❛r❛ ✐ss♦✱ ❛♥❛❧✐s❛♠♦s ♦ ❝r✐tér✐♦ ♣r♦♣♦st♦ ♣♦r ●♦✈❛❡rts ❬✻✹✱ ✻✺✱ ✼✸✱ ✻✸❪ s♦❜r❡ ❛ ❛❞♠✐ss✐❜✐❧✐❞❛❞❡ ❞❛s ❡s❝♦❧❤❛s ❞❡ ❣❛✉❣❡✳ ❊♠ s❡❣✉✐❞❛✱ ❞✐s❝r❡t✐③❛♠♦s ❛ ❡①♣r❡ssã♦ ❞♦ ♣r♦♣❛❣❛❞♦r ❡ ❛♥❛❧✐s❛♠♦s s✉❛ ✐♥✈❛r✐â♥ç❛ ❛♣ós ❛ ❞✐s❝r❡t✐③❛çã♦ ❞♦ t❡♠♣♦✳ ❋✐♥❛❧✐③❛♥❞♦ ❡ss❡ ❝❛♣ít✉❧♦✱ ❝❛❧❝✉❧❛♠♦s ❡①♣❧✐❝✐t❛✲ ♠❡♥t❡ ♦s ♣r♦♣❛❣❛❞♦r❡s ♣❛r❛ ❛ ♣❛rtí❝✉❧❛ r❡❧❛t✐✈íst✐❝❛ ♥♦s ❣❛✉❣❡s ❝♦✈❛r✐❛♥t❡✱ ❝❛♥ô♥✐❝♦ ❡ ❞♦ ❝♦♥❡ ❞❡ ❧✉③✳

(11)

❡ ❛♥❛❧✐s❛♠♦s s✉❛ ❡str✉t✉r❛ ❞❡ ✈í♥❝✉❧♦s✳ ◆❛ s❡q✉ê♥❝✐❛ ♠♦str❛♠♦s ♦s r❡s✉❧t❛✲ ❞♦s ♦❜t✐❞♦s ♣♦r ❇❛rs ❡ ❝♦❧❛❜♦r❛❞♦r❡s q✉❡ ❞❡s❝r❡✈❡♠ ❛ ♣❛rtí❝✉❧❛ r❡❧❛t✐✈íst✐❝❛ ❡♠ d ❞✐♠❡♥sõ❡s ❡ ♦ ♦s❝✐❧❛❞♦r ❤❛r♠ô♥✐❝♦ ❡♠ d2 ❞✐♠❡♥sõ❡s ❡s♣❛❝✐❛✐s ❬✷✵❪✳

❊♠ s❡❣✉✐❞❛✱ ❝♦♥str✉✐♠♦s ♦ ❢♦r♠❛❧✐s♠♦ ❇❋❱ ❡ ❞✐s❝r❡t✐③❛♠♦s ♦ ♣r♦♣❛❣❛❞♦r✱ ❛♥❛❧✐s❛♠♦s ❛ ✐♥✈❛r✐â♥❝✐❛ ❞❛ ❛çã♦ ❛♣ós ❛ ❞✐s❝r❡t✐③❛ç❛♦ ❡ ✜♥❛❧♠❡♥t❡ ❝❛❧❝✉❧❛♠♦s ♦ ♣r♦♣❛❣❛❞♦r✳

(12)

❈❛♣ít✉❧♦ ✷

❙✐st❡♠❛s ❍❛♠✐❧t♦♥✐❛♥♦s

❱✐♥❝✉❧❛❞♦s

✷✳✶ ❋♦r♠❛❧✐s♠♦ ❍❛♠✐❧t♦♥✐❛♥♦

❱❛♠♦s ❝♦♥s✐❞❡r❛r ✉♠ s✐st❡♠❛ ❢ís✐❝♦ ❝♦♠ N ❣r❛✉s ❞❡ ❧✐❜❡r❞❛❞❡ ❞❡s❝r✐t♦ ♣❡❧❛

❛çã♦

S=

✂ τ2

τ1

dτ L(xi,x˙i, τ), i= 1,· · ·N, ✭✷✳✶✮

♦♥❞❡ ▲ é ❢✉♥çã♦ ❞❛s ❝♦♦r❞❡♥❛❞❛s ❣❡♥❡r❛❧✐③❛❞❛s xi✱ ❞❛s ✈❡❧♦❝✐❞❛❞❡s ❣❡♥❡r❛✲

❧✐③❛❞❛s x˙i ❡ ❞♦ t❡♠♣♦ τ✳ ❆s ❡q✉❛çõ❡s ❞❡ ♠♦✈✐♠❡♥t♦ ❝❧áss✐❝❛s ♦❜t✐❞❛s ♣❡❧❛

✈❛r✐❛çã♦ ❞❡ ✭✷✳✶✮✱ s✉❥❡✐t❛s às ❝♦♥❞✐çõ❡s δxi = 0 ♥♦s ❡①tr❡♠♦s✱ sã♦

∂L ∂xi −

d dτ

∂L ∂x˙i

= 0. ✭✷✳✷✮

P♦❞❡♠♦s r❡❡s❝r❡✈❡r ❡ss❛s ❡q✉❛çõ❡s ❞❛ s❡❣✉✐♥t❡ ❢♦r♠❛

∂2L (∂x˙ix˙j)

j = ∂L ∂xi −

∂2L ∂xix˙jx˙

j. ✭✷✳✸✮

❖ t❡r♠♦

∂2L

∂x˙ix˙j. ✭✷✳✹✮

é ❝❤❛♠❛❞♦ ❞❡ ♠❛tr✐③ ❤❡ss✐❛♥❛✳ ❙❡ ♦ ❞❡t❡r♠✐♥❛♥t❡ ❞❡st❛ ♠❛tr✐③ ❢♦r ♥✉❧♦✱ ❞✐③❡✲ ♠♦s q✉❡ ♦ s✐st❡♠❛ é s✐♥❣✉❧❛r ♦✉ ✈✐♥❝✉❧❛❞♦ ❬✼✺✱ ✼✻❪ ❡ ♥ã♦ ♣♦❞❡r❡♠♦s ❞❡t❡r♠✐✲ ♥❛r ✉♥✐✈♦❝❛♠❡♥t❡ ❛s ❛❝❡❧❡r❛çõ❡s ❡♠ ❢✉♥çã♦ ❞❛s ❝♦♦r❞❡♥❛❞❛s ❣❡♥❡r❛❧✐③❛❞❛s ❡

(13)

✷✳✶✿ ❋♦r♠❛❧✐s♠♦ ❍❛♠✐❧t♦♥✐❛♥♦ ✻

❞❡ s✉❛s ✈❡❧♦❝✐❞❛❞❡s✳ ◆❡st❡ ❝❛s♦✱ ❡①✐st❡♠ ❞✐❢❡r❡♥t❡s ❡✈♦❧✉çõ❡s t❡♠♣♦r❛✐s ♣❛r❛ ✉♠❛ ♠❡s♠❛ ❝♦♥❞✐çã♦ ✐♥✐❝✐❛❧✳

❆ tr❛♥s✐çã♦ ♣❛r❛ ♦ ❢♦r♠❛❧✐s♠♦ ❍❛♠✐❧t♦♥✐❛♥♦ é ❢❡✐t❛ ❞❡✜♥✐♥❞♦ ♦ ♠♦♠❡♥t♦ ❝❛♥ô♥✐❝♦ ❝♦♥❥✉❣❛❞♦

pi = ∂L

∂x˙i. ✭✷✳✺✮

P❛r❛ s✐st❡♠❛s ✈✐♥❝✉❧❛❞♦s ♥ã♦ é ♣♦ssí✈❡❧ ❡①♣r❡ss❛r ❛tr❛✈és ❞❛ ❡①♣r❡ssã♦ ✭✷✳✺✮ t♦❞❛s ❛s ✈❡❧♦❝✐❞❛❞❡s x˙i ❝♦♠♦ ❢✉♥çã♦ ❞♦s ♠♦♠❡♥t♦s ❡ ❞❛s ❝♦♦r❞❡♥❛❞❛s✱ ♦✉

s❡❥❛✱ ♥❡♠ t♦❞♦s ♦s ♠♦♠❡♥t♦s pi sã♦ ✐♥❞❡♣❡♥❞❡♥t❡s✱ ♠❛s ❡①✐st❡♠ r❡❧❛çõ❡s

φm(x, p) = 0, m= 1,· · · , M, ✭✷✳✻✮

q✉❡ s❡❣✉❡♠ ❞❡ ✭✷✳✺✮ ❡ q✉❡ sã♦ ❝❤❛♠❛❞♦s ❞❡ ✈í♥❝✉❧♦s ♣r✐♠ár✐♦s✳ ❊ss❡s ✈í♥❝✉✲ ❧♦s ❞❡✜♥❡♠ ✉♠❛ ❤✐♣❡rs✉♣❡r❢í❝✐❡ ♥♦ ❡s♣❛ç♦ ❞❡ ❢❛s❡ ❞❡♥♦♠✐♥❛❞❛ s✉♣❡r❢í❝✐❡ ❞❡ ✈í♥❝✉❧♦s ♣r✐♠ár✐♦s q✉❡ ❞❡♥♦t❛r❡♠♦s ♣♦r ΓM✳

