• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número2

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número2"

Copied!
12
0
0

Texto

(1)

Searhes at LEP2 Latest Results

M. Begalli

InstitutodeFsia,UniversidadedoEstadodoRiode Janeiro, UERJ

RuaSFranisoXavier,524/3023-D,20559-900, Rio deJaneiro,RJ,Brasil

(member oftheDELPHICollaboration)

Reeivedon30Marh,2001

Searhes for theHiggs bosonof theStandard Modeland supersymmetrimodels havebeen

per-formed by the four LEP experiments in the data olleted over almost 12 years (August/1989

untilNovember/2000)atentre-of-massenergiesvaryingfrom91.2 GeVto209GeV.Anexessof

andidatesfor theproesse +

e !Z

!Z 0

H 0

wasfoundforHiggsmassesnear114GeV.

I Introdution

TheLEP(LargeEletron Positron)aelerator,plaed

at CERN, the European Laboratory for Partile

Physis, has suesfully delivered e +

e olisions with

energiesupto209GeVforalmost12years.

TheLEP ollider'sinitial energywashosento be

around 91 GeV, sothat in these ollisions a Z 0

par-tile would be produed. The theory of fundamental

partiles alled theStandard Model hasbeen ritially

tested by studying the reationand deay of the Z 0

.

Thesestudiesstillontinue. TheZ 0

isveryshort-lived,

so its presene has to be inferred from its

disintegra-tion fragments, whih may vary from twoto nearly a

hundred. Sine the end of 1995, LEP has moved on

from theZ 0

and entered itsseond phase. Its energy

wasdoubledtoallowthestudyoftheprodutionofthe

Z 0

Z 0

pairsandofW +

W pairs,theharged

ounter-parts oftheZ 0

,thusopeninganewdomainof

investi-gationsandStandardModeltests aswellasthesearh

for newpartiles, partiularlythe Higgsboson and/or

supersymmetri partiles.

II The experiments

FourexperimentswereplaedintheLEPring,namely

ALEPH, DELPHI, L3 and OPAL. They are general

purpose experiments. They have a silion vertex

de-tetor apable to reonstrut the deay of short lived

partilesliketheonesformedbythebquarks,a

trak-inghamberinordertoreonstrutthetrajetoryofall

hargedpartilesproduedinthee +

e ollisions,

ele-tromagneti andhadronialorimeters tomeasure the

energyoftheeletrons,photonsandhadrons,andmuon

hambers. Detailsofeahexperimentan befoundin

[1℄. Fig.1showsapiture of theDELPHI experiment

SineAugust1989,whentheystartedthedata

tak-ing,until November2000, when LEPwasstopped, an

integratedluminosityof2:5fb 1

wasolleted.

Figure1. TheDELPHIexperimentatLEP.

Luminosityisaveryusefullnumberin highenergy

physis. The number of events produed in a ertain

proessisgivenby

N=L

whereN isthenumberofevents, istherosssetion

ofthegivenproess and Lis theluminosity. To

mea-suretheLuminosityawellknown proessisused: the

Bhabhasattering , e +

e ! e +

e . Calorimeters are

plaedveryforwardineahofthedetetorsinorderto

registerboththeeletron andthepositron from these

interations. Sinethemomentumoftheeletron(and

thepositron)ismuhhigherthanitsmassthe

dieren-tialrosssetionintheentre-of-masssystemis

alu-latedtaking intoaountmanyordersin perturbation

(2)

perLEPexperiment. Onehasto notiethat although

theluminosity ispratiallythesamefortheZ 0

mass

peakandforthedatatakenduring year2000,therst

onemeansamuhhighernumberofeventsinewewere

atapeakof therosssetionfortheproesse +

e .

Fromthesevaluesweareabletopreditthenumber

ofexpetedeventsforanyproesswewantto study.

III Searhes

The searhes at LEP experiments are performed in a

verybroadway. Wetry to look everywhere, onsider

all the models and investigate eah hannel and eah

utuation. Inorderto getthehighestavailable

num-berofevents(orluminosity)the4experimentsombine

the results, disuss all the anomalies found by an

ex-periment andross-hektheanalysis gettingahigher

hanetondanewpartileifitwasproduedatLEP.

Diret searhesaredoneintheframeworkofa

spe-i model (supersymmetry or harged Higgs, for

ex-ample)lookingfortheexpetedsignal. Exessesinany

nalstatetopologyarealsostudiedsinetheywill

trig-ger new models. Indiret searhes take the Standard

Modelasthenullhypothesisandseeifthereare

devia-tions.

Inthispaperwewillpresentthesearhforthe

Stan-dard Model Higgs and for the Higgses predited by

theMSSM(MinimalSuperSymmetriModel). All

re-sults are taken from the presentations at the LEPC

(LEP Commitee)[2℄, from the publiations of the 4

experiments[3℄andreferenestherein.

IV The Standard Model Higgs

The theory of the Standard Model, SU(2)U(1),

de-sribesatthepermillleveltheouplingsofquarksand

leptonsto,Z 0

, W

and(to lessauray)thetriple

gauge verties: the gauge symmetry is indeed exat.

