• Nenhum resultado encontrado

Effect of ultrasound on survival and growth of Escherichia coli in cactus pear juice during storage

N/A
N/A
Protected

Academic year: 2021

Share "Effect of ultrasound on survival and growth of Escherichia coli in cactus pear juice during storage"

Copied!
7
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Food

Microbiology

Effect

of

ultrasound

on

survival

and

growth

of

Escherichia

coli

in

cactus

pear

juice

during

storage

Nelly

del

Socorro

Cruz-Cansino

a

,

Isidro

Reyes-Hernández

a

,

Luis

Delgado-Olivares

a

,

Diana

Pamela

Jaramillo-Bustos

b

,

José

Alberto

Ariza-Ortega

a

,

Esther

Ramírez-Moreno

a,∗

aCentrodeInvestigaciónInterdisciplinario,ÁreaAcadémicadeNutrición,InstitutodeCienciasdelaSalud,UniversidadAutónomadel

EstadodeHidalgo,SanAgustínTlaxiaca,Hidalgo,México,Mexico

bMikunaGroupErie,PA,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received3September2014 Accepted12November2015 Availableonline2March2016 AssociateEditor:EduardoCesar Tondo

Keywords:

Ultrasound Growth

Escherichiacoli

Cactuspearjuice Storage

a

b

s

t

r

a

c

t

Theaimofthisstudywastoinvestigatetheeffectivenessofultrasoundasaconservation methodfortheinactivationofEscherichiacoliinoculatedintocactuspearjuices(greenand purple).Totalsolublesolids,pH,titratableacidity,andthekineticsofE.coliincactuspear juicestreatedbyultrasound(60%,70%,80%and90%amplitudelevelsfor1,3and5min) wereevaluatedover5days.Totalinactivationwasobservedinbothfruitjuicesafter5min ofultrasoundtreatmentatmostamplitudelevels(withtheexceptionof60%and80%).After oneandtwodaysofstorage,therecoveryofbacteriacountswasobservedinallcactuspear juices.Ultrasoundtreatmentat90%amplitudefor5minresultedinnon-detectablelevels ofE.coliincactuspearjuicefor2days.TheparametersofpH,titratableacidityandsoluble solidswereunaffected.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Healthconsciousconsumersaredemandingminimally pro-cessedfoods,whichhasstimulatedresearchonnon-thermal processing technologies.Pulsed electric fields, high hydro-staticpressure,shortwaveultravioletirradiation,and ultra-sound,usedaloneorcombined,areintendedtoachieve micro-bialandenzymaticinactivationwithsignificantlylessheat. Amongthese technologies, ultrasound processingfor food preservationpurposeshasreceivedincreasingattention.1

Correspondingauthor.

E-mail:rme1234@yahoo.com(E.Ramírez-Moreno).

Ultrasoundsappliedtoaliquidmediuminducecavitation bubbles,whichleadtothedisintegrationanddestructionof microorganisms.Thecollapseofbubblesresultsinanareaof hightemperatureandpressure,calledthe“hotspot”.2During

ultrasound,twophasesaredistinguished: compressionand rarefaction.Inthefirstphase,wavemicrobubblesareformed atvariousnucleationsitesinthefluid.Inthesecondphase, thesebubblesgrowrapidlyandimplodeandcollapsewitha newcompressionphase,releasing ashock wavethat prop-agates throughthe liquid.1 These effects disrupt microbial

structuresand inactivate anddecompose toxicchemicals.3

http://dx.doi.org/10.1016/j.bjm.2016.01.014

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Variousstudiesaddressingtheeffectofultrasoundaloneor combined with other treatments on microbial inactivation havebeenpreviouslypublished.1,4

Ultrasoundisusedinavarietyofapplications,including foodprocessingandfoodanalysis.Twoapproachesare com-monlyused:low-intensity(highfrequencyof100kHzto1MHz andlowpower<1Wcm−2)andhigh-intensity(lowfrequency of16–100kHzandhighpowerof10–1000Wcm−2)ultrasound.5

Low-intensityultrasoundgenerateslowpowerlevelssuchthat thetreatedmaterialisnotphysicallyor chemicallyaltered. Generally,low-intensityultrasoundisanon-destructive treat-ment, which has been successfully used for non-invasive monitoringoffoodprocesses6andasananalyticaltechnique

fordeterminingphysicochemicalfoodproperties(e.g.,texture, density,porosity,grainsize,etc.).Incontrast,high-intensity ultrasoundgeneratesphysicaldisruptionsandinduces chem-icalreactions onthe materialto whichit is applied.7 This

ultrasoundapproachhasbeen usedinfood manufacturing forpeeling,celldisintegration,extractionofintracellular com-ponentsandenzymes,accelerationofenzymereactionsand microbialfermentation,dispersionofdrypowdersinliquids, emulsification,deactivationofenzymesandmicroorganisms, andotherprocesses.8,9

