• Nenhum resultado encontrado

Network science: applications for sustainable agroecosystems and food security

N/A
N/A
Protected

Academic year: 2023

Share "Network science: applications for sustainable agroecosystems and food security"

Copied!
12
0
0

Texto

(1)

SupportedbyInstitutoTecnol´ogicoVale

www.perspectecolconserv.com

Essays and Perspectives

Network science: Applications for sustainable agroecosystems and food security

Fredric M. Windsor

a,∗

, Dolors Armenteras

b

, Ana Paula A. Assis

c

, Julia Astegiano

d

, Pamela C. Santana

c

, Luciano Cagnolo

d

, Luísa G. Carvalheiro

e,f

, Clive Emary

g

, Hugo Fort

h

, Xavier I. Gonzalez

i

,

James J.N. Kitson

a

, Ana C.F. Lacerda

j

, Marcelo Lois

k

, Viviana Márquez-Velásquez

l,m

,

Kirsten E. Miller

a

, Marcos Monasterolo

n

, Marina Omacini

o

, Kate P. Maia

c

, Tania Paula Palacios

k

, Michael J.O. Pocock

p

, Santiago L. Poggio

o

, Isabela G. Varassin

q

, Diego P. Vázquez

r

, Julia Tavella

k

, Débora C. Rother

c

, Mariano Devoto

k,s

, Paulo R. Guimarães Jr.

c

, Darren M. Evans

a,∗

aSchoolofNaturalandEnvironmentalSciences,NewcastleUniversity,NewcastleuponTyne,UK

bLaboratoriodeEcologíadelPaisajeyModelacióndeEcosistemasECOLMOD,DepartamentodeBiología,FacultaddeCiencias,UniversidadNacionaldeColombia,SedeBogotá, Colombia

cDepartamentodeEcologia,InstitutodeBiociências,UniversidadedeSãoPaulo,SãoPaulo,Brazil

dInstitutoMultidisciplinariodeBiologiaVegetalFCEFyN,UniversidadNacionaldeCordoba,CONICET,Cordoba,Argentina

eDepartamentodeEcologia,UniversidadeFederaldeGoiás,CampusSamambaia,Goiânia,Brazil

fCentreforEcology,EvolutionandEnvironmentalChanges(cE3c),UniversityofLisboa,Lisbon,Portugal

gSchoolofMathematics,StatisticsandPhysics,NewcastleUniversity,NewcastleuponTyne,UK

hGrupodeSistemasComplejosyFísicaEstadística,FacultaddeCiencias,UniversidaddelaRepública,Montevideo,Uruguay

iUniversidaddeBuenosAires,FacultaddeIngeniería,DepartamentodeGestión,BuenosAires,Argentina

jDepartamentodeSistemáticaeEcologia,CentrodeCiênciasExatasedaNatureza,UniversidadeFederaldaParaíba,JoãoPessoa,Brazil

kUniversidaddeBuenosAires,FacultaddeAgronomía,CátedradeBotánicaGeneral,BuenosAires,Argentina

lProgramadePós-Graduac¸ãoemCiênciasBiológicas(Zoologia),UniversidadeFederaldaParaíba,JoãoPessoa,Brazil

mIRISResearchGroup,InnovationforResilience,InclusionandSustainability,LaboratoryofAnimalEcology,UniversidadeFederaldaParaíba,CampusIV,RioTinto,Brazil

nCentrodeInvestigacionesyTransferenciadeCatamarca,CONICET-UNCA,SanFernandodelValledeCatamarca,Catamarca,Argentina

oIFEVA,UniversidaddeBuenosAires,CONICET,FacultaddeAgronomía,CátedradeProducciónVegetal,BuenosAires,Argentina

pUKCentreforEcology&Hydrology,Wallingford,UK

qDepartamentodeBotânica,UniversidadeFederaldoParaná,Curitiba,Paraná,Brazil

rInstitutoArgentinodeInvestigacionesdelasZonasÁridas,CONICETandUniversidadNacionaldeCuyo,Mendoza,Argentina

sConsejoNacionaldeInvestigacionesCientíficasyTécnicas(CONICET),Argentina

h i g h l i g h t s

•Wereviewedtheuseofnetworksci- enceinsustainableagriculture.

•Network science can be used to understand,harnessandrestoreeco- logicalprocessesinagriculturalsys- tems.

•Social, economic and ecologi- cal aspects of agriculture can be incorporatedusingnovelmethods.

•Agriculturalsystemscanbemanaged usinganetwork-basedframework.

g ra p h i c a l a b s t r a c t

Correspondingauthor.

E-mailaddresses:fredric.windsor@ncl.ac.uk(F.M.Windsor),darren.evans@ncl.ac.uk(D.M.Evans).

https://doi.org/10.1016/j.pecon.2022.03.001

2530-0644/©2022Associac¸˜aoBrasileiradeCiˆenciaEcol ´ogicaeConservac¸˜ao.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://

creativecommons.org/licenses/by/4.0/).

(2)

a rt i c l e i nf o

Articlehistory:

Received4August2021 Accepted4March2022 Availableonline30April2022

Keywords:

Agriculture Biodiversity Ecologicalnetworks Socialnetworks Crops Foodproduction Resilience

a b s t ra c t

Theglobalchallengeoffeedingtwobillionmorepeopleby2050,usingmoresustainableagricultural practiceswhilstdealingwithuncertaintiesassociatedwithenvironmentalchange,requiresatransfor- mationoffoodsystems.Wepresentanewperspectiveforhowadvancesinnetworksciencecanprovide novelwaystobetterunderstand,harness,andrestoremultipleecologicalprocessesinagriculturalenvi- ronments.Wedescribe:(i)anetwork-focusedframeworkformanagingagro-ecosystemsthataccounts forthemultipleinteractionsbetweenbiodiversityandassociatedecosystemservices;(ii)guidancefor incorporatingsocio-economicfactorsintoecologicalnetworks;and(iii)thepotentialtoupscalenetwork methodstoinformeffortstobuildresilience,includingglobalfood-supplychains.Indoingsoweaimto facilitatetheapplicationofnetworkscienceasasystems-basedwaytotacklethechallengesofsecuring anequitabledistributionoffood.

