• Nenhum resultado encontrado

UNIVERSIDADE FEDERAL DE SÃO CARLOS

N/A
N/A
Protected

Academic year: 2018

Share "UNIVERSIDADE FEDERAL DE SÃO CARLOS"

Copied!
70
0
0

Texto

(1)

P❘❖●❘❆▼❆ ❉❊ PÓ❙ ●❘❆❉❯❆➬➹❖ ❊▼ ▼❆❚❊▼➪❚■❈❆

▼✐❣✉❡❧ ❆♥❣❡❧ ❈✉❛②❧❛ ❩❛♣❛t❛

❊st✐♠❛t✐✈❛ ❞❡ ❡♥❡r❣✐❛ ♥♦ ✐♥✜♥✐t♦ ♣❛r❛ ❡q✉❛çõ❡s

❤✐♣❡r❜ó❧✐❝❛s ❝♦♠ ❝♦❡✜❝✐❡♥t❡s ♦s❝✐❧❛♥t❡s

❙ã♦ ❈❛r❧♦s ✲ ❙P

❆❣♦st♦ ❞❡ ✷✵✶✷

(2)

P❘❖●❘❆▼❆ ❉❊ PÓ❙ ●❘❆❉❯❆➬➹❖ ❊▼ ▼❆❚❊▼➪❚■❈❆

❊st✐♠❛t✐✈❛ ❞❡ ❡♥❡r❣✐❛ ♥♦ ✐♥✜♥✐t♦ ♣❛r❛ ❡q✉❛çõ❡s

❤✐♣❡r❜ó❧✐❝❛s ❝♦♠ ❝♦❡✜❝✐❡♥t❡s ♦s❝✐❧❛♥t❡s

▼✐❣✉❡❧ ❆♥❣❡❧ ❈✉❛②❧❛ ❩❛♣❛t❛

❖r✐❡♥t❛❞♦r✿ Pr♦❢ ❉r✳ ❏♦s❡ ❘✉✐❞✐✈❛❧ ❞♦s ❙❛♥t♦s ❋✐❧❤♦

❇♦❧s✐st❛ ❈♥♣q

Pr♦❝❡ss♦ ✷✵✶✷

❉✐ss❡rt❛çã♦ ❛♣r❡s❡♥t❛❞❛ ❛♦ Pr♦❣r❛♠❛ ❞❡ Pós✲●r❛❞✉❛çã♦ ❡♠ ▼❛t❡♠át✐❝❛ ❞❛ ❯❋❙❈❛r ❝♦♠♦ ♣❛rt❡ ❞♦s r❡q✉✐s✐t♦s ♣❛r❛ ❛ ♦❜t❡♥çã♦ ❞♦ tít✉❧♦ ❞❡ ▼❡str❡ ❡♠ ▼❛t❡♠át✐❝❛

❙ã♦ ❈❛r❧♦s ✲ ❙P

❆❣♦st♦ ❞❡ ✷✵✶✷

(3)

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária da UFSCar

C961ee

Cuayla Zapata, Miguel Angel.

Estimativa de energia no infinito para equações hiperbólicas com coeficientes oscilantes / Miguel Angel Cuayla Zapata. -- São Carlos : UFSCar, 2012.

59 f.

Dissertação (Mestrado) -- Universidade Federal de São Carlos, 2012.

1. Equações diferenciais parciais. 2. Equação da onda. 3. Estimativa de energia. 4. Coeficiente oscilante. I. Título.

(4)
(5)

➚ ❉❡✉s✱ ♣❡❧❛ ✈✐❞❛✱ ♣❛③ ❡ s❛ú❞❡✳

❆♦s ♠❡✉s ♣❛✐s ❖❧❣❛ ❡ ❆❣✉stí♥✱ ♣♦r s❡♠♣r❡ ♠❡ ❛♣♦✐❛r❡♠ ❡ ♠♦t✐✈❛r❡♠ ❞✉r❛♥t❡ ♠❡✉s ❡st✉❞♦s ❡ ❡♠ t♦❞♦s ♦s ♦✉tr♦s ❛s♣❡❝t♦s ❞❛ ♠✐♥❤❛ ✈✐❞❛✳ ❆❣r❛❞❡ç♦ t❛♠❜é♠ ❛♦s ♣r♦❢❡ss♦r❡s ❞❡ ▼❛t❡♠át✐❝❛ ❞❛ ❯❋❙❈❛r✱ q✉❡ ♠❡ ❛❥✉❞❛r❛♠ ❝♦♠ ♠✐♥❤❛ ❢♦r♠❛çã♦ ❞✉r❛♥t❡ ❛ ♦ ♠❡str❛❞♦✳

❚♦❞♦s ❢♦r❛♠ s❡♠♣r❡ ♠✉✐t♦ ❛t❡♥❝✐♦s♦s ❡ ❡①❡♠♣❧♦s ❞❡ ♣r♦❢❡ss♦r❡s ♣❛r❛ ♠✐♠✳ ❊♥tr❡ t♦❞♦s ❡st❡s✱ ❣♦st❛r✐❛ ❞❡ ❛❣r❛❞❡❝❡r ❡♠ ❡s♣❡❝✐❛❧ ♠❡✉ ♦r✐❡♥t❛❞♦r ❘✉✐❞✐✈❛❧✱ ♣♦r ♠❡ ❛✉①✐❧✐❛r ♥❡st❡ tr❛❜❛❧❤♦ ❡ ♣♦r t♦❞❛ ❛❥✉❞❛ ❛ ♠✐♠ ❞❡❞✐❝❛❞❛✳

(6)

◆ós ❡st✉❞❛♠♦s ♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❞❛ ❡♥❡r❣✐❛✱ ♣❛r❛ t → ∞✱ ❞❛s s♦❧✉çõ❡s ❞♦ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② ♣❛r❛ ❛❧❣✉♠❛s ❡q✉❛çõ❡s ❡str✐t❛♠❡♥t❡ ❤✐♣❡r❜ó❧✐❝❛s ❞❡ s❡❣✉♥❞❛ ♦r❞❡♠ ❝♦♠ ❝♦❡✜❝✐❡♥t❡s q✉❡ ♦s❝✐❧❛♠ r❛♣✐❞❛♠❡♥t❡✳

(7)

❲❡ st✉❞② t❤❡ ❜❡❤❛✈✐♦r✱ ❛s t → ∞✱ ♦❢ t❤❡ ❡♥❡r❣② ❢♦r t❤❡ s♦❧✉t✐♦♥s ♦❢ t❤❡ ❈❛✉❝❤② ♣r♦❜❧❡♠ ❢♦r s♦♠❡ str✐❝t❧② ❤②♣❡r❜♦❧✐❝ ❧✐♥❡❛r s❡❝♦♥❞ ♦r❞❡r ❡q✉❛t✐♦♥s ✇✐t❤ ❝♦❡✣❝✐❡♥ts ✈❡r② r❛♣✐❞❧② ♦s❝✐❧❧❛t✐♥❣✳

(8)

❆❣r❛❞❡❝✐♠❡♥t♦s ✐✐✐

❘❡s✉♠♦ ✐✈

❆❜str❛❝t ✈

■♥tr♦❞✉çã♦ ✈✐✐✐

✶ Pr❡❧✐♠✐♥❛r❡s ✷

✶✳✶ ◆♦t❛çõ❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷

✶✳✷ ❊s♣❛ç♦s Lp ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✶✳✷✳✶ ❖♣❡r❛çõ❡s ❝♦♠ ❉✐str✐❜✉✐çõ❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻

✶✳✸ ❉✐str✐❜✉✐çõ❡s ❚❡♠♣❡r❛❞❛s ❡ ❚r❛♥s❢♦r♠❛❞❛ ❞❡ ❋♦✉r✐❡r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽

✶✳✹ ❊s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷

✶✳✹✳✶ ❊s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈ ❍♦♠♦❣ê♥❡♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻

✷ Pr♦❜❧❡♠❛ ■♥✐❝✐❛❧ ✶✽

(9)

✸ Pr♦❜❧❡♠❛ ❣❡r❛❧ ✷✽

✸✳✶ ❙♦❧✉❝ã♦ ❞❛ ❡q✉❛çã♦ ❞❛ ♦♥❞❛ ❝♦♠ ❝♦❡✜❝✐❡♥t❡s ♦s❝✐❧❛♥t❡s ❡♠ ✐♥t❡r✈❛❧♦s ❞❡ ❝♦♠♣r❡♠❡♥t♦ ✉♠✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✾

✸✳✷ ❙♦❧✉çã♦ ❞❛ ❡q✉❛çã♦ ❞❛ ♦♥❞❛ ❝♦♠ ❝♦❡✜❝✐❡♥t❡s ♦s❝✐❧❛♥t❡s ♥✉♠❛ s❡q✉ê♥✲ ❝✐❛ ❞❡ ✐♥t❡r✈❛❧♦s ❝r❡s❝❡♥t❡✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✶

✹ ❆♣ê♥❞✐❝❡ ✺✸

❘❡❢❡rê♥❝✐❛s ❇✐❜❧✐♦❣rá✜❝❛s ✺✾

(10)

❈♦♥s✐❞❡r❛♠♦s ♦ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② ❡♠[0,+)×R✱ ❝♦♠ u=u(t, x)✱

  

∂2

tu−a(t)∂x2u= 0,

u(0, x) = u0(x), ∂tu(0, x) =u1(x),

✭✶✮

❝♦♠ ✈❛❧♦r ✐♥✐❝✐❛✐s u0 ∈ Hs(R), u1 ∈Hs−1(R), s >0✱ ❝♦♠ ❛ ❤✐♣ót❡s❡ ❞❡ ❤✐♣❡r❜♦❧✐❝✐✲

❞❛❞❡

0< λa(t)Λ, t. ✭✷✮

❖❜s❡r✈❛♠♦s q✉❡ s❡a(t)é ♣♦s✐t✐✈❛ ❞✐❢❡r❡♥❝✐á✈❡❧ ❝♦♠ ❞❡r✐✈❛❞❛ ❧✐♠✐t❛❞❛✱ ❡♥tã♦ t❡♠✲s❡ ❡①✐stê♥❝✐❛ ❡ ✉♥✐❝✐❞❛❞❡ ❧♦❝❛❧ ♥♦ ❡s♣❛ç♦ ❞❡ ❙♦❜♦❧❡✈ ❡✱ ♥❡ss❡ ❝❛s♦✱ s❡❣✉❡✲s❡ ❛ ❡st✐♠❛t✐✈❛ ❞❡ ❡♥❡r❣✐❛

Es(u)(t)≤Cs,TEs(u)(0), ∀t∈[0, T] ✭✸✮

❝♦♠

Es(u)(t) :=ku(t)k2Hs +k∂tu(t)k2Hs−1. ✭✹✮

❖✉tr❛ ❢♦r♠❛ ❞❡ ✈❡r ♦ ♣r♦❜❧❡♠❛ ✭✶✮ é ❝♦♥s✐❞❡r❛r ❛♦ ✐♥✈és ❞❛ ❝♦♥t✐♥✉✐❞❛❞❡ ▲✐♣s❝❤✐t③ ❞♦ ❝♦❡✜❝✐❡♥t❡ a(t)✱ ❛ ♣r♦♣r✐❡❞❛❞❡ ❞❡ ▲♦❣✲▲✐♣✳

❆q✉✐ ▲♦❣✲▲✐♣ é ❞❡✜♥✐❞♦ ♣♦r✿

❉❡✜♥✐çã♦ ✵✳✵✳✶✳ ❙❡❥❛ f : I → R✱ ❝♦♠ I ✉♠ ✐♥t❡r✈❛❧♦✱ ❞✐r❡♠♦s q✉❡ f é ▲♦❣✲▲✐♣ ❝♦♥tí♥✉❛ s❡ ❡❧❛ s❛t✐s❢❛③✿

(11)

kfkLL(I):= sup

t,t+τ∈I

0<|τ|<1/2

|f(t+τ)−f(t)|

||log|τ|| <+∞ ✭✺✮

❈♦♠ ❡st❛ r❡❣✉❧❛r✐❞❛❞❡ ❞♦s ❝♦❡✜❝✐❡♥t❡s a(t) ❞❡♠♦♥str❛✲s❡ q✉❡ ✭✶✮ é C∞✲❜❡♠ ♣♦st♦✱ ✈❡❥❛ ❬✷❪✳