Cactuspear(Opuntiaficusindica)isacommonfruitin Mex-icoandvariousregionsofLatinAmerican,SouthAfrica,and the Mediterranean10 and is considereda nutraceuticaland

functionalfood11becauseofitshighcontentsofvitaminC,

flavonols,phenolicacidsandbetalains.12,13Thisfruitis

clas-sifiedasalow-acidfood(pH>4.5)andcontainsahighcontent ofsoluble-solids,makingitsuitableforjuiceproduction14but

alsosusceptibletomicrobialspoilageandashortshelflife.15

Escherichia coli is a fecal coliform bacteria, commonly found in the intestines ofanimals and humans. E. coli in waterand foodsisa strongindicationofrecent fecal con-tamination,and recognizedclasses ofenterovirulent E. coli

cause gastroenteritisin humans.16 E.colicells subjected to

heat treatments exhibitvariable heat resistance17

depend-ing on the media, e.g., low pH and high acidity sensitizes cells to heat, whereas high sugar concentrations increase thermotolerance.18,19 Previous studies have demonstrated

that ultrasound can inactivate E. coli in water and apple cider2,20 and that low pH can enhance this effect on the

bacteria.21Thesestudieshaveevaluateddifferentultrasound

conditionsbutthebehaviorofE.colipreviouslyinactivatedby ultrasoundhasnotbeenaddressedforotherfruitjuices,such ascactuspearjuiceduringstorage.Therefore,ouraimwas toevaluatetheeffectofultrasoundtreatmentofinoculated cactuspearjuices(greenandpurple)onthepH,solublesolids andsurvivalofE.colioverfivedaysofstorage.

Materials

and

methods

Greenandpurplecactuspearjuicepreparation

Greenandpurplecactuspearfruits(Opuntiaficusindica)were providedbytheMexicanassociation(CoMeNTuna,Actopan, Hidalgo,México)inthe springof2012.Fruitsfreeof exter-nalinjurieswereselected,washedandmanuallypeeled.To extractthe juices, the pulpwasstirredusing anindustrial

blender(38BL52(LBC10),WaringCommercial®,USA)andthen

passedthroughaconventionalstrainertoremoveseeds. Sam-pleswerecentrifuged(BeckmanCoulter,Inc.,Allegra25R,CA, USA)at15,317×g,4◦C for25mintoclarifythe juices, and thenpasteurizedusingawater-jacket(400mLcapacity)ata controlledtemperatureof85◦Cfor25mintoeliminatenative microbiota. Juicesamples (100mL) were distributed asepti-callyintopreviouslysterilized250mLglassbottlesandthen stored at4◦Cuntil subsequentinoculation and ultrasound treatment. Afterheattreatment,the juicewasanalyzedby platingserialdilutionstoconfirmthesterilityofthejuice.

Bacteriastockcultures,inoculation

TheE. colistrain wasobtainedfrom the CultureCollection oftheLaboratoryofNutrigenomics(HealthScienceInstitute, AutonomousUniversityoftheStateofHidalgo,México)and maintainedinLB-Glycerol(Sigma–Aldrich,St.Louis,MO,USA). Stockcultureswerestoredat−80◦Cin0.7mLtrypticsoybroth

(TSB:DifcoBectonDickinsonSparks,MD,USA).Cultureswere streakedontotrypticsoyagar(TSA;BDDifcoTM,USA),

incu-bated at37◦C for24hand storedat 4◦C.Onecolony was inoculatedinTSBandincubatedwithshaking(S1600,Jeiotech, Co.,Ltd.,Korea)at37◦Cfor24h.Thefinalconcentrationof

E.coliintheinoculumwasdeterminedbyplatingserial dilu-tionsonTSBandincubatingat37◦Cfor24h.Pasteurizedjuice samples(100mL)placedinthesterileglassbottleswere inoc-ulatedwith100␮Loftheinoculumtoafinalconcentrationof 7logCFU/mLandallowedtoadaptfor20minpriorto ultra-soundtreatment.