©2022Associac¸˜aoBrasileiradeCiˆenciaEcol ´ogicaeConservac¸˜ao.PublishedbyElsevierB.V.Thisisan openaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

“The naturallivingworldisarrangedinverycomplex channels ofsupplythatareknownasfood-chains.[...]Butwithlandin cultivation,whetherpastoral,ploughed,orgardened,theearnest desireofmanhasbeentoshortenfood-chains,reducetheirnumber, andsubstitutenewonesforold.[...]Theenormousproblemstill istomanage,control,andwherenecessaryalter thepatternof food-chainsintheworld,withoutupsettingthebalanceoftheir populations.Itisthislastproblemthathasnotbyanymeansbeen solved.”CharlesElton(1958)

Introduction

Oversixbillionpeoplearedirectlydependentuponagriculture fortheirlivelihoodsworldwide(FoodandAgricultureOrganization oftheUnitedNations,2013),withoneintenpeople(690million) undernourished and themajority oftheworld’s hungry people living in developing countries (United Nations, 2020). Feeding nine billionpeopleby2050,usinglessenvironmentallydamag- ingagriculturalpracticeswhilstalsodealingwiththeuncertainties posed by climate change,is a significant undertaking(Godfray etal.,2010).Thescenarioisespeciallychallengingifweconsider that52%ofagriculturallandiscurrentlymoderatelyorseverely degradedasaresultofintensiveagriculturalpractices(Foodand AgricultureOrganizationoftheUnitedNations,2019).Thenexus betweenfooddemandandsupplyposesamajorchallengetocon- temporaryfoodsystemsthatappearunder-equippedtodealwith future challenges.Ultimatelytheymaylackresiliencetopoten- tial perturbations and long-term changes (i.e.,climate change), whichthreatentheintegrityofglobalfoodproduction,foodqual- ity, environmental stability and human health (Cottrell et al., 2019).

Addressingtheseissuesalongside‘bendingthecurveofbiodi- versityloss’(Leclèreetal.,2020)associatedwiththeunsustainable intensivefarmingpracticesandinequitabledistributionandcon- sumptionoffood,requiresaradicaltransformationoffoodsystems fromlocaltoglobalscales(WorldWideFundforNature,2020).

“Bending the curve” is now a major policy driver for many nationsinthequestforsustainableagriculture(e.g.,theEuropean Union’s Farm to Fork Strategy).However, thesignificantsocio- ecologicalcomplexityincontemporaryagriculture,coupledwith theglobalmovementofgoodsandlabour,inequitabledistribution ofwater andrapidchangesinenvironmentalconditions,means thatfutureagriculturalchallengesaremultifaceted,interconnected and require large amounts of information in order to succeed (HazellandWood,2008).TheUnitedNationsSustainableDevelop- mentGoals(SDGs)weredevelopedtoaddresssuchinterconnected challenges(Chaudharyetal.,2018)andtheecosystemservicespro- videdbyagriculturalsystemsdependonthestronginteractionsand feedbacksbetweenhumans,theenvironment,andfoodsystems.

Therefore,wholesystems-basedapproachesarerequiredtounder-

standandeffectivelymanagetheselayersofcomplexityandface thechallengesimposedbytheSDGs(McGowanetal.,2019).We contendthatcomplexityscience(Table1),inparticularadvancesin networkscience,canprovideasystems-basedframeworkwithin whichthechallengestocontemporaryagriculturalandfoodsys- temscanbeaddressedatmultiplespatialandtemporalscalesand usingdifferentinformationtypes.

Networkscience,whenappliedtothestudyofecosystems,has beenusedtodescribeandunderstandthepatternsofinteractions inassemblagesofinteractingspecies,characterisingtheunderly- ingstructureofecologicalcommunities.Thenetworkstructureof ecologicalsystems,combinedwithmathematicalmodelling,can enhanceour understandingofecological and evolutionarypro- cesses(e.g.,co-evolutionof antagonistsandmutualists), energy andmatterflowinecosystems,theecosystemservicesprovidedby biodiversity,anddemographicdynamicsinspecies,duetoenviron- mentalchange(Montoyaetal.,2006).Inrecentdecades,significant advancesin ourunderstandingof thestructure and robustness ofecologicalnetworkshavebeenderivedfromempiricalstudies conductedinagro-ecosystems,allowingustobetterunderstand therelationshipsbetweenthestructureandfunctionofcomplex ecosystems(SupplementaryTableS1).Inturn,thishasenablednew guidanceforthesustainablemanagementandrestorationofimpor- tantandbeneficialgroupsoforganismsacrossagriculturalregions (seebelow).

As well as proving useful for studying ecological dynam- ics, network-based thinking enables an understanding of the socio-ecologicalinteractionspresentinagriculturalenvironments (Bohan etal., 2013).This isparticularlyimportant fordevelop- ingfuture management,conservationand restoration strategies tobuild resilience in both crop and non-crop habitats in agri- culturalregions(Bullocketal.,2017).Byscaling-upfurther,the same network approaches can be developed to examine and improvetheresilienceofglobalfoodsupplychains(Pumaetal., 2015).

Here, we present a state-of-the-art for network science in agriculturalsystems,fromspecies interactionnetworksinfields throughtoglobaltradenetworks.Wehighlightrecentdevelop- ments in the field, identify future advances required to build resilienceintofoodsystemsandultimatelydemonstratehowwe canusenetworkspredictivelytogenerateefficientandsustainable agriculture.Withafocusonarangeofdifferentterrestrialcrop- pingsystems(e.g.,intensivetoextensivemanagement),ouraims arefourfold:(i)tosummarisethetheoryandapplicationofnet- workscienceinagro-ecosystems;(ii)todemonstratetheuseof networkapproachestounderstandandmanageagro-ecosystems acrossscales;(iii)toidentifyimportantresearchthemesinagricul- turalnetworks;and(iv)toelucidatefutureadvancesrequiredto understandanddevelopresilienceinagro-ecosystemsacrossthe globe.

(3)

Table1

Glossaryoftermsrelatingtocomplexityandnetworkscienceinagriculture.

Term Description

Generalterms

Complexityscience Thestudyofcomplexsystems,thosecomposedofmultiplecomponentsthatmayinteractwithoneanotherto produceemergentproperties,localconditions,non-linearityandadaptation,whichshapethecollectivebehaviours.

Complexityisobservedinavarietyofsystems.

Networkscience Thestudyoftheinteractionsbetweendiscreteelementsandtheirpotentialimplications.

Network Asystemofinterconnectedorlinkedelements,alsocalleda‘graph’inmathematics.

Ecologicalnetwork Asystemofinterconnectedecologicalunits(e.g.,individuals,populations,species)ataparticulartemporalandspatial scale(e.g.,ahabitat,acommunity,anecosystem).

Networkterms

Nodes(orvertices) Elementswithinanetwork.Nodesmaybepeople,animals,plants,ideas,places,ecosystemservices,habitatsora rangeofotherdiscreteelements.

Links(oredges) Interactionsorrelationshipsbetweentwoormorenodeswithinanetwork(seeEcologicalinteraction).Thiscouldbe weighted(e.g.,visitationfrequencyofapollinatorornumberofcaterpillarsattackedbyparasitoids)orunweighted (e.g.,present/absent).Furthermore,edgescanbedirected(i.e.,fromonenodetotheother)orundirected(i.e.,where therelationbetweenthetwonodesissymmetrical).