❆❧é♠ ❞✐ss♦ ❛ ❝♦♥t✐♥✉✐❞❛❞❡ ▲♦❣✲▲✐♣ ♣♦❞❡ s❡r ♣❡♥s❛❞❛ ❝♦♠♦ ✉♠❛ ❤✐♣ót❡s❡ ♠í♥✐♠❛ ♣❛r❛ ❛ r❡❣✉❧❛r✐❞❛❞❡ ♥♦s ❝♦❡✜❝✐❡♥t❡s ❛✜♠ ❞❡ t❡rC∞✲❜❡♠ ♣♦st♦ ♣❛r❛ ✭✶✮✳ P♦r ❡①❡♠✲ ♣❧♦✱ ❬✷❪ ❡①✐❜❡ ✉♠❛ s✐t✉❛çã♦ ❡♠ q✉❡ ❛ ❤✐♣ót❡s❡ ▲♦❣✲▲✐♣ ♥ã♦ ♣♦❞❡ s❡r ❡♥❢r❛q✉❡❝✐❞❛ ♣❛r❛ ❛ ❝❧❛ss❡ ❍ö❧❞❡r ❝♦♠ ❡①♣♦♥❡♥t❡ ♠❡♥♦r q✉❡ ✶✳ ▲á✱ t❛❧ ❡①❡♠♣❧♦ é ❣❡♥❡r❛❧✐③❛❞♦✱ ♣r♦✈❛♥❞♦ q✉❡ ❡♠ ❣❡r❛❧ ❛ ❤✐♣ót❡s❡s ▲♦❣✲▲✐♣ r❡❣✉❧❛r✐❞❛❞❡ ♥ã♦ ♣♦❞❡ s❡ ❡♥❢r❛q✉❡❝✐❞❛ ♥♦ s❡♥t✐❞♦ ❡s♣❡❝✐✜❝❛❞♦✳

❆♦ ❝♦♥s✐❞❡r❛r ♦ ❝♦❡✜❝✐❡♥t❡ a(t) ❡♠ ▲♦❣✲▲✐♣ ❛✐♥❞❛ t❡♠✲s❡ ❛ ❡st✐♠❛t✐✈❛ ❞❛ ❡♥❡r❣✐❛✱ ♠❛s ❝♦♠ ♣❡r❞❛ ❞❡ ❞❡r✐✈❛❞❛✱ ✈❡r ❬✺❪✳

❖✉ s❡❥❛✱ ♣❛r❛ ❛ s♦❧✉çã♦ u ❡ a(t) ▲♦❣✲▲✐♣ ❝♦♥tí♥✉♦✱ ❝♦♠ T > 0✱ s R q✉❛❧q✉❡r ❡ ♣❛r❛ t♦❞♦t ∈[0, T]✱ t❡♠✲s❡✿

Es−βt(u)(t)≤Cs,T∗ Es(u)(0), ✭✻✮

❝♦♠ C∗

s,T ❝♦♥st❛♥t❡ q✉❡ só ❞❡♣❡♥❞❡ ❞❡ s✱ ❞❛ ❞✐♠❡♥sã♦ ♥✱ ❚ ❡Λ ✱ ❡ β é ❞❛❞♦ ♣♦r β = 1

λC ∗

kakLL([0,t]), ✭✼✮ s❡♥❞♦C∗ ✉♠❛ ❝♦♥st❛♥t❡ ♣♦s✐t✐✈❛ q✉❡ ❞❡♣❡♥❞❡ ❛♣❡♥❛s ❞❡nλ ✭ ♠❡♥♦r ❝♦t❛ s✉♣❡r✐♦r ❞♦ ❝♦❡✜❝✐❡♥t❡ a(t)✮✳

❆❣♦r❛ s❡ ❛♠♣❧✐❛♠♦s ♦ ❡s♣❛ç♦ ❞❡ ▲♦❣✲▲✐♣ ♣❛r❛ ♦ ❡s♣❛ç♦ Ω✲▲♦❣✲▲✐♣✱ ❛♦ q✉❛❧ ❞❡✜♥❡✲s❡ ❞❛ s❡❣✉✐♥t❡ ❢♦r♠❛✳

❉❡✜♥✐çã♦ ✵✳✵✳✷✳ ❯♠❛ ❢✉♥çã♦ f : I R✱ ♦♥❞❡ I é ✉♠ ✐♥t❡r✈❛❧♦ r❡❛❧✱ é ❞✐t❛ s❡r ❝♦♥tí♥✉❛ Ω✲▲♦❣✲▲✐♣ q✉❛♥❞♦✿

kfkΩLL(I) := sup

t,t+τ∈I

0<|τ|<δ

|f(t+τ)−f(t)|

||log|τ||Ω(|τ|) <+∞.

(12)

❆q✉✐Ω s❛t✐s❢❛③✳

❉❡✜♥✐çã♦ ✵✳✵✳✸✳ ❙❡❥❛ ❛ ❢✉♥çã♦ΩC1((0, δ])✱ ♣❛r❛ ❛❧❣✉♠δ >0✭ ♣♦❞❡♠♦s ❛ss✉♠✐r

s❡♠♣r❡ q✉❡ δ < 1/2✮ ✱ é ✉♠❛ ❢✉♥çã♦ ♠ó❞✉❧♦✱ s❡ é ✉♠❛ ❢✉♥çã♦ ❝♦♥✈❡①❛✱ ♣♦s✐t✐✈❛✱ ❞❡❝r❡s❝❡♥t❡ t❛❧ q✉❡

limτ→0+Ω(τ) = +∞, 0<−Ω′(τ)≤τ−1, Ω(δ)≥1.

❈♦♠ ❛❥✉❞❛ ❞❡st❛s ❞❡✜♥✐çõ❡s✱ tr❛t❛♠♦s ❞❡ r❡s♣♦♥❞❡r ❡♠ ♣❛rt❡ s❡ ❡①✐st❡ ✉♠❛ ❡st✐♠❛t✐✈❛ ❣❧♦❜❛❧ ❞❛ ❡♥❡r❣✐❛ ♣❛r❛ ❝♦❡✜❝✐❡♥t❡s ♥ã♦ ▲✐♣s❝❤✐t③✳ ❖ ♦❜❥❡t✐✈♦ ❞❛ ❞✐ss❡r✲ t❛çã♦ é ❡st✉❞❛r ♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❛ss✐♠♣tót✐❝❛ ❞❛ ❡♥❡r❣✐❛ ♥♦ ❝❛s♦ ❞❡ t❡r✲s❡ ❝♦❡✜✲ ❝✐❡♥t❡s a(t)♥ã♦ ❞✐❢❡r❡♥❝✐á✈❡✐s✳ ❉❡ ❢❛t♦✱ ❞❡♠♦♥str❛r❡♠♦s q✉❡ ❛ ❡①♣❧♦sã♦ ❞❛ ❡♥❡r❣✐❛ ♥♦ ✐♥✜♥✐t♦ ❛❝♦♥t❡❝❡✱ ❡ ✐st♦ ✐♥❞❡♣❡♥❞❡ ❞❛ r❡❣✉❧❛r✐❞❛❞❡ ❞♦s ❝♦❡✜❝✐❡♥t❡s✳ ❖ ❢❛t♦ ✐♠♣♦r✲ t❛♥t❡ ♣❛r❛ s❡ t❡r ✉♠❛ ❡st✐♠❛t✐✈❛ ❛ss✐♥tót✐❝❛ ❞❛ ❡♥❡r❣✐❛ ♥♦ ✐♥✜♥✐t♦ é ♦ ❝♦♠♣♦rt❛♠❡♥t♦ ♦s❝✐❧❛♥t❡ ❞♦s ❝♦❡✜❝✐❡♥t❡s✳

P❛r❛ ✐ss♦ ❝♦♥str✉✐r❡♠♦s ✉♠ ❝♦❡✜❝✐❡♥t❡ a(t) t❛❧ q✉❡ ❛❝♦♥t❡❝❡ ❛ ❡①♣❧♦sã♦ ❞❛ s♦❧✉çã♦ ❞❡ ✭✶✮ ❡♠ ❡s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈ ❤♦♠♦❣ê♥❡♦✳ ❆ss✐♠ ❝♦♥s✐❞❡r❛r❡♠♦s ❞♦✐s ❝❛✲ s♦s✱ ♥❛ ♣r✐♠❡✐r❛ ♣❛rt❡ ♦s ❝♦❡✜❝✐❡♥t❡s ♦s❝✐❧❛♠ ❡♠ ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ✐♥t❡r✈❛❧♦s ❞❡ ❝♦♠♣r❡♠❡♥t♦ ✶✱ ♥❛ s❡❣✉♥❞❛ ♣❛rt❡ ♦s ❝♦❡✜❝✐❡♥t❡s ♦s❝✐❧❛♠ ❡♠ ✉♠❛ s❡q✉❡♥❝✐❛ ❞❡ ✐♥✲ t❡r✈❛❧♦s ❝✉❥♦ ❝♦♠♣r❡♠❡♥t♦ ❝r❡s❝❡ r❛♣✐❞❛♠❡♥t❡✱ ❡ ❡♠ ❛♠❜♦s ❝❛s♦s t❡♠✲s❡ ❡①♣❧♦sã♦ ❞❛ ❡♥❡r❣✐❛✳ ❆ r❡❢❡r❡♥❝✐❛ ❜ás✐❝❛ é ♦ ❛rt✐❣♦ ❞❡ ❋✳ ❈♦❧♦♠❜✐♥✐✭✈❡❥❛ ❬✶❪✮✳

▼❛✐s r❡❝❡♥t❡♠❡♥t❡ ❋✳ ❍✐r♦s❛✇❛ ✱ ✈❡r ❬✽❪✱ ♦❜t❡r❡♠ ♦ s❡❣✉✐♥t❡ r❡s✉❧t❛❞♦✿ ❚❡♦r❡♠❛ ✵✳✵✳✹✳ P❛r❛ q✉❛❧q✉❡r q <1✱ ❡①✐st❡ ✉♠ a(t)C∞([0,)) s❛t✐s❢❛③❡♥❞♦

a(k)(t)Ck(1 +t)−kq, ✭✽✮

♣❛r❛ q✉❛❧q✉❡r k∈N✱ t❛❧ q✉❡ ❛ ❝♦♥s❡r✈❛çã♦ ❣❡♥❡r❛❧✐③❛❞❛ ❞❛ ❡♥❡r❣✐❛✶✱ ♥ã♦ ✈❛❧❡✳

❖❜s❡r✈❡ q✉❡ ❡st❡ r❡s✉❧t❛❞♦ ❣❛r❛♥t❡ q✉❡ ♣❛r❛ ❢✉♥çõ❡s ❣❧♦❜❛❧♠❡♥t❡ ▲✐♣s❝❤✐t③✱ ❛ ❡♥❡r❣✐❛ ♥ã♦ é ❧✐♠✐t❛❞❛ ❡♠ [0,∞)]✳ ❯♠ ❡①❡♠♣❧♦ ❡①♣❧í❝✐t♦ ♣♦❞❡ s❡r ✈✐st♦ ♥♦ ❛rt✐❣♦

❞❡ ▼✳ ❘❡✐ss✐♥❣ ❡ ❏✳ ❙♠✐t❤✱ ✈❡r ❬✶✸❪✳

●❊❈ q✉❡r ❞✐③❡r q✉❡ t❡♠✲s❡ ❛ s❡❣✉✐♥t❡ ❡st✐♠❛t✐✈❛ C1E(0) E(t) C2E(0)✭ ♦♥❞❡ E(t) =

1 2

a(t)2

k∇u(t,·)k2+k∂tu(t,·)k 2

(13)

Pr❡❧✐♠✐♥❛r❡s

◆❡st❡ ❝❛♣ít✉❧♦ ✈❛♠♦s ❛♣r❡s❡♥t❛r ♦s ❢❛t♦s ❜ás✐❝♦s ♥❡❝❡ssár✐♦s ❛ ❝♦♠♣r❡❡♥sã♦ ❞♦s ❝❛♣ít✉❧♦s s✉❜s❡q✉❡♥t❡s✳ ❆♣r❡s❡♥t❛♠♦s ♦s ♣r✐♥❝✐♣❛✐s r❡s✉❧t❛❞♦s ❞❛ ❚r❛♥s❢♦r✲ ♠❛❞❛ ❞❡ ❋♦✉r✐❡r✱ ❞❡✜♥✐♠♦s ♦s ❡s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈ ❡ ❡①♣❧♦r❛♠♦s ❛❧❣✉♠❛s ❞❡ s✉❛s ♣r♦♣r✐❡❞❛❞❡s✳ ❆s r❡❢❡rê♥❝✐❛s ❜ás✐❝❛s sã♦ ❬✾❪✱ ❬✶✶❪✳

✶✳✶ ◆♦t❛çõ❡s

✶✳✷ ❊s♣❛ç♦s

L

p

❋✐①❡♠♦s ✉♠ ❡s♣❛ç♦ ❞❡ ♠❡❞✐❞❛ (X,M, µ)✱ ♦✉ s❡❥❛✱ X é ✉♠ ❝♦♥❥✉♥t♦ ♥ã♦✲ ✈❛③✐♦✱ M é ✉♠❛σá❧❣❡❜r❛ ❞❡ s✉❜❝♦♥❥✉♥t♦s ❞❡ X ❡µ:M →[0,] ✉♠❛ ♠❡❞✐❞❛✳ ❙❡f é ✉♠❛ ❢✉♥çã♦ ♠❡♥s✉rá✈❡❧ s♦❜r❡ ❳ ❡1≤p <∞✱ ❞❡✜♥✐♠♦s

kfkLp = Z

X| f|pdµ

1/p

P❛r❛ p=✱ t♦♠❛♠♦s

kfkL∞ = inf{a≥0 :µ({x:|f(x)|> a}) = 0}

(14)

❝♦♠ ❛ ❝♦♥✈❡♥çã♦ ❞❡ q✉❡ inf = kfkL∞ é ❝❤❛♠❛❞♦ s✉♣r❡♠♦ ❡ss❡♥❝✐❛❧ ❞❡ f ❡

❡s❝r❡✈❡♠♦s

kfkL∞ =s✉♣❡ssxX|f(x)|.