Ultrasoundtreatment

Inoculated juiceswere treatedusinganultrasound genera-tor(VCX-1500,Sonics&Materials,Inc.Newtown,CT,USA)at 1500Wandaconstantfrequencyof20kHz,byapplying ampli-tudelevelsof60%,70%,80%and90%for1,3and5minwith pulsedurationsof2sonand4soff.Aliquotsof1mLofjuice weredistributedin1.5mLsterilizedmicrotubesandanalyzed formicrobialsurvivalimmediatelyafterultrasoundtreatment (day0).Anuntreatedinoculatedsamplewasusedasa con-trol.Sampleswerethenstoredat4◦Cuntilanalysisafter1,2, 3,4and5daysofstorage.Temperaturesbeforeandafterthe ultrasoundtreatmentwerealsomonitored(Table1).

pHandtotalsolublesolids(Brix)

ThepH wasmeasured usinga digital, calibratedpH-meter (HannaInstruments,pH210,USA)andthetotalsolublesolids weremeasuredusingarefractometer(Brix/ATCFG-113, Hang-zoung Chincan Trading Co.,Ltd., China)immediately after ultrasoundtreatment(day0)andattheendofstorage(day5).

Titratableacidity(TA)

Samplesof20mLwere placedin250mLglassbeakers,and 80mLofdistilledwaterwasadded.Thissolutionwastitrated againststandardized0.1NNaOH(Sigma–Aldrich,Dublin, Ire-land) to the phenolphthalein end point (pH 8.2±0.1). The volume ofNaOHwasconverted tograms ofcitricacid per

(3)

Table1–ConditionsofultrasoundtreatmentofgreenandpurplecactuspearjuicesinoculatedwithEscherichiacoli.

Treatment Temperature(◦C)

T1 T2

Amplitude Time(min) Green Purple

60% 1 30 38.60±1.69 40.65±0.07 3 30 50.25±2.19 49.60±0.14 5 30 62.40±1.97 53.95±0.07 70% 1 30 40.25±0.50 40.60±2.97 3 30 53.85±0.50 55.05±2.47 5 30 66.10±0.56 64.30±1.13 80% 1 30 41.30±0.70 38.35±0.77 3 30 55.25±0.70 56.00±0.00 5 30 68.50±0.34 65.80±0.14 90% 1 30 34.75±5.16 23.70±4.95 3 30 48.20±0.57 34.20±7.07 5 30 62.55±4.03 62.45±4.31 T1,inlettemperature. T2,outlettemperature.

Temperatureinultrasoundtreatmentofgreenandpurplecactuspearjuice.

100mLofjuice.22TAwasmeasuredimmediatelyafter

ultra-soundtreatment(day0)andattheendofstorage(day5),which wascalculatedusingthefollowingformula:

TA=mLbasetitrant×Normalityofbase×Acidfactor×100 Samplevolume(mL)

Microbiologicalanalysis

SerialdilutionsofjuiceswereperformedinTSBandplated onTSAforbacteriacountsand incubatedat37◦Cfor24h. Theresultswereexpressedaslogcolonyformingunitsper milliliter(CFU/mL) ofjuice, wherethe limit ofdetection is 1UFC/mL.

Statisticalanalysis

Data were obtained from three independent experiments. ANOVAwas performedtodeterminesignificantdifferences at the 5% probability level using the SPSS® System for

WINTM (15.0.1 version) (SPSS Inc., Chicago, IL, USA). The

Student–Neuman–Keuls(SNK)testwasusedforcomparison ofthedata.

Results

and

discussion

pH,totalsolublesolidsandtitratableacidity

ThemeanvaluesforpH,totalsolublesolidsandTAingreen and purple cactuspear juiceare shown inTables 2and 3, respectively.Solublesolidsand pHdeterminethe degreeof ripenessofthefruitandareinfluencedbyphysicalfactors, suchasplaceoforigin,species,maturity,andcultivar.12The

resultsobtainedshowthatthepH,solublesolidsandTA dif-feredsignificantly(p<0.05)betweentreatments.Freshjuice (day1)showedvaluesofpHbetween4.68and 5.68,soluble solidscontentof12.78–13.33◦Brix,andTAof0.01,whichare similartovaluesreportedforultrasound-treatedcactuspear juices23,24andotherfruitjuices.22,25After5daysofstorage,the

pHandsolublesolidsvalueschangedtorangesof4.90–5.50

Table2–pH,solublesolidsandtitratableacidityvaluesofgreencactuspearjuiceinoculatedwithEscherichiacoliafter ultrasoundtreatmentand5daysofstorage.

Determination Days Treatment

Control 60%5min 70%5min 80%5min 90%5min

pH 0 5.68±0.01a 5.21±0.03b 4.68±0.00c 5.21±0.03b 5.28±0.10b 5 5.52±0.00a* 5.42±0.14a* 4.90±0.03d* 5.12±0.00b* 5.19±0.20b Solublesolids (◦Brix) 0 12.90±0.00b 13.20±0.00a 12.78±0.14c 13.00±0.00b 12.95±0.05b 5 13.81±0.04c* 16.30±0.10a* 12.93±0.08d 16.00±0.00b* 12.90±0.32d Titratableacidity (gcitricacid/mL) 0 0.01±0.00d 0.08±0.00c 0.15±0.01a 0.08±0.00c 0.14±0.02b 5 0.01±0.00c* 0.09±0.00c 0.16±0.01a 0.09±0.00c 0.12±0.04b a,b,cDifferentlettersinthesamelineindicatesignificantdifferences(p<0.05).