Ecologicalinteraction Afunctionallink(seeLinks)betweentwoorganisms(seeNodes)inanecologicalnetwork.Thismaybemutualistic (e.g.,pollination,seeddispersalandendosymbiosis),competitive,antagonistic(e.g.,predationandparasitism), commensalistic(e.g.,someplantsandarbuscularmycorrhizae)oramensalistic(e.g.,tramplingofplantsand invertebratesbylargeanimals).SeeEcologicaltermsforfulldefinitionsofdifferentecologicalinteractiontypes.

Directinteractions Theeffectsofonenodeonanotherthataremediatedbyalinkbetweenthesetwonodes(e.g.,exchangeofgoods, predation,parasitism).

Indirectinteractions Theeffectsofonenodeonanotherwhichismediatedbyoneormoreintermediarynodes.

Unipartitenetwork Anetworkcomprisedofonesetofnodesinwhichinteractionsoccurbetweenallnodes(e.g.,foodwebs).

Bipartitenetwork Anetworkcomprisedoftwosetsofnodes(e.g.,plantsandpollinators,herbivoresandparasitoidsorfarmersand policymakers)inwhichinteractionsonlyoccurbetweennodesofdifferentsets.

Multilayernetwork Anetworkwithmultiplelayersdescribingdifferenttypesoflinks,nodes(e.g.,mutualisticandantagonisticorsocial andecological),orspatiotemporalvariationinthesystem.

Networkstructure Thepatternsofinteractionofagivennetwork(e.g.,thearrangementofnodesandlinks).

Robustness Thetoleranceofnetworkstructuretonodeextinctions.

Ecologicalterms

Amensalism Aninteractioninwhichonespeciesisnegativelyaffected,yettheotherreceivesnocostorbenefit(e.g.,tramplingofa plantbyananimal).

Competition Aninteractionbetweentwospeciesoveracommonresourcethatisinlimitedsupply(e.g.,twopollinatorsvyingfor nectarandpollenfromthesameflower).

Apparentcompetition Anindirect,interspecificinteractionwheretheabundanceofonespeciesisreducedbytheincreaseofotherspecies abundance,withoutdirectinteractionoccurring(e.g.,abundanceofonepreyspeciesisreducedthroughpredation fromafood-limitedgeneralistpredatorsharedwithanotherorganism,orabundanceofonespeciesisreducedinthe presenceofaparasitesharedwithacompetitorspecies).

Mutualism Aninteractioninwhichbothpartnersbenefit(e.g.,plant-pollinatorinteractions).

Antagonism Aninteractioninwhichonepartnerbenefitsattheexpenseofanother(e.g.,predator-prey,plant-herbivoreand herbivore-parasitoidinteractions).

Spillovereffects Ecologicalprocessesoccurringinonehabitatspilloverintotheneighbouringhabitats(e.g.,fieldmarginsenhance pollinationinneighbouringarablefields).

Resilience Theamountofdisturbancethatanecosystemcanwithstandwithoutchangingself-organisedprocessesand structures(Holling,1973)

Ecosystemfunctions Theecologicalprocessesthatregulatethetransfersofenergyandmaterialsthroughanecosystem.

Ecosystemservices Thebenefitsprovidedbyecosystemstohumanwellbeing,i.e.,Nature’scontributiontopeople.Therearefourclasses:

provisioning(products,i.e.,food,freshwater,fuel,wood),regulating(regulationofprocesses,i.e.,climate,flood, disease,pollination),supporting(supportotherecosystemservices,i.e.,nutrientcycling,soilformation,primary production)andcultural(non-materialbenefits,e.g.,recreation,educational,culturalheritage).

Networkapplicationsforagriculture

Agro-ecosystemshavetypicallybeenconsideredascropmono- cultures with a few associated plant and invertebrate species residing inasinglefield, buttheyareclearly farmore complex (Bohan et al., 2013). The relative contributions of biodiversity andspeciesinteractionsintheprovisionoftheseservices,how- ever,remainsunder-appreciatedinagro-ecosystems.Agricultural plantsandanimalsareembeddedincomplexnetworksofabove- andbelow-groundspeciesinteractions(includingfungi,bacteria, virusesandawholehostofotherorganisms;Fig.1),whereorgan- isms are co-dependent(de Vriesand Wallenstein,2017).These ecologicalinteractionsprovideawiderangeofecosystemservices, suchascroppollinationbyinsects(Kleinetal.,2007),naturalpest control(Deroclesetal.,2014)andbeneficialeffectsofsoilmicro- bialactivity(e.g.,promotionofplantgrowth;Bennettetal.,2019).

Inthissense,afundamentalproblemtosolveis,howtocharac- terisetheseservicesiftheydo notoccurin isolationbutrather affecteachotherthroughdirectandindirectinteractionsbetween organisms.

Networkscienceallowsustoexplore notjustthedirect and indirectinteractions betweenbiodiversityincropandnon-crop systems,but alsoincorporatehumandecision-making informa- tionbyfarmers, consumers,regulatorsandlandmanagersfrom local,regionalandglobalscales(Fig.2).Byexploringthedirectand indirectinteractions amongthecomponentsof social-ecological systems,networkscienceprovidessystems-basedapproachesthat cancharacterise,analyseandpotentiallydesignsustainablefood systemsatdifferentscales.

Fieldscale

Recentstudies have provided a better understandingof the structureofmutualisticandantagonisticinteractionsincrop,non- cropandotherhabitatsaroundtheworld.Collectively,thiswork hasprovidednewinsightsintoanumberofecologicalandevolu- tionaryproblems(e.g.,communityassemblyandtraitevolution) andhasalsoindicatedhowtoharnessecosystemservices;mostly pollinationandnaturalpest-control(SupplementaryTableS1).In agro-ecosystems,thechallengeaheadistodescribethesesystems

(4)

Fig.1.Multilayernetworksinagro-ecosystems.(a)Adiagrammaticrepresentationofaconceptualecologicalnetworkatafieldscale.(b)Agraphicalrepresentationofthe networkofmultiplespeciesinteractionsin(a),demonstratinghowapparentintractablebiologicalcomplexitycanbesystemisedformathematicalanalysis.(c)Amultilayer representationofthenetworkwhereintra-layerinteractionsarethesameasin(b),yetinter-layerinteractionsarepresentconnectingthesamepopulationsoforganisms interactingacrossthemultiplelayers.Thelayershererepresentdifferenttypesofinteraction.Layers,however,couldalsorepresentdifferentfields,habitats,seasons,yearsor otherdiscretespatialortemporalunits.Nodecolourindicatestheroleoftheorganismswithinthenetwork(e.g.,symbiont,pathogen,pollinator,plant,herbivore,parasitoid, detritivoreandpredator).Linkcoloursandlinetypesrepresentdifferenttypesofintra-andinter-layerinteractions.Notallpotentialintra-layerinteractionshavebeen includedin(a),(b)or(c)forillustrativepurposes,forexampleantagonisticinteractionsbetweenpredators,parasitoids,pollinatorsanddecomposers.

inwaysthatthefullsuiteofimportantdirectandindirectinterac- tionsthatoccurwithinthelandscapeareincorporated(Hutchinson etal.,2019).Indeed,currentassessmentsofchangesinfarmman- agementoverlook importantprocessesderivedfrominteracting species,suchaschangesintraitdistributionsatthespecies-level maybecompensatedforathigherlevelsofbiologicalorganisation (Maetal.,2019).Furthermore,awiderangeofotherinteractions thatmayimpactthedesignofagro-ecosystemshavebeenlesswell studied,includingspilloverofpollinationfromnon-croptocrop plantspecies andbeneficialinteractions betweensoilandplant communities.Althoughwecancontinue toobtaininsightsfrom studyingtheseinteractionsinisolation,theorypredictsthatjusta fewlinksconnectingelementsmaymarkedlychangethedynamics ofwidersystems(WattsandStrogatz,1998).

