• Nenhum resultado encontrado

Effect of increasing levels of glycerin on growth rate, carcass traits and liver gluconeogenesis in young bulls

N/A
N/A
Protected

Academic year: 2021

Share "Effect of increasing levels of glycerin on growth rate, carcass traits and liver gluconeogenesis in young bulls"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Animal

Feed

Science

and

Technology

journalhomepage:www.elsevier.com/locate/anifeedsci

Effect

of

increasing

levels

of

glycerin

on

growth

rate,

carcass

traits

and

liver

gluconeogenesis

in

young

bulls

Marcio

M.

Ladeira

a,∗

,

José

Rodolfo

R.

Carvalho

a

,

Mario

L.

Chizzotti

b

,

Priscilla

D.

Teixeira

a

,

Júlio

César

O.

Dias

a

,

Tathyane

R.S.

Gionbelli

a

,

Aline

C.

Rodrigues

a

,

Dalton

M.

Oliveira

c

aDepartmentofAnimalScience,UniversidadeFederaldeLavras,Lavras,MinasGerais,CEP:37.200-000,Brazil

bDepartmentofAnimalScience,UniversidadeFederaldeVic¸osa,Vic¸osa,MG,36.570-000,Brazil

cUniversidadeEstadualdeMatoGrossodoSul,Aquidauana,MS,79.200-000,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21December2015

Receivedinrevisedform14June2016

Accepted15June2016 Keywords: Biodiesel Glycerol GK1 Marbling Phosphoenolpyruvatecarboxykinase

a

b

s

t

r

a

c

t

Thisstudyaimedtoevaluateperformance,carcasstraits,glycerolkinase1(GK1)and cyto-plasmaticphosphoenolpyruvatecarboxykinase(PCK1)geneexpression,andglycerolkinase activityinliverofyoungbullsreceivingdifferentlevelsofcrudeglycerin.Forty-four cross-bredyoungbulls(initialbodyweightof368±4.2kg)wereusedinacompletelyrandomized design,withfourtreatmentsand11replicates.Theexperimentperiodlasted84days, pre-cededbyanadaptationperiodof28days.Thebasaldietwascomposedofcornsilage (300g/kg)andconcentrate(700g/kg)containingcornandsoybean.Theexperimental treat-mentswereasfollows:withoutglycerinorincluding60,120or180g/kgofcrudeglycerinin thediet.Bloodsampleswerecollectedonthelastdayoftheexperimentperiodtoevaluate biochemicalparameters.Afterslaughter,carcasstraitsweremeasuredandliversamples werecollectedtoanalyzegeneexpressionandglycerolkinaseactivity.Therewasnoeffect (P=0.21)ofglycerinonglucosebloodconcentrations.However,liverglycerolkinase activ-itywasgreater(P<0.01)andGK1andPCK1genesexpressionsweredownregulate(P<0.01) asglycerinlevelsinthedietincreased.Glycerindidnotaffect(P>0.17)performanceand mostofthecarcasstraits.However,therewasagreater(P=0.02)marblingscoreinthe carcassofanimalsfed120and180g/kgofcrudeglycerin.Inconclusion,theuseofglycerin atalevelofupto180g/kgisrecommendedindietsoffeedlotbeefcattle,anditincreases liverglycerolkinaseactivity,feedefficiencyandbeefmarbling.

©2016ElsevierB.V.Allrightsreserved.

Abbreviations:ADG,averagedailygain;AQP9,aquaglyceroporin;AST,aspartateaminotransferase;CCW,coldcarcassweight;CK,creatinekinase;CY,

carcassyield;DM,drymatter;DMI,drymatterintake;FBW,finalbodyweight;GAPDH,glyceraldehyde3-phosphatedehydrogenasegene;GGT,

gamma-glutamylaminotransferase;GKI,glycerolkinase1gene;HCW,hotcarcassweight;LMA,longissimusmusclearea;ME,metabolizableenergy;NFC,

non-fibrouscarbohydrates;PCK1,cytoplasmaticphosphoenolpyruvatecarboxykinasegene;PEPCK-C,cytosolicphosphoenolpyruvatecarboxykinaseenzyme;

PGC-1␣,peroxisomeproliferator-activatedreceptor-␥coactivator1␣;PPAR-gamma,peroxisomeproliferator-activatedreceptor-␥;SFT,subcutaneousfat

thickness.

夽 ResearchfundedbyFAPEMIG.

∗ Correspondingauthor.

E-mailaddress:mladeira@dzo.ufla.br(M.M.Ladeira).

http://dx.doi.org/10.1016/j.anifeedsci.2016.06.010

(2)

1. Introduction

Theuseofcoproductstoreplacecommonlyusedingredientssuchascornandsoybeancouldreducefeedingcostand

increaseprofitinfeedlots.Amongavailablecoproductsforuseinfeedlots,glycerinisemergingasanoptionduetothe

growthofbiodieselindustryaroundtheworld.Somestudieshaveshownthepotentialofthisbiodieselindustrycoproduct

forruminants’feeding,beingthefirststudiesperformedindairycows(Donkin,2008).Inbeefcattle,severalstudiesevaluated

theeffectofcrudeglycerinonperformanceandbeefquality,butresultswereambiguousandinconclusive.Inotherwords,in

somecasescrudeglycerinincreasedgrowthperformanceoftheanimals(Parsonsetal.,2009),butinothercases,therewas

nopositiveeffect(Egeaetal.,2014;VanCleefetal.,2014),whileinsomestudies,glycerindepressedanimalperformance

andcarcasstraits(Gunnetal.,2010).Inaddition,noneanalyzedperformanceandlivermetabolismatthesametime.