(4)

Table3–pH,solublesolidsandtitratableacidityvaluesofpurplecactuspearjuiceinoculatedwithEscherichiacoliafter ultrasoundtreatmentand5daysofstorage.

Determination Days Treatment

Control 60%5min 70%5min 80%5min 90%5min

pH 0 4.97±0.00b 5.50±0.01a 4.72±0.01c 5.50±0.00a 5.11±0.27b 5 5.52±0.00c* 5.07±0.00a* 4.90±0.10b* 5.07±0.00a* 5.00±0.12a Solublesolids (◦Brix) 0 13.33±0.00b 13.33±0.10a 12.90±0.24a 13.00±0.00a 13.33±0.73a 5 13.80±0.21b* 14.40±0.00a* 12.95±0.05c 14.00±0.00b* 12.90±0.32c Titratableacidity (gcitricacid/mL) 0 0.04±0.00d 0.10±0.00c 0.17±0.01a 0.10±0.00c 0.16±0.01b 5 0.01±0.00a* 0.10±0.00d 0.17±0.00b 0.10±0.00d 0.14±0.01c a,b,cDifferentlettersinthesamelineindicatesignificantdifferences(p<0.05).

Significantdifferencesbetweendays0and5ofstorageforthesametreatment(p<0.05).

and12.90–16.40◦Brix,respectively, andtheTAincreasedto 0.09–0.17.

Ultrasoundtreatmentcausesthereleaseofspecific com-pounds, such as sugars, phenolic compounds and organic acids.26–28Forinstance,releaseofcitricacidmayexplainthe

increaseinTAaftertreatmentandstorage.Ultrasoundalso exertsamechanicaleffectthatincreasesthecontactsurface betweenthe solidand liquid, allowingforgreater penetra-tionofsolventintothematrixandthusgreaterdiffusionof materialintothemedium.29

During storage, significant differences were observed betweenultrasoundjuicesandthecontrol(p<0.05)forallof theseparameters,whereasexperimentalsamplesexhibited differences inpHand soluble solids, exceptat90%,which remainedunchanged.

SurvivalandgrowthofEscherichiacoli

E.colicountsafterultrasoundtreatmentandover5daysof juicestorageare shown inFigs.1and 2. Theinitial inocu-lumwas7logCFU/mL.Countsincreasedinthecontrolfrom day1tovalues>11logCFU/mLattheendofstorage,whereas ultrasound treatment reduced bacteria counts, particularly whenhigheramplitudesandlongertimes(3and5min)were applied.Itispossiblethatultrasoundappliedtothe micro-bialsuspensionsdispersesmicroorganism clumps,disrupts cells and modifies cellularactivity from the outside tothe insideofthestructures.30Theseeffectsresultfromthe

com-binedphysicalandchemicalmechanismsthatoccurduring thecollapseofcavitationbubbles,theformationoffree radi-cals(e.g.,OH–),andthegenerationofhydrogenperoxide.31,32

Inaddition,duringultrasoundtreatment,microorganismsare alsosubjectedtomildtemperatures(>50◦C),whichincrease theweakeningofthebacteriamembraneandpossiblyfurther lysisattributedtocavitation.33–35Inourstudy,thetemperature

increasedwithtreatmenttime(>3min),andmost ultrasoni-catedjuicesreachedtemperatures>50◦C(Table1).Although all samples subjected totreatment for 5min reachedhigh temperatures,treatedjuiceat90%for5minshowedthetotal inactivationreachingtemperaturesof62.5◦C.Weperformed additional experiments to prove the bactericidal effect at 62.5◦Ctodeterminethemicrobialinactivationatthis temper-ature.Theresultshowedreductiononlyof4.5±0.4logCFU/mL

and 4.6±0.2logCFU/mL for green and purple cactus pear juices,respectively,onday0(datanotshowed).Therefore,the combined effectsofultrasoundtreatmentand temperature mayexplaintheseresults.Similarobservationswerereported byHercegetal.36whofoundthatamplitude,time,and

tem-perature duringultrasound treatmentofmilksubstantially affected the inactivation ofE.coli. These findingsreinforce thesuitabilityofthistypeofemergingtechnologytoprocess liquidswithoutaffectingtheirquality.23,24

For bothgreenand purple cactuspearjuice, ultrasound applied for 1min reduced bacteria counts by 1 and 3 log CFU/mL,whichincreased(3–4logCFU/mL)whentreatedfor

3min(Figs.1and2).InactivationofE.coliunderthedetection

limitwasobservedonlyinjuicestreatedfor5minand90% amplitude (Figs.1Dand2D);therefore,thehigh amplitudes andlongertreatmenttimesweremoreeffectiveformicrobial inactivation.