Conceptually,mergingecologicalnetworksofdifferentinterac- tiontypesisstate-of-the-art.Inanagriculturalcontext,multiple direct and indirect interaction types with crops, both above and below-ground, canbequantified(Fig.1).The simultaneous quantificationofthemultipleecosystemservicesprovidedbybio- diversitycanprovideinsightson:(i)trade-offsincropandnon-crop

managementpractices;and(ii)theoften-unexpecteddynamical consequencesofcouplingecologicalinteractions(e.g.,emergent effects,indirecteffectswhichtranscendinteractionnetworksand plasticityintheroleofspecieswithinmultilayernetworks);both ofwhichfacilitatethetaskofimprovingsustainableyields.Pocock etal.(2012)werethefirsttoshowtheusefulnessofa‘network ofecologicalnetworks’atafarm-scalebyanalysinghowdifferent interconnectedgroupsoforganismsrespondtospeciesloss.This workenhancedourunderstandingoftherobustnessandresilience ofcombinedgroupsofplantsandanimalstoenvironmentalchange, hence identifying vulnerable groups and demonstrating novel methods to restoreecosystem functioning based in identifying importantplantsandhabitats.

Landscapescale

Networksat thefield or habitat scale areinherently nested withina wider landscapeof complexinteractions (Evanset al., 2013).Thesenetworksconnecthabitatsatarangeofscales,with connections resulting either from the movement of individual

(5)

Fig.2. Anexampleofamergedagriculturalnetwork.Symbolsrepresentthreatstoecosystems(redsquares),managementinterventionsoractions(orangehexagons), socialactors(bluepentagons),ecologicalnetworks(circles,whereindividualsymbolsrepresentindividualspecies)andtheecosystemservices(greenstars)andeconomic compartments(yellowstar).Thefigurecoversonlyasubsetofthepotentialsocialactors,economicpressures,threats,managementactionsandecosystemsservicesthat arepresentinagriculturalsystems.Threatscandirectlylinktoecosystemservices,butalsothreatentheirprovisionthroughecologicalnetworks.Managementcanoccur inresponsetothreatsandtranslatestoecosystemservicesthroughimpactingthestructureandfunctionoftheecologicalnetwork.Differenttypesofinteractionsrequire differentdata,forexampleinteractionsbetweenmanagementandthreatscanbequantifiedbyassessingthesuccessofpreviousmanagementinterventionsusingmonitoring.

organismsinspace(i.e.,theutilisationofmultiplehabitatsbythe sameorganismorlong-distancedispersalamongpopulations),by theuseofdifferenthabitatsbydifferentpopulationsofthesame species,orbythetransferandfluxofmaterialsandenergyacross thelandscapethroughexistingnetworksofspecies(Massoland Petit,2013).Researchonmeta-communitiesshowsthat,duetothe inherentheterogeneityofecologicalsystemsacrossspace,thenet- workofnetworksaffectstheresponseofboththeoverallnetwork anditssubnetworkstoperturbations(Holyoaketal.,2005).

Severalattemptshavebeenmadetounderstandtheinterac- tionsbetweennetworksatthelandscapescaleinagriculture.These studieshavelookedatthesharedinteractionsbetweenhabitatsin ordertounderstandthepotentialbenefitsof,forexample,shared parasitoids of pest herbivoresin both cropand non-crop habi- tats(Deroclesetal.,2014).Theydrawonhowconceptssuchas apparentcompetition,spillovereffects,andtop-down/bottom-up effectsproliferateintocropsystems,potentiallyimprovingyields.

Forinstance,thepotentialoftop-downeffects,otherwiseknown astrophiccascades,toregulatepestsmaybeachievedbymanipu- latinghabitatheterogeneity.Habitatheterogeneitycauseschanges in thefeedingbehaviourof generalistpredators,leading tothe presenceofpredatorsfeedingona greaternumber ofpreytaxa (Staudacheretal.,2018).Generalistpredators,inturn,areknownto shiftecosystemstatesthroughexertingpredationpressureonpest species(e.g.,fruit-eatingbirdsinorchards),generatinganincreased productivityofplantsinnaturalsystemsandcrops(Shaveetal., 2018).

Therearearangeofmethodsforlinkingandanalysingthese spatial networks in agricultural regions. The concept of meta- networks,anextensionofpreviousmeta-population,community and ecosystemtheory,hasrecentlybeendevelopedtolinkpre- viously isolated habitat-specific networks (Emer et al., 2018).

Furthermore, spatial networks including ecological, social and managementsystems,havebeenproposed(Deeetal.,2017).This fieldisdevelopingrapidly,yetfurtheradvancesarerequiredbefore we fully understand how networks at intermediate, landscape

scales interact with one another to affect ecological processes (Poisot et al.,2015).Initial studiesconstructing and investigat- ing networks at broad geographical scales (e.g., Great Britain;

Redheadetal.,2018)demonstratethepotentialforconstructing spatiallyconnectednetworksatbroadscalesusingcombinations ofmethods,bothnewandexisting.Weexploresomeofthenew developmentsandadvancesinthisareaofnetworkecologyinsub- sequentsections(seeConnectingthe agriculturallandscape using networks).

Globalscale

Ecologicalnetworksareyettobefullyexploredattheglobal scale,butthereareeffortstocollateinternationaldatasetstohelp answermacro-ecologicalquestions.Nevertheless,advancesinnet- work sciencemore generally are increasingly beingapplied to agriculturalsystemsdata,inparticulartheglobaltradeofgoods, services (Anderson, 2010) and ecosystem services (Silva et al., 2021).Anappreciationofmultiplescalesisparticularlyimportant inagriculturalsystems,especiallyconsideringthatthemovement andtradeofagriculturalgoods,aswellascurrentandfutureglobal environmentalchangesand biological variationat broadscales, influencetheagriculturalprocesses occurringatsmallerspatial scales(e.g.,landscapesandfields).Thesestudiesareparticularly importantwhenconsideringtheriskspresentedbyeconomicand environmentalshocks (Challinor et al., 2016).For example, an analysisofnetworksoftradeincerealcropsfrom1986to2013 showedthatthreeentangled,time-invariantsub-networkswere responsibleforthemajorityoftrade,buttherewerealsotransient subnetworksthatdisplayedexponentialgrowthoverintermediate timescales(Dupasetal.,2019).Transientstructures,althoughcon- tributingrelativelylittletothetotaltradeofcereals,maypresent abufferagainstperturbationsorshocksintheshort-term.Little, however,isknownabouttheresilienceofthesenetworks—asub- stantialgapinourunderstandingofagriculturalnetworksandtheir abilitytorespondtofuturescenarios(butseePumaetal.,2015).