❉❡✜♥✐♠♦s

Lp(X,M, µ) = {f :X C; ❢ é ♠❡♥s✉rá✈❡❧ ❡ kfkLp <∞}.

❉✐③❡♠♦s q✉❡ ❞✉❛s ❢✉♥çõ❡s ❞❡✜♥❡♠ ♦ ♠❡s♠♦ ❡❧❡♠❡♥t♦ ❞❡ Lp q✉❛♥❞♦ ❡❧❛s

sã♦ ✐❣✉❛✐s q✉❛s❡ t♦❞❛ ❛ ♣❛rt❡✳ ▼❡❞✐❛♥t❡ ❡st❛ ✐❞❡♥t✐✜❝❛çã♦✱ t❡♠♦s q✉❡ ♦ ❡s♣❛ç♦ Lp(X,M, µ)✱ ♠✉♥✐❞♦ ❞❛ ♥♦r♠❛ k · k

Lp✱ é ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤ ✭♣❛r❛ ❛ ♣r♦✈❛✱ ✈❡❥❛

❬✶✹❪✱ ♣♦r ❡①❡♠♣❧♦✮✳

❘❡❝♦r❞❡♠♦s q✉❡ ❞♦✐s ♥ú♠❡r♦s r❡❛✐s p ❡ p′ s❛t✐s❢❛③❡♥❞♦ 1 p +

1

p′ = 1✱ ❝♦♠ p, p′ >1 sã♦ ❞✐t♦s ❡①♣♦❡♥t❡s ❝♦♥❥✉❣❛❞♦s✳ ❆❧é♠ ❞✐ss♦✱ ✶ ❡ sã♦ ❝♦♥❥✉❣❛❞♦s✳ Pr♦♣♦s✐çã♦ ✶✳✷✳✶ ✭❉❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❍ö❧❞❡r✮✳ ❙❡❥❛♠ 1 p, p′ ≤ ∞ ❡①♣♦❡♥t❡s ❝♦♥❥✉❣❛❞♦s✳ ❙❡ ❢ ❡ ❣ sã♦ ❢✉♥çõ❡s ♠❡♥s✉rá✈❡✐s s♦❜r❡ X✱

kf gkL1 ≤ kfkLpkgk

Lp′ ✭✶✳✶✮

P❛r❛ ❛ ❞❡♠♦♥str❛çã♦ ✈❡❥❛ ❬✼❪✱ ♣á❣✳ ✶✼✹✳

❙❡p=p′ = 2✱ ✭✶✳✶✮ é ❝♦♥❤❡❝✐❞❛ ❝♦♠♦ ❉❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❈❛✉❝❤②✲❙❝❤✇❛rt③✳ Pr♦♣♦s✐çã♦ ✶✳✷✳✷ ✭❉❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❈❤❡❜②s❤❡✈✮✳ ❙❡ f Lp (1 p < )✱ ❡♥tã♦

♣❛r❛ t♦❞♦ λ >0✱

µ({x:|f(x)|> λ})

kfkLp

λ

p

❆ ♣r♦✈❛ ❞❡st❡s ❞♦✐s r❡s✉❧t❛❞♦s ♣♦❞❡ s❡r ❡♥❝♦♥tr❛❞❛ ❡♠ ❬✼❪✱ ♥❛s ♣á❣✐♥❛s ✶✼✽ ❡ ✶✽✺✱ r❡s♣❡❝t✐✈❛♠❡♥t❡✳ ❊♥✉♥❝✐❛♠♦s ❛ s❡❣✉✐r ✉♠❛ ❝❛r❛❝t❡r✐③❛çã♦ ❞❛ ♥♦r♠❛ ❡♠ Lp

❛tr❛✈és ❞❡ ✐♥t❡❣r❛✐s s♦❜r❡ [0,)✿

❚❡♦r❡♠❛ ✶✳✷✳✸✳ ❙❡p[1,)✱ ❡♥tã♦ ♣❛r❛ t♦❞❛ ❢✉♥çã♦ ♠❡♥s✉rá✈❡❧ ❢ s♦❜r❡(X,M, µ)✱

kfkpLp =p

Z ∞

0

λp−1µ({x:|f(x)|> λ})dλ

(15)

P❛r❛ ❛ ❞❡♠♦♥str❛çã♦ ✈❡r ❬✼❪✱ ♣á❣✳ ✶✾✶✳

❙❡rá út✐❧✱ ❡♠ ❛❧❣✉♠❛s ❡st✐♠❛t✐✈❛s✱ ❛ ♣r♦♣♦s✐çã♦ ❛❜❛✐①♦ ❡ s❡✉ r❡s♣❡❝t✐✈♦ ❝♦r♦❧ár✐♦✱ q✉❡ ❣❡♥❡r❛❧✐③❛ ❛ ✐❞é✐❛ ❞❛ ✐♥t❡❣r❛çã♦ ❝♦♠ ❝♦♦r❞❡♥❛❞❛s ♣♦❧❛r❡s ♣❛r❛Rd✳ ◆♦✈❛♠❡♥t❡✱

❛ ♣r♦✈❛ ♣♦❞❡ s❡r ✈✐st❛ ❡♠ ❬✼❪✱ ♥❛ ♣á❣✐♥❛ ✼✺✳

Pr♦♣♦s✐çã♦ ✶✳✷✳✹✳ ❙❡❥❛ ❢ é ✉♠❛ ❢✉♥çã♦ ♠❡♥s✉rá✈❡❧ s♦❜r❡ Rd✱ ♥ã♦✲♥❡❣❛t✐✈❛ ♦✉ ✐♥✲

t❡❣rá✈❡❧ t❛❧ q✉❡ f(x) =g(|x|)✱ ♣❛r❛ ❛❧❣✉♠❛ ❢✉♥çã♦ g ❡♠ (0,)✳ ❊♥tã♦

Z

Rd

f(x)dx=σ(Sd−1)

Z ∞

0

g(r)rd−1dr,

♦♥❞❡ σ(Sd−1) ❡①♣r❡ss❛ ❛ ♠❡❞✐❞❛ ❞❛ ár❡❛ ❞❡ Sd−1

❈♦r♦❧ár✐♦ ✶✳✷✳✺✳ ❙❡❥❛ sR✳ ❙❡ s > d/2✱ ❡♥tã♦

Z

Rd

(1 +|ξ|2)s <∞.

❖ s❡❣✉✐♥t❡ ❚❡♦r❡♠❛ ❞❡ ❘❛❞❡♠❛❝❤❡r s❡rá ✉t✐❧✐③❛❞♦ ❡♠ ✭✹✳✶✮✳

❚❡♦r❡♠❛ ✶✳✷✳✻✳ ✭❚❡♦r❡♠❛ ❞❡ ❘❛❞❡♠❛❝❤❡r✮ ❙❡❥❛ f : Rn Rm ✉♠❛ ❢✉♥çã♦ ❧♦❝❛❧✲

♠❡♥t❡ ▲✐♣s❝❤✐t③✳ ❊♥tã♦ f é ❞✐❢❡r❡♥❝✐á✈❡❧ q✳t✳♣✳

P❛r❛ ✈❡r ❛ ❞❡♠♦♥str❛çã♦ ✈❡r ❬✻❪✳

❙❡❥❛ Ω ⊂ Rd ❛❜❡rt♦ ❡ φ : Ω C ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛✳ ❉❡✜♥✐♠♦s ♦ s✉✲

♣♦rt❡ ❞❡ φ✱ ♦ q✉❛❧ ❞❡♥♦t❛r❡♠♦s ♣♦r S(φ)✱ ❝♦♠♦ s❡♥❞♦ ♦ ❢❡❝❤♦ ❡♠ Ω ❞♦ ❝♦♥❥✉♥t♦

{x∈Ω; φ(x)6= 0}✳

❉❡✜♥✐çã♦ ✶✳✷✳✼✳ ❙❡❥❛ Ω ✉♠ ❛❜❡rt♦ ❞❡ Rn✳ ❖ ❝♦♥❥✉♥t♦

Cc∞(Ω) ={φ: Ω→C; u∈C∞ ❡ S(φ) é ❝♦♠♣❛❝t♦}

é ♦ ❡s♣❛ç♦ ❞❛s ❢✉♥çõ❡s t❡st❡s✳

P❛r❛ ❛ ❡①✐stê♥❝✐❛ ❞❡ ❢✉♥çõ❡s t❡st❡s ♥ã♦✲♥✉❧❛s✱ s❡rá út✐❧ ❛ s❡❣✉✐♥t❡ ♣r♦♣♦s✐çã♦✱ ❝✉❥❛ ❞❡♠♦♥str❛çã♦ ♣♦❞❡ s❡r ✈✐st❛ ♥❛ ♣á❣✐♥❛ ✼ ❞❡ ❬✾❪✳

(16)

Pr♦♣♦s✐çã♦ ✶✳✷✳✽✳ ❙❡❥❛K ✉♠ s✉❜❝♦♥❥✉♥t♦ ❝♦♠♣❛❝t♦ ❞❡ ✉♠ ❛❜❡rt♦ ΩRd✳ ❊①✐st❡ ψ ∈C∞

c (Ω) t❛❧ q✉❡ 0≤ψ ≤1 ❡ ψ = 1 ♥✉♠❛ ✈✐③✐♥❤❛♥ç❛ ❞❡ K✳

❚❡♠♦s q✉❡ C∞

c (Ω) é ✉♠ ❡s♣❛ç♦ ✈❡t♦r✐❛❧ ❞❡♥s♦ ❡♠ Lp(Ω)✱ ❝♦♠ 1 ≤ p < ∞✱

♣♦r ❬✼❪✳ ❈♦♥❢♦r♠❡ ❬✶✷❪✱ é ♣♦ssí✈❡❧ ❡q✉✐♣á✲❧♦ ❝♦♠ ✉♠❛ ❡str✉t✉r❛ ❞❡ ❡s♣❛ç♦ ✈❡t♦r✐❛❧ t♦♣♦❧ó❣✐❝♦✱ ♥ã♦✲♠❡tr✐③á✈❡❧✱ ❞❡ ♠♦❞♦ q✉❡C∞

c (Ω)t♦r♥❡✲s❡ ✉♠ ❡s♣❛ç♦ ❝♦♠♣❧❡t♦✳ ❈♦♠

❡st❛ ❡str✉t✉r❛ t♦♣♦❧ó❣✐❝❛✱ t❡r❡♠♦s q✉❡ ✉♠❛ s❡q✉ê♥❝✐❛(φj)j∈N ❞❡ ❢✉♥çõ❡s t❡st❡ ❝♦♥✲ ✈❡r❣❡ ❛ ③❡r♦ ❡♠ C∞

c (Ω) s❡ ❡①✐st❡ ✉♠ ❝♦♠♣❛❝t♦ K ⊂ K t❛❧ q✉❡ S(φj) ⊂Ω, ∀j ∈ N

❡✱ ♣❛r❛ t♦❞♦ ✐♥t❡✐r♦ ♣♦s✐t✐✈♦ m✱ ❛s ❞❡r✐✈❛❞❛s ❞❡ ♦r❞❡♠ m ❝♦♥✈❡r❣❡ ✉♥✐❢♦r♠❡♠❡♥t❡ ❛ ③❡r♦ q✉❛♥❞♦j → ∞✳

❉❡✜♥✐çã♦ ✶✳✷✳✾✳ ❙❡❥❛ΩRd❛❜❡rt♦✳ ❯♠ ❢✉♥❝✐♦♥❛❧ ❧✐♥❡❛r ❡ ❝♦♥tí♥✉♦u:C∞ c (Ω) →

C é ❞✐t♦ ✉♠❛ ❞✐str✐❜✉✐çã♦ ❡♠ Ω✳ ❖ ❡s♣❛ç♦ ❞❛s ❞✐str✐❜✉✐çõ❡s ❡♠ Ω s❡ ❞❡♥♦t❛ ❝♦♠

D′(Ω)