Yet the partiles are note degenerate in mass i.e. the

symmetry is broken in the masses: the symmetry is

spontaneouslybrokenviatheHiggsmehanism.

Theexistene oftheHiggsboson iswellsupported

by thedata onradiativeorretion but, whih isthe

valueofitsmass?

PreisiontestsoftheStandardModelhavereently

been performed by LEP, SLD and the Tevatron, at

FERMILAB(USA).Inthedatatherewasnosigniant

evidene for departure from theStandard Model with

preisionof theorder of 0.1% ([5℄), asan be seen in

Fig. 2.Fig. 3showsthe 2

tfortheombinationofall

thoseresultsforaHiggs massvarying between10and

1000GeV/ 2

. Thetheoryunertaintyisshownaswell

astheresultsfortwodierentvaluesof

hadrons . The

mass value already exluded by the direted searhes

performedat LEPis113,5 GeV.Thet resultsgivea

lowerlimitfortheHiggsmassofm(H)=62 +53

GeV= 2

andanupperlimitofm(H)=170GeV= 2

at95%

Con-deneLevel.

TheHiggsboson anbeproduedat LEPvia

Hig-gsstrahlungombinedwith gaugebosonfusion. Fig. 4

showsthe diagrams for these proesses. The plot for

the Higgsprodution rosssetion asafuntion ofits

mass is given in Fig.5. It is lear that at LEP

ener-gies the Higgsstrahlung plays the major ontribution

sine our mass reah is 115 GeV/ 2

. For suh values

of masstheHiggspredominantlydeayinto bquarks,

BR (H 0

!b

b)85%. Theseond mostprobable

de-ayhannelis theBR (H 0

! +

)8%. Fordata

takenabove200GeVthehannelsH 0

!W +

W and

H 0

!gg were alsostudied.

Figure2. PreisiontestsoftheStandardModel.

Figure3.The 2

tforallthetestsintheStandardModel

foraHiggsmassvaryingbetween10and1000GeV/ 2

.

IftheHiggswasproduedviae +

e !Z

!H 0

Z 0

we expet to have 3 topologiesfor an event having a

(3)

4 jets: 2 jets oming from the Z 0

! qq deay

andtheother2fromtheHiggsdeayinapairof

bquarksin the event. Eah jet omes from the

hadronizationofeahofthequarks. Suh

topol-ogyisthemostprobableone,itours60%ofthe

time.

2jets and missing energy: themissing energyis

duetothedeayZ 0

!andthe2jetsfromthe

Higgsdeay. Theprobabilityhereis19%.

2jetsand2leptons: hereZ 0

!e +

e ; +

giv-ingaverylearsignature,theHiggsproduesthe

2jets. Unfortunatelyitis thelessprobablease,

only6%.

WhentheHiggsdeaysinapairof leptonsthe

topologiesremainsthesame,onlythejetsoming

fromitsdeayshaveverylowmultipliity(1,3or

5hargedtraks).

Many hannels an have the same topology as a

Higgsevent. Inordertoredue thebakground,whih

is some orders ofmagnitude higher than thesignal, a

set of uts wasapplied by eah experiment to the

re-onstrutedevents.

e +

e ! qq and e +

e ! Z 0

are the dominant

bakgroundbut easyto redueonewetakeinto

aountthehermetiityofthedetetors.

e +

e ! e +

e Z 0

and e +

e ! e

W

is

re-dued by analysing the missing momentum and

themissingenergyoftheevent.

speial are is needed with 4-fermion, e +

e !

Z 0

Z 0

and e +

e !Z 0

gg events, whereg stands

forgluon. Inthis ase, agood mass

reonstru-tionisneededbothfortheZ 0

andfortheHiggs.

e +

e ! W

+

W is an irreduible bakground

for thestudies of the harged Higgs prodution,

e +

e !H +

H .

e +

e ! Z

0

Z 0

is an irreduible bakground

for the Standard Model and the

supersymmet-ri Higgs searh, namely e +

e ! Z

0

H 0

and

e +

e !h 0

A 0

.

Figure 4. The diagrams for the prodution of the Higgs

bosonat LEP:Higgsstrahlungombinedwithgauge boson

Figure5.CrosssetionforHiggsbosonprodutionine +

e

ollisionsasafuntionofitsmass.

Figure 6. The dierent topologies of the events e +

e !

Z 0

H 0

.

Theb-taggingisthefundamentaltooltoreduethe

bakground. Combininga set of seletionuts, whih

inludesawellreonstrutedseondaryvertex

ompat-ible with the b-lifetime, it givesa veryaurate

iden-tiation of the b-deays. Fig. 7 shows the

distribu-tionsofthevariablesusedintheb-taggingbyDELPHI,

namelythelifetime,themassofthe seondaryvertex,

the fration of the harged energy, the missing

trans-verse momentum of the seondary vertex, the lepton

identiation and transverse momentum in ase of a

semi-leptonideayandthetrakrapidity. The

agree-mentobtainedbetweenreal data(RD)andtheMonte

Carlo(MC)is also shown. Fig. 10presentsalose-up

ofthevertexregionofadoubleb-taggedevent,aHiggs

andidate,foundbyL3.