During storage, juice subjected to 5min and 60%, 70% and 80% amplitudes exhibited bacterialgrowth after

treat-ment (1 day) (Figs. 1A–C and 2A–C), whereas growth was

observed after 2days (Figs. 1Dand 2D) at90% amplitude. This delayed regrowth may result from the disruption of the lipid membraneoccurring athigher ultrasound ampli-tudes,whichimpairsbacteriagrowthandmayinduceartificial competence.30Thelethalandsublethaleffectsofultrasound

treatmentsonmicrobialcellsarestronglyinfluencedbytime. Sublethaleffectsrefertoastageprevioustocelldeathwhere reversible damage occurs and the cell can recover if the effectceases underappropriatephysicalparameters.37

Cer-tainultrasoundprocessingconditionsseemtobeselectivein termsofexclusivelydestabilizingtheoutermembraneofE.coli

withoutseverelyaffectingthecytoplasmicmembrane.38The

effectsofincreasingintensitiesofultrasoundoneukaryotic cellviabilityarewelldocumented.39,40 Studiesperformedby

YeoandLiong38 withgram-negativebacteria,suchasE.coli

andHaemophilusinfluenza,showedthatafter5minof sonica-tionat40kHz,thebacteriawerenearlyeliminated.However, Allison et al.41 reduced the viability without cell deathby

applying20kHzsonication,whichsuggeststhatincreasingthe poweroutputlevelofultrasoundresultsinafastercelldeath rate.

The resultsobservedfor ultrasound-treated cactuspear juicesuggestthatregrowthofE.colioccurredduringstorage,

(5)

13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 Days

A

B

C

D

0 1 2 3 4 5 Days 0 1 2 3 4 5 Days 0 1 2 3 4 5 Days Log CFU/ml Log CFU/ml Log CFU/ml Log CFU/ml 13 12 11 10 9 8 7 6 5 4 3 2 1 0 13 12 11 10 9 8 7 6 5 4 3 2 1 0 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig.1–SurvivalandgrowthofEscherichiacoliduringstorageofgreencactuspearjuicetreatedbyultrasoundat(A)60%;(B)

70%;(C)80%and(D)90%amplitudelevelsfor1(),3()and5()minandcontrol(×),resultsofmicrobiologicalanalysis

realizedimmediatelyafterperformingultrasoundtreatment(---).

13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

B

C

D

Log CFU/ml 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Log CFU/ml 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Log CFU/ml 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Log CFU/ml 0 1 2 3 4 5 Days 0 1 2 3 4 5 Days 0 1 2 3 4 5 Days 0 1 2 3 4 5 Days

Fig.2–SurvivalandgrowthofEscherichiacoliduringstorageofpurplecactuspearjuicetreatedbyultrasoundat(A)60%;(B)

70%;(C)80%and(D)90%amplitudelevelsfor1(),3()and5()minandcontrol(×),resultsofmicrobiologicalanalysis

(6)

which may be attributed to reversible membrane perme-abilization formed upon treatment at low intensities. The permeabilitymayhaveincreasedthetransportofnutrients andothersubstancesintothecells,alleviatingcellmetabolism andsubsequentlyenhancingbacterialviability.42Ultrasound

canalsoenhance thedisruption ofcell wallsand thusthe releaseoftheircontents,43makingthemavailableforbacterial

growth.Forinstance,polysaccharidescanbereleasedbecause ofcavitation44,45 and carbohydrates are usedpreferentially

byE. coli.46 Oncethe stress over the cells isremoved (e.g.,

ultrasound), respiration and biosynthesisof carbohydrates, membranes,lipids,andproteinscanrecover,allowingforthe regenerationofthe cellmembraneand bacteriaphysiology andstructuralintegrity.47

Theseobservationsmayexplainthe resultsobtainedfor samplestreatedatamplitudes <90%,whichreached bacte-riacountssimilar tothose ofthe originalloadafter4days ofstorageat4◦C(Figs.1A–Cand2A–C).Otherauthorshave observed that refrigeration enhances survival of E. coli in anacidicenvironment,48–50 whichislikelyattributedtothe

reducedpermeabilityofthecellmembranetoprotonsand/or areducedmetabolicactivity.51Althoughtreatmentat90%for

5minexhibitedbacteriacounts<2logCFU/mLuntilthelast dayofstorage (Figs.1D and 2D), ultrasound atamplitudes of 70% and 90% for 1 and 3min only showed a bacterio-staticeffect(Figs.1B,Dand2B,D).Theresultsdemonstrated thattreatmentathigheramplitudes(90%)andlongertimes (5min) were effective in achieving a 5log reduction. This valuecomplieswiththeFDArequirement(<5logCFU)forfruit juices.