❉❡♥♦t❛♠♦s ♦ ✈❛❧♦r ❞❛ ❞✐str✐❜✉✐çã♦u ♥❛ ❢✉♥çã♦ t❡st❡ φ ♣♦r hu, φi

❊①❡♠♣❧♦ ✶✳✷✳✶✵✳ ❙❡❥❛f ∈L1❧♦❝(Ω) ❡ ❞❡✜♥❛♠♦s ♦ ❢✉♥❝✐♦♥❛❧ ❧✐♥❡❛r

hTf, φi=

Z

f(x)φ(x)dx, φCc∞(Ω) ✭✶✳✷✮

❙❡ (φj)j∈N é ✉♠❛ s❡qüê♥❝✐❛ ❝♦♥✈❡r❣✐♥❞♦ ❛ ③❡r♦ ❡♠ Cc∞(Ω)✱ s❡❥❛ K ⊂ Ω ❝♦♠♣❛❝t♦

t❛❧ q✉❡ S(φj)⊂K✳ ❊♥tã♦

|hTf, φji| ≤

Z

K|

f(x)||φj(x)|dx

≤ sup

x∈K| φj(x)|

Z

K|

f(x)|dxj−→→∞ 0

P♦rt❛♥t♦✱ ❛ ❡①♣r❡ssã♦ ✭✶✳✷✮ ❞❡✜♥❡ ✉♠❛ ❞✐str✐❜✉✐çã♦ ❡♠ Ω ✳ ❚❛♠❜é♠✱ s❡ f, g L1

❧♦❝(Ω) ❡ hTf, φi =hTg, φi✱ ♣❛r❛ t♦❞❛ φ ∈ Cc∞(Ω)✱ ❡♥tã♦ f = g q✳t✳♣ ✭✈❡r ♣r♦✈❛ ♥❛

♣á❣✳ 11❞❡ ❬✾❪✮✳

❉❡st❡ ♠♦❞♦✱ ❛ ❛♣❧✐❝❛çã♦ ✐♥❥❡t✐✈❛f 7→Tf ♥♦s ♣❡r♠✐t❡ ❝♦♥s✐❞❡r❛r ✈ár✐♦s ❡s♣❛ç♦s

❞❡ ❢✉♥çõ❡s ❝♦♠♦ s✉❜❡s♣❛ç♦s ❞❡ D′(Ω)✳ ➱ ❝♦♠✉♠ ❡s❝r❡✈❡r s✐♠♣❧❡s♠❡♥t❡ hf, φi ❛♦ ✐♥✈és ❞❡ hTf, φi✳

(17)

❉✐③❡♠♦s q✉❡ ✉♠❛ ❞✐str✐❜✉✐çã♦u∈ D(Ω) é ✐❣✉❛❧ ❛ ③❡r♦ ♥✉♠ ❛❜❡rt♦U s❡

hu, φi= 0✱ ♣❛r❛ t♦❞❛φ ∈C∞

c (U)✳ ❉❡✜♥✐♠♦s ❡♥tã♦ ♦ s✉♣♦rt❡ ❞❡ u✱ ❡ ❞❡♥♦t❡♠♦s ♣♦r S(u)✱ ❝♦♠♦ ❛ ✐♥t❡rs❡çã♦ ❞❡ t♦❞♦s ♦s ❢❡❝❤❛❞♦s ❞❡Ω❢♦r❛ ❞♦s q✉❛✐sué ♥✉❧❛✳ ❉❡♥♦t❛♠♦s ❝♦♠ E′(Ω) ♦ s✉❜❡s♣❛ç♦ ❞❡ D(Ω) ❞❛s ❞✐str✐❜✉✐çõ❡s ❝♦♠ s✉♣♦rt❡ ❝♦♠♣❛❝t♦✳

❚❡♦r❡♠❛ ✶✳✷✳✶✶✳ ❙❡❥❛ u∈ D(Ω)✳ ❊♥tã♦ S(u) é ❝♦♠♣❛❝t♦ s❡✱ ❡ s♦♠❡♥t❡ s❡✱ ❡①✐st❡ ✉♠ ❢✉♥❝✐♦♥❛❧ ❧✐♥❡❛r ❡ ❝♦♥t✐♥✉♦ v ❡♠ C∞(Ω) ❝✉❥❛ r❡str✐çã♦ ❛ C

c (Ω) é ✐❣✉❛❧ ❛ u✳

❆ ♣r♦✈❛ ❞❡st❡ ❚❡♦r❡♠❛ s❡ ❡♥❝♦♥tr❛ ♥❛ ♣á❣✐♥❛ ✹✶ ❞❡ ❬✾❪✳ ❆q✉✐✱ ❛ ♥♦çã♦ ❞❡ s❡q✉❡♥❝✐❛❧✲ ♠❡♥t❡ ❝♦♥tí♥✉❛ é ❛ s❡❣✉✐♥t❡✿ ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❢✉♥çõ❡s C∞(Ω) ❝♦♥✈❡r❣❡ ♣❛r❛ ③❡r♦ s❡✱ ♣❛r❛ t♦❞♦ ❝♦♠♣❛❝t♦ K ❡ t♦❞♦ ✐♥t❡✐r♦ m✱ ❛s ❞❡r✐✈❛❞❛s ❞❡ ♦r❞❡♠ m ❝♦♥✈❡r❣❡♠ ✉♥✐❢♦r♠❡♠❡♥t❡ ❛ ③❡r♦ ❡♠ K q✉❛♥❞♦ j → ∞

❉❡✜♥✐çã♦ ✶✳✷✳✶✷✳ ❉✐③❡♠♦s q✉❡ ✉♠❛ s❡q✉ê♥❝✐❛ uj ∈ D′(Ω), j ∈ N✱ ❝♦♥✈❡r❣❡ ❛ u∈ D(Ω) s❡ hu

j, φi ❝♦♥✈❡r❣❡ ❛ hu, φi✱ ♣❛r❛ t♦❞❛ φ ∈Cc∞(Ω)✳

❙✉♣♦♥❤❛♠♦s q✉❡un✱ n= 1,2, ... é ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❞✐str✐❜✉✐çõ❡s ❡♠D′(Ω) t❛❧ q✉❡ un(φ) é ❝♦♥✈❡r❣❡♥t❡ ♣❛r❛ ❝❛❞❛ φ ∈Cc∞(Ω)✳ ❙❡ ❞❡✜♥✐r♠♦s u(φ) = lim

n→∞un(φ)✱ t❡♠♦s q✉❡u é ✉♠ ❢✉♥❝✐♦♥❛❧ ❧✐♥❡❛r✳ ▼❛✐s ❛✐♥❞❛✱ ur❡s✉❧t❛ ❝♦♥tí♥✉♦ ❡♠ C∞

c (Ω)✳

❚❡♦r❡♠❛ ✶✳✷✳✶✸✳ ❙❡❥❛(un)n∈N ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❞✐str✐❜✉✐çõ❡s ❡♠Ω✱ ❡ s✉♣♦♥❤❛♠♦s q✉❡✱ ♣❛r❛ t♦❞❛ φ C∞

c (Ω)✱ hun, φi é ✉♠❛ s❡q✉ê♥❝✐❛ ♥✉♠ér✐❝❛ ❞❡ ❈❛✉❝❤②✳ ❊♥tã♦

(un)n∈N é ❝♦♥✈❡r❣❡♥t❡ ❡♠ D′(Ω)✳

❱❡r ❬✾❪✱ ♣á❣✐♥❛ ✺✻✱ ♣❛r❛ ❛ ❞❡♠♦♥str❛çã♦✳

✶✳✷✳✶ ❖♣❡r❛çõ❡s ❝♦♠ ❉✐str✐❜✉✐çõ❡s

❙❡❥❛ u C∞

c (Ω)✳ ❈♦♠♦ u é ❧♦❝❛❧♠❡♥t❡ ✐♥t❡❣rá✈❡❧✱ ❛ ❡①♣r❡ssã♦ ✭✶✳✷✮ ♥♦s

♣❡r♠✐t❡ ❝♦♥s✐❞❡rá✲❧❛ ❝♦♠♦ ✉♠❛ ❞✐str✐❜✉✐çã♦ ❡♠Ω✳ P♦r ✐♥t❡❣r❛çã♦ ♣♦r ♣❛rt❡s✱ t❡♠♦s

Z

∂u ∂xj

(x)φ(x)dx=−

Z

u(x)∂φ ∂xj

(x)dx,

(18)

♣❛r❛ t♦❞❛ ❢✉♥çã♦ t❡st❡ φ✳ ❉❡st❛ ♠❛♥❡✐r❛✱ ♣♦r ❞✉❛❧✐❞❛❞❡✱ ♣♦❞❡♠♦s ❞❡✜♥✐r ❛ ❞✐s✲ tr✐❜✉✐çã♦

h∂xju, φi=−hu, ∂xjφi,

♣❛r❛ t♦❞❛u∈ D(Ω)✳ P♦r ✐♥❞✉çã♦ ❡♠ |α|

h∂αu, φi= (−1)|α|hu, ∂αφi

P❡❧♦ ♠❡s♠♦ ❛r❣✉♠❡♥t♦✱ ❞❡✜♥✐♠♦s ❛ ♠✉❧t✐♣❧✐❝❛çã♦ ♣♦r ✉♠❛ ❢✉♥çã♦f ∈C∞(Ω) ❝♦♠♦ s❡♥❞♦ ❛ ❞✐str✐❜✉✐çã♦

hf u, φi=hu, f φi

❆❣♦r❛✱ s❡❥❛♠ ❢✱ ❣ ❞✉❛s ❢✉♥çõ❡s ❝♦♥tí♥✉❛s ❡♠ Rd t❛❧ q✉❡ ✉♠❛ ❞❡❧❛s t❡♥❤❛

s✉♣♦rt❡ ❝♦♠♣❛❝t♦✳ ❊♥tã♦ ❛ ❝♦♥✈♦❧✉çã♦ ❞❡ ❢ ❡ ❣ s❡ ❞❡✜♥❡ ❝♦♠♦

fg(x) =

Z

f(xy)g(y)dy =

Z

f(y)g(xy)dy

❆ ✜♠ ❞❡ ❡st❡♥❞❡r ❛ ❞❡✜♥✐çã♦ ❛❝✐♠❛ ♣❛r❛ ♦ ❝♦♥t❡①t♦ ❞❛s ❞✐str✐❜✉✐çõ❡s✱ ❝♦♥✲ s✐❞❡r❡♠♦s ❛

❉❡✜♥✐çã♦ ✶✳✷✳✶✹✳ ❙❡❥❛ u ∈ D′(Ω) φ C

c (Ω) (♦✉ u ∈ E′(Ω) ❡ φ ∈ C∞(Ω))✳

❉❡✜♥✐♠♦s ❛ ❝♦♥✈♦❧✉çã♦ ❞❡ u ❡ φ✱ ❞❡♥♦t❛❞❛ ♣♦r uφ✱ ❛ ❢✉♥çã♦ ❞❡✜♥✐❞❛ ♣♦r

u∗φ(x) = hu,φ˘xi,

♦♥❞❡ φ˘x(y) = φ(xy)

❱❛❧❡♠ ❛s s❡❣✉✐♥t❡s ♣r♦♣r✐❡❞❛❞❡s✿

✭✐✮ uφC∞(Ω) ❡ s✉❛s ❞❡r✐✈❛❞❛s sã♦ ❞❛❞❛s ♣♦r

∂α(u∗φ) =∂αu∗φ =u∗∂αφ

✭✐✐✮ S(uφ)S(u) +S(φ) ❚❡♦r❡♠❛ ✶✳✷✳✶✺✳ C∞

c (Ω) é ❞❡♥s♦ ❡♠ D′(Ω)✳

P❛r❛ ❛ ❞❡♠♦♥str❛çã♦ ✈❡r ❬✾❪✱ ♣á❣✳ ✻✹

(19)

