• Nenhum resultado encontrado

Rev. Bras. Anestesiol. vol.64 número2

N/A
N/A
Protected

Academic year: 2018

Share "Rev. Bras. Anestesiol. vol.64 número2"

Copied!
4
0
0

Texto

(1)

RevBrasAnestesiol.2014;64(2):105---108

REVISTA

BRASILEIRA

DE

ANESTESIOLOGIA

OfficialPublicationoftheBrazilianSocietyofAnesthesiology

www.sba.com.br

SCIENTIFIC

ARTICLE

In

vitro

evaluation

of

antimicrobial

features

of

sugammadex

Volkan

Hanci

a,∗

,

Ahmet

Vural

b

,

Sevgi

Yılmaz

Hanci

c

,

Hasan

Ali

Kiraz

d

,

Dilek

Ömür

d

,

Ahmet

Ünver

b

aDepartmentofAnesthesiologyandReanimation,MedicalFacultyofDokuzEylülUniversity, ˙Izmir,Turkey bDepartmentofMicrobiology,MedicalFacultyofC¸anakkaleOnsekizMartUniversity,C¸anakkale,Turkey cClinicofMicrobiology,C¸anakkaleStateHospital,C¸anakkale,Turkey

dDepartmentofAnesthesiologyandReanimation,MedicalFacultyofC¸anakkaleOnsekizMartUniversity,C¸anakkale,Turkey

Received10September2012;accepted10June2013 Availableonline11October2013

KEYWORDS

Sugammadex; Antimicrobialeffect;

S.aureus;

E.fecalis;

E.coli;

P.aeruginosa

Abstract

Background: Drugs administered byintravenous routesmay be contaminatedduring several

stages ofproductionorpreparation. Sugammadex isamodified gammacyclodextrin.While

researchintotheantibacterial effectsofvarietiesofcyclodextrin isavailable,thereareno studiesfocusingontheantibacterialeffectsofsugammadex.Thisstudyinvestigatestheinvitro antimicrobialactivityofsugammadex.

Materialsandmethods: The invitroantimicrobial activityofsugammadex was investigated

using thebroth microdilutionmethod. The pH ofthetest solution was determinedusing a

pHmeter.ThetestmicroorganismsincludedStaphylococcusaureusATCC29213,Enterococcus

fecalisATCC29212,EscherichiacoliATCC25922andPseudomonasaeruginosaATCC27853.In

the secondphaseofthestudy 100mg/mLsugammadex(50␮g)was contaminatedwithtest

microorganisms(50␮g),includingS.aureusATCC29213,E.fecalisATCC29212,E.coliATCC

25922andP.aeruginosaATCC27853,lefttoincubatefor24handthenthebacterialproduction

insugammadexwasevaluated.

Results:ThepHofthetestsolutionsrangedbetween7.25and6.97.Usingthemicrodilution method,sugammadexhadnoantibacterialeffectonS.aureus,E.fecalis,E.coliandP. aerugin-osaatanyconcentration.Inthesecondphaseofthestudybacterialproductionwasobserved after24hin100mg/mLsugammadexcontaminatedwiththetestmicroorganismsS.aureus,E. fecalis,E.coliandP.aeruginosa.

Conclusions: Sugammadexhadnoantimicrobialeffectonthetestmicroorganisms,S.aureus,E. fecalis,E.coliandP.aeruginosa.Careshouldbetakenthatsterileconditionsaremaintainedin

thepreparationofsugammadex;thatthesamesugammadexpreparationnotbeusedformore

thanonepatient;andthatstorageconditionsareadheredtoaftersugammadexisputintothe injector.

© 2013SociedadeBrasileirade Anestesiologia.Publishedby ElsevierEditoraLtda.Allrights reserved.

Apartofthismanuscriptwaspresentedasaposterpresentationatthe46thAnnualTARKCongress,Cyprus,7---11November2012.

Correspondingauthor.

E-mail:vhanci@gmail.com(V.Hanci).

0104-0014/$–seefrontmatter©2013SociedadeBrasileiradeAnestesiologia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

(2)