Chemicalcompositionofcrudeglycerinstillisquitevariable,beingimportanttoassesswhethertheuseofthisingredient

mayhavetoxiceffectsinruminants,especiallyregardingmethanolconcentration.AccordingtoElametal.(2008),ithasbeen

hypothesizedthatglycerinsupplementationmaycauseproblemsassociatedwithhepaticlipidmobilizationbyincreasing

theliverabilitytosequesterandre-esterifyfattyacidsfromtissues.Besides,glycerolmaybeasubstrateforgluconeogenesis

intheliver,increasingglycerolkinaseactivityandglucoseturnover,whichcouldimprovebeefmarbling.Itmayoccur

because,accordingtoGilbertetal.(2003),intramuscularadiposetissueusesahighproportionofglucoseforfattyacid

synthesisanditismoresensitivetoinsulin.

Therefore,thehypothesisofthisstudyisthatglycerinwillnotaffectnegativelyfeedlotperformance,whileincreases

livergeneexpressionandactivityofglycerolkinase.Theobjectivewastoevaluateperformance,carcasstraits,expression

ofglycerolkinase1(GK1)andcytoplasmaticphosphoenolpyruvatecarboxykinase(PCK1)genes,andglycerolkinaseactivity

intheliverofyoungbullsfeddifferentlevelsofcrudeglycerin.

2. Materialsandmethods

AnimalcareandhandlingwereapprovedbytheFederalUniversity ofLavrasAnimalCareand UseCommittee.The

experimentwascarriedoutattheAnimalScienceDepartmentoftheFederalUniversityofLavras.

2.1. Animals,dietandslaughter

Fourty-fourcrossbredyoungbulls(¼Angus,¼Nellore,¼Senepol,¼Caracu),withinitialbodyweightof368±4.2kg

wereusedinacompletelyrandomizeddesign,withfourtreatments(0,60,120and180g/kgofcrudeglycerininthediet)

and11replicates.Crudeglycerincompositionusedintheexperimenthadthefollowingcomposition:glycerol:831g/kg,

moisture:111g/kg,ash:60.6g/kg,chlorides36.7g/kg,andmethanol:0.2g/kg.Animalswerehousedinopen-airpenswith

anareaof30m2peranimal.

This84-dayexperimentwasprecededbyanadaptationperiodof28days,duringwhichanimalsreceivedthesame

experimentaldiet.Atthebeginningoftheadaptationperiod,animalsweretreatedforectoparasitesandendoparasites

(Ivomec,Paulinia,Brazil).Aimingtomeasuretheiraveragedailygain(ADG)usingregressionanalysis,animalswereweighed

atthebeginning,every28daysandattheendofexperimentalperiod,after16hoffasting.

Dietswereformulatedwithcornsilage,andfourdifferentlevelsofcrudeglycerin(Table1)accordingtotheNational

ResearchCouncil–NRC(2000)tomakeitisonitrogenous.Animalswerefedadlibitumat07:30amand03:30pm.Corn

glutenmeal-21wasincludedinthedietswithcrudeglycerintoprovidesimilarlevelsofcrudeproteinandasimilaramino

acidprofile.

Samplesofsilageandconcentratewerecollectedevery14days.Thesesamplessuppliedacompositesamplethat,after

pre-dryinginaforced-ventilationovenat65◦Cfor72h,wasgroundinamillwitha1-mmmeshsieve.Chemicalanalyses

ofthedietswereperformedaccordingtoAOAC(2000).Thedrymatter(DM)wasobtainedbyovendryingat100◦Cfor

18h(Method934.01).Theashcontentwasestimatedaftera2-hincinerationprocessina600◦Cmufflefurnace(Method

942.05).Thecrudeprotein(CP)contentwasdeterminedbasedontheNcontentmultipliedbythe6.25factor.TheNcontent

wasobtainedbytheKjeldahlprocedure(Method920.87).Evaluationoftheetherextract(EE)contentwasperformedwith

solventusingaSoxhletextractorapparatus(Method920.39).Non-fibrouscarbohydrates(NFC)weredeterminedaccording

toSniffenetal.(1992),andmetabolizableenergy(ME)wascalculatedaccordingtotheNRC(2001)andMachetal.(2009).

BloodsampleswerecollectedfromthecoccygealveinusingVacutainer®tubes(BD,JuizdeFora,Brazil)attheendofthe

experimentafter16hoffasting.Thesesampleswereplacedinacoolerwithiceandtransporteddirectlytothelaboratory,

whereanalysesofcreatinineandaspartateaminotransferase(AST),gamma-glutamylaminotransferase(GGT),andcreatine

kinase(CK)enzymeswereperformedusingcommercialkits(LabtestDiagnóstica,LagoaSanta,Brazil).Bloodsamplesfor

glucoseanalysiswerecollectedinanotherVacutainer®tube(BD,JuizdeFora,Brazil)containingafluorideanticoagulant.

Animalswereslaughteredatacommercialabattoirbycaptiveboltandexsanguination,followedbyhideremovaland

evisceration,withoutelectricalstimulus.Thecarcasseswerewashed,dividedintotwoequalhalvesandweighedtoobtain

thehotcarcassweight(HCW)andcarcassyield(CY).Thesubcutaneousfatthickness(SFT)andlongissimusmusclearea

(3)

Table1

Compositionofingredientsandnutrientscontentsoftheexperimentaldiets(g/kg).

Ingredients Glycerinlevels(g/kg)

0 60 120 180

Cornsilage 300 300 300 300

Groundcorn 560 480 370 260

Soybeanmeal 120 120 120 120

Cornglutenmeal-21 – 20 70 120

Crudeglycerin1 60 120 180 Mineralmixture2 20 20 20 20 Nutrients Drymatter3 592 588 584 580 Crudeprotein4 131 129 131 133 NDF4 222 224 236 248 NFC4 566 566 550 533 Glycerol4 56 112 168 Etherextract4 34 34 33 32 ME2(MJ/kgMS) 11.7 11.7 11.6 11.6

1Guaranteedlevelsperkilogramofproduct:Glycerol:831,Moisture:111,Ash:60.6,Chlorides36.7,Methanol:0.2.