Tolivewith the remaining bakgroundone has to

searh for an exess in the mass distribution for the

Higgsandidates. Fig. 8showsthereonstrutedHiggs

(4)

sele-They dier by asking a dierent value for the

rela-tionsignal/bakground(S/B).Sineitisimpossibleto

eliminateompletelythebakground,aneuralnetwork

and/or adisriminantlikelihood analysis wasused by

the4experimentsinordertogetabetteralulationof

theprobabilityofaneventtobesignalorbakground.

ThereforetherstplotinFig. 4wasdonebyrequiring

S=B = 0:3, the seond plot by requiring S=B = 1:0

and thethird S=B =2:0 at least. It means, an event

willneverbealledaHiggseventbut aandidatewith

highprobabilityto beaHiggs,ifthiswill bethease.

Oneansee that itis possibleto observeanexessof

thesignaloverthebakgroundifthemassoftheHiggs

bosonisoftheorderof115GeV/ 2

.

Figure7. Thedistributions ofthevariables usedinthe

b-taggingbyDELPHI.

Figure8. Distributionsofreonstrutedmass fortheloose

(S/B=0.3), medium (S/B=1.0) and tight (S/B=2.0)

sele-A. 2jetsand 2 leptonshannel

As it wassaid before, the topologywith 2 leptons

and 2 b-quarksis the leanestoneto be analysed. In

thisase, the2leptonsmustbewellidentied as

ele-tron, muon or tau, be well isolated from the jets (in

ordertoavoidthebakgroundfrome +

e !b

b()and

e +

e !()eventswherebothquarksdeay

semilep-tonialy), t a Z 0

mass and have2 jets tagged as b.

Speial are is taken for the ase with a pair of taus,

beause of the neutrinos originated in the tau lepton

deay. A good agreement between the data and the

expeted bakgroundwasfoundbythe4experiments,

showingnoevideneforaHiggsandidateinthis

topol-ogy.

B. 2jets and missingenergy hannel

Themainharateristisoftheseeventsisthe

miss-ingenergyoftheorderoftheZ 0

mass. Theb-jetsmust

be aoplanar, the missing momentum should never

pointtoarakinthedetetorandaspeialarewith

theZ 0

Z 0

produtionandthesymmetridouble

radia-tivereturn must be taken. In the double Z 0

produ-tiononeofthebosonsandeayin2neutrinosfakinga

andidateevent. Theproesse +

e !Z 0

isan

irre-duible bakground. DELPHIhas measuredthe ross

setionforitand,asanbeseenin Fig. 9,onlyfewof

thoseeventshavebothphotonsreonstruted. Inboth

asesagoodmeasurementofthetraksandof the

en-ergyinthealorimetersisneessaryin ordertoobtain

agood massreonstrution ofthe jets. A reoilt to

theZ 0

massisalwaysperformedinordertoutothe

Z 0

Z 0

events.

Figure9. Crosssetionsasafuntionoftheenterofmass

energymeasuredbyDELPHIfortheproesse +

e !Z 0

.

L3found1 andidateeventin this topologywhere

0.16bakgroundand 0.38signaleventswereexpeted.

(5)

bak-verylittlemissingmomentum,ompatiblewiththe

pro-dutionoftheHiggsandtheZ 0

nearlyatrest. The

visi-blemassis111GeV/ 2

. AssumingaZ 0

bosonreoiling

againsttheHiggs,thettedmassis114.4GeV/ 2

with

a resolution of3 GeV/ 2

. The event hasa high b-tag

value(probability). Onejethasaverylearseondary

vertex 7.3 mm from the primary, with a largevisible

mass.

Figure 10. The mostsigniant H 0

andidate foundby

C. 4jetshannel

Events are seleted outof thehadroni sample by

foringthem to have4jets and asking at least one of

them to beb-tagged. This already redues the qq(),

twophotoninterationandtheZ 0

bakground.

Us-ingthe DURHAM algorithm thejets areagain

reon-struted and the b-tagging is applyed giving a global

valuedened asthemaximumb-tag valuefor any

di-jet in the event, omputed as the sum of the

orre-spondingjetb-taggingvalues. ANeuralNetwork(NN)

ombiningdierentnumberofvariables(itdependson

theexperiment,DELPHI,forexample,uses13)isused

to further selet theevents. The rstvariable for the

NNisalwaystheglobalb-taggingvalueoftheevent.

Test of the kinematial ompatibility of the event

with the hypotheses of W +

W and Z

0

Z 0

pair-prodution are performed in either 4 or 5 jet

ong-urations. First,onstrained tsare used toderivethe

probabilitydensityfuntion measuringthe

ompatibil-ityoftheeventkinematis withtheprodutionoftwo

objetsofanymasses. Thistwo-dimensional

probabil-ity,theideogramprobabilityisthenfoldedwiththe

ex-petedmassdistributionforbothpair-prodution

pro-esses.

Furtherutsareperformedbyeahexperiment

de-pendingontheirpartiularanalysis. Thehoieofthe

Higgs dijet makes use of both the kinematial 5C-t

probabilitiesandtheb-tagginginformationintheevent.