❆ ❤❛♠✐❧t♦♥✐❛♥❛ ❝❛♥ô♥✐❝❛ é ❞❛❞❛ ♣♦r

H=pix˙i−L(xi,x˙i, τ), ✭✷✳✼✮

q✉❡ ❞❡✈✐❞♦ à ❡①♣r❡ssã♦ ✭✷✳✻✮ é ✈á❧✐❞❛ s♦♠❡♥t❡ ♥❛ s✉♣❡r❢í❝✐❡ ❞❡ ✈í♥❝✉❧♦s ♣r✐♠á✲ r✐♦s✳ P❛r❛ ❡st❡♥❞❡r♠♦s ❡st❛ ❞❡✜♥✐çã♦ ♣❛r❛ t♦❞♦ ♦ ❡s♣❛ç♦ ❞❡ ❢❛s❡✱ ❞❡✜♥✐♠♦s ♦✉tr❛ ❤❛♠✐❧t♦♥✐❛♥❛ HT ❞❛❞❛ ♣♦r

HT =H+cmφm ✭✷✳✽✮

♦♥❞❡ ♦s cm sã♦ ❢✉♥çõ❡s ❛r❜✐trár✐❛s ❞❡ x p

❈♦♠♦ ♦s ✈í♥❝✉❧♦s φm ♣♦❞❡♠ t❡r ❝♦❧❝❤❡t❡s ❞❡ P♦✐ss♦♥ ♥ã♦ ♥✉❧♦s ❝♦♠ ❛❧✲

❣✉♠❛ ✈❛r✐á✈❡❧ ❝❛♥ô♥✐❝❛✱ ❞❡✈❡♠♦s ❝❛❧❝✉❧❛r ♦s ❝♦❧❝❤❡t❡s ❛♥t❡s ❞❡ ❧❡✈❛r♠♦s ❡♠ ❝♦♥t❛ ❛s ❡q✉❛çõ❡s ❞♦s ✈í♥❝✉❧♦s✳ P❛r❛ ❧❡♠❜r❛r♠♦s ❞❡st❡ ❢❛t♦✱ ❉✐r❛❝ ❬✼✺❪ ✐♥✲ tr♦❞✉③✐✉ ❛ ♥♦çã♦ ❞❡ ✐❣✉❛❧❞❛❞❡ ❢r❛❝❛✱ ❡s❝r❡✈❡♥❞♦ ♦s ✈í♥❝✉❧♦s ❝♦♠♦

φm ≈0. ✭✷✳✾✮

❆ss✐♠✱ ♣♦❞❡♠♦s ❡s❝r❡✈❡r ❛s ❡q✉❛çõ❡s ❞❡ ♠♦✈✐♠❡♥t♦ ❣❡r❛❞❛s ♣♦r ❡st❛ ♥♦✈❛ ❤❛♠✐❧t♦♥✐❛♥❛ ❞❛ s❡❣✉✐♥t❡ ❢♦r♠❛

˙

xi ≈ {xi, H}+cm{xi, φm} ˙

pi ≈ {pi, H}+cm{pi, φm}. ✭✷✳✶✵✮

❆ ✜♠ ❞❡ ❝♦♥str✉✐r♠♦s ✉♠❛ t❡♦r✐❛ ❝♦♥s✐st❡♥t❡✱ ❞❡✈❡♠♦s ✐♠♣♦r ❛ ❝♦♥s❡r✲ ✈❛çã♦ t❡♠♣♦r❛❧ ❞♦s ✈í♥❝✉❧♦s

˙

φm ≈0⇒ {φm, H}+cn{φm, φn} ≈0. ✭✷✳✶✶✮

(14)

✷✳✷✿ ❱í♥❝✉❧♦s ❞❡ Pr✐♠❡✐r❛ ❈❧❛ss❡ ❡ ❚r❛♥s❢♦r♠❛çõ❡s ❞❡ ●❛✉❣❡ ✼

✶✳ ❛ ❡q✉❛çã♦ é ✐❞❡♥t✐❝❛♠❡♥t❡ s❛t✐s❢❡✐t❛❀

✷✳ ❡ss❛ ❡q✉❛çã♦ ❞❡t❡r♠✐♥❛ ❛s ❢✉♥çõ❡s ❛r❜✐trár✐❛scm ✉♥✐✈♦❝❛♠❡♥t❡❀

✸✳ ❡ss❛ ❡q✉❛çã♦ ♣♦❞❡ ❞❛r ♦r✐❣❡♠ ❛ ♥♦✈♦s ✈í♥❝✉❧♦s✱ ♦s ❝❤❛♠❛❞♦s ✈í♥❝✉❧♦s s❡❝✉♥❞ár✐♦s ❡ ♥❡st❡ ❝❛s♦✱ ❞❡✈❡✲s❡ ✐♠♣♦r ❛ ❝♦♥s✐stê♥❝✐❛ ❞❡ss❡s ✈í♥❝✉❧♦s ♥♦ t❡♠♣♦ ❛té q✉❡ ♥ã♦ ❤❛❥❛ ♠❛✐s ✈í♥❝✉❧♦s✳

◆❛ ❛♥á❧✐s❡✱ ❢❡✐t❛ ♣♦r ❉✐r❛❝ ❬✼✻❪✱ ✉s❛♠♦s ✉♠❛ ❝❧❛ss✐✜❝❛çã♦ q✉❡ ❞✐✈✐❞❡ ♦s ✈í♥✲ ❝✉❧♦s ❡♠ ♣r✐♠❡✐r❛ ❝❧❛ss❡ ❡ s❡❣✉♥❞❛ ❝❧❛ss❡✳ ❯♠ ✈í♥❝✉❧♦✱ ♦✉ ♠❛✐s ❣❡r❛❧♠❡♥t❡✱ ✉♠❛ ❢✉♥çã♦ ❆✭①✱♣✮ é ❞✐t♦ ❞❡ ♣r✐♠❡✐r❛ ❝❧❛ss❡ s❡ s❡✉s ❝♦❧❝❤❡t❡s ❞❡ P♦✐ss♦♥ ❝♦♠ t♦❞♦s ♦s ✈í♥❝✉❧♦s sã♦ ❢r❛❝❛♠❡♥t❡ ♥✉❧♦s✱ ✐st♦ é

{A, φm} ≈0, ✭✷✳✶✷✮

❡♥q✉❛♥t♦ ♦s ❞❡ s❡❣✉♥❞❛ ❝❧❛ss❡✱ sã♦ ❛q✉❡❧❡s q✉❡ t❡♠ ♣❡❧♦ ♠❡♥♦s ✉♠ ❞♦s ❝♦❧❝❤❡t❡s ❞❡ P♦✐ss♦♥ ❞❛ ❢✉♥çã♦ ❆✭①✱♣✮ ❝♦♠ ❛❧❣✉♠ ✈í♥❝✉❧♦✱ ♥ã♦ ❢r❛❝❛♠❡♥t❡ ♥✉❧♦

{A(x, p), φm} 6≈0. ✭✷✳✶✸✮

✷✳✷ ❱í♥❝✉❧♦s ❞❡ Pr✐♠❡✐r❛ ❈❧❛ss❡ ❡ ❚r❛♥s❢♦r♠❛✲

çõ❡s ❞❡ ●❛✉❣❡

❱❛♠♦s ❛♥❛❧✐s❛r ❛ ❡✈♦❧✉çã♦ t❡♠♣♦r❛❧ ❞❡ s✐st❡♠❛s ❝♦♠ ✈í♥❝✉❧♦s ❞❡ ♣r✐♠❡✐r❛ ❝❧❛ss❡✳ P❛r❛ ✐ss♦✱ ❝♦♥s✐❞❡r❛♠♦s ✉♠❛ ❝♦♥✜❣✉r❛çã♦ ✐♥✐❝✐❛❧ ♥♦ ❡s♣❛ç♦ ❞❡ ❢❛s❡

(x0, p0✮ ❡♠ t = t0✳ ❊st❛ ❡✈♦❧✉çã♦ t❡♠♣♦r❛❧ ❞❡ ✉♠❛ q✉❛♥t✐❞❛❞❡ ❋✭q✱♣✮ s❡rá

❞❛❞❛ ♣♦r

˙

F ={F, H}+cm{F, φm}. ✭✷✳✶✹✮

❉❡✈✐❞♦ ❛ ❡①✐stê♥❝✐❛ ❞❡ ❢✉♥çõ❡s ❛r❜✐trár✐❛s ♥❛s ❡q✉❛çõ❡s ❞❡ ♠♦✈✐♠❡♥t♦ ❝♦♥✲ ❝❧✉✐♠♦s q✉❡ ♥ã♦ ♣♦❞❡r❡♠♦s ❞❡t❡r♠✐♥❛r ✉♥✐✈♦❝❛♠❡♥t❡ s✉❛ ❡✈♦❧✉çã♦ t❡♠♣♦r❛❧✳ ◆❡st❡ ❝❛s♦ ❡①✐st❡♠ ❝♦♥❥✉♥t♦s ❞❡ ♣♦♥t♦s ❞❛❞♦s ♣♦r ♣❛r❡s ❞❡ x❡ pq✉❡ ❝♦rr❡s✲