2Guaranteedlevelsperkilogramofproduct:Ca:170g;P31g;Na:155g;Zn:2mg;Cu:396mg;Mn:515mg:Co:15mg;I:29mg;Se:5.4mg;Vit.A:

111.000UI;Vit.D3:22.000UI;Vit.E:265UI.

3Asfedbasis.

4Drymatterbasis.

Table2

Targetprimersusedintherelativequantificationbyq-PCR.

Gene Primer Sequence Accesscode

(GenBank)

Bpa R2 Efficiency

GK Glycerolkinase F:TCTTCTGTAGTCTGCCCTTGG BC122692.1 87 0.936 99.4

R:TTTACGGCATACCTGAGAGG

PEPCKC Phosphoenolpyruvate

carboxykinase

F:CCCCCAGAGATCAAGAATCA AY145503.1 86 0.998 98.3

R:ATTGGAGGTGGACAGTCAGG

ˇ-actin ˇ-actin F:GTCCACCTTCCAGCAGATGT BC142413.1 90 0.996 100.0

R:CAGTCCGCCTAGAAGCATTT

GAPDH Glyceraldehyde3-phosphate

dehydrogenase

F:CGACTTCAACAGCGACACTC NM001034034.1 96 0.998 101.4

R:TTGTCGTACCAGGAAATGAGC

aAmpliconsizeinbasepairs.

refrigerationinacoldchamber(1◦C)for24h.Aftercooling,carcasseswerereweighedtoobtainthecoldcarcassweight

(CCW).MarblingwasanalyzedaccordingtoDowetal.(2011)equation,usingether-extractablefatofthelongissimusmuscle.

2.2. Geneexpressionandenzymeactivity

Immediatelyafterslaughter,liversampleswerecollected,frozeninliquidnitrogenandstoredin−80◦CtoanalyzeGK1

andPCK1genesexpressionthatencodeglycerolkinaseandcytoplasmaticphosphoenolpyruvatecarboxykinaseenzymes,

respectively.Inaddition,samesampleswereusedtomeasureglycerolkinaseactivity.

TargetandreferenceprimersweredesignedusingsequencesdepositedandpublishedintheGenBankpublicdatabase,

aNCBI(NationalCenterforBiotechnologyInformation)platform.ORFs(OpenReadingFrames)oftheselectedsequences

wereobtainedbyusingNCBIORFFindertool,andtheencodedproteinsequenceswereobtainedfromtheTranslatetoolof

ExPASyproteindatabase.TheprimersequencesweredesignedusingtheOligoPerfectTMDesignersoftware;sequencesare

showninTable2.

TotalRNAwasextractedfromliversampleswithQIAzolreagent(QIAgen,Valencia,CA,USA)andtreatedwithDNA-free

DNase(Ambion,Austin,TX,USA)accordingtothemanufacturer’sprotocol.TotalRNAwassubjectedtoelectrophoresisin

10.0g/kgagarosegel(w/v)stainedwithGelRedNucleicAcidGelStainandvisualizedinaUVITECFireReaderXSD-77Ls-20M

foranalysisofthe28Sand18SribosomalRNA(rRNA)bands.Sampleswerequantifiedbyspectrophotometry(Nanodrop

ND-1000Spectrophotometer)atA260nmtodeterminetheamount(ng/uL)andquality(260/280and260/230)oftheRNA.

ThecDNAsynthesiswasperformedwiththeHigh-CapacitycDNAReverseTranscriptionkit(AppliedBiosystems,FosterCity,

CA,USA)accordingtothemanufacturer’sprotocol.Afterthereaction,sampleswerestoredat−20◦C.

ForquantitativegeneexpressionanalysisbyRT-qPCR,ABIPRISM7500RealTimePCRmachine(AppliedBiosystems)

wasusedwithSYBRGreendetectionsystem(AppliedBiosystems,FosterCity,CA,USA).Thereactionparameterswereas

follows:2minat50◦C,10minat95◦Cand40cyclesof15minat95◦C,1minat60◦Cand15sat95◦C.Datawerecollected

(4)

cDNA,0.3␮Lofeachprimer(forwardandreverse)and5.0␮LofSYBRGreenMasterMixinafinalvolumeof10.0␮L/sample

inaMicroAmpOptical96-wellreactionplate(AppliedBiosystems,FosterCity,CA,USA).TheRT-qPCRanalysesforeachgene

studiedwereperformedusingcDNAsfrom11experimentalunits(animals),withthreetechnicalreplicatesforeachcDNA.

ResultswerenormalizedusingCycleThreshold(CT)obtainedfromreferencegenesˇ-actinandglyceraldehyde3-phosphate

dehydrogenase(GAPDH)expression.Thechoiceofthesereferencegeneswasbasedonapre-studyusingGAPDH,Actin,

UbiquitinandCycloPilina,inwhichˇ-actinandglyceraldehyde-3-phosphatedehydrogenase(GAPDH)hadthebestefficiency.

TheCTwasdeterminedfromthenumberofcyclesusingthecomparativeCTmethod.Asonerequisiteofthismethod,a

validationassaywasperformedtodemonstratethattheamplificationefficienciesofthetargetandreferencegeneswere

approximatelythesame(Table2).Standardcurvesweregeneratedforthestudiedgeneswiththefollowingdilutions:1:5,

1:25,1:125,1:625,and1:3125.ThisprocedureallowstheusertodefinethecDNAconcentrationsusedineachreaction(in

thiscase,10ng/␮L).Theconcentrationofeachprimerwas1.5␮M.

TherelativeexpressionlevelswerecalculatedaccordingtothemethoddescribedbyPfaffl(2001),whichisbasedonCt

valuescorrectedforeachprimerpairamplificationefficiency.

Forglycerolkinase(EC2.7.1.30)extraction,1.5goffrozenliverwasused.Thetissuewashomogenizedin3mLbuffer

(Tris-HCl0.05MandpH8.0)usingapolytron(Ultra-turraxT25basic-IKA,Wilmington,USA).Aftertissuehomogenization,

sampleswerecentrifugedat15,000gfor20minat5◦Candthesupernatantscollectedandstoredat4◦C(Bernardinoetal.,

2013).TheenzymaticactivityinthesupernatantswasquantifiedaccordingtothemethoddescribedbyKiharaetal.(2009).