✶✳✸ ❉✐str✐❜✉✐çõ❡s ❚❡♠♣❡r❛❞❛s ❡ ❚r❛♥s❢♦r♠❛❞❛ ❞❡

❋♦✉r✐❡r

❙❡f L1(Rd)✱ ❞❡✜♥✐♠♦s ❛ ❚r❛♥s❢♦r♠❛❞❛ ❞❡ ❋♦✉r✐❡r ❞❡ ❢ ♣♦r

Ff(ξ) = fb(ξ) =

Z

e−ix.ξf(x) dx, ξ Rd

♦♥❞❡ i é ❛ ✉♥✐❞❛❞❡ ✐♠❛❣✐♥ár✐❛ ❡ x.ξ é ♦ ♣r♦❞✉t♦ ✐♥t❡r♥♦ ❝❛♥ô♥✐❝♦✳

❙❡❣✉❡ ❞✐r❡t❛♠❡♥t❡ ❞❛ ❞❡✜♥✐çã♦ q✉❡ ❛ ❛♣❧✐❝❛çã♦ f 7→ fb❞❡✜♥❡ ✉♠❛ tr❛♥s❢♦r♠❛çã♦ ❧✐♥❡❛r ❞❡ L1(Rd) ❡♠ L(Rd)s❛t✐s❢❛③❡♥❞♦

kfbkL∞ ≤ kfkL1. ✭✶✳✸✮

▼❛✐s ❛✐♥❞❛✱ ❡stá é ✉♠❛ ❛♣❧✐❝❛çã♦ q✉❡ ❧❡✈❛L1 ♥♦ ❡s♣❛ç♦ ❞❛s ❢✉♥çõ❡s ❝♦♥tí♥✉❛s q✉❡

s❡ ❛♥✉❧❛♠ ♥♦ ✐♥✜♥✐t♦✳

▲❡♠❛ ✶✳✸✳✶ ✭❘✐❡♠❛♥♥✲▲❡❜❡s❣✉❡✮✳ ❙❡❥❛ f L1(Rd)✳ ❊♥tã♦ fbé ✉♠❛ ❢✉♥çã♦ ❝♦♥✲

tí♥✉❛ s❛t✐s❢❛③❡♥❞♦ fb(ξ)0 q✉❛♥❞♦ |ξ| → ∞

❱❡r ❬✾❪✱ ♣á❣✳ ✼✺✱ ♣❛r❛ ❛ ❞❡♠♦♥str❛çã♦✳

❙❡φ é ✉♠❛ ❢✉♥çã♦ t❡st❡✱ ♣r♦✈❛✲s❡ q✉❡ s✉❛ tr❛♥s❢♦r♠❛❞❛ ❞❡ ❋♦✉r✐❡r é ❛♥❛❧ít✐❝❛ ❝♦♠♣❧❡①❛ ❡♠ Cd✳ ❆ss✐♠✱ φb ♥ã♦ t❡rá s✉♣♦rt❡ ❝♦♠♣❛❝t♦✱ ❛ ♠❡♥♦s q✉❡ φ s❡❥❛ ♥✉❧❛✱

✉♠❛ ✈❡③ q✉❡ ♦ ❝♦♥❥✉♥t♦ ❞♦s ③❡r♦s ❞❡ ✉♠❛ ❢✉♥çã♦ ❛♥❛❧ít✐❝❛ ❝♦♠♣❧❡①❛ ♥ã♦✲♥✉❧❛ ❡♠

Cd t❡♠ ✐♥t❡r✐♦r ✈❛③✐♦✳

❈♦♥s✐❞❡r❡♠♦s ❡♥tã♦ ✉♠ ❡s♣❛ç♦ q✉❡ ❝♦♥té♠ ❛s ❢✉♥çõ❡s ❞❡ s✉♣♦rt❡ ❝♦♠♣❛❝t♦ ❡ q✉❡ s❡❥❛ ✐♥✈❛r✐❛♥t❡ ♣❡❧❛ ❚r❛♥s❢♦r♠❛❞❛ ❞❡ ❋♦✉r✐❡r✳

❉❡✜♥✐çã♦ ✶✳✸✳✷ ✭❊s♣❛ç♦ ❞❡ ❙❝❤✇❛rt③✮✳ ❉❡♥♦t❛♠♦s ♣♦r S ♦ s✉❜❡s♣❛ç♦ ❞❡ C∞(Rd)

❞❛s ❢✉♥çõ❡s φ t❛✐s q✉❡

kφkN,α = sup x∈Rd

(1 +|x|)N|∂αφ|<∞ ✭✶✳✹✮

♣❛r❛ t♦❞♦ ✐♥t❡✐r♦ ♥ã♦✲♥❡❣❛t✐✈♦ N ❡ ♣❛r❛ t♦❞♦ αNd

(20)

❚❛♥t♦ ❛s ❢✉♥çõ❡s ❞❡ S q✉❛♥t♦ ❛s s✉❛s ❞❡r✐✈❛❞❛s ❞❡❝r❡s❝❡♠ ♥♦ ✐♥✜♥✐t♦ ♠❛✐s

r❛♣✐❞❛♠❡♥t❡ ❞♦ q✉❡ q✉❛❧q✉❡r ♣♦tê♥❝✐❛ ♥❡❣❛t✐✈❛ ❞❡ |x|✳ ▼✉♥✐r❡♠♦s ♦ ❡s♣❛ç♦ ❞❡

❙❝❤✇❛rt③S ❝♦♠ ❛ t♦♣♦❧♦❣✐❛ ❞❛❞❛ ♣❡❧❛ ❢❛♠í❧✐❛ ❡♥✉♠❡rá✈❡❧ ❞❡ s❡♠✐✲♥♦r♠❛s ❡♠ ✭✶✳✹✮✳

❊①❡♠♣❧♦ ✶✳✸✳✸✳ ❖ ❡s♣❛ç♦ ❞❛s ❢✉♥çõ❡s✲t❡st❡s ❡stá ❝♦♥t✐❞♦ ❞❡♥s❛♠❡♥t❡ ❡♠ S✱ ♠❛s

♣❛r❛ x Rd φ(x) = e−|x|2

♣❡rt❡♥❝❡ ❛ S✱ ♣♦ré♠ ♥ã♦ ♣♦ss✉✐ s✉♣♦rt❡ ❝♦♠♣❛❝t♦✳

❆ss✐♠✱ C∞ c S✳

❚❡♥❞♦ ❡♠ ✈✐st❛ ❛ Pr♦♣♦s✐çã♦ ✶✳✷✳✹✱ s❡❣✉❡ q✉❡ s❡ φ∈ S✱

k∂αφkLp = Z

|∂αφ(x)|p(1 +|x|)

n+1

(1 +|x|)n+1dx 1/p

≤ C sup

x∈Rd

(1 +|x|)n+1p |∂α(x)φ| ≤Ckφk

N,α, ✭✶✳✺✮

♦♥❞❡ ◆ é ✉♠ ✐♥t❡✐r♦ ♣♦s✐t✐✈♦ ♠❛✐♦r q✉❡ n+1

p ✳ ❊♠ ♣❛rt✐❝✉❧❛r✱ S ֒→L p

❚❡♦r❡♠❛ ✶✳✸✳✹✳ ❆ ❚r❛♥s❢♦r♠❛❞❛ ❞❡ ❋♦✉r✐❡r F : S → S é ✉♠ ♦♣❡r❛❞♦r ❧✐♥❡❛r ❡

❝♦♥tí♥✉♦✱ ❝♦♥t✐♥✉❛♠❡♥t❡ ✐♥✈❡rsí✈❡❧✱ ❝✉❥❛ tr❛♥s❢♦r♠❛❞❛ ✐♥✈❡rs❛ é ❞❛❞❛ ♣♦r

F−1φ(x) = ˇφ(x) = 1

(2π)n

Z

eix.ξφ(ξ)dξ, φ∈ S

❆ ♣r♦✈❛ ❞❡st❡ r❡s✉❧t❛❞♦ ❡♥❝♦♥tr❛✲s❡ ♥❛ ♣á❣✐♥❛ ✼✼ ❞❡ ❬✾❪✳ ❙❡ φ✱ ψ ∈ S✱ ✉t✐❧✐③❛♥❞♦ ♦

t❡♦r❡♠❛ ❛♥t❡r✐♦r ❡ ❛s ♣r♦♣r✐❡❞❛❞❡s ❞❛ ❝♦♥✈♦❧✉çã♦✱ ♣r♦✈❛✲s❡ ❛s s❡❣✉✐♥t❡s ✐❣✉❛❧❞❛❞❡s✿

✭✐✮ ∂dαφ(ξ) = ()αφb(ξ)

✭✐✐✮ F(xαφ(x))(ξ) = i|α|αφb(ξ)

✭✐✐✐✮ Z φψ dxb =

Z

φψ dxb

✭✐✈✮ φ[ψ =φbψb

✭✈✮ φψc = (2π)−dφbψb

✭✈✐✮ bbu= (2π)−du˘✱ ❝♦♠ u˘(ξ) = u(ξ)✳

(21)

❚❛♠❜é♠✱ ♣❡❧❛ ❝♦♥t✐♥✉✐❞❛❞❡ ❞❛ ❚r❛♥s❢♦r♠❛❞❛ ❞❡ ❋♦✉r✐❡r✱ ❣❛r❛♥t✐❞❛ ♣❡❧♦ ❚❡♦✲ r❡♠❛ ✶✳✸✳✹✱ ♦✉tr❛s ❢❛♠í❧✐❛s ❞❡ s❡♠✐✲♥♦r♠❛s q✉❡ ♣♦❞❡♠ s❡r ✉s❛❞❛s ♣❛r❛ ❞❡✜♥✐r ❛ t♦♣♦❧♦❣✐❛ ❡♠ S sã♦ ❞❛❞❛s ♣♦r

kfkk,S = sup |α|≤k x∈Rd

(1 +|ξ|)k |∂αf(x)|, k N

kfbkk = sup |α|≤k ξ∈Rd

(1 +|ξ|)k |∂αfb(ξ)|, k ∈N

❉❡✜♥✐çã♦ ✶✳✸✳✺✳ ❯♠ ❢✉♥❝✐♦♥❛❧ ❧✐♥❡❛r ❡ ❝♦♥t✐♥✉♦ ❡♠ S é ❞✐t♦ ✉♠❛ ❞✐str✐❜✉✐çã♦

t❡♠♣❡r❛❞❛✳ ❖ ❡s♣❛ç♦ ❞❛s ❞✐str✐❜✉✐çõ❡s t❡♠♣❡r❛❞❛s s❡ ❞❡♥♦t❛ ❝♦♠ S′

❊①❡♠♣❧♦ ✶✳✸✳✻✳ ❯♠❛ ✈❡③ q✉❡ t♦❞❛ ❞✐str✐❜✉✐çã♦ ❝♦♠ s✉♣♦rt❡ ❝♦♠♣❛❝t♦ s❡ ❡st❡♥❞❡ ❝♦♥t✐♥✉❛♠❡♥t❡ ❛C∞(Rd)✱ ✈❛❧❡ ❛ ✐♥❝❧✉sã♦ E⊂ S✳ P♦r r❡str✐çã♦ ❛ C

c (Rd)✱ ❡ ❝♦♠♦

❡st❡ é ❞❡♥s♦ ❡♠ S✱ t❡♠♦s q✉❡ S′ ⊂ D✳ ❙❡ f Lp✱ ♣♦❞❡♠♦s ✐❞❡♥t✐✜❝á✲❧❛ ❝♦♠♦ ✉♠❛

❞✐str✐❜✉✐çã♦ t❡♠♣❡r❛❞❛ ❞❡✜♥✐♥❞♦✱ ♣❛r❛ ❝❛❞❛ φ∈ S

hTf, φi=

Z

f(x)φ(x)dx.

❆ ❧✐♥❡❛r✐❞❛❞❡ é ✐♠❡❞✐❛t❛ ❡ ❛ ✐♥t❡❣r❛❧ ❛❝✐♠❛ é ✜♥✐t❛✱ ♣❡❧❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❍ö❧❞❡r✳ P❛r❛ ✈❡r✐✜❝❛r ❛ ❝♦♥t✐♥✉✐❞❛❞❡✱ s❡φ ∈ S✱ s❡❣✉❡ ❞❡ ✭✶✳✺✮ q✉❡

|hTf, φi| ≤ kfkLpkφkLp′

≤ CkfkLpkφkN,1

❉❛ ❡st✐♠❛t✐✈❛ ❛❝✐♠❛✱ ❝♦♥❝❧✉í♠♦s t❛♠❜é♠ q✉❡ Lp ֒→ S

❚❡♦r❡♠❛ ✶✳✸✳✼ ✭❉❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❨♦✉♥❣✮✳ ❙❡ f Lp g Lq✱ ❡♥tã♦ ❛ ❝♦♥✈♦❧✉çã♦ f∗g ∈Lr✱ ❝♦♠ 1

r + 1 = 1 p+

1

q✱ ❡ ✈❛❧❡

kf ∗gkLr ≤ kfkLpkgkLq

❱❡r ❬✼❪✱ ♣❛r❛ ❛ ❞❡♠♦♥str❛çã♦✳

❉❡✜♥✐çã♦ ✶✳✸✳✽✳ ❙❡ u∈ S′✱ ❛ ❚r❛♥s❢♦r♠❛❞❛ ❞❡ ❋♦✉r✐❡r ub ❞❡ u s❡ ❞❡✜♥❡ ♣♦r

hbu, φi=hu,φbi

(22)

P❡❧♦ ❚❡♦r❡♠❛ ✶✳✸✳✹✱ bu ❡stá ❜❡♠ ❞❡✜♥✐❞❛ ❡ ❞❡t❡r♠✐♥❛ ✉♠❛ ♥♦✈❛ ❞✐str✐❜✉✐çã♦ t❡♠♣❡r❛❞❛✳ ▼❛✐s ❛✐♥❞❛✱F r❡s✉❧t❛ ❝♦♥tí♥✉❛ ❡ ✐♥✈❡rsí✈❡❧ ❡♠S′