♣♦♥❞❡♠ à ♠❡s♠❛ ❝♦♥✜❣✉r❛çã♦ ❢ís✐❝❛✳ ❊st❡ ❝♦♥❥✉♥t♦ ❞❡ ♣♦♥t♦s ✜s✐❝❛♠❡♥t❡ ❡q✉✐✈❛❧❡♥t❡s ❞❡✜♥❡♠ ✉♠❛ ❝❧❛ss❡ ❞❡ ❡q✉✐✈❛❧ê♥❝✐❛✳ ❙✉r❣❡ ❡♥tã♦ ❛ s❡❣✉✐♥t❡ ♣❡r✲ ❣✉♥t❛✿ ❡①✐st❡ ❛❧❣✉♠❛ tr❛♥s❢♦r♠❛çã♦ q✉❡ ❝♦♥❡❝t❡ ♦s ♣♦♥t♦s ❞❡ ✉♠❛ ♠❡s♠❛ ❝❧❛ss❡ ❞❡ ❡q✉✐✈❛❧ê♥❝✐❛❄ P❛r❛ r❡s♣♦♥❞❡r♠♦s ❡st❛ q✉❡stã♦ ✈❛♠♦s ❝❛❧❝✉❧❛r ❛ ✈❛r✐❛çã♦ ❡♥tr❡ ❞♦✐s ❝♦♥❥✉♥t♦s ❞❡ ♣♦♥t♦s ♦❜t✐❞❛s ❛ ♣❛rt✐r ❞❡ ❞✉❛s ❡s❝♦❧❤❛s ❢✉♥çõ❡s ❛r❜r✐tár✐❛s✳ ◆❛ ❡s❝♦❧❤❛ ❞❛ ❢✉♥çã♦ ❛r❜✐trár✐❛ cm F s❡rá ❞❛❞♦ ♣♦r

(15)

✷✳✸✿ ❋✐①❛çã♦ ❞❡ ●❛✉❣❡ ✽

❏á ♥❛ ❡s❝♦❧❤❛ ❞❡ ✉♠❛ ♦✉tr❛ ❢✉♥çã♦ um✱ ♦❜t❡♠♦s ♦ ✈❛❧♦r ❞❡ ❋

F′(τ) =F(0) +{F, H}∆τ+um{F, φm}∆τ. ✭✷✳✶✻✮

❈❛❧❝✉❧❛♥❞♦ ❛ ✈❛r✐❛çã♦ ❞❛ ❢✉♥çã♦ ❋ ♦❜t❡♠♦s

δF =F(τ)F′(τ) =δvm{F, φm}, ✭✷✳✶✼✮

♦♥❞❡ δvm = (cm

−um)∆τ

❆ ♣❛rt✐r ❞❡st❛ ❡①♣r❡ssã♦ ♣♦❞❡♠♦s ❝♦♥❝❧✉✐r q✉❡ ♦s ✈í♥❝✉❧♦s ❞❡ ♣r✐♠❡✐r❛ ❝❧❛ss❡ ❣❡r❛♠ ❛s tr❛♥s❢♦r♠❛çõ❡s ❝❛♥ô♥✐❝❛s q✉❡ ❝♦♥❡❝t❛♠ ♦s ❞✐✈❡rs♦s ❝♦♥❥✉♥✲ t♦s ❞❡ ♣♦♥t♦s ❞❡♥tr♦ ❞❛ ❝❧❛ss❡ ❞❡ ❡q✉✐✈❛❧ê♥❝✐❛✳ ❊st❛s tr❛♥❢♦r♠❛çõ❡s sã♦ ❝❤❛♠❛❞❛s ❞❡ tr❛♥s❢♦r♠❛çõ❡s ❞❡ ❣❛✉❣❡ ❤❛♠✐❧t♦♥✐❛♥❛s✳

✷✳✸ ❋✐①❛çã♦ ❞❡ ●❛✉❣❡

❈♦♠♦ ❢♦✐ ❞✐s❝✉t✐❞♦ ♥❛s s❡çõ❡s ❛♥t❡r✐♦r❡s✱ ❛ ❡①✐stê♥❝✐❛ ❞❡ ✈í♥❝✉❧♦s ❞❡ ♣r✐♠❡✐r❛ ❝❧❛ss❡ ❛❝❛rr❡t❛ q✉❡ ♦s ❡st❛❞♦s ❢ís✐❝♦s ♣♦❞❡♠ s❡r ❞❡s❝r✐t♦s ♣♦r ♠❛✐s ❞❡ ✉♠ ❝♦♥❥✉♥t♦ ❞❡ ✈❛r✐á✈❡✐s ❝❛♥ô♥✐❝❛s✱ ❝❛✉s❛♥❞♦ ❛♠❜✐❣ü✐❞❛❞❡s ♥❛ t❡♦r✐❛✳ P❛r❛ ❡❧✐♠✐♥❛r♠♦s t❛✐s ❛♠❜✐❣ü✐❞❛❞❡s✱ ✐♠♣♦♠♦s ❝❡rt❛s ❝♦♥❞✐çõ❡s ❡①tr❛s à ♥♦ss❛ t❡♦r✐❛✱ ❝❤❛♠❛❞❛s ❞❡ ❝♦♥❞✐çõ❡s ❞❡ ❣❛✉❣❡✳ ❆s ❝♦♥❞✐çõ❡s ❞❡ ❣❛✉❣❡ ♣♦❞❡♠ s❡r✿

✶✳ ❝♦♥❞✐çõ❡s ❈❛♥ô♥✐❝❛s ❞❡ ●❛✉❣❡✿ q✉❛♥❞♦ ✐♠♣♦♠♦s r❡str✐çõ❡s às ✈❛r✐á✈❡✐s ❝❛♥ô♥✐❝❛s ❞♦ s✐st❡♠❛✳ ❊①✳✿ ●❛✉❣❡ ❞❡ ❈♦✉❧♦♠❜ ♥❛ ❡❧❡tr♦❞✐♥â♠✐❝❛❀ ✷✳ ❝♦♥❞✐çõ❡s ❈♦✈❛r✐❛♥t❡s ❞❡ ●❛✉❣❡✿ q✉❛♥❞♦ r❡str✐♥❣✐♠♦s ❛ ❞❡r✐✈❛❞❛ t❡♠✲

♣♦r❛❧ ❞♦s ♠✉❧t✐♣❧✐❝❛❞♦r❡s ❞❡ ▲❛❣r❛♥❣❡✳ ❊①✳✿ ●❛✉❣❡ ❞♦ t❡♠♣♦ ♣ró♣r✐♦ ♥❛ t❡♦r✐❛ ❞❛ ♣❛rtí❝✉❧❛ r❡❧❛t✐✈íst✐❝❛✳

P❛r❛ q✉❡ ❛s ❛♠❜✐❣ü✐❞❛❞❡s s❡❥❛♠ ❡❧✐♠✐♥❛❞❛s✱ ♥♦ss❛s ❝♦♥❞✐çõ❡s ❞❡ ❣❛✉❣❡ ❞❡✈❡♠ s❛t✐s❢❛③❡r

✶✳ ❛ ❛❝❡ss✐❜✐❧✐❞❛❞❡ ❞❛ ❡s❝♦❧❤❛ ❞❡ ❣❛✉❣❡✱ ♦✉ s❡❥❛✱ ❞❛❞♦ ✉♠ ❝♦♥❥✉♥t♦ ❞❡ ✈❛r✐á✈❡✐s ❝❛♥ô♥✐❝❛s✱ ❞❡✈❡ ❡①✐st✐r ✉♠❛ tr❛♥s❢♦r♠❛çã♦ ❞❡ ❣❛✉❣❡ q✉❡ ❧❡✈❡ ♦ ❝♦♥❥✉♥t♦ ✐♥✐❝✐❛❧ ❛ ♦✉tr♦ q✉❡ s❛t✐s❢❛ç❛ ❛ ❝♦♥❞✐çã♦ ❞❡ ❣❛✉❣❡✳

✷✳ ❛ ✜①❛çã♦ ❞❡ ❣❛✉❣❡ ❞❡✈❡ s❡r ❝♦♠♣❧❡t❛✱ ♦✉ s❡❥❛✱ ❞❛❞❛ ✉♠❛ ❝♦♥❞✐çã♦ ❞❡ ❣❛✉❣❡ χ✱ ❡st❛ ❞❡✈❡ s❛t✐s❢❛③❡r ❛ s❡❣✉✐♥t❡ ❝♦♥❞✐çã♦

{χ, φm} 6≈0. ✭✷✳✶✽✮

(16)

✷✳✹✿ ◗✉❛♥t✐③❛çã♦ ♣♦r ■♥t❡❣r❛✐s ❞❡ ❚r❛❥❡tór✐❛ ❡♠ ▼❡❝â♥✐❝❛ ◗✉â♥t✐❝❛ ✾

P♦r ♦✉tr♦ ❧❛❞♦✱ ❛♥❛❧✐s❛♥❞♦ ❣❡♦♠❡tr✐❝❛♠❡♥t❡ ♦ ♣r♦❝❡ss♦ ❞❡ ✜①❛çã♦ ❞❡ ❣❛✉❣❡✱ ♦❜s❡r✈❛♠♦s q✉❡ ❛s ❝♦♥❞✐çõ❡s ❞❡ ❣❛✉❣❡ ❞❡✜♥❡♠ ✉♠❛ s✉♣❡r❢í❝✐❡ ♥♦ ❡s♣❛ç♦ ❞❡ ❢❛s❡ q✉❡ ✐♥t❡r❝❡♣t❛ ❛s ór❜✐t❛s ❞❡ ❣❛✉❣❡ s♦♠❡♥t❡ ✉♠❛ ✈❡③✳ ❖s r❡s✉❧t❛❞♦s ❛❝✐♠❛ ❣❛r❛♥t❡♠ s♦♠❡♥t❡ q✉❡ ❛ ✜①❛çã♦ é ❝♦♠♣❧❡t❛ ❧♦❝❛❧♠❡♥t❡✳