Initially,glycerolkinasepresentinthesamplesphosphorylatesglyceroltoglycerol-3-phosphateandADP,inthepresence

ofATP.Aftertwosequentialreactionscatalyzedbyglycerol-3-phosphateoxidase(EC1.1.3.21)andperoxidase(EC1.11.1.7),

glycerol-3-phosphateisconvertedtoquinoneimine,thatcanbeanalyzedusingacolorimeter.

Thekineticassaywasconductedin96-wellmicroplateswith880␮LofTris-HClbuffer(50mM,pH8.0),10␮Lof400mM

ATP(pH7.0,Amresco,code:0220-25G),10␮Lof200mMMgCl2,10␮Lofglycerol-3-phosphateoxidasefromPediococcus

sp.(100Uof enzyme/500␮Lofbuffer;Sigma-Aldrich,code:G9637-100UN),10␮Lofhorseradishperoxidase(450Uof

enzyme/mlofbuffer;Amresco,code:0343-25,000U),10␮Lof150mM4-aminoantipyrine(Sigma-Aldrich,code:

A4382-100G),10␮Lof150mMphenoland50␮Lofthesupernatant.Tostartthebatteryofreactions,10␮Lof1Mglycerolwere

addedandtheplateswerethenincubatedat25◦Cinanautomaticmicroplatereader(MultiskanGO,ThermoScientific,

Vantaa,Finland)programmedtoreadtheabsorptionat500nmevery20sforamaximumperiodof15min.Theblank

sampleswereincludedformeasuringtheabsorbanceofthereagentsusedinthekineticassay.Subsequently,datafromthe

enzymaticassaywereusedtogeneratealinearcurve.

Proteincontentinthesamples(lgofprotein/mlofhepaticextract)wasmeasuredaccordingtoBradfordmethod(1976)

usingbovineserumalbuminasastandard,tocalculatespecificactivityoftheglycerolkinaseasfollows:

Specificactivity(U/␮gofprotein)= volumetricactivity/proteincontentinthesample.

Therefore,theglycerolkinaseactivitywasexpressedinU,definedasthequantityofenzymethatgenerates1␮molof

glycerolperminuteofreactioninasolutionwithpH=8.0and25◦C.

2.3. Statisticalanalyses

TheShapiro-Wilktestwasusedtoanalyzethedatadistribution.Ifthedatawerenotnormallydistributed,transformation

wasperformedusingthePROCRANKofSAS9.3(SASInst.Inc.,Cary,NC,USA).Datawereanalyzedasacompletelyrandomized

designusingtheMIXEDprocedure(SASInst.Inc.,Cary,NC)withdietasfixedeffectandaccordingtothefollowingmodel:

Yi,j=+Ti+e;with:Yi,jistheobservationonjexperimentalunitreceivingtreatmenti;istheoveralltreatmentmean;

Tiistheeffectofhavingtreatmentleveli;andeistherandomerror.Animalsweretheexperimentalunit,andorthogonal

contrastswereusedtoevaluatethelinearandquadraticeffectsofglycerinandwithoutglycerinvs.glycerintreatment.

TreatmentmeanswerecomputedwiththeLSMEANSoption.EffectswereconsideredsignificantatP-valueof≤0.05,with

tendenciesdeclaredatP-valuesbetween0.05and0.10.

3. Results

Bloodcreatinine,AST,GGTandCKwerenotaffectedbythelevelsofglycerininthediet(Table3).However,bloodglucose

tended(P=0.08)todecreaselinearlywiththelevelofglycerininthediets.Liverglycerolkinaseactivityincreasedlinearly

followingglycerininclusion(Fig.1A).Ontheotherhand,oppositeresultweredetectedonGK1andPCK1expressions(Fig.1B

andC).ExpressionofGK1intheliverwas1.61,3.34and5.45timeslower,whentheanimalsfed60,120and180g/kgofcrude

glycerin,respectively,thanintheliverofanimalsfeddietwithoutglycerin.ExpressionofPCK1alsopresentedaquadratic

effectbeingthemaximumvalueinthecurvewhenglycerincontentwas59.1g/kgofDM.

Despitethelackofglycerinversusnoglycerindietseffect(P=0.41)ondrymatterintake(DMI),linearandquadraticeffects

weredetected(Table4).Analyzingthemeansandthemaximumvalueinthequadraticcurve,61.2g/kgofglycerininthe

diet,itispossibletoconcludethatthenegativeeffectofglycerinonDMIstartedafterthispointanditwasmorepronounced

whenanimalswerefed180g/kgofglycerininthediet.Therewasnoeffect(P>0.18)ofcrudeglycerinonanimalsADGduring

(5)

Table3

Biochemicalprofileofthebloodofyoungbullsfeddifferentlevelsofcrudeglycerin.

Variables Glycerinlevels(g/kg) SEM Gly1 L2 Q3

0 60 120 180 Glucose,mg/dl 83.2 73.1 85.1 71.9 5.40 0.30 0.08 0.95 Creatinine,mg/dl 1.53 1.41 1.47 1.48 0.09 0.49 0.40 0.92 AST4,U/L 93.0 95.4 85.8 84.9 6.80 0.59 0.83 0.20 GGT5,U/L 12.5 12.2 15.7 17.5 2.36 0.34 0.94 0.08 CK6,U/L 346 504 376 336 60.2 0.39 0.11 0.25 1Gly=0vs.Glycerin. 2L=Linear. 3Q=Quadratic.

4AST=Aspartateaminotransferase.

5GGT=gamma-glutamylaminotransferase.

6CK=creatinekinase.

Fig.1. Glycerolkinaseactivity(1A),relativeexpressionofGK1(1B)andrelativeexpressionofPCK1(1C)intheliverofyoungbullsfedwithdifferentcrude

glycerinconcentrations.