Pr♦♣♦s✐çã♦ ✶✳✸✳✾✳ ❙❡❥❛ f ∈ S′(Rd)✳

✭✐✮ ❙❡ f L1(Rd)✱ ❛ tr❛♥s❢♦r♠❛❞❛ fb ❞❡ f ❝♦♠♦ ❞✐str✐❜✉✐çã♦ t❡♠♣❡r❛❞❛ ❡ ❝♦♠♦

❢✉♥çã♦ ✐♥t❡❣rá✈❡❧ ❝♦✐♥❝✐❞❡♠✳

✭✐✐✮ ❙❡ f ∈ E′(Rd)✱ fbé ✉♠❛ ❢✉♥çã♦ ❞❡ ❝❧❛ss❡ C❞❛❞❛ ♣♦r

b

f(ξ) = hfx, e−ixξi ✭✶✳✻✮

✭✐✐✐✮ ❙❡ f ∈L2(Rd) ❡♥tã♦ fbL2(Rd)✱ ❡ ✈❛❧❡

kfk2L2 = (2π)−dkfbk2L2 (■❞❡♥t✐❞❛❞❡ ❞❡ ❋♦✉r✐❡r✲P❧❛♥❝❤❡r❡❧)

❱❡r ❬✾❪✱ ♣á❣✳ ✽✶✱ ♣❛r❛ ❛ ❞❡♠♦♥str❛çã♦✳

❖❜s❡r✈❛çã♦ ✶✳✸✳✶✵✳ ❈♦♥s✐❞❡r❡♠♦s ✉♠❛ ❞✐str✐❜✉✐çã♦ u ∈ S′ t❛❧ q✉❡ bu L1(Rd)✳

P❡❧❛ Pr♦♣♦s✐çã♦ ✶✳✸✳✾✱ ❛ ❚r❛♥s❢♦r♠❛❞❛ ❞❡ ❋♦✉r✐❡r ❞❡ubé ❛ ❢✉♥çã♦ ❞❛❞❛ ♣♦r bb

u(ξ) =

Z

e−ix.ξbu(x)dx

❈♦♠♦ bbu= (2π)du˘✱ ✉♠❛ ♠✉❞❛♥ç❛ ❞❡ ✈❛r✐á✈❡✐s ♥♦s ❞á q✉❡

u(ξ) = 1 (2π)d

Z

eix.ξub(x)dx

❆ss✐♠✱ s❡buL1✱ ♣♦❞❡♠♦s ✧r❡❝✉♣❡r❛r✧u♣❡❧❛ ❢ór♠✉❧❛ ❞❡ ✐♥✈❡rsã♦ ❞❛❞❛ ♣❡❧♦

❚❡♦r❡♠❛ ✶✳✸✳✹✳ P♦r ❛r❣✉♠❡♥t♦ s❡♠❡❧❤❛♥t❡ ❛ ❞❡♠♦♥str❛çã♦ ❞♦ ▲❡♠❛ ❞❡ ❘✐❡♠❛♥♥✲ ▲❡❜❡s❣✉❡✱ ♦❜t❡♠♦s q✉❡ u C0

0(Rd)✱ ♦✉ s❡❥❛✱ u é ❝♦♥tí♥✉❛ ❡ ✈❛✐ ❛ ③❡r♦ q✉❛♥❞♦

|ξ| → ∞✳

❚❛♠❜é♠✱ ♣❡❧❛ ♠❡s♠❛ ❡①♣r❡ssã♦✱

|u(ξ)| ≤(2π)−dkbukL1,

♣❛r❛ q✉❛s❡ t♦❞♦ ξRd✱ ❞♦♥❞❡

kukL∞ ≤(2π)−dkubkL1. ✭✶✳✼✮

(23)

✶✳✹ ❊s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈

◆❡st❡ t❡①t♦✱ ✈❛♠♦s ♥♦s r❡str✐♥❣✐r ❛♦s ❡s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈ ♠♦❞❡❧❛❞♦s ❡♠ L2

❊st❡s ❡s♣❛ç♦s ❞❡s❡♠♣❡♥❤❛♠ ✉♠ ♣❛♣❡❧ ❝r✉❝✐❛❧ ♥♦ ❡st✉❞♦ ❞❡ ❡q✉❛çõ❡s ❞✐❢❡r❡♥❝✐❛✐s ♣❛r❝✐❛✐s✱ ❧✐♥❡❛r❡s ♦✉ ♥ã♦✳ ❖ ♣♦♥t♦ ❞❡ ♣❛rt✐❞❛ s❡rá ❛ ❚r❛♥s❢♦r♠❛❞❛ ❞❡ ❋♦✉r✐❡r✳

❉❡✜♥✐çã♦ ✶✳✹✳✶✳ ❙❡❥❛ s ✉♠ ♥ú♠❡r♦ r❡❛❧✳ ❯♠❛ ❞✐str✐❜✉✐çã♦ t❡♠♣❡r❛❞❛ u ♣❡rt❡♥❝❡ ❛♦ ❡s♣❛ç♦ ❞❡ ❙♦❜♦❧❡✈ ❞❡ í♥❞✐❝❡ s✱ ❞❡♥♦t❛❞♦ ♣♦r Hs(Rd) s❡✱ ❡ s♦♠❡♥t❡ s❡✱

b

u∈L2❧♦❝(Rd) ub(ξ)L2(Rd,(1 +|ξ|2)s)

❊s❝r❡✈❡♠♦s

kuk2

Hs = Z

Rd

(1 +|ξ|2)s|ub(ξ)|2

Pr♦♣♦s✐çã♦ ✶✳✹✳✷✳ P❛r❛ t♦❞♦ ❡ q✉❛❧q✉❡rs∈R✱ ♦ ❡s♣❛ç♦ Hs ❡q✉✐♣❛❞♦ ❝♦♠ ❛ ♥♦r♠❛

k · kHs é ✉♠ ❡s♣❛ç♦ ❞❡ ❍✐❧❜❡rt✳

❉❡♠♦♥str❛çã♦✿ ➱ ✐♠❡❞✐❛t♦ q✉❡ ❛ ♥♦r♠❛ k · kHs ♣r♦✈é♠ ❞♦ ♣r♦❞✉t♦ ✐♥t❡r♥♦

hu, viHs = Z

Rd

(1 +|ξ|2)sbu(ξ)bv(ξ)dξ

Pr♦✈❡♠♦s ❡♥tã♦ q✉❡ ❡st❡ ❡s♣❛ç♦ é ❝♦♠♣❧❡t♦✳ ❙❡❥❛(un)n∈N ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❛✉❝❤② ❡♠Hs✳ P❡❧❛ ❞❡✜♥✐çã♦ ❞❛ ♥♦r♠❛✱ (ub

n)n∈Né ✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❛✉❝❤② ❡♠L2(Rd,(1+

|2)s)✳

❈♦♠♦ ❡st❡ é ❝♦♠♣❧❡t♦✱ ❡①✐st❡ u˜L2(Rd,(1 +|ξ|2)s)t❛❧ q✉❡

lim

n→∞kubn−u˜kL2(Rd,(1+|ξ|2)sdξ) = 0. ✭✶✳✽✮

❊♠ ♣❛rt✐❝✉❧❛r✱ ❛ s❡q✉ê♥❝✐❛ (ubn) ❝♦♥✈❡r❣❡ ❛ u˜ ❡♠ S′✳ ❚♦♠❡♠♦s u = F−1u˜✳

❈♦♠♦ ❛ ❚r❛♥s❢♦r♠❛❞❛ ❞❡ ❋♦✉r✐❡r é ✉♠ ✐s♦♠♦r✜s♠♦ ❞❡ S′✱ s❡❣✉❡ q✉❡ u ∈ S✳ P♦r

✜♠✱ un→u ❡♠ Hs ❞❡✈✐❞♦ ❛ ✭✶✳✽✮✳

◆♦t❡♠♦s q✉❡ ♦s ❡s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈ ❢♦r♠❛♠ ✉♠❛ ❢❛♠í❧✐❛ ❞❡❝r❡s❝❡♥t❡ ❞❡ ❡s✲ ♣❛ç♦s✱ ❝♦♠ r❡s♣❡✐t♦ ❛♦ í♥❞✐❝❡ s✳ ❉❡ ❢❛t♦✱ s s′ ✐♠♣❧✐❝❛ (1 +|ξ|2)s′

≤ (1 +|ξ|2)s

(24)

P♦rt❛♥t♦✱ s❡ ✉♠❛ ❞✐str✐❜✉✐çã♦ t❡♠♣❡r❛❞❛ f é t❛❧ q✉❡ fbL2

❧♦❝(Rd)✱ s❡❣✉❡ q✉❡

kfk2Hs′ = Z

Rd

(1 +|ξ|2)s′|ub(ξ)|2dξ

Z

Rd

(1 +|ξ|2)s|bu(ξ)|2 =kfk2

Hs.

❆ss✐♠✱ Hs(Rd)Hs′

(Rd) ❡ t❛❧ ✐♥❝❧✉sã♦ é ❝♦♥tí♥✉❛✳

❖s t❡♦r❡♠❛s q✉❡ s❡❣✉❡♠ tê♠ ❝♦♠♦ ♦❜❥❡t✐✈♦ ❝❛r❛❝t❡r✐③❛r ♦s ❡s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈ ♣❛r❛ ❞❡t❡r♠✐♥❛❞♦s ✈❛❧♦r❡s ❞❡ s s❡♠ ♦ ✉s♦ ❡①♣❧í❝✐t♦ ❞❛ ❚r❛♥s❢♦r♠❛❞❛ ❞❡ ❋♦✉r✐❡r✳ ❚❡♦r❡♠❛ ✶✳✹✳✸✳ ❙❡❥❛ s ✉♠ ♥ú♠❡r♦ ✐♥t❡✐r♦ ♥ã♦✲♥❡❣❛t✐✈♦✳ ❖ ❡s♣❛ç♦ Hs(Rd) é ♦

❡s♣❛ç♦ ❞❛s ❢✉♥çõ❡s u ♣❡rt❡♥❝❡♥t❡s ❛ L2 t❛❧ q✉❡✱ ♣❛r❛ t♦❞♦ α ❡♠ Nd✱ ❝♦♠ |α| ≤ s

t❡♠♦s ∂αuL2

❉❡♠♦♥str❛çã♦✿ ❙❡❥❛ s ∈ N✳ P❡❧♦ ❜✐♥ô♠✐♦ ❞❡ ◆❡✇t♦♥✱ t❡♠♦s (1 + |ξ|2)s = s

X

i=0

s i

|2i✳ ❆❣♦r❛✱ ✜①❛❞♦ 0is ❡ uL2

|ξ|2i|bu(ξ)|2 = (ξ2

1 +...+ξ2d)i|ub(ξ)|2

= X |α|=i

cα|ξαbu(ξ)|2

= X |α|=i

cα|∂dαu|2,

♣♦✐s ∂dαu(ξ) = ()αbu(ξ)✱ ♣❡❧♦ ❚❡♦r❡♠❛ ✶✳✸✳✹✳ ❆ss✐♠✱

(1 +|ξ|2)s|ub(ξ)|2 =

s

X

i=0 X

|α|=i cα

s i

|∂dαu|2

= X |α|≤s

˜

cα|∂dαu|2

■♥t❡❣r❛♥❞♦ ❡♠ ❛♠❜♦s ♦s ♠❡♠❜r♦s ❡ ✉t✐❧✐③❛♥❞♦ ❛ ■❞❡♥t✐❞❛❞❡ ❞❡ ❋♦✉r✐❡r✲P❧❛♥❝❤❡r❡❧✱ s❡❣✉❡ q✉❡

Z

(1 +|ξ|2)s|ub(ξ)|2dξ = Z X |α|≤s

˜

cα|∂dαu|2dξ

= X |α|≤s

(2π)d˜cαk∂αuk2L2

(25)