Conclusions

Theresultsfrom thisstudy revealed thatultrasound treat-mentat90%amplitudefor5minresultedinnon-detectable levels of E. coli in cactus pear juice for 2 days with no effectonpH,TAandsolublesolids.Inaddition,theseresults complied with the 5log reduction of E. coli recommended by the FDA guidelines for fruit juices. Under the evalu-ated conditions, ultrasound treatment can be considered analternative technologyforfruitjuice preservation. How-ever,furtherresearchisrequiredtoachieveconditionsthat preventre-growth ofbacteria, reach total inactivation dur-ing storage and confirm if re-growth results from injured cells.

Conflicts

of

interest

Theauthorsdeclarethatnoconflictsofinterestexist.

Acknowledgments

This work was financially supported by Programa Integral deFortalecimientoInstitucional(PIFI2012–2013).Theauthors acknowledgetheMexicanassociationCoMeNTuna(Hidalgo, México)forprovidingtheplantmaterials.

r

e

f

e

r

e

n

c

e

s

1.PiyasenaP,MoharebE,MckellarRC.Inactivationofmicrobes

usingultrasound:areview.IntJFoodMicrobiol.

2003;87:207–216.

2.KodaS,MiyamotoM,TomaM,MatsuokaT,MaebayashiM.

InactivationofEscherichiacoliandStreptococcusmutansby

ultrasoundat500kHz.UltrasonSonochem.2009;16:655–659.

3.Lopez-MaloS,GuerreroSM,AlzamaraJ.Saccharomyces

cerevisiaethermalinactivationkineticscombinedwith

ultrasound.JFoodProt.1999;62:1215–1217.

4.Ma ˜nasP,PagánR.Microbialinactivationbynewtechnologies

offoodpreservation.JApplMicrobiol.2005;98:1387–1399.

5.DemirdövenA,BaysalT.Theuseofultrasoundand

combinedtechnologiesinfoodpreservation.FoodRevInt.

2009;25:1–11.

6.DolatowskiZJ,StadnikJ,StasiakD.Applicationsof

ultrasoundinfoodtechnology.ActaSciPolTechnolAliment.

2007;6:89–99.

7.LeeDU,HeinzV,KnorrD.Effectsofcombinationtreatments

ofnisinandhigh-intensityultrasoundwithhighpressureon

themicrobialinactivationinliquidwholeegg.InnovFoodSci

EmergTechnol.2003;4:387–393.

8.BettsGD,WilliamsA,OakleyRM.Ultrasonicstandingwaves;

inactivationoffood-bornemicroorganismusingpower

ultrasound.In:RobinsonRK,BattCA,PatelPD,eds.

EncyclopediaofFoodMicrobiology.NewYork,USA:Academic

Press;1999:2202–2208.

9.VollmerAC,EverbachEC,HalpernM,KwakyeS.Bacterial

stressresponsesto1-megahertzpulsedultrasoundinthe

presenceofmicrobubbles.ApplEnvironMicrobiol.

1998;64:3927–3931.

10.ButeraD,TesoriereL,DiGaudioF,etal.Antioxidant

activitiesofSicilianpricklypear(Opuntiaficusindica)fruit

extractsandreducingpropertiesofitsbetalains:betanins

andindicaxanthin.FoodChem.2002;50:6895–6901.

11.PigaA.Cactuspear:afruitofnutraceuticalandfunctional

importance.JProfAssocCactusDev.2004;6:9–12.

12.GalatiEM,MondelloMR,GiuffridaD,etal.Chemical

characterizationandbiologicaleffectsofSicilianOpuntia

ficusindica(L.)Mill.fruitjuice:antioxidantand

antiulcerogenicactivity.JAgricFoodChem.2003;51:4903–4908.

13.Moussa-AyoubTE,El-SamahySK,KrohLW,RohnS.

Identificationandquantificationofflavonolaglyconsin

cactuspear(Opuntiaficusindica)fruitusingacommercial

pectinaseandcellulosepreparation.FoodChem.

2011;124:1177–1184.

14.SáenzC,SepúlvedaE.Cactus-pearjuices.JProfAssocCactus

Dev.2001;4:3–10.