✷✳✹ ◗✉❛♥t✐③❛çã♦ ♣♦r ■♥t❡❣r❛✐s ❞❡ ❚r❛❥❡tór✐❛ ❡♠

▼❡❝â♥✐❝❛ ◗✉â♥t✐❝❛

◆❛ ❢♦r♠✉❧❛çã♦ ❞❡ ❋❡②♥♠❛♥ ❞❛ ♠❡❝â♥✐❝❛ q✉â♥t✐❝❛ ❬✺✷❪✱ ♦ ♦❜❥❡t♦ ❢✉♥❞❛♠❡♥t❛❧ é ❛ ❛♠♣❧✐t✉❞❡ ❞❡ tr❛♥s✐çã♦ ♦✉ ♣r♦♣❛❣❛❞♦r✱ q✉❡ ♠❡❞❡ ❛ ♣r♦❜❛❜✐❧✐❞❛❞❡ ❞❡ ✉♠ s✐st❡♠❛ ♣❛ss❛r ❞❡ ✉♠ ❡st❛❞♦ ❛ ♦✉tr♦✱ ♦✉ s❡❥❛✱ ❞❡s❝r❡✈❡ ♦ ♣r♦❝❡ss♦ q✉â♥t✐❝♦✳ ❱❛♠♦s ❝♦♥str✉✐r ❡st❡ ♣r♦♣❛❣❛❞♦r ❛ ♣❛rt✐r ❞❛ ❢♦r♠✉❧❛çã♦ ✉s✉❛❧ ❞❛ ♠❡❝â♥✐❝❛ q✉â♥t✐❝❛✱ ❡♠ q✉❡ ❛ ❡✈♦❧✉çã♦ t❡♠♣♦r❛❧ ❞❡ ✉♠ s✐st❡♠❛ é ❞❛❞❛ ♣❡❧❛ ❡q✉❛çã♦ ❞❡ ❙❝❤rö❞✐♥❣❡r

ˆ

H|Ψ;ti=i~d

dt|Ψ;ti, ✭✷✳✶✾✮

♦♥❞❡ |Ψ;ti r❡♣r❡s❡♥t❛ ♦ ❡st❛❞♦ ❞♦ s✐st❡♠❛ ♥✉♠ ✐♥st❛♥t❡ ❞❡ t❡♠♣♦ t✳ ❆

s♦❧✉çã♦ ❞❡st❛ ❡q✉❛çã♦ ♣♦❞❡ s❡r ❡s❝r✐t❛ ❝♦♠♦

|Ψ;ti=U(t, t0)|Ψ;t0i, ✭✷✳✷✵✮

❡♠ q✉❡ ♦ ♦♣❡r❛❞♦r U(t, t0) é ♦ ❝❤❛♠❛❞♦ ♦♣❡r❛❞♦r ❞❡ ❡✈♦❧✉çã♦ t❡♠♣♦r❛❧✳

❙❡ Hˆ ♥ã♦ ❢♦r ❡①♣❧✐❝✐t❛♠❡♥t❡ ❞❡♣❡♥❞❡♥t❡ ❞♦ t❡♠♣♦✱ ♣♦❞❡♠♦s r❡♣r❡s❡♥t❛r ♦

♦♣❡r❛❞♦r ❡✈♦❧✉çã♦ ♣♦r

U(t, t0) = exp−

i

~((t−t0) ˆH), ✭✷✳✷✶✮ q✉❡ s❛t✐s❢❛③ ❛s s❡❣✉✐♥t❡s ♣r♦♣r✐❡❞❛❞❡s

✶✳ U(t3, t2)U(t2, t1) =U(t3, t1)

✷✳ U(t2, t1)† =U−1(t2, t1) =U(t1, t2)✳

P♦❞❡♠♦s ❡♥tã♦ ❞❡✜♥✐r ♦ ♣r♦♣❛❣❛❞♦r ♥♦ ❡s♣❛ç♦ ❞❛s ❝♦♦r❞❡♥❛❞❛s ❝♦♠♦

Z(xN, x0;tN, t0) = hxN|U(t)|xoi, ✭✷✳✷✷✮

♦♥❞❡ ♦s ❛✉t♦✲❡st❛❞♦s ❞❛ ♣♦s✐çã♦ |xii sã♦ ♦rt♦♥♦r♠❛✐s✱ ❝♦♠♣❧❡t♦s q✉❡ s❛t✐s❢❛✲

(17)

✷✳✹✿ ◗✉❛♥t✐③❛çã♦ ♣♦r ■♥t❡❣r❛✐s ❞❡ ❚r❛❥❡tór✐❛ ❡♠ ▼❡❝â♥✐❝❛ ◗✉â♥t✐❝❛ ✶✵

hx|x′i = δ(xx′)

dx|xihx| = 1 ✭✷✳✷✸✮

hx|pi = exp i

~px

❱❛♠♦s r❡♣r❡s❡♥t❛r ❡st❡ ♣r♦♣❛❣❛❞♦r ❡♠ t❡r♠♦s ❞❡ ✐♥t❡❣r❛✐s ❞❡ tr❛❥❡tór✐❛✳ P❛r❛ ✐st♦✱ ❞✐✈✐❞✐♠♦s ♦ ✐♥t❡r✈❛❧♦ ❡♥tr❡ ♦ ✐♥st❛♥t❡ ✜♥❛❧ ❡ ♦ ✐♥st❛♥t❡ ✐♥✐❝✐❛❧ ❡♠ N s✉❜✐♥t❡r✈❛❧♦s ✐♥✜♥✐t❡s✐♠❛✐s ✐♥t❡r♠❡❞✐ár✐♦s ❞❡ ✈❛❧♦r ǫ = ∆τ

N = τN−τ0

N ✳

P♦rt❛♥t♦✱ ✉t✐❧✐③❛♥❞♦ ❛ ♣r♦♣r✐❡❞❛❞❡ ✶ ♣♦❞❡♠♦s ❡s❝r❡✈❡r ♦ ♦♣❡r❛❞♦r ❡✈♦❧✉çã♦ t❡♠♣♦r❛❧ ❞❛ s❡❣✉✐♥t❡ ❢♦r♠❛✿

U(tN, t0) =U(tN, tN−1)U(tN−1, tN−2)...U(t1, t0). ✭✷✳✷✹✮

❖ ♣r♦♣❛❣❛❞♦r ♣♦❞❡ s❡r ❡s❝r✐t♦ ❝♦♠♦

Z(xN, x0;tN, t0) =hxN|U(tN, tN−1)U(tN−1, tN−2)...U(t1, t0)|xoi. ✭✷✳✷✺✮

■♥s❡r✐♥❞♦N1❝♦♥❥✉♥t♦s ✐♥t❡r♠❡❞✐ár✐♦s ❝♦♠♣❧❡t♦s ❞❡ ❡st❛❞♦s ❡♥tr❡ ❛ ♣♦s✐çã♦

✐♥✐❝✐❛❧ x0 ❡ ✜♥❛❧ xN ♥❛ ❡①♣r❡ssã♦ ✭✷✳✷✺✮ t❡♠♦s

Z(xN, x0;tN, t0) =

dxN−1dxN−2....dx1hxN|U(tN, tN−1)|xN−1i

hxN−1|U(tN−1, tN−2)|xN−2i... ✭✷✳✷✻✮

hx1|U(t1, t0)|x0i. ✭✷✳✷✼✮

❊ ✐♥s❡r✐♥❞♦ ❡♥tr❡ ❡st❡s ◆ ✈❡③❡s ❛ s❡❣✉✐♥t❡ ❡①♣r❡ssã♦ ✂

dp|pihp|= 1. ✭✷✳✷✽✮

P♦❞❡♠♦s r❡❡s❝r❡✈❡r ♦ ♣r♦♣❛❣❛❞♦r ❞❛ s❡❣✉✐♥t❡ ❢♦r♠❛✿

Z(xN, x0;tN, t0) = lim

N→∞

dxN−1dxN−2...dx1dpN−1dpN−2....dp0

hxN|U(tN, tN−1)|pN−1ihpN−1||xN−1i

hxN−1|U(tN−1, tN−2)|pN−1ihpN−1||xN−2i

hxN−1|U(tN−1, tN−2)|pN−1ihpN−1||xN−2i.