❚♦♠❛♥❞♦C1 = min

(2π)d˜c

α; |α| ≤s ❡C2 = max

(2π)d˜c

α; |α| ≤s ✱ ♦❜t❡✲

♠♦s

C1 X

|α|≤s

k∂αuk2L2 ≤

Z

(1 +|ξ|2)s|ub(ξ)|2dξC2 X

|α|≤s

k∂αuk2L2 ✭✶✳✾✮

❈♦r♦❧ár✐♦ ✶✳✹✳✹✳ S é ❝♦♥t✐♥✉❛♠❡♥t❡ ✐♥❝❧✉í❞♦ ❡♠ Hs sR

❉❡♠♦♥str❛çã♦✿ ❚❡♥❞♦ ❡♠ ✈✐st❛ ❛ ❝❛r❛❝t❡r✐③❛çã♦ ❞❛❞❛ ♣❡❧♦ ❚❡♦r❡♠❛ ❛♥t❡r✐♦r✱ ❥✉♥t❛♠❡♥t❡ ❝♦♠ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✺✮✱ s❡ sN✱

kuk2

Hs ≤C X

|α|≤s

k∂αuk2

L2 ≤C

X

|α|≤s

k2

N,α,

♣❛r❛ t♦❞❛ ❢✉♥çã♦u∈ S✳ ❆ss✐♠✱ S ֒→Hs✱ s❡ s é ♥❛t✉r❛❧✳

P♦r ✜♠✱ s❡ s ∈ R q✉❛❧q✉❡r✱ ❞❡♥♦t❛♥❞♦ ♣♦r ⌈s⌉ ♦ ♠❡♥♦r ✐♥t❡✐r♦ ♣♦s✐t✐✈♦ ♠❛✐♦r ♦✉

✐❣✉❛❧ q✉❡s✱ s❡❣✉❡ q✉❡ S ֒H⌈s⌉ ֒Hs✱ ♣❡❧❛ ♣r♦♣r✐❡❞❛❞❡ ❞❡ ❡♥❝❛✐①❡✳

❖ r❡s✉❧t❛❞♦ ❛ s❡❣✉✐r ❞❡s❝r❡✈❡ ♦ ❞✉❛❧ t♦♣♦❧ó❣✐❝♦ ❞♦s ❡s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈✱ q✉❡ ♥♦s ♣❡r♠✐t✐rá ✐❞❡♥t✐✜❝❛r✱ ❛ ♠❡♥♦s ❞❡ ✉♠ ✐s♦♠♦r✜s♠♦✱ ♦ ❡s♣❛ç♦H−s ❝♦♠♦ ♦ ❞✉❛❧ ❞❡ Hs

❚❡♦r❡♠❛ ✶✳✹✳✺ ✭❖ ❉✉❛❧ ❞❡ Hs✮✳ ❆ ❢♦r♠❛ ❜✐❧✐♥❡❛r ❇ ❞❡✜♥✐❞❛ ♣♦r

    

B :S × S −→ C

(u, ϕ) 7→ B(u, ϕ) =

Z

Rd

u(x)ϕ(x)dx

♣♦❞❡ s❡r ❡st❡♥❞✐❞❛ ♣❛r❛ ✉♠❛ ❢♦r♠❛ ❜✐❧✐♥❡❛r ❝♦♥tí♥✉❛ ❞❡ Hs×H−s ♣❛r❛ C✳ ❆❧é♠

❞✐ss♦✱ ❛ ❛♣❧✐❝❛çã♦ δB ❞❡✜♥✐❞❛ ♣♦r

  

δB :H−s −→ (Hs)∗

u 7→ δB(u) :ϕ 7→B(u, ϕ)

é ❧✐♥❡❛r ❡ ✉♠ ✐s♦♠♦r✜s♠♦ ✐s♦♠étr✐❝♦ ✭❛ ♠❡♥♦s ❞❡ ✉♠❛ ❝♦♥st❛♥t❡✮✳

(26)

❉❡♠♦♥str❛çã♦✿ P❛r❛u, ϕ ∈ S✱ t❡♠♦s

B(u, ϕ) =

Z

u(x)ϕ(x)dx

=

Z

u(x)F(F−1ϕ)(x)dx

= (2π)−d

Z b

u(ξ)(F−1ϕ)(ξ)dξ

= (2π)−d

Z b

u(ξ)ϕb(ξ)dξ.

▼✉❧t✐♣❧✐❝❛♥❞♦ ❡ ❞✐✈✐❞✐♥❞♦ ♣♦r(1 +|ξ|2)s/2 ❡ t♦♠❛♥❞♦ ♦ ♠ó❞✉❧♦✱ s❡❣✉❡ q✉❡

B(u, ϕ) (2π)−d

Z

|bu(ξ)||ϕb(ξ)|

= (2π)−d

Z

(1 +|ξ|2)s/2|bu(ξ)|(1 +|ξ|2)−s/2|ϕb(ξ)|

≤ (2π)−d

Z

(1 +|ξ|2)s|ub(ξ)|2

1/2Z

(1 +|ξ|2)−s|ϕb(ξ)|2 1/2

= (2π)−dkuk

HskϕkH−s

P♦rt❛♥t♦✱ ❛ ❛♣❧✐❝❛çã♦ ❇ é ✉♥✐❢♦r♠❡♠❡♥t❡ ❝♦♥tí♥✉❛ ❡♠Hs×H−s✳ ▼❛sS ×S é ❞❡♥s♦

♥❡st❡ ❡s♣❛ç♦✱ ♣❡❧♦ t❡♦r❡♠❛ ❛♥t❡r✐♦r✳ ▲♦❣♦✱ ❡st❛ ❢♦r♠❛ ❜✐❧✐♥❡❛r s❡ ❡st❡♥❞❡ ❛ ✉♠❛ ú♥✐❝❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ ❞❡Hs×H−s ❡♠ C✱ t❛♠❜é♠ ❞❡♥♦t❛❞❛ ♣♦r B

❆❧é♠ ❞✐ss♦✱ ♣❛r❛ ❝❛❞❛uH−s ✜①❛✱δ

B(u)é ✉♠ ❢✉♥❝✐♦♥❛❧ ❧✐♥❡❛r ❡ ❝♦♥tí♥✉♦ ❡♠ Hs✳

❘❡st❛ ♠♦str❛r♠♦s q✉❡ ❛ ❛♣❧✐❝❛çã♦δB é ✉♠ ✐s♦♠♦r✜s♠♦✳

❆ ❧✐♥❡❛r✐❞❛❞❡ é ✐♠❡❞✐❛t❛✳ ◗✉❛♥t♦ ❛ ✐♥❥❡t✐✈✐❞❛❞❡✱ B(u, ϕ) = 0 é ❡q✉✐✈❛❧❡♥t❡ ❛ ❞✐③❡r

q✉❡ Z

u(x)ϕ(x)dx= 0,

♣❛r❛ t♦❞❛ ❢✉♥çã♦ϕ ∈ S✱ ♦✉ s❡❥❛✱ u= 0 ❡♥q✉❛♥t♦ ❞✐str✐❜✉✐çã♦ t❡♠♣❡r❛❞❛✳

P❛r❛ ♣r♦✈❛r ❛ s♦❜r❡❥❡t✐✈✐❞❛❞❡✱ s❡Ψ :Hs(Rd)Cé ✉♠ ❡❧❡♠❡♥t♦ ❞♦ ❞✉❛❧ t♦♣♦❧ó❣✐❝♦

❞❡Hs(Rd)✱ ❝♦♠♦ ❡st❡ é ✉♠ ❡s♣❛ç♦ ❞❡ ❍✐❧❜❡rt ✭Pr♦♣♦s✐çã♦ ✶✳✹✳✷✮✱ ♦ ▲❡♠❛ ❞❛ ❘❡♣r❡✲

s❡♥t❛çã♦ ❞❡ ❘✐❡s③ ♥♦s ❞✐③ q✉❡ ❡①✐st❡ ✉♠❛ ú♥✐❝❛ hHs(Rd) t❛❧ q✉❡

Ψ(f) = hϕ, hiHs = Z

Rd

(1 +|ξ|2)sϕb(ξ)bh(ξ)dξ,

(27)

♣❛r❛ t♦❞❛ϕ Hs

❙❡❥❛u∈ St❛❧ q✉❡ bu(ξ) = (2π)d(1 +|ξ|2)sbh(ξ)

❖❜s❡r✈❡♠♦s q✉❡uH−s(Rd)✱ ♣♦✐s

Z

(1 +|ξ|2)−s|ub(ξ)|2 = (2π)d

Z

(1 +|ξ|2)−s(1 +|ξ|2)2s|bh(ξ)|2

= (2π)d

Z

(1 +|ξ|2)s|bh(ξ)|2= (2π)dkhk

Hs <∞

❆ss✐♠✱ ♣❛r❛ ϕ ∈Hs

δB(u)(ϕ) = B(u, ϕ) = (2π)−d

Z b

u(ξ)ϕb(ξ)dξ

=

Z

(1 +|ξ|2)sbh(ξ)ϕb(ξ) dξ

=

Z

(1 +|ξ|2)sbh(ξ)ϕb(ξ) dξ= Ψ(ϕ)

P♦rt❛♥t♦✱ δB(u) = Ψ✱ ❝♦♠♦ q✉❡rí❛♠♦s✳

✶✳✹✳✶ ❊s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈ ❍♦♠♦❣ê♥❡♦

❉❡✜♥✐çã♦ ✶✳✹✳✻✳ ❙❡❥❛ s ✉♠ ♥ú♠❡r♦ r❡❛❧✳ ❖ ❡s♣❛ç♦ ❞❡ ❙♦❜♦❧❡✈ ❤♦♠♦❣ê♥❡♦ H˙s é ♦

❝♦♥❥✉♥t♦ ❞❛s ❞✐str✐❜✉✐çõ❡s t❡♠♣❡r❛❞❛s t❛✐s q✉❡ ubL1

❧♦❝(Rd) ❡

kuk2 ˙

Hs = Z

Rd|

ξ|2s|ub(ξ)|2 dξ < ✭✶✳✶✵✮

❆ ♥♦r♠❛k · kH˙s t❡♠ ❛ ♣r♦♣r✐❡❞❛❞❡ ❞❡ ❡s❝❛❧❛

ku(λ·)kH˙s =λ− d

2+skuk˙

Hs, ✭✶✳✶✶✮

❝♦♠♦ ♣♦❞❡ s❡r ✈❡r✐✜❝❛❞❛ ❛tr❛✈és ❞❡ ✉♠❛ ♠✉❞❛♥ç❛ ❞❡ ✈❛r✐á✈❡✐s ♥❛ ❡①♣r❡ssã♦ ✭✶✳✶✵✮✳

❊♥q✉❛♥t♦ q✉❡ ♦s ❡s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈ ♥ã♦✲❤♦♠♦❣ê♥❡♦sHs❢♦r♠❛♠ ✉♠❛ ❢❛♠í❧✐❛

❞❡❝r❡s❝❡♥t❡ ❞❡ ❡s♣❛ç♦s ✭❝♦♠ r❡s♣❡✐t♦ ❛♦ í♥❞✐❝❡ s✮✱ ♦s ❡s♣❛ç♦s ❤♦♠♦❣ê♥❡♦s ♥ã♦ sã♦ ❝♦♠♣❛rá✈❡✐s ❡♥tr❡ s✐✳ P♦ré♠✱ é ✐♠❡❞✐❛t♦ q✉❡ s❡s é ♣♦s✐t✐✈♦✱ Hs ❡stá ❝♦♥t✐❞♦ ❡♠H˙s

❡ s❡ s é ♥❡❣❛t✐✈♦✱ Hs ❝♦♥té♠ H˙s

(28)

Pr♦♣♦s✐çã♦ ✶✳✹✳✼✳ ❙❡ s < d/2✱ ❡♥tã♦ H˙s é ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤✳

❉❡♠♦♥str❛çã♦✿ ❙❡❥❛(un)n∈N✉♠❛ s❡q✉ê♥❝✐❛ ❞❡ ❈❛✉❝❤② ❡♠H˙s✳ ❊♥tã♦ ❛ s❡q✉ê♥❝✐❛ (bun)n∈Né ❞❡ ❈❛✉❝❤② ❡♠L2(Rd\ {0},|ξ|2sdξ)✱ q✉❡ s❛❜❡♠♦s s❡r ❝♦♠♣❧❡t♦✳ ❙❡❥❛f ❡st❡ ❧✐♠✐t❡✱ ✐st♦ é✱

lim

n→∞kubn−fkL2(Rd\{0},|ξ|2sdξ) = 0.