Crudeglycerindidnotaffect(P>0.36)finalbodyweight(FBW),HCW,CCWandSFToftheanimals(Table5).

Neverthe-less,quadraticeffects(P<0.05)wereobservedincarcassyield,longissimusmuscleareaandmarblingwiththeusecrude

glycerininthediets.Maximumvaluesinthecurvesforcarcassyieldandmarblingwere212and244g/kgofcrudeglycerin,

(6)

Table4

Drymatterintake(DMI),averagedailygain(ADG)andfeedefficiency(G:F)inyoungbullsfeddifferentlevelsofcrudeglycerin.

Variable Glycerinlevels(g/kg) SEM Gly1 L2 Q3

0 60 120 180 DMI,kg/d 11.8 11.9 11.8 11.0 0.178 0.41 <0.01 <0.01 ADG0–28,kg/d 1.84 1.85 2.11 1.95 0.132 0.40 0.32 0.54 ADG28–56,kg/d 1.82 2.11 2.08 1.95 0.149 0.20 0.57 0.18 ADG56–84,kg/d 1.60 1.79 1.45 1.49 0.116 0.87 0.20 0.49 ADG0–84,kg/d 1.75 1.92 1.88 1.80 0.007 0.32 0.80 0.21 G:F4 0.148 0.160 0.158 0.172 0.007 0.08 0.04 0.91 1 Gly=0vs.Glycerin. 2 L=Linear. 3 Q=Quadratic. 4 Gain:feedratio. Table5

FinalBodyweight(FBW),hotcarcassweight(HCW),coldcarcassweight(CCW),longissimusdorsimusclearea(LMA),LMAper100kgcoldcarcass

(LMA/100kg),carcassyield(CY),subcutaneousfatthickness(SFT),andmarblingscoreofyoungbullsfeddifferentlevelsofcrudeglycerin.

Variables Glycerinlevels(g/kg) SEM Gly1 L2 Q3

0 60 120 180 FBW,kg 513 522 527 516 14.9 0.61 0.82 0.77 HCW,kg 284 289 299 291 9.2 0.39 0.85 0.36 CCW,kg 278 283 287 279 8.5 0.62 0.89 0.73 CY,g/kg 554 555 568 565 4.3 0.08 0.99 <0.01 LMA,cm2 83.1 78.5 85.4 87.8 2.69 0.79 0.34 0.04 LMA,cm2/100kg 30.0 28.0 29.8 31.6 0.87 0.84 0.28 0.05 SFT,mm 3.18 3.27 3.18 3.18 0.433 0.95 0.89 0.91 Marblingscore 336 342 540 534 62.3 0.07 0.97 <0.01 1 Gly=0vs.Glycerin. 2 L=Linear. 3 Q=Quadratic. 4. Discussion

Theconcentrationsofplasmacreatininearewithinthenormalrange(1–2mg/dL)reportedbyKanekoetal.(1997).This

indicatesthatthekidneyglomerularfiltrationrateforthismetabolitewasadequate,withnomethanolinterferenceofthe

crudeglycerin.Theglycerinusedinthepresentstudycomprised200mg/kgofmethanol,whichisabovetherecommended

valuebyUnitedStatesDepartmentofAgriculture(USDA)andBrazilMinistryofAgriculture(MinistériodaAgricultura,Pecuária

eAbastecimento)of150ppm.

TheCKvalues,although notaffectedbythediet, werewellabovethoserecommended byKanekoetal. (1997)of

4.8–12.1U/L.Thisresultcanbeexplainedbytheexertedphysicaleffortoftheanimalsduringhandlingforweighing;since

CKisasensitiveandspecificindicatorofmuscleinjury.AccordingtoHodgson(1994),increasesofupto500U/Larenormal

inmoderatephysicaleffortsituations.Injointanalysis,increasesinbloodASTandCKmaybesuggestiveofmyonecrosis

(Hodgson,1994),whatdidnothappenwhenanimalsfedglycerin.TheGGTenzymefoundinplasmaisindicativeof

cholesta-sis,whichisahepaticfailureintheexcretionandsecretionofpigments,bileacidsandsaltsinruminants(Santosetal.,2008).

Similartotheotherhepaticenzymes,therewasnoeffectoftheglycerinlevelsinthedietonGGTconcentrations,which

werealsowithinthenormalrangeofupto140U/L(BarrosFilho,1995).Therefore,glycerinaddedtothedietsdidnotaffect

bloodparameters,indicatinganormalhepaticmetabolismandnohepatocytedestruction.

Thedecliningtrendinbloodglucosewhileusingglycerincanindicatethattissuesweremoresensitivetoinsulin-mediated

glucoseuptake,sincegreaterglycerolkinaseactivityoccurredintheliverofthesebulls,resultinginapossiblegreaterliver

gluconeogenesis.Thisenzymeisabletoinducegluconeogenesisfromtheglycerolabsorbedintherumenandtransported

totheliver(Aschenbachetal.,2010).Inthiscase,liverglucoseproductionmayhaveincreasedpancreasinsulinsecretion

andthen,glucoseuptakebytissuesasmuscle.AccordingtoMajdoubetal.(2003),gluconeogenesisprecursorsstimulate

insulinpancreaticsecretion.Thepositiveeffectofthecrudeglycerinonmarblingscorealsosupportsthistheory.According

toChungetal.(2007),glucoseplaysarelevantroleascarbondonorindenovofattyacidsbiosynthesis.

Theliverglycerolabsorptionoccursduetothepresenceofmembraneproteins,specifically,aquaglyceroporin9(AQP

9)(Frogeretal.,2001;Hibuseetal.,2005).AccordingtoKrehbiel(2008),glycerolhasthreefatesintherumen:escape

intothepostrumen(130g/kg),fermentationintherumen(440g/kg)andabsorptionbytheruminalepithelium(430g/kg).