(18)

✷✳✺✿ ◗✉❛♥t✐③❛çã♦ ♣♦r ■♥t❡❣r❛✐s ❞❡ ❚r❛❥❡tór✐❛ ❡♠ ❚❡♦r✐❛s ❞❡ ●❛✉❣❡ ✶✶

▼❛s ✉s❛♥❞♦ ♦ r❡s✉❧t❛❞♦ ❛❜❛✐①♦

hxi+1|U(tN, tN−1)|piihpi||xii = hxi+1|exp(

i

~Hǫˆ )|piihpi||xii

= hxi+1|(1−

i

~Hˆ)|piihpi||xii

= (1 i

~hk) exp(

i

~pi(xi+1−xi))✭✷✳✷✾✮

= exp i

~(pi(xi+1−xi)−hi), ♣♦❞❡♠♦s r❡❡s❝r❡✈❡r ♦ ♣r♦♣❛❣❛❞♦r ❝♦♠♦

Z(xN, x0;tN, t0) = lim

N→∞

✂ N−1

Y

i=0

dpi N−1

Y

i=1

dxiexp i

~

N−1

X

i=0

(pi(xi+1−xi)

−ǫhi),

=

DxDpexp i

~ ✂

dt(pix˙i−h), ✭✷✳✸✵✮

♦♥❞❡ Dx✱Dp é ❛ ♠❡❞✐❞❛ ❢✉♥❝✐♦♥❛❧ ♥❛ ✐♥t❡❣r❛❧ ❞❡ tr❛❥❡tór✐❛✳

✷✳✺ ◗✉❛♥t✐③❛çã♦ ♣♦r ■♥t❡❣r❛✐s ❞❡ ❚r❛❥❡tór✐❛ ❡♠

❚❡♦r✐❛s ❞❡ ●❛✉❣❡

P❛r❛ ✉♠❛ t❡♦r✐❛ ❞❡ ❣❛✉❣❡✱ ❛ ❢♦r♠✉❧❛çã♦ ❞❡ ✐♥t❡❣r❛✐s ❞❡ tr❛❥❡tór✐❛ ✜❝❛ ✉♠ ♣♦✉❝♦ ♠❛✐s ❝♦♠♣❧✐❝❛❞❛ ❡♠ ❢✉♥çã♦ ❞❛ s✐♠❡tr✐❛ ❞❡ ❣❛✉❣❡✳ ❊①✐st❡♠ ❞✉❛s ❢♦r♠❛s ❞❡ ✐♠♣❧❡♠❡♥t❛r ❛ ❢♦r♠✉❧❛çã♦✿ ♦ ♠ét♦❞♦ ❞❡ ❋❛❞❞❡❡✈✲P♦♣♦✈❬✺✸❪ ❡ ♦ ♠ét♦❞♦ ❇❋❱❬✺✽✱ ✺✼❪✳

✷✳✺✳✶ ▼ét♦❞♦ ❞❡ ❋❛❞❞❡❡✈✲P♦♣♦✈

❖ ♣r✐♠❡✐r♦ ♠ét♦❞♦ ❛ ✐♥❝♦r♣♦r❛r ✈í♥❝✉❧♦s ♥❛ ❢♦r♠✉❧❛çã♦ ❞❡ ✐♥t❡❣r❛✐s ❞❡ tr❛❥❡✲ tór✐❛ ❢♦✐ ❞❡s❡♥✈♦❧✈✐❞♦ ♣♦r ❋❛❞❞❡❡✈❬✺✸❪✱ ♣❛r❛ ♦ q✉❛❧ s❡ ❝♦♥s✐❞❡r❛✈❛♠ ✈í♥❝✉❧♦s ❞❡ ♣r✐♠❡✐r❛ ❝❧❛ss❡✳ P♦st❡r✐♦r♠❡♥t❡✱ ❙❡♥❥❛♥♦✈✐❝❬✼✼❪ ❣❡♥❡r❛❧✐③♦✉ ❡st❡ r❡s✉❧t❛❞♦ ♣❛r❛ ✐♥❝❧✉✐r ✈í♥❝✉❧♦s ❞❡ s❡❣✉♥❞❛ ❝❧❛ss❡✳ ❊♠ ♥♦ss♦s s✐st❡♠❛s ❡st✉❞❛❞♦s ❡①✐s✲ t❡♠ s♦♠❡♥t❡ ✈í♥❝✉❧♦s ❞❡ ♣r✐♠❡✐r❛ ❝❧❛ss❡ ❡✱ ♣♦rt❛♥t♦✱ ✐r❡♠♦s s♦♠❡♥t❡ ❞✐s❝✉t✐r ♦ r❡s✉❧t❛❞♦ ❞❡ ❋❛❞❞❡❡✈✳

❈♦♥s✐❞❡r❡ ✉♠ s✐st❡♠❛ ❞❡ ◆ ❣r❛✉s ❞❡ ❧✐❜❡r❞❛❞❡✱ q✉❡ ♣♦ss✉✐ ▼ ✈í♥❝✉❧♦s ❞❡ ♣r✐♠❡✐r❛ ❝❧❛ss❡ φa✳ ❚❡♠♦s ❡♥tã♦ ❞❡ ✐♥tr♦❞✉③✐r ▼ ✜①❛çõ❡s ❞❡ ❣❛✉❣❡ Ωa✳ ❊st❡

(19)

✷✳✺✿ ◗✉❛♥t✐③❛çã♦ ♣♦r ■♥t❡❣r❛✐s ❞❡ ❚r❛❥❡tór✐❛ ❡♠ ❚❡♦r✐❛s ❞❡ ●❛✉❣❡ ✶✷

{φa, φb} ≈ 0

det{Ωa, φb} 6= 0, ✭✷✳✸✶✮

s♦❜r❡ ❛ ❤✐♣❡rs✉♣❡r❢í❝✐❡ ❞❛❞❛ ♣♦r φa = 0 ❡ Ωa = 0✳ P♦❞❡♠♦s ❛ ♣❛rt✐r ❞❛q✉✐

❡♥✉♥❝✐❛r ♦ t❡♦r❡♠❛ ❞❡ ❋❛❞❞❡❡✈✳ ❚❡♦r❡♠❛

❖ ♣r♦♣❛❣❛❞♦r é ❞❛❞♦ ♣♦r

Z(xN, X0) =

dµexp i

~( ✂

dτ(px˙ H)), ✭✷✳✸✷✮

❡♠ q✉❡ ❛ ♠❡❞✐❞❛ ❞❛ ✐♥t❡❣r❛❧ é ❞❛❞❛ ♣♦r

dµ=det{Ωa, φa} M

Y

a=1

δ(Ωa)δ(φa) N

Y

i=1

dpidxi. ✭✷✳✸✸✮

✷✳✺✳✷ ▼ét♦❞♦ ❇❋❱

❱❛♠♦s ❝♦♥s✐❞❡r❛r ✉♠ s✐st❡♠❛ ❝♦♠ N ❣r❛✉s ❞❡ ❧✐❜❡r❞❛❞❡ ❞❡✜♥✐❞♦ ❡♠ ✉♠

❡s♣❛ç♦ ❞❡ ❢❛s❡ ❝♦♠♣♦st♦ ♣♦r ✈❛r✐á✈❡✐s q✉❡ ❝♦♠✉t❛♠ ❡ ♣♦r ✈❛r✐á✈❡✐s ❞❡ ●r❛s✲ s♠❛♥♥✳ ❆s ✈❛r✐á✈❡✐s q✉❡ ❝♦♠✉t❛♠ tê♠ ♣❛r✐❞❛❞❡ ❞❡ ●r❛ss♠❛♥♥ ǫa = 0 ❡ ❛s

✈❛r✐á✈❡✐s ❞❡ ●r❛ss♠❛♥♥ tê♠ ♣❛r✐❞❛❞❡ ǫa = 1✳ ❖s ✈í♥❝✉❧♦s ❞❡ ♣r✐♠❡✐r❛ ❝❧❛ss❡

sã♦ φa(a = 1....M) ❡ s❛t✐s❢❛③❡♠ à s❡❣✉✐♥t❡ á❧❣❡❜r❛

{φa, φb} = fabdφd ✭✷✳✸✹✮

{H, φa} = Vabφb,

♦♥❞❡ fd

ab❡Vab sã♦ ❛s ❢✉♥çõ❡s ❞❡ ❡str✉t✉r❛ ✳

❖ ❢♦r♠❛❧✐s♠♦ é ✐♠♣❧❡♠❡♥t❛❞♦ ❡♠ ❞♦✐s ♣❛ss♦s✳ ❖ ♣r✐♠❡✐r♦ ❝♦♥s✐st❡ ❡♠ ♣r♦♠♦✈❡r ♦s ♠✉❧t✐♣❧✐❝❛❞♦r❡s ❞❡ ▲❛❣r❛♥❣❡ λa ❛ ✈❛r✐á✈❡✐s ❞✐♥â♠✐❝❛s ❞♦ ❡s♣❛ç♦

❞❡ ❢❛s❡ ❡ ✐♥tr♦❞✉③✐r ✉♠ ♠♦♠❡♥t♦ ❝❛♥ô♥✐❝♦ ♣❛r❛ ♦ ♠✉❧t✐♣❧✐❝❛❞♦r ❞❡ ❧❛❣r❛♥❣❡

Πa✱ s❛t✐s❢❛③❡♥❞♦ ❛ ❝♦♥❞✐çã♦

{λa,Πb}ba. ✭✷✳✸✺✮

(20)

✷✳✺✿ ◗✉❛♥t✐③❛çã♦ ♣♦r ■♥t❡❣r❛✐s ❞❡ ❚r❛❥❡tór✐❛ ❡♠ ❚❡♦r✐❛s ❞❡ ●❛✉❣❡ ✶✸

Πa= 0. ✭✷✳✸✻✮

❖s ✈í♥❝✉❧♦s φ ❡ Π ❢♦r♠❛♠ ✉♠ s✐st❡♠❛ ❞❡ ✈í♥❝✉❧♦s ❞❡ ♣r✐♠❡✐r❛ ❝❧❛ss❡✳ ◆♦

❢♦r♠❛❧✐s♠♦ ❇❋❱ ❡st❡ ❝♦♥❥✉♥t♦ é ❞❡♥♦t❛❞♦ ♣♦rGi(i= 1,2, ...2M)q✉❡ s❛t✐s✲

❢❛③

{Gi, Gj} = fijkGk ✭✷✳✸✼✮

{H, Gi} = VijGj.