15.CassanoA,ConidiC,DrioliE.Physico-chemicalparameters

ofcactuspear(Opuntiaficus-indica)juiceclarifiedby

microfiltrationandultrafiltrationprocesses.Desalination.

2010;250:1101–1104.

16.MohammadHD.Effectivenessofultrasoundonthe

destructionofEscherichiacoli.AmJEnvironSci.2005;1:

187–189.

17.PoJMLW,PiyasenaP,McKellarRC,BarltlettFM,MittalGS,Lu

X.Influenceofsimulatedapplecidercompositiononthe

heatresistanceofEscherichiacoliO157:H7.LWT-FoodSci

Technol.2002;35:295–304.

18.HansenNH,RiemanH.Factorsaffectingtheheatresistance

ofnonsporingorganisms.JApplBacteriol.1963;26:314–333.

19.HersomAC,HullandED.CannedFoods:ThermalProcessingand

Microbiology.Edinburgh,UK:ChurchillLivingstone;1980.

20.Ugarte-RomeroE,FengH,MartinSE,CadwalladerKR,

RobinsonSJ.InactivationofEscherichiacoliwithpower

(7)

21.PatilS,BourkeP,KellyB,FriasJM,CullenPJ.Theeffectsof

acidadaptationonEscherichiacoliinactivationusingpower

ultrasound.InnovFoodSciEmergTech.2009;10:486–490.

22.ReddJB,HendrixDL,HendrixCM.QualityControlManualfor

CitrusProcessingPlants:ProcessingandOperatingProcedures, BlendingTechniques,Formulating,CitrusMathematicsandCosts.

FL,USA:Intercity,SafetyHarbourFlorida;1986.

23.Zafra-RojasQY,Cruz-CansinoN,Ramírez-MorenoE,

Delgado-OlivaresL,Villanueva-SánchezJ,Alanís-GarcíaE.

Effectsofultrasoundtreatmentinpurplecactuspear

(Opuntiaficus-indica)juice.UltrasonSonochem.

2013;20:1283–1288.

24.CansinoNC,CarreraGP,RojasQZ,Delgado-OlivarezL,García

EA,RamírezME.Ultrasoundprocessingongreencactuspear

(Opuntiaficusindica)juice:physical,microbiologicaland

antioxidantproperties.JFoodProcessTechnol.2013;4:1–6.

25.Moreno-AlvarezMJ,MedinaC,AntónL,GarcíaD,

Belen-CamachoDR.Usodepulpadetuna(Opuntiaboldinghii)

enlaelaboracióndebebidascítricaspigmentadas.

Interciencia.2003;28:535–543.

26.LieuNL,LeVVM.Applicationofultrasoundingrapemash

treatmentinjuiceprocessing.UltrasonSonochem.

2010;17:273–279.

27.KamaljitV,MawsonR,SimonsL,BatesD.Applicationsand

opportunitiesforultrasoundassistedextractioninthefood

industry–areview.InnovFoodSciEmergTech.2008;9:

161–169.

28.PalmaM,BarrosoCG.Ultrasound-assistedextractionand

determinationoftartaricandmalicacidsfromgrapesand

winemakingby-products.AnalChimActa.2002;458:119–130.

29.RostagnoMA,PalmaM,BarrosoCG.Ultrasound-assisted

extractionofsoyisoflavones.JChromatogrA.

2003;1012:119–128.

30.HayerK.Theeffectofultrasoundexposureonthe

transformationefficiencyofEscherichiacoliHB101.Biosci

Horiz.2010;2:141–147.

31.CiccoliniL,TaillandierP,WilhemAM,DelmasH,Strehaiano

P.Lowfrecuencythermo-ultrasonicationofSaccharomyces

cerevisiaesuspensions:effectoftemperatureandultrasonic

power.ChemEngJ.1997;65:145–149.

32.OyaneI,TakedaT,OdaY,etal.Comparisonbetweenthe

effectsofultrasoundand␥-raysontheinactivationof

Saccharomycescerevisae:analysesofcellmembrane

permeabilityandDNAorRNAsynthesisbyflowcytometry.

UltrasonSonochem.2009;16:532–536.

33.SalaFJ,BurgosJ,CondonS,LopezP,RasoJ.Effectofheatand

ultrasoundonmicroorganismsandenzymes.In:GouldGW,

ed.NewMethodsofFoodPreparation.Bedford,London,

England:UnileverResearchLaboratoryPress;1995:176–204.

34.VillamielM,JongP.InactivationofPseudomonasfluorescens

andStreptococcusthermophilusintrypticasesoybrothand

totalbacteriainmilkbycontinuous-flowultrasonic

treatmentandconventionalheating.JFoodEng.