Therefore,duetotheresultsintheglycerolkinaseactivity,alargeramountofglycerolandlesspropionatewasprobably

absorbedintherumenasglycerinlevelsinthedietincreased.Besides,thelowerexpressionofPCK1,whichencodescytosolic

phosphoenolpyruvatecarboxykinaseenzyme(PEPCK-C),intheliverofanimalsfedhighlevelsofglycerin,supportsthislast

(7)

feed-forwardmechanismofsubstratecontrolforhepaticgluconeogenesisthatislinkedtothefinalproductsofrumen

fer-mentation.Consequently,probably,ruminalpropionateproductionincreasedwhencrudeglycerinwasusedupto59.1g/kg

ofthediet(maximumvalueforPCK1expressioncurve)andthenitdecreased,reducingPCK1expression.Inaddition,ina

studyperformedbyHalesetal.(2015),methaneproductionincreasedbetween100and150g/kgofglycerin,anditiswell

knownthatmethaneandpropionateproductionareantagonistic,supportingthehypothesisoflowpropionate

produc-tionwhenanimalsfed180g/kgofglycerindietinthepresentstudy.Boydetal.(2013)observedthatmolarproportionsof

butyrateweregreaterwhenanimalswerefeddietswithglycerolinclusionand,accordingtotheseauthors;ruminalbutyrate

wouldimprovethegrowthofruminalepithelialtissueandpossiblyincreasenutrientsabsorptionfromtherumen,aswell

asglycerol.

Althoughglycerolkinaseactivityincreasedwiththeglycerinlevelinthediet,expressionofGK1,thegeneresponsible

toencodethisenzyme,wasinhibitedwithincreasinglevelsofglycerin.Therefore,despitethepositiveeffectofpropionate

inPCK1expression,glycerolseemedtoexertanegativefeedbackinGK1expression.Inthissense,studiesevaluatingwhich

transcriptionfactorsregulateexpressionofgenesinvolvedinlivergluconeogenesisinruminantsarenecessary.Yoonetal.

(2001)showedthatthePeroxisomeProliferator-ActivatedReceptor-␥Coactivator1␣(PGC-1␣)isakeymodulatorofhepatic

gluconeogenesisinmice,activatingthePCKgene.Inaddition,PeroxisomeProliferator-ActivatedReceptor-␥(PPAR-gamma)

activationalsoinducestheexpressionofPCKinmice(Perryetal.,2014;Schultzetal.,2015).Probably,theimportantrole

ofthesetranscriptionfactorsinliverofnon-ruminantsisapathwhereresearchinruminantsmustfollow.

ThelowerDMI whenanimalsfedglycerin(Table4)canbeexplainedbyametabolicregulationand otherglycerin

components.Inthefirstsituation,thegreaterinsulinsecretion,asglycerinlevelsinthedietincreased,mayhaveaffected

negativelyDMI.AccordingtoPlumetal.(2005)andPorteetal.(2005),insulinenterthebrainandreactswithspecific

insulinreceptorsonneurons,reducingfoodintake.Besidesthemetaboliceffect,accordingtoHalesetal.(2015),highNa

concentrationsincattledietmayhaveinhibitoryeffectsonDMI.Inthepresentstudy,glycerinhad36.7g/kgofchlorides.Hales

etal.(2015)alsodescribedthatDMIreductionincattle,asglycerinconcentrationisincreased,seemsconsistentthroughout

literature.ThelinearnegativeeffectonDMIandthelackofeffectonADGexplainedwhyfeedefficiencyincreasedlinearlyas

glycerinincreasedinthediet.Therefore,animalperformanceobservedinthisstudyindicatesthatupto180g/kgofglycerol

inclusioninDMhasnonegativeimpact,consideringthetypeofdietused.

Similarly,Machetal.(2009)foundnoeffectonanimalsADGwhenassessingupto120g/kgofcrudeglycerininclusion

inthediet.However,Parsonsetal.(2009),workingwithdietswithupto160g/kgofcrudeglycerin,observedaquadratic

effectonanimalsADG,andthemaximumconcentrationrecommendedbytheauthorsforglycerinwas80g/kgonDMbasis.

ThehighestcrudeglycerinlevelanalyzedforbeefcattlesofarwasreportedbyVanCleefetal.(2014),whoevaluatedthe

inclusionofupto300g/kgintheDM.TheauthorsdescribedthattherewerenodifferencesamongtreatmentsforADGand

feedefficiency;however,theyreportedanegativeeffectofthetreatmentwith300g/kgofglycerinonfiberdigestibility.

Therefore,therecommendedlevelofcrudeglycerinisinfluencedbytheglycerinquality,forage:concentrateratio,protein

source,cornprocessingetc.

Oneplausibleexplanationfortheobservedeffectincarcassyieldisapossiblelowergastrointestinalcontentweightinthe

animalsfedcrudeglycerin.Evaluatingglycerolsupplyeffectonstress,associatedwithlongtransportperiodsinZebucattle,

Parkeretal.(2007)observednodifferencesintheanimalsbodyweightafteratripof24h,similartotheresultsobtainedin

thepresentstudy.However,bodywatercontentincreasedinanimalsfedglycerol,possiblyduetotheactionofglycerolin

enhancingintestinalflow,andthusincreasingthegastrointestinalcontentloss.AccordingtoWythesetal.(1980),animal

weightlossthattakesplaceduringfastingandextendedtransportationisaconsequenceofintestinalfilling,urinaryand

defecationrates.Anotherexplanationfortheobservedlinearincreaseincarcassyieldisthatglycerolhaspositiveeffectson

aminoacidsandnitrogenretentioninthebody,leadinganeconomyingluconeogenicaminoacidsusage.Theincreasein

glycerolkinaseactivitysupportsthisstatement.

5. Conclusion

Theuseofglycerinincreasedfeedefficiencyand beefmarblingand,therefore,atalevelofupto180g/kgofDMis

recommendedforfeedlotdiets.GlycerolkinaseactivityandexpressionofGK1andPCK1geneswereaffectedwiththeuse

ofcrudeglycerin,whichinfluencelivergluconeogenesis.