(6)

Attemptshavealsobeenmadetolinktogetheragriculturaltrade andsocialnetworks.Forexample,atriadicanalysisframeworksuc- cessfully classifiedcountriesbasedontheirlevelofconnectivity totradepartnersandindicatedadistinctdevelopmenttrajectory associated withan increase in the levels of global agricultural importsandexportsforacountry(ShuttersandMuneepeerakul, 2012).

Much canbe learned fromother disciplineswhere network approacheshavebeenusedtoexaminearangeofglobalphenom- ena, includingbankingsystems(MayandArinaminpathy,2010) and diseasetransmission(Pastor-Satorrasetal.,2015).Froman agriculturalperspectiveitmaybepossibletolinktogetherpro- cessesattheglobalscale(i.e.,tradeandcommunity)tothoseatfield and landscapescales.Forexample, changesintheinternational tradeofpesticidesandfertiliserswillaffectaccesstotheseprod- uctsbyfarmers,inturnenhancingorrestrictingtheirapplication atlandscapeandfieldscales,andthusalteringthestructureand functionofecologicalnetworksatlocalscalesthroughtheeffects ofeitherhigherorlowerlevelsofchemicalapplication.

Includingpeopleinagriculturalnetworksacrossscales

Humansarerarelyincludedinagro-ecosystemnetworks.Thisis surprisinggiventhat:(i)peoplearethedirectbeneficiariesofagri- culturaloutputs;and(ii)agriculturalnetworksarecharacterised bytop-downstructuring,throughaseriesofknowledge-exchange anddecision-makingnetworksinthehumancompartmentofsys- tems(Mansonetal.,2016).Agriculturalsocialnetworkscombine arangeofstakeholdersinvolvedinthemanagementoftheland- scape,suchasfarmers,landmanagers,consumersandregulators (Jarosz,2000).Theinteractionsbetweenthesestakeholders(e.g., informationandequipmentsharing,co-managementoflandscapes andcommonresponsestopolicyorlegislation),andthelandman- agementdecisionsthatarise,areamajorinfluenceonecological networks in theagriculturalenvironment (Nelsonet al., 2009).

Likewise,itislogicalthatchangestotheecologicalnetwork(e.g., asaresultofdrought,pestoutbreaksorpollinatordeclines)will affectdecisionmakinginsocialnetworksandthiscanpropagate acrossspatialscales.We contendthatmergingsocial,economic andecologicalnetworkshasconsiderablescopeforbetterunder- standingandmanagementofhuman–ecosystemrelationshipsand feedbacks.Mergingsuchnetworksisamajorchallengebutnowfea- sible,andthebenefitsforbuildingresilienceintofood-systemsare considerable(seeMergingsocialandecologicalnetworkstounder- stand howmanagement decisionsaffect agro-ecosystemsandvice versa).

Advancesrequiredtooperationalisenetworksciencein agriculture

Collectingmorenetworkdatatoenableawholesystem understandingofagro-ecosystems

Agreatervolumeofdataondifferentagriculturalnetworksis requiredacrossmanydifferentnetworktypesinagro-ecosystems, includingecological,sociologicalandeconomic.Here,wefocuson ecologicalnetworksduetorecentdevelopmentssurroundingthe collectionofspecies-interactiondata.

Comprehensiveanddetailedecologicalnetworkscanbecon- structed using a range of techniques. Yet recent advances in DNA-basednetworkconstructionmethodsprovideunprecedented opportunities to scale-up the construction of highly resolved ecological networks (Derocles et al., 2018; Evans et al., 2016;

Srivathsan etal.,2021).Thesetechniquesareparticularlyappli- cabletonetworkconstructionwhereinteractionsmaybecryptic,

infrequent,short-livedordifficulttoobserve(Vacheretal.,2016).

Furthermore,theyallowtheinclusion of evolutionaryinforma- tion(e.g.,phylogeneticdata),thatisparticularlyimportantinthe contextof usingnetworks predictivelyfor restoration purposes (Raimundo et al., 2018). Within agro-ecosystems, examples of potentialapplicationsofeco-evolutionarynetworksinclude:link- ingabove- and below-groundnetworks (Toju and Baba, 2018), incorporatingcropvirusesandpathogensintoecologicalnetworks andinvestigatingtheroleofintra-specificcompetition.Although DNA-basedmethodsshow great promise,withlow per sample costs(<10cents;Srivathsanetal.,2021)and theability topro- cesslargenumbersofsamplesrapidly,werecognisethesemethods havelimitations (Cuff etal.,2022)andtheiraccessibilityvaries geographically.Arangeofalternativemethodsforconstructingnet- worksexistandaresuitableforcreatingagro-ecosystemnetworks.

Foramorecomprehensivereviewofnovelmethodsofconstruct- ingreplicatedspeciesinteractionnetworksoverlargespatialscales seesectionsinWindsoretal.(inrevision).

Anincreaseintheamountofavailablenetworkdata,combined witha focusonthefunctional implicationsofsuchinteractions (e.g., understanding the wider role of soil microbiota in agro- ecosystems),willenableabetterunderstandingoftheresponses ofagriculturalnetworkstonaturaloranthropogenicperturbations.

Suchknowledge providesoptions formanagement inextensive sustainablesystemsand/orbuildingresilienceintothosefoodsys- temswhichappearatriskofnegativeeffects(seebelow).

Makingthemostofexistingagriculturaldatabyinferring ecologicalinteractions

Inference networks, constructed from co-occurrence data and/orexistinginformationonspeciesinteractions(e.g.,Pocock etal.,2020), provideapotentiallyvaluableresourceforinvesti- gatingnetworksoverbroadspatialandtemporalscales.Indeed, thismethodofnetworkconstructionisgainingmomentumwhen communitydataisgenerated usingenvironmentalDNA(eDNA) methods,although co-occurrenceis not necessarilyevidence of ecological interactions (Blanchet et al., 2020). These methods havenumerousapplications,includingreconstructionofhistorical speciesinteractionnetworks,constructionofnetworksinremote regionswithpoorinteractiondatasetsanddevelopmentofnet- works across broad spatial and temporal scales that allow for testingglobalenvironmentalchangehypotheses.Furthermore,the potentialapplicationtoexistinglong-termbiomonitoringprojects is an area of interest (Bohan et al., 2017), particularly in the contextofexaminingpestandbeneficialinsectinteractionsinagro- ecosystems(Petsopoulosetal.,2021).