2000;45:171–179.

35.PatistA,BatesD.Ultrasonicinnovationsinthefoodindustry:

fromthelaboratorytocommercialproduction.InnovFoodSci

EmergTech.2008;9:147–154.

36.HercegZ,JambrakAR,LelasV,ThagardSM.TheEffectof

highintensityultrasoundtreatmentontheamountof

StaphylococcusaureusandEscherichiacoliinmilk.FoodTechno Biotechnol.2012;50:46–52.

37.YeoSK,LiongMT.Effectsandapplicationsofsub-lethal

ultrasound,electroporationandUVradiationsin

bioprocessing.AnnMicrobiol.2013;63:813–824.

38.AnantaE,VoightD,ZankerM,HeinzV,KnorrD.Cellular

injuriesuponexposureofEscherichiacoliandLactobacillus

rhamnosustohigh-intensityultrasound.JApplMicrobiol.

2005;99:271–278.

39.CarstensenEL,KellyP,ChurchCC,etal.Lysisoferythrocytes

byexposuretoCWultrasound.UltrasoundMedBiol.

1993;19:147–165.

40.EgintonPJ.EffectofUltrasoundontheViabilityofEscherichiacoli.

Manchester,UK:ManchesterPharmacySchoolUM;1994.

Doctoraldissertation.

41.AllisonDG,D’EmanueleA,EgintonP,WilliamsAR.The

effectofultrasoundonEscherichiacoliviability.JBasic

Microbiol.1996;36:3–11.

42.PittWG,RossSA.Ultrasoundsincreasetherateofbacterial

cellgrowth.BiotecholProgr.2003;19:1038–1044.

43.MasonTJ,PaniwnykL,LorimerJP.Theuseofultrasoundin

foodtechnology.UltrasonSonochem.1996;3:253–260.

44.ChengLH,SohCY,LiewSC,TehFF.Effectsofsonicationand

carbonationonguavajuicequality.FoodChem.

2007;104:1396–1401.

45.YangB,ZhaoM,ShiJ,YangN,JiangY.Effectofultrasonic

treatmentontherecoveryandDPPHradicalscavenging

activityofpolysaccharidesfromlonganfruitpericarp.Food

Chem.2008;106:685–690.

46.OkadaT,UeyamaK,NiiyaS,KanazawaH,FutaiM,Tsuchiya

T.Roleofinducerexclusioninpreferentialutilizationof

glucoseovermelibioseindiauxicgrowthofEscherichiacoli.J

Bacteriol.1981;146:1030–1037.

47.FernándezEE.Microbiologíaeinocuidaddelosalimentos.

UniversidadAutónomadeQuerétaro.Querétaro,México:

MéxicoPress;2000.

48.ConeerDE,KotrolaJS.GrowthandsurvivalofEscherichiacoli

O157:H7underacidiccondition.ApplEnvironMicrobiol.

1995;61:382–385.

49.GarlandML,KasparCW.EscherichiacoliO157:H7acidic

toleranceandsurvivalinapplecider.JFoodProt.

1994;57:460–464.

50.ZhaoT,DoyleMP,BesserRE.Fateofenterohemorrhagic

EscherichiacoliO157:H7inappleciderwithandwithout

preservatives.ApplEnvironMicrobiol.2013;59:2526–2530.

51.Garcia-GraellsC,HaubenKJ,MichielsCW.High-pressure

inactivationandsublethalinjuryofpressure-resistant

Escherichiacolimutantsinfruitjuices.ApplEnvironMicrobiol.

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Com os Cefets e a expansão da Rede Federal, percebe-se o direcionamento dessa política pública para o atendimento aos grandes centros urbanos e polos no interior dos estados;

Therefore, this study aimed to evaluate the extraction/export of nutrients and dry matter production of cactus pear under different spacings and chemical fertilization.. Material

LSD for columns = 0.01; LSD for rows = 0.02; OM = 0.31%; CV% = 5.39 LSD - Least significant difference; OM - Overall mean; CV - Coefficient of variation * Means followed by the

Abstract – The objective of this work was to evaluate the effect of pond management on fish feed, growth, yield, survival, and water and effluent quality, during tambaqui (

To our knowledge, there is limited literature on the study of the phenolics, tannins, and flavonoids, and associated antioxidant activity of cactus pear peel and seeds of different

Effect of ultrasound treatment on carrot juice was investigated through measuring pH, electrical conductivity, viscosity, visual color, total soluble solids, total sugars,

The objective of this work was to study the effects of variables inoculum concentrates, temperature and layer thickness over the protein increase and dry matter of cactus pear