Thelikelihoodpairingfuntion,

((1 P Z b P Z )P

j1 b P j2 b P j3 q P j4 q +P Z b ) P j 1 b P j 2 b P j 3 b P j 4 b +P Z ) P j 1 b P j 2 b P j 3 P j 4 )P

5C

3;4

isalulatedforeahofthesixpossibilitiestoombine

thejets j

1 ;j 2 ;j 3 ;j 4 with P ji b ;P j i ;P j i q

being the

prob-ability of getting the observed b-taggingvalue for the

jetj

i

whenoriginatingfrom ab, orlightquarks,

es-timatedfromsimulation. P Z

b

andP Z

arethehadroni

branhingratiosoftheZ 0

intob, quarksandP 5C

3;4 is

theprobabilityorrespondingtothekinematial5C-t

with the jets j

3 and j

4

assigned to the Z 0

.

Selet-ing the pairing ombination that maximizes this

fun-ion, the proportion of right mathings for the Higgs

di-jet, estimated in simulated signal events with 114

GeV/ 2

isabove 70%at thetight level, keeping alow

rate of wrong, ross-legged, pairings for Z 0

Z 0

bak-groundevents.

Three andidateswere foundbyALEPH. Therst

high purity andidate, shown in Fig.11, at a

entre-of-massenergyof 206.6GeVwasreonstrutedwitha

Higgsboson massof 110.0 GeV/ 2

. Threeof the four

jetsare wellb-tagged and theevent wasseleted as a

(6)

net-jetwithavalueof0.214isseletedasoneoftheHiggs

bosonjets. Theprobabilityforanyjetina4b eventto

havesuhalowb-taggingvalueis19%.

Figure11. Four-jetHiggs bosonandidatewithareonstrutedHiggs bosonmassof110.0 GeV/ 2

. Three ofthefourjets

arewellbtagged. Theeventisshownintheviewtransversetothebeamdiretionandinaloseupofthehargedpartiles

inthevertexregion.

Figure12. Four-jetHiggs bosonandidate withareonstrutedHiggs bosonmassof 112.9 GeV/ 2

. Allfour jetsare well

(7)

Figure 13. Four-jet Higgsboson andidatewitha reonstrutedHiggs bosonmass of112.9 GeV/ 2

. All fourjets arewell

btagged. Theeventis shownintheview transverse tothebeamdiretionand inaloseupofthehargedpartilesinthe

vertexregion.

As theeventis identied as a4b event,anyof the

sixpairingombinationsanbeonsideredin its

inter-pretation. ThepairingmostompatiblewiththeZ 0

Z 0

hypothesis,usingatinludingtheZ 0

bosonwidthand

massresolutions,giveslargettedZ 0

bosonmassesof

98.9GeV/ 2

and101.6GeV/ 2

.

Theseondhighpurityandidate,showninFig.12,

hasareonstrutedHiggsbosonmassof112.9GeV/ 2

.

All four jets in the event are well b-tagged with a

b-taggingneuralnetworksumof3.76. Themeasured

visi-bleenergyinthiseventis252GeV,whihismuhlarger

thanthatallowedbytheenergyresolutionofabout10

GeVforaneventwithaentre-of-massenergyof206.7

GeV. A 22 GeVeletromagneti showerwas deteted

in thesmallanglealorimeter(SICAL)in theplaneof

theaelerator. Asthereistoomuhreonstruted

en-ergy and the momentum imbalane is in the opposite

diretion to the22GeVenergy deposit,this showeris

most likely a beam-related partile, unrelated to the

rest of the event. Although the overlapping of suh

beam-relatedbakgroundis not frequent, the 22 GeV

of energy is onsistent with the observation in events

triggeredatrandombeamrossings.

Ifthislowangleenergydepositisremovedfromthe

event, the reonstruted Higgs boson mass inreases

from 112.9 GeV/ 2

to 114.5 GeV/ 2

. The neural

net-workforthiseventisstableandhangesfrom0.997to

0.998. As the reonstruted Higgs boson mass shifts

losetotheexess,thesignianeoftheexesswould

inreaseby0.2.

Even if the 22 GeV partile is removed from the

event, there is still an energy exess of 23.3 GeV

in-diating a mismeasurement of jet energy. Suh

mis-measurementis oftendueto fakeneutralhadrons,i.e.,

aharged partile. This auses double outing in the

omputation of the energy of the jet. Indeed, a

de-tailedinspetionofoneofthejetsshowsthata13GeV

neutralhadron is likely to havebeen misidentied. If

thisobjetisremovedfromthejetandtheHiggsboson

massreomputed,exluding atthe sametimethe low

angle (SICAL)objet, avalue of 114.2 GeV/ 2

is

ob-tained. The very small variationin the reonstruted

Higgsboson massours beausethettedmasses

de-pendmorestronglyonthemeasuredjetdiretionsthan

onthejetenergies.

As fortherstandidate, thebest bakground

ex-planationforthis eventis theZ 0

Z 0

hypothesiswitha

dierentjetpairing. TheZ 0

bosonmassesfromatfor

themostprobableZ 0

Z 0

pairinghoieare94.0GeV/ 2

and97.3GeV/ 2

.