Linkingabove-andbelow-groundenvironmentstocreate completeecologicalnetworksinagro-ecosystems

We currently have limited knowledge regarding how biotic interactionsbetweenplantsandbelow-groundmicro-organisms influenceecosystemproductivityandfluxesofmatterandenergy throughtrophiclevels,limitingourabilitytounderstandhowagro- ecosystemsrespondtoenvironmentalchange.Again,DNA-based methodscombinedwithnetworkanalysisoffernewwaystoover- comesomeofthehithertodifficultiesinstudyingmorecomplex plant–microbeinteractions(Bennettetal.,2019)andunearthinga rangeofecosystemservicesthatcanbeharnessed(e.g.,arbuscu- larmycorrhizalfungiandotherrootsymbiontsforplantgrowth).

Indeed,agriculturalplantsdonotonlyrelyondirectdefenceswhen attacked,buttheycanalsorecruitpestantagonistssuchaspreda- torsandparasitoids,bothaboveandbelow-ground,mainlyviathe releaseofvolatileorganiccompounds(i.e.,indirectdefences).How- ever,fromanecologicalnetworkperspectiveitismechanistically

(7)

unclearhow changes inonetrophic level (e.g.,soilarthropods) affectinteractionsinanother(e.g.,insectpollinators),andviceversa (Fig.2),northepotentialtrade-offsfor focalplants(e.g.,crops).

Assuch,wedonotknowwhatdrivesthemultidirectionalfluxes betweentheabove-andbelow-groundcomponentsoftheagri- culturalnetworksatmultiplescales.Thisadvanceisrequiredto understandhowthesecomponentsofthesysteminteracttoalter productivityandecosystemserviceswithintheagriculturalenvi- ronment.

Usingmultilayernetworkstoidentifykeyecosystemservicesthat spilloverbetweencropandnon-crophabitats

Usingnon-crophabitats,forexamplefieldmargins,hedgerows, uncultivatedlandandwoodland,toinfluencethenetworkstruc- tureofplant–animalnetworksinarableagricultureisacommon techniquetoenhancetheprovisionofecosystemservicesinsome regionsoftheglobe.Assessmentsandmanagementinterventions, however,donotoftenconsiderthesimultaneousprovisioningof multipleecosystemservices(Gabaetal.,2015).Itisnevertheless importanttoconsiderthepotentialsynergiesandtrade-offsasso- ciatedwithdecisionssurroundingagriculturalsystems,especially considering that different non-crop habitats enhance different ecosystemservicesinacontext-dependentmanner(Albrechtetal., 2020).

Developingmethodsthatallowforanunderstandingandman- agementofmultipleecosystemservicesisanimportantchallenge thatneedstobeaddressed.Thisadvancecanbeachievedusing anadaptationofcurrentnetwork methodsforselectingoptimal mixturesoforganismstomaximisetheabundanceand/orspecies richnessofinteractingorganisms.Forexample,itispossibletouse machinelearningalgorithmsappliedtonetworkdatatoidentify speciescontributingtodifferentecosystemservicesacrosshabitats anddetermineoptimalmixesofspeciestoprovidesimultaneous ecosystemserviceprovision(Windsoretal.,2021).

Incorporatingdifferentaspectsofagricultureinamultilayer frameworkthroughdevelopingnewtools

Although studies on multilayer networks are still in their infancy (Hutchinson et al.,2019), in agro-ecosystems there are severalclearlydefined‘layers’thatcanbeincorporatedintomul- tilayer network frameworks.These include,but are notlimited to; plant–herbivore, herbivore–parasitoid, herbivore–predator, plant–frugivore,plant–human(e.g.,removalofweeds,diversifying plantspeciesinfieldmargins)andherbivore–human(e.g.,pesticide use, enhancingtheabundanceofnaturalenemiesofpestherbi- vores).Throughincorporatingthisarrayofnetworktypesintoone framework,wesuggestthatitispossibletogainabetterunder- standingofthemechanisticprocessesthroughwhichmanagement decisions ata range ofscales altertheecosystem servicespro- videdbytheecologicalnetworksembeddedwithintheagricultural landscape.Inturn,thiswouldallowforanimproveddesignofman- agement strategies, incorporating allpotential knock-oneffects acrosstheecosystemandallowingformaximumecosystemservice provisionwhilstminimisingenvironmentalharm.

Thecurrenttoolboxavailableforanalysingecologicalmultilayer networksislimitedtoasmallbutgrowingnumberofanalyses,such asqualitativemeasuresofrobustness(Pilosofetal.,2017).Thereare alsochallengesassociatedwithlinkingtogetherlayerswithdiffer- entlinkinformationin ameaningfulmanner.Forexample,itis oftennotappropriatetocombineindividualweightednetworks intoasingleweightedmultilayernetworkasthemethodsusedto collectdatadonotlendthemselvestodirectcomparisons.There arealsoissueswithlinkinglargenumbersofdisparatelayersin aparsimoniousandcomputationallyefficientwaythatfitswithin

currentmathematicalframeworks.Toaddressthischallenge,we believeabottom-up,plant-focusedapproachincroppedsystems providesasuitablestartingpointtoinvestigatetheroleofdifferent interactionswithinagro-ecosystems.Byalteringplantcommuni- ties there area range of consequences that caninfluence even thoseorganismsthatarenotdirectlyconnectedtotheminthenet- work(Scherberetal.,2010).Leadingonfromthisstartingpoint,it wouldbepossibletolinkin-andoff-crophabitatsaswellasabove- andbelow-groundcomponentsoftheagriculturalnetworksusing multilayernetworks.Doingsowillallowforthedevelopmentof managementtechniquesthatenhancetheprovisionofecosystem servicesthroughmakinguseofecologicalprocessessuchasappar- entcompetition(seeAroadmapforusingnetworkspredictivelyin agriculture).

Applyingadaptiveanddynamicnetworkstoprovidenewinsights inagriculturalsystems

Moststudiestodatehaveanalysedthestructureofecological networks(ora‘snapshot’ofspeciesinteractionsintime)andignore importanttemporaldynamics.Yetthepropertiesofecologicalnet- workscanvarydrasticallyatarangeofspatialandtemporalscales (Poisotetal.,2015).Todealwiththedynamicnatureofecological systems,anovelsuiteofnetworkmodelshasrecentlybeendevel- oped,incorporatingadditionalinformationonthephylogenyand traitsoftheorganismsthatcompriseagivenecologicalnetwork (Raimundo etal., 2018).These adaptivenetwork models incor- poratepotentialfunctionalorco-evolutionarychangesthatmight manifestthemselvesinresponsetochangesinthewidernetwork, addinggreaterdetail—e.g.,informationonchangesintheabun- danceandtraitsoforganismsovertime(Deroclesetal.,2018).The aimofsuchmethodsistoallowforanimprovedunderstanding ofhowsystemsrespondtoextinctionsandreductions,whichisin starkcontrasttoclassicalapproachesofrobustnesswithabinary responseofpersistenceorextinctionbasedonwhetherallprevi- ouslyobservedlinksareremoved,e.g.,completedisconnection.A remainingchallengesurroundingadaptivenetworks,however,is thatofparametrisationdatawhich remainslimited.DNA based methodsmay present a wayforward providing anopportunity togaininformationontheevolutionaryhistoryoforganismsand usefulinformationonpotentialinteractionrewiring(seeCollect- ingmorenetworkdatatoenableawholesystemunderstandingof agro-ecosystems).