◆✉♠ s❡❣✉♥❞♦ ♣❛ss♦✱ ✐♥tr♦❞✉③✐♠♦s ♥♦✈♦s ❣r❛✉s ❞❡ ❧✐❜❡r❞❛❞❡ ❛ ✜♠ ❞❡ ❝♦♠✲ ♣❡♥s❛r ♦ ❛✉♠❡♥t♦ ❞♦ ❡s♣❛ç♦ ❞❡ ❢❛s❡✳ ❊st❡s ❣r❛✉s ❞❡ ❧✐❜❡r❞❛❞❡ ❛❞✐❝✐♦♥❛✐s sã♦ ❝❤❛♠❛❞♦s ❞❡ ♣❛r❡s ❞❡ ❢❛♥t❛s♠❛s ❞❡ ❇❋❱✳ P❛r❛ ❝❛❞❛ ✈í♥❝✉❧♦ ❞❡ ♣r✐✲ ♠❡✐r❛ ❝❧❛ss❡ ✐♥tr♦❞✉③✐♠♦s ✉♠ ♣❛r ❞❡ ❢❛♥t❛s♠❛s (ηi,Pi)✱ ♠❛s ❝♦♠ ♣❛r✐❞❛❞❡

❞❡ ●r❛ss♠❛♥ ♦♣♦st❛ ❛♦ ❝♦rr❡s♣♦❞❡♥t❡ ✈í♥❝✉❧♦ ❞❡ ♣r✐♠❡✐r❛ ❝❧❛ss❡✱ q✉❡ s❛t✐s❢❛③ à s❡❣✉✐♥t❡ á❧❣❡❜r❛

{Pi, ηj} = −δij, ✭✷✳✸✽✮

❡ ♦s ♦✉tr♦s ❝♦❧❝❤❡t❡s ❞❡ P♦✐ss♦♥ ❣❡♥❡r❛❧✐③❛❞♦s ♥✉❧♦s✳ P♦rt❛♥t♦✱ ♥♦ss♦ ♥♦✈♦ ❡s♣❛ç♦ ❞❡ ❢❛s❡ é (x, p, λa,Πa;ηi,

Pi)✳ ◆❡st❡ ♥♦✈♦ ❡s♣❛ç♦ ❞❡ ❢❛s❡✱ ♦ ♥ú♠❡r♦ ❞❡

❣r❛✉s ❞❡ ❧✐❜❡r❞❛❞❡ é ❞❛❞♦ ♣♦r 2(N M)✳

◆❡st❡ ❡s♣❛ç♦ ❞❡ ❢❛s❡ ❡st❡♥❞✐❞♦✱ ❛ s✐♠❡tr✐❛ ♦r✐❣✐♥❛❧ ❞❡ ❣❛✉❣❡ é s✉❜st✐t✉í❞❛ ♣♦r ✉♠❛ s✐♠❡tr✐❛ ❣❧♦❜❛❧ ❣❡r❛❞❛ ♣❡❧❛ s❡❣✉✐♥t❡ ❝❛r❣❛ ❢❡r♠✐ô♥✐❝❛ QB

QB =ηiGi− 1 2η

jηkfi

jkPi, ✭✷✳✸✾✮

q✉❡ é ❛♥t✐❝♦♠✉t❛t✐✈♦ ❡ ♣♦r ❝♦♥str✉çã♦ s❛t✐s❢❛③

{QB, QB}= 0. ✭✷✳✹✵✮

❊st❛ ❝❛r❣❛ ❢❡r♠✐ô♥✐❝❛ r❡❝❡❜❡ ♦ ♥♦♠❡ ❞❡ ❝❛r❣❛ ❇❘❙❚✳ ❊st❛ ❝❛r❣❛ ❣❡r❛ ❛s s❡❣✉✐♥t❡s tr❛♥s❢♦r♠❛çõ❡s

δBx = {x, Gi}ηi δBp = {p, Gi}ηi

δBλa = ηa ✭✷✳✹✶✮

δBΠa = 0 δBηi =

1 2f

i jkηjηk

(21)

✷✳✺✿ ◗✉❛♥t✐③❛çã♦ ♣♦r ■♥t❡❣r❛✐s ❞❡ ❚r❛❥❡tór✐❛ ❡♠ ❚❡♦r✐❛s ❞❡ ●❛✉❣❡ ✶✹

P♦❞❡♠♦s ❛❣♦r❛ ❡s❝r❡✈❡r ❛ ❛çã♦ ✐♥✈❛r✐❛♥t❡ ♣♦r ❇❘❙❚

Sef =

dτ( ˙xpλaΠa˙ + ˙ηiP

i−H− {Ψ, QB}), ✭✷✳✹✷✮

♦♥❞❡ Ψ é ✉♠❛ ❢✉♥çã♦ ❢❡r♠✐ô♥✐❝❛ ❛r❜✐trár✐❛✳

❆s ❡q✉❛çõ❡s ❞❡ ♠♦✈✐♠❡♥t♦ ♣r♦✈❡♥✐❡♥t❡s ❞❡st❛ ❛çã♦ ❞❡✈❡♠ s❡r s✉♣❧❡♠❡♥✲ t❛❞❛s ♣♦r ❝♦♥❞✐çõ❡s ❞❡ ❢r♦♥t❡✐r❛ q✉❡ s❡❥❛♠ ✐♥✈❛r✐❛♥t❡s ♣❡❧❛ s✐♠❡tr✐❛ ❞❡ ❇❘❙❚✳ ❊①✐st❡♠ ✈ár✐❛s ❝♦♥❞✐çõ❡s ✐♥✈❛r✐❛♥t❡s q✉❡ ♣♦❞❡rí❛♠♦s ❛❞♦t❛r✳ ❱❛♠♦s ✐♥tr♦✲ ❞✉③✐r ✉♠ ❝♦♥❥✉♥t♦ ♠✉✐t♦ ✉s❛❞♦ ♥❛ ❧✐t❡r❛t✉r❛✱ ❡ ♣❛r❛ ✐♠♣❧❡♠❡♥tá✲❧♦✱ ✈❛♠♦s ♣r✐♠❡✐r♦ ❞❡❝♦♠♣♦r ♦ ♣❛r ❞❡ ❢❛♥t❛s♠❛s ❞❛ s❡❣✉✐♥t❡ ❢♦r♠❛

ηi = (Pa, Ca),

Pi = ( ¯Ca,P¯a), ✭✷✳✹✸✮

q✉❡ s❛t✐s❢❛③❡♠ ❛s s❡❣✉✐♥t❡s r❡❧❛çõ❡s

{Pa,C¯

a} = −1,

{Ca,P¯a} = −1. ✭✷✳✹✹✮

P♦❞❡♠♦s ❛❣♦r❛ ❞❡✜♥✐r ❛s ❝♦♥❞✐çõ❡s ❞❡ ❢r♦♥t❡✐r❛ ✐♥✈❛r✐❛♥t❡s ❞❡ ❇❘❙❚ ❞❛❞❛s ♣♦r

Πa(τ0) = 0, Πa(τN) = 0, Ca(τ0) = 0, Ca(τN) = 0,

¯

Ca(τ0) = 0, C¯a(τN) = 0, ✭✷✳✹✺✮ x(τ0) = x0, x(τN) =xN.

P♦❞❡♠♦s ❞❡✜♥✐r ❛❣♦r❛ ♦ t❡♦r❡♠❛ ❇❋❱✳ ❚❡♦r❡♠❛ ❇❋❱

❖ ♣r♦♣❛❣❛❞♦r é ❞❛❞♦ ♣♦r

Z(xN, x0) =

Dµexpi

dτ( ˙xpλaΠa˙ + ¯PaC˙a−C¯aP˙a−H+{Ψ, QB})

,

✭✷✳✹✻✮ é ✐♥❞❡♣❡♥❞❡♥t❡ ❞❡ Ψ ❡ Dµ = DxDpDλDΠDP¯DPDCDC¯ é ❛ ♠❡❞✐❞❛ ❞❡

▲✐♦✉✈✐❧❧❡✳ ❆s ❞✐✈❡rs❛s ❡s❝♦❧❤❛s ❞❡ ❣❛✉❣❡ sã♦ ♦❜t✐❞❛s ♣♦r ❞✐❢❡r❡♥t❡s ❡s❝♦❧❤❛s ❞❛ ❢✉♥çã♦ ❛r❜✐trár✐❛ Ψ✳ ❆ ❞❡♠♦♥str❛çã♦ ❞❡st❡ t❡♦r❡♠❛ ♣♦❞❡ s❡r ❡♥❝♦♥tr❛❞❛

(22)