The third high purityfour-jet andidate, shownin

Fig.13, at a entre-of-mass energy of 206.7 GeV/ 2

,

hasareonstrutedHiggsbosonmassof114.3GeV/ 2

.

BothoftheHiggsbosonjetsareverywellb-taggedwith

well measured displaed verties and neural network

values of 0.999. The 13.8 GeV/ missing momentum

in the event points to the middle of the Higgs boson

jetontaininganidentiedmuonomingfromthe

se-ondaryvertex,asshowninFig.13. Thisisastrong

in-diationthat,exeptfortheunmeasuredneutrinofrom

thesemileptonibquarkdeay,therest oftheeventis

wellmeasured. Thisisalsosupportedbythefatthat

the measuredinvariantmass of the two non b-tagged

jetsis 92.1 GeV/ 2

, onsistent with aZ 0

boson. The

measuredinvariantmass of the b-taggedjets and the

missingmomentumis114.4GeV/ 2

,whihrenders

un-likelytheZ 0

Z 0

(8)

thefourjets(37 o

),themostlikelybakground

explana-tionforthiseventistheb

bgghypothesis. Theminimum

jet-jetanglefortheb

bggbakgroundpeaksatlow

val-ueswith42%oftheeventshavingangleslessthan37 o

,

while 11%of the signalevents havesuh alow angle.

The twomeasured jet energies of the non b-jets, 43.5

GeVand49.0GeV,aretypial,however,forthedeay

ofaZ 0

bosonprodued nearlyatrest.

V Condene level estimation

ThemassisnottheonlyinformationwhihallowsHiggs

bosonprodutiontobedistinguishedfrombakground.

Additionalinformationistakenintoaountinthe

like-lihood ratio Q =L

s+b =L

b

, where L

b

is the likelihood

of the bakground hypothesis and L

s+b

is the

likeli-hoodwhenaspeiHiggsbosonsignalisaddedtothe

bakground. Thelikelihoodratiomeasuresthe

ompat-ibility oftheexperiment withapartiular signalmass

hypothesis. Thelikelihoodratiois traditionallyshown

intheform 2lnQbeauseiftherelationshipbetween

thelikelihood ratio and the 2

distributions,and also

due to the fat that when the logarithm is taken

in-dividual events ontribute as a sum of event weights

whihanbeexaminedindividually.

2lnQ=2ln exp

(s+b)

exp b

n

obs

Y

i=1 sf

s (

~

X

i )+bf

b (

~

X

i )

bf

b (

~

X

i )

2lnQ=2s 2 n

obs

X

i=1

ln(1+sf

s =bf

b )

heres stands forthe total number of signal and b for

bakground events expeted, f

s and f

b

are the

prob-ability densities that a signal or a bakground event

will befound inagivennal statewiththe setof

val-ues ~

X

i

whih inludes the reonstruted mass, the

b-tagging, the jet reonstrution algorithm, the missing

energy,theleptonpairseletionriteria,thequalityof

thetandsomeneuralnetworkanalysis(inaseitwas

used). Negletingthef

s

andthef

b

termsQissimply

the ratio of the Poisson probabilities to observe n

obs

events for the signal-plus-bakground hypotheses and

bakground-onlyhypotheses.

Noorrelation was foundexept betweenthe

neu-ralnetwork ALEPH analysis for the four-jets andthe

reonstrutedHiggsmassforboththebakgroundand

thesignaldistributions. The eetof this orrelations

was takenintoaount.

The ompatibility of an experiment with a given

hypothesis is determined from the expeted

distribu-tion of the likelihood ratio by alulating the

proba-bility of obtaining a likelihood ratio smaller than the

one observed. This probability, alled the ondene

level (CL), depends upon the hypothesized Higgs

bo-bakground-only hypotheses. If the hypothesis being

tested is true, then the distribution of possible

on-dene levels is equally distributed between 0 and 1,

with a median value of 0.5. A signal is expeted to

produeanexessrelativetotheexpetedbakground,

whihwouldappearasadipinthe1 CL

b

distribution,

where CL

b

istheondene levelfor the

bakground-onlyhypothesis.

A. Results

Fig.14givesthelog-likelihood,-2lnQ,asafuntion

of the Higgs mass. The blak region shows the 1

limitandthegrayregionthe2limitfortheexpeted

bakground. The urve (dotted) shows the expeted

signal+bakgrounddistributionforaHiggsmassof115

GeV/ 2

andthefullline theresultsobtainedfrom the

data.

Figure14. Thelog-likelihood,-2lnQ,as afuntionofthe

Higgs mass. Theblakregionshowsthe 1limit andthe

grayregionthe2limitfortheexpetedbakground. The

urve (dotted)shows theexpetedsignal+bakground

dis-tributionfor aHiggsmass of115GeV/ 2

andthefull line

theresultsobtainedfromthedata.