Furtherdevelopingadaptive network modelswithinagricul- turalsystemsprovidessignificantpotential,especiallyinresearch investigatinghowhumanmanagementmayaffectotheraspects oftheagriculturalsystem.Examplesofpotentialresearchinclude understandingthe response of network structure and function topesticideresistance,climatechangeandreductionsinpollina- tordiversity,aswellasdevelopingprecisionfertiliserapplication andinvestigatingtheoptimalcombinationsofnon-cropplantsin organicagriculturalsystems.Bydevelopingthesemethodsofanal- ysis,wecangainmoreinformationabouttheecologicalnetworks andsuitablemanagementpracticescanbedevelopedtomakeuse ofeco-evolutionaryprinciples(Loeuilleetal.,2013).Ultimatelythis willallowadaptivenetworkstobeusedpredictivelyfortargeted managementoutcomes(Raimundoetal.,2018).

Developingspatialnetworkstoconnecttheagriculturallandscape anddevelopabroaderpicture

Currently, it is not possible to accurately identify, quantify and understand how management decisions at different scales affectthe structure and dynamics of ecological and social net- works, and thushow these processes impactupon agricultural productivity,sustainability and resilience, across thesurround-

(8)

inglandscape(MassolandPetit,2013).Assuch,ameta-network framework is required to understandthe interactions between agriculturalnetworksatthelandscapescale.Todatetherearefew studiesinvestigatingspatialmeta-networks,yetthisconceptcanbe appliedwidely,acrossmultiplenetworktypes(i.e.,socialandeco- logical),tounderstandhowmanagementorperturbationsaffect theprovisionof differentecosystemservicesattheagricultural landscape scale. Meta-network theory couldprovide a suitable frameworkwithinwhichagriculturalquestionsatthelandscape scale can beanswered. Thishasbeen shown in previouswork investigatingplant–bumblebeeinteractionsinforestrysystems, whichdemonstratedthevariableeffectsofhabitatpatchsizeand flightdistancesonthepotentialeffectivenessofconservationand restorationstrategies(Devotoetal.,2014).

Substantialfieldandlaboratoryworkisrequiredtoupscalenet- work assessmentsin agricultural environmentsto allowfor an understandingofhowspatialvariationandheterogeneityinsocial and ecologicalprocessesalterstheecosystem servicesprovided acrossthelandscape.Theseeffortshavestartedwiththeoretical models(Loeuilleetal.,2013),butempirical(field-basedandexper- imental)studiesarenowrequiredtodrivefurtheradvancesinour understanding.

Mergingsocialandecologicalnetworkstounderstandhow managementdecisionsaffectagro-ecosystemsandviceversa

Agriculturalsystemsareacombinationofsocialandecological networks(Fig.2),withtop-downeffectsofmanagementaltering thenatureofecologicalsystemsandnetworks(Lescourretetal., 2015). Yet,until recently these two interlinked networks have beenanalysed in relativeisolation. Newstudieshave soughtto combinethese(andmultipleother)typesofnetworkstoprovide insightsintohowtheinterfacebetweenmanagementandbiodiver- sityaltersecosystemfunctioning(Felipe-Luciaetal.,2021).These effortshaveincludedagriculturalenvironments(Hutchinsonetal., 2019), andtheorysurroundingsocio-ecologicalnetworksis suf- ficientlymature foractionable interdisciplinaryresearch(Bodin etal.,2017).Puttingmultilayernetworkstoworkinthecontext ofagriculturemayimproveourunderstandingofthemechanistic basisthroughwhichmanagementdecisionstranslatetochangesin production,orotherservicesprovidedbytheagro-ecosystems.

Examples at different scales demonstrate the importance of combining social and ecological networks in agriculture to understandwherechanges insocialnetworksimpactecological networks,andviceversa.Atthelandscapescale,agriculturalenvi- ronmentsarecomposedofdifferenttypesoffarmers,rangingfrom familyfarmers throughtointensivecommercialfarmmanagers, who formnodes within a farmer-biota network. In this exam- plenetwork,farmersarelinkedtogetherthroughtheireffectson thewiderbiodiversityofthelandscape,i.e.,agriculturalmanage- mentbyonefarmermayaffectbiotaatthelandscapescaleand inturnhaveimpactsonotherfarmers.Anexampleofthiswould betheapplicationofpesticidesreducingpollinatordiversityand thusreducingtheprobabilityofpollinationacrossotherfarmsand crops—eventhosewherepesticidesarenotapplied.Acrosscon- tinentalandglobalscales,ecologicalandsocialnetworksatlocal scalescanbelinkedtogetherthroughnationalandinternational tradenetworks,ashasbeenthecasein recentworkinvestigat- ingvirtualpollinationtradenetworks(Silvaetal.,2021).Inthese networks,effectsonpollinatorsatlocalscaleswillaltertheyields ofpollinator-dependentcropsandthushavesocialandeconomic consequencesinotherregionsoftheglobewithwhichthosecrops aretraded.Linkingtogethersystemsatlargescalesisparticularly important(seeFurtheringglobalagriculturalnetworkanalysestohelp enhancetheresilienceoffoodsystems).

Usingthediscoursessurroundingecosystemservicesandnat- ural capital appears to have consolidated efforts linking social andecologicalnetworksacrossotherecosystems.Such applica- tionhasallowedfor thefusion of informationon management strategies and ecosystemservice provisionwith detailed socio- ecologicalnetworks(Deeetal.,2017).Forexample,recentwork thatintegrated ecosystem servicesinto coastalsalt marshfood websfound indirectrisks toservicesthrough species loss, and that vulnerability acrossservices was predictable(Keyes et al., 2021).Usinganecologicalnetwork,thisstudylinkstogethersocial aspectsofsystems:(i)threats,theanthropogenicstressorsimposed ontheecosystembyhumanactors(e.g.,climatechangeorover- exploitationofspecies); and(ii)ecosystemservices,thehuman benefitsderivedfromthenaturalworld.Wecontendthatasimilar

‘threats-network-ecosystemservices’advanceisatangiblestart- ingpoint for operationalisingworkin agro-ecosystems (Fig.2), buildingonabottom-upspecies-interactionapproach.Here,using robustnessanalyses,itwouldbepossibletoexaminehowagricul- turalmanagementand/orthreatstospeciesinteractingwithplants propagatethroughthenetworktoimpactmultipleecosystemser- vices,andthussocio-economicactivities.