Conflictofinterest

Theauthorsdeclarethattherearenoconflictsofinterest.

Acknowledgement

ThisstudywasfundedbyFundac¸ãodeAmparoàPesquisadoEstadodeMinasGerais–Fapemig(BeloHorizonte,MG,Brazil).

References

(8)

Aschenbach,J.R.,Kristensen,N.B.,Donkin,S.S.,Hammon,H.M.,Penner,G.B.,2010.Gluconeogenesisindairycows:thesecretofmakingsweetmilkfrom sourdough.IUBMBLife62,869–877.

BarrosFilho,I.R.,1995.Contribuic¸ãoaoestudodabioquímicaclínicaemzebuínosdarac¸aNelore(BosIndicus,Linnaeus,1758)criadosnoEstadodeSão

Paulo[ContributiontothestudyofclinicalbiochemistryinNeloreZebu(BosIndicus,Linnaeus1758)bredinthestateofSãoPaulo].In:Dissertation (MastersinVeterinaryMedicine).FacultyofVeterinaryMedicineandZootechny,UniversityofSãoPaulo,SãoPaulo,132p.

Bernardino,V.M.P.,Rodrigues,P.B.,Naves,L.P.,Rosa,P.V.,Zangerônimo,M.G.,Gomide,E.M.,Saldanha,M.M.,Alvarenga,R.R.,2013.Contentofplasmatic

glycerolandactivityofhepaticglycerolkinaseinbroilerchickensfeddietscontainingdifferentsourcesandconcentrationsofglycerine.J.Anim. Physiol.Anim.Nutr.92,328–337.

Boyd,J.,Bernard,J.K.,West,J.W.,2013.Effectsoffeedingdifferentamountsofsupplementalglycerolonruminalenvironmentanddigestibilityoflactating

dairycows.J.DairySci.96,470–476.

Bradford,M.M.,1976.Arapidandsensitivemethodforthequantitationofmicrogramquantitiesofproteinutilizingtheprincipleofprotein-dyebinding.

Anal.Biochem.72,248–254.

Chung,K.Y.,Lunt,D.K.,Kawachi,H.,Yano,H.,Smith,S.B.,2007.Lipogenesisandsteroyl-Coadesaturasegeneexpressionandenzymeactivityinadipose

tissueofshort-andlong-fedAngusandWagyusteersfedcorn-orhay-baseddiets.J.Anim.Sci.85,380–387.

Donkin,S.S.,2008.Glycerolfrombiodieselproduction:thenewcornfordairycattle.R.Bras.Zootec.37(Suppl.special),280–286.

Dow,D.L.,Wiegand,B.R.,Ellersieck,M.R.,Lorenzen,C.L.,2011.Predictionoffatpercentagewithinmarblingscoreonbeeflongissimusmuscleusing3

differentfatdeterminationmethods.J.Anim.Sci.89,1173–1179.

Egea,M.,Linares,M.B.,Garrido,M.D.,Villodre,C.,Madrid,J.,Orengo,J.,Hernández,F.,2014.CrudeglycerineinclusioninLimousinbulldiets:animal

performance,carcasscharacteristicsandmeatquality.MeatSci.98,673–678.

Elam,N.A.,Eng,K.S.,Bectel,B.,Harris,J.M.,Crocker,R.,2008.GlycerolfromBiodieselProduction:ConsiderationsforFeedlotDiets,

http://ag.arizona.edu/ans/swnmc/2008/proceedings.php(accessed09.07.08.).

Froger,A.,Rolland,J.P.,Bron,P.,Lagrée,V.,Cahérec,F.L.,Deschamps,S.,Hubert,J.F.,Pellerin,I.,Thomas,D.,Delamarche,C.,2001.Functional

characterizationofamicrobialaquagliceroporin.Microbiology147,1129–1135.

Gilbert,C.D.,Lunt,D.K.,Miller,R.K.,Smith,S.B.,2003.Carcass,sensory,andadiposetissuetraitsofBrangussteersfedcasein-formaldehyde-protected

starchand/orcanolalipid.J.Anim.Sci.81,2457–2468.

Gunn,P.J.,Schultz,A.F.,VanEmon,M.L.,Neary,M.K.,Lemenager,R.P.,Rusk,C.P.,Lake,S.L.,2010.Effectsofelevatedcrudeglycerinconcentrationson

feedlotperformance,carcasscharacteristics,andserummetaboliteandhormoneconcentrationsinfinishingeweandwetherlambs.Prof.Anim.Sci. 26,298–306.

Hales,K.E.,Foote,A.P.,Brown-Brandl,T.M.,Freetly,H.C.,2015.Effectsofdietaryglycerininclusionat0,5,10,and15percentofdrymatteronenergy

metabolismandnutrientbalanceinfinishingbeefsteers.J.Anim.Sci.93,348–356.

Hibuse,T.,Maeda,N.,Funahashi,T.,Yamamoto,K.,Nagasawa,A.,Mizunoya,W.,Kishida,K.,Inoue,K.,Kuriyama,H.,Nakamura,T.,Fushiki,T.,Kihara,S.,

Shimomura,I.,2005.Aquaporin7deficiencyisassociatedwithdevelopmentofobesitythroughactivationofadiposeglycerolkinase.PNAS102,

10993–10998.

Hodgson,D.R.,1994.MoléstiasDomúsculo[MuscleDiseases],In:SmithB.P.TratadoDeMedicinaInternaDeGrandesAnimais:MoléstiasDeEqüinos,

Bovinos,AvinosECaprinos[TreatiseonInternalMedicineinLarge-sizedAnimals:Equine,Bovine,AvianandCaprineDiseases].Manole,SãoPaulo,pp. 251–282.

Kaneko,J.J.,Harvey,J.W.,Briss,M.C.,1997.ClinicalBiochemistryofDomesticAnimals,sixthed.Academic,SanDiego.