Fig.15showstheprobabilitydensityasafuntionof

log-likelihoodforeahexperiment,separately. The

ver-tial line showsthe valueof-2lnQ found in thedata,

the urve drawn in a full line the expeted

distribu-tionforthebakgroundandtheurveinabrokenline

theexpeteddistribution forthesignalofaHiggswith

mass 115 GeV/ 2

. As desribed before, ALEPH has

3 andidates, L3 has 1 andidate with a not so high

probability. OPALhasshownnoandidatewithahigh

probabilitybutombiningtheireventstheyalsoshowa

displaementofthedatainthediretionoftheexpeted

signal+bakgroundprobability distribution. DELPHI

hasno andidate. At theDELPHIolliding point the

beamshad an angle smaller than180 o

whih brought

an inertainty in the determination of the seondary

vertex of the b-deays. This unertainty was enough

(9)

exper-Figure 15. The probability density as a funtion of

log-likelihoodfortheeventsfoundbyeahofthe4experiments.

Thevertiallineshowsthevalueof-2lnQfoundinthedata,

the urvedrawninafull linetheexpeteddistributionfor

thebakgroundandtheurveinabrokenlinetheexpeted

distributionforthesignalofaHiggswithmass115GeV/ 2

.

Fig. 16 gives the same distributions for the

om-binedresultsofthe4experiments.

Fig. 17showsthe1 CL

b

distributionforthe

om-bineddatafromthe4LEPexperiments.

Figure 16. The probability density as a funtion of

log-likelihood for the ombined results of the 4 experiments.

The vertial line shows the value of -2 lnQ found in the

data, theurvedrawninafull line the expeted

distribu-tionfor thebakgroundand theurveinabrokenlinethe

expeted distributionfor the signal of a Higgs with mass

2

Figure17. 1-CL

b

as afuntionoftheHiggsmass. The

ex-peted 2, 3, and 4 limits are drawnin the gure. The

dashedlineinthe topshowstheexpetedbakground, the

urve(dotted)theexpetedsignal+bakgrounddistribution

foraHiggsmassof115GeV/ 2

andthefulllinetheresults

obtainedfromthedata.

It is learly seen that an exess of events was

ob-served, namely 2.9 away from the expeted

bak-ground. Althougit isnotenoughtolaimadisovery,

alimitfortheHiggs massat 95%CLanbesetat

m

H

>113:2GeV = 2

:

VI MSSM Neutral Higgs boson

Theanalysisis verysimilarto that doneforthe

Stan-dard Model Higgs, exept that now we searh for a

pair of neutral Higgs boson, h and A. Two

han-nels have been studied, e +

e ! h

0

A 0

! b

bb

b and

e +

e !h 0

A 0

! +

b

b,themostprobableones. The

jetseletion and reonstrution is thesameasfor the

standardHiggs analysis. The nal disrimination

be-tweenbakgroundandsignalisbasedona

multidimen-sionalvariablewhihombineseightvariablesinluding

b-tagging,anti-QCDvariables and theprodution

an-gleoftheHiggsbosonandidates. Theomparison

be-tweenthedataandthebakgroundsimulationshowsa

smallexessofeventsinthedata,allwith3b-jetswell

identied but they are totally ompatible with Z 0

Z 0

events.

A tighter ut in the likelihood of the Standard

Model Higgsanalysis forthehannel e +

e ! +

qq

is needed in order to selet the e +

e ! h

0

A 0

!

+

b

bandidates. Noandidatewasfoundwhile0.25

areexpetedfrom StandardModel bakground,

keep-ingareasonableeÆieny forthesignal.

Theresultsare ombinedwith the samestatistial

methodasitwasfortheStandardModelHiggs. Inthe

MSSM,attreelevel,theprodutionross-setionsand

the Higgs branhing frations depend on twofree

pa-rameters,tan andoneHiggsbosonmass,or,

alterna-tively,twoHiggsbosonmasses,in generalm

A andm

(10)

byradiativeorretionswhihintrodueadditional

pa-rameters: themassoftheeletroweaksale,M

susy ,the

ommonSU(2)gauginomassterm 1

attheeletroweak

sale, M

2

, and the ommon squark trilinear oupling

at the eletroweaksale, A. The interpretation of the

experimentalresultsdependsonthevaluesassumedfor

theseparametersandalsoontheorderofthealulated

radiativeorretions[6℄.

The results presented here rely on leading-order

two-loop alulations of the radiative orretions in

the renormalization group approah[7℄, with reent

modiations[8℄. The values adopted for the

param-eters are: 175GeV/ 2

for thetopmass, 1TeV/ 2

for

M

susy

,200GeV/ 2

forM

2

and-200GeV/ 2

for,the

Higgsmixing parameterinthesuperpotential. Forthe

mixinginthestopsetorthem max

h

senarioandno

mix-ing were onsidered. Then asan overthe MSSM

pa-rameterstan andm

A

,inthem

A

rangeof20GeV/ 2

-1TeV/ 2

,andtan between0.5and30. Ateahpoint

of the parameter spae, the hZ and hA ross-setions

andtheHiggsbranhingfrationswereomputedwith

theHZHAprogram[9℄(version3).

Theresultstranslateinto regionsof theMSSM

pa-rameterspaeexludedat95%ondenelevelormore.