Goingforward, a significantchallenge for theintegration of socialandecologicalnetworkssurroundsthecollectionofappro- priatedata.Specifically,collectingandcollatingdataoftheright kind(i.e.,weightedlinkswithcomparableorinteractableunits), at the correct resolution (e.g., seasonal management decisions and knowledge sharing by farmers). Many methods exist for generatingsocial datato constructnetworks; however, current methodsarequalitative (i.e.,usingecosystem serviceasanode linkedtospecieswithoutameasureoftheeffectsofaspecieson serviceprovision)and/orcollectdatainaninappropriatespatial ortemporalresolutionsforintegrationwithecologicalnetworks (Felipe-Luciaetal.,2021).

Thereappeartobethreeoptionsforcombiningsocialandeco- logical networks: (i) include social networks in the framing of ecologicalnetworkquestions(i.e.,useresearchquestionsdriven bysocial networks— forexample decisionmaking and/orland managementatthelandscapescale);(ii)reducetheresolution(i.e., levelofdetail)ofbothsocialandecologicalnetworksandusean existinganalyticalframework(e.g.,Bayesiannetworksandgame theoryhavepreviouslybeenappliedtomulti-agentecosystemser- vicemodelling;Mulazzanietal.,2017);or(iii)developacompletely newmethod/frameworktolinksocialandecologicalsystems.

Furtheringglobalagriculturalnetworkanalysestohelpenhance theresilienceoffoodsystems

Determiningthe resilienceofglobal agriculturetoperturba- tions, shocks and disturbances is crucial and a policy priority (Challinoretal.,2016),especiallyconsideringtheglobalnatureof agriculturalfoodsupplyandthepotentialforfuturefoodshortages (Silvaetal.,2021).Althoughdataexistattheglobalscale,forexam- pleFoodandAgricultureOrganisation (FAO)cropandlivestock productsdata(FoodandAgricultureOrganizationoftheUnited Nations,2018),thereremainslimitednetwork-basedassessments oftheglobaltradeofagriculturalproductsandresearchopportu- nities(Pumaetal.,2015).Currentdataprovideastrongbasisfor potentialanalysesasthereisdetailedinformationonthevalueof annualimportsandexportsofdifferentagriculturalproducts,as wellasthequantityofproductsmovingbetweencountries.Using thesedata,understandingtherobustness ofthetrade network, forexampleifaglobalhealthcrisispreventsexports(Adayand Aday,2020)orifclimateconditionsreduceproductionofagricul- turalgoodswithinageographicregion,isafruitfulplacetobegin.

Furthermore,buildingnetwork-basedanalysesintocurrentglobal andregionalagriculturalmonitoringschemes(e.g.,GrouponEarth

(9)

Fig.3.Agriculturalnetworksatdifferentspatialandtemporalscales.Eachsectionofthefiguresummarisesexamplesofnetworkscienceapplicationsatdifferentscales.

Atthefieldscale(1)thecolourofthenodesindicatesthedifferenttaxonomicgroupsandtrophiclevelsrepresentedinthevariousnetworks.Thenetworksatthisscalecan varyintheircomplexityfrombipartite(interactionsbetweentwogroups,i.e.,plantsandherbivores)throughtomultilayerormeta-networkapproacheswhichincludeeither multiplehabitats,networksthroughtime(linkedbythesameorganismsorpopulationsoforganisms)ormultipleinteractiontypes.Acrosslandscapes(2)whichcanrange inscalefrommultiplefieldstoentireregions,networkscantakemanyformsandberepresentedbyclassicnodeandlinkdiagrams(2aand2b),orspatiallyusinglattices representingspace(2c).Inthelattercase,adjacentblocksdirectlyinteractwithoneanother,andotherblocksfurtherafieldmayinteractthroughindirectinteractions.The spreadoforganismsacrossthelandscapematricescanbeestimatedusinganetworkoftheblockswithinthelandscapeandthedirectandindirectinteractionsbetween them.Attheglobalscale(3),networksareequallydiverse,yetgoodexamplesexistfortradenetworks.Subnetworksoftrademaybeparticularlyimportantforagricultural goodsandthelossofproductioninthesesubsetsofnodes(countries)mayleadtoalossofrobustnessinglobalagriculturaltrade.Forspecificterminologyrefertothemain textandTable1.ExamplesofmanynetworksinagricultureandassociatedprocessesareprovidedinTableS1.

ObservationsGlobalAgriculturalMonitoring[GEOCLAM],Anomaly HotSpots ofAgriculturalProduction[ASAP],GlobalInformation and Early Warning System[GIEWS]and Famine Early Warning Systems Network[FEWSNET];Fritzetal.,2019),wouldfurther enhancetheabilitytoprovideanearly-warningsystemforglobal foodsystemsandpromoteenhancedfoodsecurity.

Aroadmapforusingnetworkspredictivelyinagriculture

Usingnetworkspredictivelyforspecificmanagementoutcomes, suchasbuildingresiliencetoclimatechange,resistancetoinvasion fromnon-nativespecies,orachievinggreatercropyieldswhilst supportingincreasesinthelevelsofnativebiodiversity,couldbe achievable.However,usingtheprinciplesofnetworkecologyto predictthepotentialeffects of farmmanagement interventions

Referências

Documentos relacionados

A execução deste passe é semelhante à do passe de peito; a principal diferença consiste na extensão dos braços que é feita para baixo e para a frente de modo a

Para Vygotsky (1987), o acesso ao objeto é sempre mediado por representações do real e requer dois aspetos complementares: a representação mental que se refere a recortes do

O artigo apresenta: 1) a evolução dos estudos sobre acervos de bibliotecas universitárias no Brasil: a situação problemática, a inconsistência de dados e enfatiza a questão

Como resultado, identifica-se: o aumento de trabalhos defendidos por mulheres; a Universidade de Brasília como a instituição com maiores índices de defesas,

Existem outros exergames semelhantes, que utilizam a câmara frontal dos dispositivos móveis para a componente exergaming como é o caso de Beast Boooster, e ProRiders Extreme Edition,

O surf em Peniche permitiu que a cidade ficasse conhecida como Capital da Onda desde 2009, trazendo milhares de visitantes todos os anos para ver o campeonato de surf,

parte da rede escolar oficial, principalmente em áreas distantes dos grandes centros urbanos, fez com que as escolas de Ensino Particular fossem, na maioria das

tumoral.. II A todos os que de alguma forma ajudaram na realização deste trabalho, este é o momento de agradecer. Mais do que a qualquer outra pessoa, o meu orientador, Doutor