▼♦str❡♠♦s q✉❡ f L1

❧♦❝(Rd)✳

❚❡♠♦s q✉❡ f L1

❧♦❝(Rd\ {0},|ξ|2sdξ)❀ ❛ss✐♠✱ s❡ K ⊂Rd\ {0}é ❝♦♠♣❛❝t♦✱

Z

K|

f(ξ)|dξ =

Z

K|

ξ|−2s|ξ|2s|f(ξ)|

≤ C

Z

K|

ξ|2s|f(ξ)|dξ < ,

♣♦✐s ❛ ❢✉♥çã♦ρ(ξ) =|ξ|2s é ❝♦♥tí♥✉❛ ❡♠ K

❘❡st❛ ❡st✐♠❛r♠♦s ❛ ✐♥t❡❣r❛❧ ❞❡ f ❡♠ ❝♦♠♣❛❝t♦s q✉❡ ❝♦♥tê♠ ❛ ♦r✐❣❡♠✳ P❛r❛ ✐st♦✱ é s✉✜❝✐❡♥t❡ ♦❜s❡r✈❛r♠♦s q✉❡ ❛ ✐♥t❡❣r❛❧ ❞❡ f s♦❜r❡ ❛ ❜♦❧❛ ✉♥✐tár✐❛ B(0,1) é ✜♥✐t❛✳ ◆❡st❡ ❝❛s♦✱

Z

B(0,1)|

f(ξ)| dξ =

Z

B(0,1)|

ξ|−s|ξ|s|f(ξ)|

Z

B(0,1)|

ξ|2s|f(ξ)|2

1/2Z

B(0,1)|

ξ|−2s

1/2

<∞,

✈✐st♦ q✉❡ ρ é ✐♥t❡❣rá✈❡❧ s♦❜r❡ ♦ ❝♦♥❥✉♥t♦B(0,1)✱ ♣♦✐ss < d/2✳

P♦rt❛♥t♦✱ f L1

❧♦❝(Rd)✳

❋✐♥❛❧♠❡♥t❡✱ t♦♠❛♥❞♦ u=F−1f✱ s❡❣✉❡ ♦ r❡s✉❧t❛❞♦✳

(29)

Pr♦❜❧❡♠❛ ■♥✐❝✐❛❧

◆❡st❡ ❝❛♣ít✉❧♦✱ ❡st✉❞❛r❡♠♦s ♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❞❡ ✉♠❛ ❞❛❞❛ s♦❧✉çã♦ ❞❡ ❡q✉❛çõ❡s ❤✐♣❡r❜ó❧✐❝❛s ❡str✐t❛✱ ♥♦ ❝❛s♦ ❡♠ q✉❡ a(t) é ❞♦ t✐♣♦ ▲✐♣s❝❤✐t③✱ ❞❛♥❞♦ ❝♦♠♦ r❡s✉❧t❛❞♦ ❛ ❡st✐♠❛t✐✈❛ ❞❛ ❡♥❡r❣✐❛✳

❆ss✐♠✱ s❡❥❛ ♦ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② ❡♠ [0,+)×R✱ ❝♦♠ u=u(t, x)✱

  

∂2

tu−a(t)∂x2u= 0,

u(0, x) = u0(x), ∂tu(0, x) =u1(x),

✭✷✳✶✮

❝♦♠ ✈❛❧♦r ✐♥✐❝✐❛✐s u0 ∈ Hs(R), u1 ∈Hs−1(R), s >0✱ ❝♦♠ ❛ ❤✐♣ót❡s❡ ❞❡ ❤✐♣❡r❜♦❧✐❝✐✲

❞❛❞❡

0< λ≤a(t)≤Λ, ∀t ✭✷✳✷✮

♦♥❞❡ λ ❡ Λ sã♦ ❝♦♥t❛♥t❡s ♣♦s✐t✐✈❛s✳

❙❡ ♦ ❝♦❡✜❝✐❡♥t❡ a(t) ❢♦r ✉♠❛ ❢✉♥çã♦ ❧♦❝❛❧♠❡♥t❡ ▲✐♣s❝❤✐t③ ❡♠ [0,+∞)✱ ❡♥✲

tã♦ ♦ ♣r♦❜❧❡♠❛ ❞❡ ❈❛✉❝❤② ✭✷✳✶✮ é C∞ ❜❡♠ ♣♦st♦✭ ✈❡❥❛✲s❡ ❬✶✵❪ ❡❬✶✷❪✮✳ ◆❡st❡ ❝❛s♦✱ t❡r❡♠♦s u(t,·) ❜❡♠ ❞❡✜♥✐❞♦ ❡♠ Hs(R) ♣❛r❛ q✉❛❧q✉❡r ✈❛❧♦r ✐♥✐❝✐❛❧ u

0 ∈ Hs(R) ❡

u1 ∈Hs−1(R)❀ ♠❛✐s ♣r❡❝✐s❛♠❡♥t❡✱ ❛ ú♥✐❝❛ s♦❧✉çã♦ u(t,·)❞❛ ❡q✉❛çã♦ ♣❡rt❡♥❝❡ ❛

C([0,+∞);Hs(R))∩C1([0,+∞);Hs−1(R)).

(30)

❉❡ ❢❛t♦✱ s❡ ❞❡♥♦t❛♠♦s

Es(u)(t) :=ku(t)k2Hs +k∂tu(t)k2Hs−1, ✭✷✳✸✮

t❡♠♦s ❛ s❡❣✉✐♥t❡ ❛✜r♠❛çã♦✳

❆✜r♠❛çã♦ ✷✳✶✳ ❆ s♦❧✉çã♦ u ❞❡ ✭✷✳✶✮ é t❛❧ q✉❡ ♣❛r❛ q✉❛❧q✉❡r T > 0✱ s R ❡ t∈[0, T]✱ s❛t✐s❢❛③ ❛ s❡❣✉✐♥t❡ ❡st✐♠❛t✐✈❛

Es(u)(t)≤Cs,TEs(u)(0), ✭✷✳✹✮

❝♦♠ Cs,T >0.

❉❡♠♦♥str❛çã♦✿ ❉❛ ❡q✉❛çã♦

utt−a(t)uxx = 0,

♣♦❞❡♠♦s ❝♦♥s✐❞❡r❛r ♦ s✐st❡♠❛ s❡❣✉✐♥t❡✿

∂t ut ux =

a(t)uxx utx

=

 0 a

1 0

 

| {z }

A ∂x ut ux ; ✭✷✳✺✮

❞❡♥♦t❛♥❞♦ ❯ =

  ut

ux

A =

 0 a

1 0

❡ ❛♣❧✐❝❛♥❞♦ tr❛♥s❢♦r♠❛❞❛ ❞❡ ❋♦✉r✐❡r

t❡♠♦s

∂t❯b =iA·ξ❯b, ✭✷✳✻✮

❧♦❣♦ ❞✐❛❣♦♥❛❧✐③❛♥❞♦ ❛ ♠❛tr✐③A·ξ t❡♠♦s q✉❡✱

N A·ξ =D(ξ)N,

❝♦♠ N =     1 2pa(t)

1 2

− 1

2pa(t) 1 2

  

, N−1 =

 

p

a(t) pa(t) 1 1

 ,

❡ D=

 

p

a(t)ξ 0

0 pa(t)ξ

 .

(31)

❉❡♣♦✐s✱ ❞❡r✐✈❛♥❞♦ NUb✱ t❡♠♦s d

dt(N❯) =b i(N A·ξ)(❯) +b N ′b = iD(N❯) +b N′N−1(N❯)b ,

❢❛③❡♥❞♦ v :=NUb ✱ t❡♠✲s❡ d

dtv = iD v+N

N−1v,

d

dtv = iD v+Bv,

❝♦♠ B =N′N−1 q✉❡ é ❧✐♠✐t❛❞♦ ♣❛r❛ ❝❛❞❛ t✱ ❝♦♠♦ ♣♦❞❡♠♦s ✈❡r ✉s❛♥❞♦ ❛ ♥♦r♠❛ ❞❡

♦♣❡r❛❞♦r✱✶✱ ♣❛r❛ ❛ ❞❡♠♦♥str❛çã♦ ✈❡❥❛ ❆✜r♠❛çã♦ ✹✳✶ ♥♦ ❆♣ê♥❞✐❝❡✳

P♦r ♦✉tr♦ ❧❛❞♦ ✉s❛r❡♠♦s ♦ s❡❣✉✐♥t❡ ♣r♦❞✉t♦ ✐♥t❡r♥♦

(u, v) =

Z

u(t, ξ)·v(t, ξ)dξ, ✭✷✳✼✮

❡ ❞❡✜♥✐r❡♠♦s ❛ ♥♦r♠❛

kuk2L2 =

Z

|u(t, ξ)|2dξ. ✭✷✳✽✮

❙❡❥❛ ❛ ♥♦r♠❛ ♣❛r❛ v1(t,·), v2(t,·)∈L2

 v1(t,·)

v2(t,·)   1

=kv1(t,·)kL2 +kv2(t,·)kL2. ✭✷✳✾✮

▲♦❣♦✱ ✉s❛♥❞♦ ✭✷✳✼✮✱ t❡♠♦s (v, Bv) = (v, Bv) = (v, Bv) = (Bv, v) ❡ (v,−iDv) = (v,iDv) = (iDv, v)✱ ❞❡♣♦✐s ❞❡r✐✈❛♥❞♦ t❡r❡♠♦s

d

dtkvkL2 = ( dv

dt, v) + (v, dv

dt)

= ((iD+B)v, v) + (v,(iD+B)v)

= (Bv, v) + (v, Bv)

= 2Re{Bv·v} ≤2kBvkL2kvkL2 , ❝♦♠ 2kBk ≤eγ,

≤ eγkvk21,

❡♥tã♦ kv(t,·)kL2 ≤ eγtkv(0,·)kL2, γ =eγ/2. ✶kBk=λmax,♦♥❞❡λmax ♦ ♠❛✐♦r ❛✉t♦✈❛❧♦r ❞❛ ♠❛tr✐③B

B❀B∗=❛❞❥✉♥t♦ ❞❡ B✳

(32)

♦♥❞❡ eγ ❡γ sã♦ ❝♦♥st❛♥t❡s✳

❊♥tã♦ ❞❛❞❛ ❛ ♥♦r♠❛ ✭✷✳✾✮✱ t❡♠♦skv(t,·)k1 =k(v1(t,·), v2(t,·))k1 =kv1(t,·)kL2+

kv2(t,·)kL2 ❡ ❢❛③❡♥❞♦v(t, ξ) =N❯(b t, ξ)✱ s❡❣✉❡ ❛ s❡❣✉✐♥t❡ ❛✜r♠❛çã♦✳

❆✜r♠❛çã♦ ✷✳✷✳

kv(t,·)k1 =

N❯(b t,·)

1 ≡ k❯(t,·)k1.

❉❡♠♦♥str❛çã♦✿ ❇❛st❛ ♣r♦✈❛r q✉❡ ❡①✐st❡♠ ❝♦♥st❛♥t❡s C1, C2 >0t❛✐s q✉❡

C1  v1(t,·)

v2(t,·)   1 ≤ N  v1(t,·)

v2(t,·)   1

≤C2  v1(t,·)

v2(t,·)   1

, t T ✭✷✳✶✵✮

♣♦✐s s❡♥❞♦k·kL2 = (2π)−dkb·kL2✱ t❡♠♦s q✉❡

 v1(t,·)

v2(t,·)   1

=kv1(t,·)kL2 +kv2(t,·)kL2 = (2π)−dv\1(t,·)

L2 +

v\2(t,·)

L2

= (2π)−d

 v\1(t,·)

\

v2(t,·)   1 ,

❞♦♥❞❡ s❡❣✉❡ ❛ ❆✜r♠❛çã♦ ✷✳✷✳

❋❛❧t❛ ❡♥tã♦✱ ♣r♦✈❛r ✭✷✳✶✵✮✳ P❛r❛ ✐ss♦ ❢❛③❡♠♦s ♦ s❡❣✉✐♥t❡ ♣r♦❞✉t♦

Nt·N =

  

1

2pa(t) − 1 2pa(t) 1 2 1 2   ·     1 2pa(t)

1 2

− 1

2pa(t) 1 2    =    1 2a(t) 0

0 1 2

  ,

✉s❛♥❞♦ ❛ ♥♦r♠❛ ❞♦ ♦♣❡r❛❞♦r✱ t❡♠✲s❡ q✉❡ kNk = qmax{2a1(t),12}kN−1k−1 = q

min{ 1 2a(t),

1

2}✭ ♦♥❞❡kNk3 = supkxk=1kN xk✮ ✱ ❡♥tã♦ t❡♠♦s ♦ ❧❛❞♦ ❞✐r❡✐t♦ ❞❡ ✭✷✳✶✵✮

kN vk1 ≤ kNk kvk1.

P❛r❛ ♣r♦✈❛r ♦ ❧❛❞♦ ❡sq✉❡r❞♦ ❞❡ ✭✷✳✶✵✮ ✉s❛♠♦s q✉❡ det (N)6= 0✳

❆ss✐♠✱

kvk1 =N−1N v1 N−1kN vk1,

Referências

Documentos relacionados

112 Tabela 6 Taxa Média de Classificação Correta (TMCC) e quantidade de regras geradas (#Reg.) pelo método J48 considerando que a base de dados que foi utilizada no

As brânquias não apresentaram alterações significativas na atividade da GPx após exposição à FSG, contudo o fígado apresentou aumento significativo desta enzima nos

Para tanto, toma-se como base algoritmos de aprendizado de RB da classe IC (Independência Condicional) e o conceito de Markov Blanket.. Resultados obtidos através de

Os valores de heterozigosidade esperada estimados para os grupos de cativeiro do CPRJ, da FPZSP, do PESC e do DCT, calculados com os locos microssatélites, mostraram

Jane pediu para a aluna consultar os alunos para participar

poderão solicitar transferência para o doutorado direto se obtiverem coeficiente de rendimento maior ou igual a 3,6 nas disciplinas obrigatórias do curso cursadas no 1º

Philosophie de la forme: eidos, idea, morphè dans la philosophie grecque des Origines à Aristote.. Louvain-La-Neuve: Editions

Este trabalho buscou contribuir para o conhecimento da fauna brasileira de Pimplinae através da caracterização e quantificação dos seus gêneros e espécies em