The exludedregions are presented in the (m

h ;tan)

andinthe(m

A

;tan)planeinFigs. 18and19,therst

forthe maximalm

h

and theseond fortheno mixing

ase. The(m

A ;m

h

) planeis presentedin Fig. 20. As

ilustrated in the latter, there is a small region of the

parameter spae where the deay h ! AA opens, in

whihaseitsuplantstheh!b

bdeay. Thisexplains

theunexludedholeattan=0:5andm

a

40GeV/ 2

inthenomixing senario. A sanforlargevaluesof

wasalsodone. Theresults,obtainedbyusingall

avail-ableLEP2data,areshowninthe(m

h

;tan)planeand

in the(m

A

;tan) plane in Fig. 21. In this ase, the

BR(h 0

!b

b)!0dueto largelooporretionsandthe

proesse +

e !h 0

A 0

is suppressed.

Figure 18. Theexludedregions ofthe MSSM parameter

spaeexludedat95%ondenelevelormoreforthe

max-imalm

h ase.

Figure 19. Theexluded regions of theMSSM parameter

spae exludedat95% ondenelevelor morefor the no

mixingase.

Figure 20. Theexludedregions of the m

A ;m

h

plane

ex-ludedat95%ondenelevelormore.

Figure 21. Theexluded regions of theMSSM parameter

spaeexludedat95%ondenelevelormoreforthesan

overlargevaluesof.

Finally,these resultsestablish95%ondenelevel

lowerlimits onm

h and m

A

, for either assumption on

themixinginthestopsetorandforallvaluesoftan

above0.6:

m

h

>89:9GeV= 2

m

A

>90:5GeV= 2

1

TheU(1)andSU(3)gauginomasstermsattheeletroweaksale,M

1 andM

3

,areassumedtoberelatedtoM

2

throughtheGUT

relationsM =(5=3)tan 2

M andM =( =)sin 2

(11)

Furthermore, there are exluded ranges in tan

be-tween 0.5 and 2.3 in the no mixing ase and between

0.9and7.7inthem max

h

senarioasanbeseeninFigs.

18and19.

VII Charged Higgs bosons

IntheMSSMtheH

isonstrainedtobeheavierthan

the W

. The sensitivity of the urrent searhes are

limitedatm

H <m

W

thenanysignalofH +

H would

indiate newphysisbeyond theMSSMoranextreme

set ofparametervalues.

ThehargedHiggsaneitherdeayin squarksor

. The branhing ratios are unknown. Speial are

is needed withthe H +

H ! hannel beause4

neutrinos will be present in the event. Angular uts

and a good identiation for the tauswere used. For

theH +

H !ss hannelenergy-momentum

onser-vation and equal di-jet masses were required. For all

hannels, inluding the semi-leptoni H +

H ! s

anti-b-tagging, WW and QCD uts were applied

tak-ing into aount the polarization, the aoplanarity

and event shape variables, - and s-tagging, and the

polarangles(totakeintoaountthespinoftheHiggs

bosonsprodued).

TheLEPHiggsworkinggrouphasfoundno

india-tion that the WW wall wasbrokenfor anybranhing

ratio of the Higgs deay setting a mass limit at 95%

ondene level

m

H

>80:8GeV= 2

BR ()=0

m

H

>87:7GeV= 2

BR ()=1

m

H

>77:4GeV= 2

anyBR ()

Fig. 22 shows the limits obtained in the plane

BR(H

!)versusthehargedHiggsmass.

Figure22. TheupperlimitforthehargedHiggsmassasa

funtion oftheBR(H

!

)at95%ondene.

VIII Non fermioni Higgs

ou-pling h !

IntheStandardModel andin theTwoHiggs Doublet

ModelweanproduetheHiggsviathehannels

e +

e !h 0

A 0

!A

0

!b

b

e +

e !h 0

A 0

!h 0

h 0

Z 0

!

e +

e !h 0

A 0

!A 0

A 0

A 0

!b

bb

bb

b

e +

e !h 0

Z 0

!!qq

The h 0

! hannel has been searhedby the 4

experiments. Alltheinformationfromthe

eletromag-netialorimeters wereusedaswellasthehermetiity

andtheb-tagging. Thereonstruted massforthe

pair has shown a good agreement with the expeted

bakground. TheupperlimitasafuntionoftheHiggs

massisgivenin Fig.23.

Figure23. TheupperlimitasafuntionoftheHiggs mass

at95%ondenelevelfortheh 0

! searh.

IX The invisible Higgs

TheHiggsbosondeaysintotheheaviestkinematially

aessible partiles. In the MSSM it an deay into

invisiblespartiles,likethelightestneutralino 0

h 0

! 0

1

0

1

Ifthe 0

is purelyphotinothenthisproessis

sup-pressedand

h 0

! 0

0

;

0

! 0

Z 0

(12)

Thenalstateisthenharaterizedby2leptonsor

2jetsfromtheZ 0

plusmissingenergyandmomentum.

Whenthe Z 0

deaysinto apair of quarks,the

analy-sisisthesameasfortheH 0

hannelbutherethere

wasnoneedoftheb-tag. Themainbakgroundsome

from e +

e !qq(), W

e

andW +

W for thease

Z 0

!` +

` .