❈❛♣ít✉❧♦ ✸

◗✉❛♥t✐③❛çã♦ ❇❘❙❚ ❞❛ P❛rtí❝✉❧❛

❘❡❧❛t✐✈íst✐❝❛

✸✳✶ ■♥tr♦❞✉çã♦

◆❡st❡ ❝❛♣ít✉❧♦✱ ✈❛♠♦s ❛♥❛❧✐s❛r ♦ ❝❛s♦ ❞❡ ✉♠❛ ♣❛rtí❝✉❧❛ r❡❧❛t✐✈íst✐❝❛ ❧✐✈r❡✱ ❞❡ ♠❛ss❛ m✱ ♥✉♠ ❡s♣❛ç♦ ❞❡ ▼✐♥❦♦✇s❦✐ ❡♠ d ❞✐♠❡♥sõ❡s✳ ❆ ❛çã♦ q✉❡ ❛ ❞❡s❝r❡✈❡

é

S =m

✂ τ2

τ1

dτpx˙2(τ), ✭✸✳✶✮

❡ τ ♣❛r❛♠❡tr✐③❛ ❛ ❧✐♥❤❛ ♠✉♥❞♦ ❞❛ ♣❛rtí❝✉❧❛ r❡❧❛t✐✈íst✐❝❛✳ ❊ ❛ ♣♦s✐çã♦ ♥♦

❡s♣❛ç♦✲t❡♠♣♦ é ❞❡s❝r✐t❛ ♣♦r xµ(τ) ❝♦♠ µ = 0,1, ...d 1✳ ❆❞♦t❛r❡♠♦s ❛

❝♦♥✈❡♥çã♦ ηµν = diag(−1,1,1....1) ♣❛r❛ ❛ ♠étr✐❝❛✳ ❊st❛ ❛çã♦ é ✐♥✈❛r✐❛♥t❡

♣♦r r❡♣❛r❛♠❡tr✐③❛çã♦ ❞❛ ❧✐♥❤❛ ♠✉♥❞♦ ❞❡✜♥✐❞❛ ♣❡❧❛s tr❛♥s❢♦r♠❛çõ❡s

τ ˜τ = ˜τ(τ),

xµ(τ)x˜µ(˜τ) = xµ(τ), ✭✸✳✷✮

♦✉ s❡❥❛✱ ❛s ❝♦♦r❞❡♥❛❞❛s s❡ tr❛♥s❢♦r♠❛♠ ❝♦♠♦ ❡s❝❛❧❛r❡s✳ ❆s ❡q✉❛çõ❡s ❞❡ ♠♦✈✐♠❡♥t♦ sã♦

d dτ

mx˙µ(τ)

p

−x˙2(τ)

!

= 0, ✭✸✳✸✮

s✉❥❡✐t❛s às ❝♦♥❞✐çõ❡s ❞❡ ❝♦♥t♦r♥♦ xµ(τ

1) =xµ1 ❡ xµ(τ2) =xµ2 ✳

P❛ss❛♠♦s à ❢♦r♠✉❧❛çã♦ ❤❛♠✐❧t♦♥✐❛♥❛ ❝❛❧❝✉❧❛♥❞♦ ♦ ♠♦♠❡♥t♦ ❝❛♥ô♥✐❝♦

(23)

✸✳✶✿ ■♥tr♦❞✉çã♦ ✶✻

pµ(τ) = ∂L ∂x˙µ, = pmx˙µ

−x˙2(τ)

✭✸✳✹✮

❡ ✉t✐❧✐③❛♥❞♦ ❛ ❡①♣r❡ssã♦ ❛❝✐♠❛✱ ♦❜t❡♠♦s ♦ ✈í♥❝✉❧♦ ♣r✐♠ár✐♦

φ= 1 2(p

2+m2)

≈0. ✭✸✳✺✮

❊♥tã♦ ❛ ❤❛♠✐❧t♦♥✐❛♥❛ ❝❛♥ô♥✐❝❛ é

H = pµx˙µ−L, = pmx˙µ

−x˙2(τ)

µ

−L,

= 0, ✭✸✳✻✮

❡✱ ♥❡st❡ ❝❛s♦✱ ❛ ❡✈♦❧✉çã♦ t❡♠♣♦r❛❧ ❞♦ s✐st❡♠❛ s❡rá ❣♦✈❡r♥❛❞❛ ♣❡❧❛ ❤❛♠✐❧t♦✲ ♥✐❛♥❛ t♦t❛❧ HT

HT = H+λ(τ)φ

= λ(τ)φ, ✭✸✳✼✮

♦♥❞❡ λ é ♦ ♠✉❧t✐♣❧✐❝❛❞♦r ❞❡ ▲❛❣r❛♥❣❡✳ ■♠♣♦♥❞♦✲s❡ ❛ ❝♦♥s✐stê♥❝✐❛ t❡♠♣♦r❛❧

❞♦ ✈í♥❝✉❧♦ ✭✸✳✺✮ t❡♠♦s

˙

φ=λ{φ, φ} ≈0, ✭✸✳✽✮

♦ q✉❡ ♣❡r♠✐t❡ ❝♦♥❝❧✉✐r q✉❡ φ é ú♥✐❝♦ ❡ ❞❡ ♣r✐♠❡✐r❛ ❝❧❛ss❡✳ ❘❡❡s❝r❡✈❡♥❞♦ ❛

❛çã♦ ♥❛ ❢♦r♠❛ ❤❛♠✐❧t♦♥✐❛♥❛ ♦❜t❡♠♦s

S =

✂ τ2

τ1

pµx˙µ− 1

2λ(τ)(p

2+m2)

. ✭✸✳✾✮

❆s tr❛♥s❢♦r♠❛çõ❡s ❞❡ ❣❛✉❣❡ ❣❡r❛❞♦s ♣♦r ✭✸✳✺✮ sã♦

δxµ = ǫ(τ)pµ,

δpµ = 0, ✭✸✳✶✵✮

(24)

✸✳✶✿ ■♥tr♦❞✉çã♦ ✶✼

♦♥❞❡ ǫ(τ)é ♦ ♣❛râ♠❡tr♦ ❞❛ tr❛♥s❢♦r♠❛çã♦✳ ❚♦♠❛♥❞♦ ❛ ✈❛r✐❛çã♦ ❞❛ ❛çã♦

δS =

✂ τ2

τ1

dτ d dτ

ǫ(τ)1 2(p

2

−m2)

= ǫ(τ)1 2(p

2

−m2)

τ2

τ1

, ✭✸✳✶✶✮

❝♦♥❝❧✉✐♠♦s q✉❡ ❛ ✐♥✈❛r✐â♥❝✐❛ ✐♠♣õ❡ ♦ ❛♥✉❧❛♠❡♥t♦ ❞♦s ♣❛râ♠❡tr♦s ❞❡ ❣❛✉❣❡ ♥♦s ❡①tr❡♠♦s✳

❱❛♠♦s ❛❣♦r❛ ❝♦♥s✐❞❡r❛r ♦ ❢♦r♠❛❧✐s♠♦ ❇❋❱✳ ◆✉♠ ♣r✐♠❡✐r♦ ♠♦♠❡♥t♦ ✐♥✲ tr♦❞✉③✐♠♦s ✉♠ ❣r❛✉ ❞❡ ❧✐❜❡r❞❛❞❡ Π❝♦♥❥✉❣❛❞♦ ❛♦ ♠✉❧t✐♣❧✐❝❛❞♦r ❞❡ ▲❛❣r❛♥❣❡ λ✱ s❛t✐s❢❛③❡♥❞♦ ♦ s❡❣✉✐♥t❡ ❝♦❧❝❤❡t❡ ❞❡ P♦✐ss♦♥

{λ,Π}= 1, ✭✸✳✶✷✮

❡ ♣❛r❛ ♥ã♦ ❛❧t❡r❛r♠♦s ♦ ❝♦♥t❡ú❞♦ ❢ís✐❝♦ ❞❛ t❡♦r✐❛ ✐♠♣♦♠♦s

Π = 0. ✭✸✳✶✸✮

❊st❡ ✈í♥❝✉❧♦ ❛❞✐❝✐♦♥❛❧ ✭✸✳✶✸✮ ❢♦r♠❛ ✉♠ s✐st❡♠❛ ❞❡ ♣r✐♠❡✐r❛ ❝❧❛ss❡ ❝♦♠ ♦ ✈í♥❝✉❧♦ φ✱ q✉❡ s❡rá ❞❡♥♦t❛❞♦ ♣♦rGa a= 1,2❞❛ s❡❣✉✐♥t❡ ❢♦r♠❛✿

G1 = Π, G2 =φ, ✭✸✳✶✹✮

s❛t✐s❢❛③❡♥❞♦ ❛ s❡❣✉✐♥t❡ á❧❣❡❜r❛✿

{Ga, Gb} = 0, a, b= 1,2 ✭✸✳✶✺✮

{H, Ga} = 0, ✭✸✳✶✻✮

♦♥❞❡ H é ❛ ❤❛♠✐❧t♦♥✐❛♥❛ ❝❛♥ô♥✐❝❛✳

◆✉♠ s❡❣✉♥❞♦ ♣❛ss♦✱ ✐♥tr♦❞✉③✐♠♦s ✉♠ ♣❛r ❞❡ ❢❛♥t❛s♠❛s (C,P¯) ❡ (P,C¯)

❛ss♦❝✐❛❞♦s ❛♦s ✈í♥❝✉❧♦s ❞❛❞♦s ❡♠ ✭✸✳✶✹✮✱ r❡s♣❡❝t✐✈❛♠❡♥t❡✱ s❛t✐s❢❛③❡♥❞♦ ♦s s❡❣✉✐♥t❡s ❝♦❧❝❤❡t❡s ❞❡ P♦✐ss♦♥✿