Kihara,F.,Itoh,K.,Iwasaka,M.,Niimi,T.,Yamashita,O.,Yaginuma,T.,2009.Glycerolkinaseactivityandglycerolkinase-3geneareup-regulatedby

accli-acclimationto5(Cindiapauseeggsofthesilkworm,Bombyxmori.InsectBiochem.Mol.Biol.39,763–769.

Koser,S.L.,Thomas,M.,Donkin,S.S.,2008.Cloningthepromoterregionforbovinephosphoenolpyruvatecarboxykinasegeneandidentificationof

propionateresponsiveregion.J.DairySci.91(Suppl.2),424.

Krehbiel,C.R.,2008.Ruminalandphysiologicalmetabolismofglycerin.J.Anim.Sci.86(Suppl.2),392.

Mach,N.,Bach,A.,Devant,M.,2009.EffectsofcrudeglycerinsupplementationonperformanceandmeatqualityofHolsteinbullsfedhigh-concentrate

diets.J.Anim.Sci.87,632–638.

Majdoub,L.,Vermorel,M.,Ortigues-Marty,I.,2003.Ryegrass-baseddietandbarleysupplementation:Partitionofenergy-yieldingnutrientsamong

splanchnictissuesandhindlimbsinfinishinglambs.J.Anim.Sci.81,1068–1079.

NRC,2000.NutrientRequirementsofBeefCattle,7threv.ed.Natl.Acad.Press,Washinton,DC.

NRC,2001.NutrientRequirementsofDairyCattle,seventhrev.ed.Natl.Acad.Press,Washinton,DC.

Parker,A.J.,Dobson,G.P.,Fitzpatrick,L.A.,2007.Physiologicalandmetaboliceffectsofprophylactictreatmentwiththeosmolytesglycerolandbetaineon

Bosindicussteersduringlongdurationtransportation.J.Anim.Sci.85,2916–2933.

Parsons,G.L.,Shelor,M.K.,Drouillard,J.S.,2009.Performanceandcarcasstraitsoffinishingheifersfedcrudeglycerin.J.Anim.Sci.87,653–657.

Perry,R.J.,Samuel,V.T.,Petersen,K.F.,Shulman,G.I.,2014.Theroleofhepaticlipidsinhepaticinsulinresistanceandtype2diabetes.Nature510,84–91.

Pfaffl,M.W.,2001.Anewmathematicalmodelforrelativequantificationinreal-timeRT–PCR.NucleicAcidsRes.29,e45.

Plum,L.,Schubert,M.,Bruning,J.C.,2005.Theroleofinsulinreceptorsignalinginthebrain.TrendsEndocrinol.Metab.16,59–65.

Porte,D.J.,Baskin,D.G.,Schwartz,M.W.,2005.Insulinsignalinginthecentralnervoussystem:acriticalroleinmetabolichomeostasisanddiseasefromC.

eleganstohumans.Diabetes54,1264–1276.

Santos,J.C.A.,Riet-Correa,F.,Simoes,S.V.D.,Barros,C.S.L.,2008.Patogênese,sinaisclínicosepatologiadasdoenc¸ascausadasporplantashepatotóxicasem

ruminanteseeqüinosnoBrasil[Pathogenesis,clinicalsignsandpathologyofdiseasescausedbyhepatotoxicplantsinruminantsandequinesinBrazil]. Pesqui.Vet.Bras.28,1–14.

Schultz,A.,Barbosa-da-Silva,S.,Aguila,M.B.,Mandarim-de-Lacerda,C.A.,2015.Differencesandsimilaritiesinhepaticlipogenesis,gluconeogenesisand

oxidativeimbalanceinmicefeddietsrichinfructoseorsucrose.FoodFunct.6,1684–1691.

Sniffen,C.J.,O’connor,J.D.,VanSoest,P.J.,1992.Anetcarbohydrateandproteinsystemforevaluatingcattlediets:II.carbohydrateandproteinavailability.

J.Anim.Sci.70,3562–3577.

VanCleef,E.H.C.B.,Almeida,M.T.C.,Perez,H.L.,VanCleef,F.O.S.,Silva,D.A.V.,Ezequiel,J.M.B.,2014.Crudeglycerinchangesruminalparameters,invitro

greenhousegasprofile,andbacterialfractionsofbeefcattle.Livest.Sci.178,158–164.

Wythes,J.R.,Shorthose,W.R.,Schmidt,P.J.,Davis,C.B.,1980.Effectsofvariousrehydratationproceduresafteralongjourneyonliveweight,carcassesand

musclepropertiesofcattle.J.Agric.Res.31,849–855.

Yoon,J.C.,Puigserver,P.,Chen,G.,Donovan,J.,Wu,Z.,Rhee,J.,Spiegelman,B.M.,2001.Controlofhepaticgluconeogenesisthroughthetranscriptional

Referências

Documentos relacionados

This study evaluated the effect of the inclusion level of crude glycerin from palm oil (PO) in the diet of growing pigs on growth performance, carcass characteristics, and

The effects of gender and slaughter weight on the growth performance, carcass traits, and meat quality characteristics of heavy pigs.. The effects of sex and salughter

Hence, the aim of the present work was to investigate the effects of increasing levels of probiotic supplementation on growth performance, carcass traits, blood plasma

Effect of dietary anise seeds supplementation on growth performance, immune response, carcass traits and some blood parameters of broiler chickens. Antimicrobial compounds from

The objective of this study was to determine the effects of different zilpaterol hydrochloride (ZH) levels and feeding methods on the growth performance and carcass traits of

In this context, the objective of this study was to evaluate the effect of ASB inclusion in diets containing sorghum as the main source of energy on performance, carcass traits,

estágio, o processo de tradução e legendagem podia ser feito de mais do que uma maneira: limpava-se o guião e este era enviado em formato txt para um tradutor in-house que criava

Este trabalho pretende salientar e evidenciar o papel da escola, da biblioteca escolar, na promoção de valores como a tolerância, a cooperação, a solidariedade, o respeito pelo outro,