ALEPH,DELPHI andOPALombined theirdata

andfoundnosignalputtingalimitof107.6GeV/ 2

for

theHiggsmassat95%ondenelevel.

X Conlusions

LEP has had a very suessful running over almost

12years,opperatingatenergiesmuhaboveitsdesign

value. If LEPwould havereahed 7GeVmorein the

entre-of-mass energy than what it hasdelivered, the

MSSM would havebeenoveredompletely, although

strong onstraintshave been put (also from the

om-binedanalysisofthe4experiments):

m(h 0

);m(A 0

)>90:5GeV= 2

0:9>tan>2:3

m(H

)>77:4GeV= 2

m(LSP)>48GeV= 2

m(

)>104GeV

TheresultspresentedherewereshownattheLEPC

meeting atCERN onNovember3,2000andalso

pub-lishedbythe4experiments,asgivenin thereferenes.

More data, or results, from other experiments, rather

thantheLEPones,willbeneededtodeterminewether

the observations reported hereare theresult of a

sta-tistialutuationortherstsignofdiretprodution

oftheHiggsboson.

Referenes

[1℄ ALEPHCollaboration,D.Abbaneoetal.,Nul.Instr.

andMeth.A294,121(1990).

ALEPHCollaboration,D.Abbaneoetal.,Nul.Instr.

andMeth.A360,481(1995).

DELPHI Collaboration, P. Abreu et al., Nul. Instr.

andMeth.A378,57(1996).

DELPHI Sillion TrakerGroup, P. Choudoba et al.,

Nul.Instr.andMeth.A412,304(1998).

L3 Collaboration, B. Adeva et al., Nul. Instr. and

Meth.A289,35(1990).

OPALCollaboration,K.Ahmetetal.,Nul.Instr.and

Meth.A305,275(1991).

OPAL Collaboration, S.Anderson et al., Nul. Instr.

andMeth.A403,326(1998).

OPAL Collaboration, B.E. Anderson et al., IEEE

Trans.onNul.Siene41,845(1994).

OPAL Collaboration, G.Aguillion et al.,Nul. Instr.

andMeth.A417,266(1998).

[2℄ http://delphiwww.ern.h/~oine/physis

links/lep.html

http://lephiggs.web.ern.h/LEPHIGGS

[3℄ ALEPH Collaboration, CERN - EP/2000 - 138, R.

Barateetal.,Phys.Lett.B495,1(2000).

DELPHI Collaboration, CERN - EP/2000 - 285, P.

Abreuetal.,Phys.Lett.B499,23(2001).

L3 Collaboration,CERN-EP/2000-xxx, M.Aiarriet

al.Phys.Lett.B495, 18(2000).

OPAL Collaboration, CERN-EP/2000-156, G.

Abbi-endietal.,Phys.Lett.B499,38(2001).

http://r.home.ern.h/r/rembser/www/lepjourn.html

[4℄ L3Collaboration,CERN-EP/2000-xxx,M.Aiarri

etal.Phys.Lett.B496, 34(2000).

[5℄ Proeedings of the International Conferene for High

EnergyPhysis-ICHEP200-Osaka,Japan,tobe

pub-lished.

[6℄ LuPape,ProeedingsoftheXSwieaSummerShool

-PartilesandFields,WorldSienti(2000).

[7℄ M. Carena, M. Quiros and C. Wagner, Nul. Phys.

B461,407(1996).

[8℄ S. Heinemeyer, W. Hollik and C. Weiglein, JHEP 6

(2000)9.

M.Carena,S.Heinemeyer,C.E.M.WagnerandC.

Wei-glein,CERN-TH/99-374.

Imagem

Figure 1. The DELPHI experiment at LEP.
Figure 2. Preision tests of the Standard Model.
Figure 4. The diagrams for the prodution of the Higgs
Figure 9. Cross setions as a funtion of the enter of mass
+7

Referências

Documentos relacionados

Isso porque, existe valor nos dois ambientes: numa escola realmente inclusiva, a criança surda pode conviver com crianças ouvintes, o que contribuí para que ela tenha uma

A estratégia seguida na recolha de informação junto dos docentes, foi a da abordagem informal de cada um, salientando a importância da sua contribuição enquanto elemento envolvido

Pretendemos, no presente estudo, focar o problema, considerando o aspecto fonético-fonológico ou o universo fónico da comunicação, da estreita relação, entre

The objective of this study was to evaluate the oral manifestations and histopathological findings on minor salivary glands of patients suspected of SS, applying the AECG criteria

BP corresponde à empresa BP; EDF corresponde à empresa Électricité de France; ENAGAS corresponde à empresa Enagás S.A.; ENGI corresponde à empresa Engie; ENI corresponde à

Mindlin — em carta datada de 10.1.1992, de São Paulo; — acusou o livro com palavras cordiais: &#34;Na roda viva de fim de ano, não pude lhe agradecer desde logo o exemplar que teve

In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties

Figure 3.7: 16QAM results of EVM VS Received power using Direct Detection In figures 3.6 and 3.7, where direct detection was used, the obtained results were similar to those of