{C,P}¯ = {P,C¯}=1, ✭✸✳✶✼✮

❡ ❝♦♠ ♦s ♦✉tr♦s ❝♦❧❝❤❡t❡s ❞❡ P♦✐ss♦♥ ♥✉❧♦s✳ ❆ ❝❛r❣❛ ❞❡ ❇❘❙❚ é

QB = 1 2C p

2+m2

+PΠ, ✭✸✳✶✽✮

(25)

✸✳✶✿ ■♥tr♦❞✉çã♦ ✶✽

δxµ = Cpµ, δpµ= 0, δλ = P, δΠ = 0, δC = 0, δC¯=Π, δP¯ = 1

2(p

2+m2), δP = 0. ✭✸✳✶✾✮

❱❛♠♦s ❛♥❛❧✐s❛r ❛❧❣✉♠❛s ❡s❝♦❧❤❛s ❞❡ ❣❛✉❣❡ ♥♦ ❢♦r♠❛❧✐s♠♦ ❇❋❱✳

✸✳✶✳✶ ❈♦♥❞✐çã♦ ❈♦✈❛r✐❛♥t❡ ❞❡ ●❛✉❣❡

λ

˙

(

τ

) =

f

(

λ

)

❖ ♣r✐♠❡✐r♦ ❝❛s♦ ❛ s❡r ❛♥❛❧✐s❛❞♦ é ♦ ❞❛ ❝♦♥❞✐çã♦ ❝♦✈❛r✐❛♥t❡ ❞❡ ❣❛✉❣❡ ❡ ❡st❛ é ✐♠♣❧❡♠❡♥t❛❞❛ ♣❡❧❛ s❡❣✉✐♥t❡ ❢✉♥çã♦ ❣r❛s♠❛♥✐❛♥❛

Ψ = ¯Cf(λ) +λP¯, ✭✸✳✷✵✮

♦♥❞❡ f(λ) é ✉♠❛ ❢✉♥çã♦ ❛r❜✐trár✐❛ ❞♦s ♠✉❧t✐♣❧✐❝❛❞♦r❡s ❞❡ ▲❛❣r❛♥❣❡✳ ❈❛❧❝✉✲

❧❛♥❞♦ ♦ ❝♦❧❝❤❡t❡s ❞❡ P♦✐ss♦♥ ❞❡ Ψ❝♦♠ ❛ ❝❛r❣❛ ❞❡ ❇❘❙❚ t❡♠♦s

{Ψ, QB}=−f(λ)Π + ¯CPf ′

(λ) + ¯PP −λ 2(p

2+m2), ✭✸✳✷✶✮

❡♠ q✉❡ f′

(λ)é ❛ ❞❡r✐✈❛❞❛ ❞❡ f ❡♠ r❡❧❛çã♦ ❛ λ✳ ❆ ❛çã♦ ❡❢❡t✐✈❛ é

Sef =

✂ τ2

τ1

dτ(pµx˙µ+ Π ˙λ+ ¯PC˙ + ¯CP −˙ f(λ)Π + ¯CPf ′

(λ)

+ ¯PP −λ 2(p

2+m2)). ✭✸✳✷✷✮

❆s ❡q✉❛çõ❡s ❞❡ ♠♦✈✐♠❡♥t♦ sã♦

˙

xµ = λpµ, p˙µ= 0, ˙¯

C = P¯, C˙ =P, ˙

λ = f(λ), Π =˙ f′(λ)Π + ¯CPf′′(λ) 1 2(p

2+m2). ✭✸✳✷✸✮

❘❡s♦❧✈❡♥❞♦ ❡st❛s ❡q✉❛çõ❡s ♣❛r❛ ♦ ❝❛s♦ ❡♠ q✉❡ f(λ) = 0 ❡ ✉t✐❧✐③❛♥❞♦ ❛s

(26)

✸✳✶✿ ■♥tr♦❞✉çã♦ ✶✾

xµ(τ) = xµ1 +∆x µ

∆τ (τ −τ1), p

µ(τ) = ∆x µ

∆τ , ¯

C(τ) = 0, C(τ) = 0,

P(τ) = 0, P(τ) = 0,

λ(τ) =λ0, Π(τ) = 0, ✭✸✳✷✹✮

♦♥❞❡∆xµ=xµ21 ❡λ0 é ✉♠❛ ❝♦♥st❛♥t❡✳ ❯♠❛ ❞❛s ❝♦♥s❡q✉ê♥❝✐❛s q✉❡ ♣♦❞❡✲

♠♦s ❝♦♥❝❧✉✐r é q✉❡ ♦ ✈í♥❝✉❧♦ φ é s❛t✐s❢❡✐t♦ ❡♠ q✉❛❧q✉❡r ✐♥st❛♥t❡✳ ❯t✐❧✐③❛♥❞♦

❛ s♦❧✉çã♦ ♣❛r❛ pµ ♦❜t❡♠♦s q✉❡ (∆x)2 =m2(∆τ)2.

✸✳✶✳✷ ❈♦♥❞✐çã♦ ❞❡ ●❛✉❣❡ ❈❛♥ô♥✐❝♦

x

0

τ

= 0

P❛r❛ ❛♥❛❧✐s❛r♠♦s ❡st❛ ❝♦♥❞✐çã♦ ❞❡ ❣❛✉❣❡ ❡s❝r❡✈❡r❡♠♦s xµ= (x0, ~x✮✱ ♦♥❞❡x0

é ❝♦♠♣♦♥❡♥t❡ t❡♠♣♦r❛❧ ❡ ~x ❝♦rr❡s♣♦♥❞❡ ❛s d1 ❝♦♦r❞❡♥❛❞❛s ❡s♣❛❝✐❛✐s✳ ❆

❢✉♥çã♦ ❣r❛s♠❛♥✐❛♥❛ q✉❡ ✐♠♣❧❡♠❡♥t❛ ❡st❡ ❣❛✉❣❡ é

Ψ = 1 β(x

0

−τ) ¯C+λP¯, ✭✸✳✷✺✮

♦♥❞❡ β é ✉♠❛ ❝♦♥st❛♥t❡ r❡❛❧ ❞✐❢❡r❡♥t❡ ❞❡ ③❡r♦✳ ❈❛❧❝✉❧❛♥❞♦✲s❡ ♦ ❝♦❧❝❤❡t❡ ❞❡

P♦✐ss♦♥ t❡♠♦s

{Ψ, QB}= 1 βΠ(x

0

−τ) + 1

βCCp¯ 0+ ¯PP + λ 2(p

2

0−~p2−m2). ✭✸✳✷✻✮

◆❡st❡ ❝❛s♦✱ ❛ ❛çã♦ ❡❢❡t✐✈❛ é

Sef =

✂ τ2

τ1

dτ(p0x˙0+~p·~x˙ + Π ˙λ+ ¯PC˙ + ¯CP˙ + 1 βΠ(x

0τ)

+1

βCCp¯ 0+ ¯PP + λ 2(p

2

0−~p2−m2)).

P❛r❛ ♦❜t❡r♠♦s ❛ ✜①❛çã♦ ❞❡ ❣❛✉❣❡ ❞❡s❡❥❛❞❛ t❡♠♦s q✉❡ ❢❛③❡r ❛ s❡❣✉✐♥t❡ ♠✉✲ ❞❛♥ç❛ ❞❡ ✈❛r✐á✈❡✐s ✐♥✈❛r✐❛♥t❡ ♣♦r ❇❘❙❚Π βΠ˜ ❡ C¯ βC˜¯ q✉❡ r❡❡s❝r❡✈❡ ❛

❛çã♦ ❞❛ s❡❣✉✐♥t❡ ❢♦r♠❛

Sef =

✂ τ2

τ1

dτ(p0x˙0+~p·~x˙ +βΠ ˙˜λ+ ¯PC˙ +βC˜¯P˙ + ˜Π(x0τ)

+ ˜¯CCp0+ ¯PP +

λ 2(p

2

Referências

Documentos relacionados

A prática de aplicar exclusivamente os dois referidos métodos de decisão às decisões do Conselho, independentemente da sua natureza, que este projecto mantém –

O processo intergovernamental tem permitido avanços na integração europeia em áreas embrionárias (como, por exemplo, a política externa) ou em domínios sensíveis para

Se para aqueles que fazem profissão de fé na importância do Estado liberal, não interventivo na ordem do mer- cado – vide Vladimir Spidla, Silvio Berlus- coni ou

Com os iraquianos no poder, com o espectro das eleições livres, com as Nações Unidas a dirigirem-se para o Iraque para ajudar o desenvolvimento do processo e com o

A defesa de uma intervenção militar para o derrube do regime iraquiano representou uma alteração dos pressupostos da estratégia norte-americana para a região do

Mesmo quem não adira à teoria do mandato implícito nem se deixe convencer pela argumentação de autores como Fernando Gil e Paulo Tunhas, de acordo com os quais – tendo a

Já o Governo de Balfour se opunha à possibilidade da fortificação do porto de Rabat, que se erguiria assim como um rival de Gibraltar, vendo ainda o abandono de Marrocos, onde a

Após a cimeira, Blair disse: «Uma política externa e de segurança para a UE é necessária, é urgente e chegou a altura de tentarmos formulá-la.» O primeiro-ministro britânico