106 V.Hancietal.

Introduction

Some anesthetic agents such as propofol are known to

support the growth of microorganisms,1---5 while other

anesthetic agents such as morphine sulphate, thiopental

sodium, fentanyl citrate, dexmedetomidine and

midazo-laminhibitmicrobial growth.3---7 Anestheticagentsmaybe

contaminated by microorganisms at various stages during

preparationforuse.2Itisimportantforthisreasonthatthe

antibacterialproperties,ortheabilitytoenhancebacterial

production,ofanestheticagentsinacontaminatedsituation

beknown.8

Sugammadex is a modified gamma cyclodextrin.9---11

Cyclodextrins are water soluble cyclic oligosaccharides

with a lipophilic core. Sugammadex has quickly found a

placeinclinicaluseasaselectiveneuromuscularblockade

reverser.9---11 Sugammadex quickly encapsulates steroidal

neuromuscularblockers, increasing the amount of

encap-sulated steroidal neuromuscular blockers in plasma and

separating the blockers from the nicotinic acetylcholine

receptors.9---11

Cyclodextrins are molecules that are often used in

the food and pharmaceutical industries. They are

com-monlyusedtoconvertlipophilicmedicationstohydrophilic

forms.Otherapplicationsofcyclodextrinsincludethefield

of microbiology. Some cyclodextrins, such as

dimethyl-b-cyclodextrin, have been used to increase production of

Helicobacter pylori,12 while others, like

hydroxypropyl-b-cyclodextrin, have been reported to prevent bacterial

production when used to coat vascular prostheses.13

Howevertherearenostudiesevaluatingtheeffectof

sug-ammadex,amodified gammacyclodextrinmoleculelately

beingusedinanesthesiology,onbacterialproduction.

Theaimofthisstudywastoevaluatetheantimicrobial

effectsofsugammadexonthetestmicroorganisms.Thetest

microorganismschosen wereStaphylococcusaureus

Amer-ican Type Culture Collection (ATCC) 29213, Enterococcus

fecalisATCC29212,EscherichiacoliATCC25922and Pseu-domonasaeruginosaATCC27853.

Materials

and

methods

Theantibacterialactivityofsugammadexwasinvestigated

usingthebrothmicrodilutionmethodaccordingtothe

pro-ceduresoutlinedbythe ClinicalandLaboratoryStandards

Institute(CLSI).14

Briefly, sugammadex was diluted with 0.9% sterile

saline to final concentrations of 512␮g/mL, 256␮g/mL,

128␮g/mL, 64␮g/mL, 32␮g/mL, 16␮g/mL, 8␮g/mL,

4␮g/mL,2␮g/mL,1␮g/mLand0.5␮g/mL.Foreach

neu-romuscularblockingdrug,thepHvaluesofallthedilutions

weredeterminedwithapHmeter (SartoriuspHMeter

PB-11).S. aureus ATCC29213, E. fecalisATCC29212, E.coli

ATCC25922andP.aeruginosaATCC27853wereusedas

con-trolmicroorganisms.The bacteria(5×105 colony-forming

unitspermilliliter;(CFU/mL)),MHB(Mueller---Hiltonbroth)

andthesugammadexinthe specifiedconcentrationswere

incubated in wells on microplates at 35◦C for 20h. The

minimal inhibitory concentrations (MIC) were determined

by observing the lowest concentration of the agent that

Table1 ThepHvaluesoftesteddilutionsofsugammadex.

Dilutionofsugammadex(␮g/mL) pH

512␮g/mL 7.25

256␮g/mL 7.22

128␮g/mL 7.14

64␮g/mL 7.09

32␮g/mL 7.04

16␮g/mL 7.04

8␮g/mL 7

4␮g/mL 6.99

2␮g/mL 6.98

1␮g/mL 6.97

0.5␮g/mL 6.97

Physiologicalserum0.9% 6.8

inhibitedvisiblegrowthofthebacterium.Hazeorturbidity inthewellswasanindicatorofbacterialgrowth.

Inthesecondstageofthestudy100mg/mLsugammadex wascontaminatedwiththetestorganisms,S.aureusATCC 29213,E.fecalisATCC29212,E.coliATCC25922andP. aeru-ginosaATCC27853.Bacteria,50␮L(5×105colony-forming

units per milliliter; (CFU/mL)), and 50␮L sugammadex

(100mg/mL)wereincubatedat35◦Cfor24h.After24hthe

bacterialproductioninthesugammadexwasevaluated.

Results

Using the microdilution technique, sugammadex had no antibacterialeffectonS. aureus,E.fecalis,E.coliandP. aeruginosaatanyconcentration.

In the second part of the study, after 24h incubation 100mg/mL sugammadexcontaminated with S. aureus, E. fecalis, E. coli and P. aeruginosa, bacterial growth was observed.

The pH of thetest solutions ranged between 7.25 and 6.97.ThepHvaluesarelistedinTable1.

Discussion

In this study, we found that sugammadex does not have

antimicrobialpropertieswithregardtothetestorganisms,

S.aureus,E.fecalis,E.coliandP.Aeruginosa.

Drugsmanufacturedfor intravenoususe shouldbe

pre-pared and administered in sterile conditions. Infectious

microorganismscanbeintroducedintothepatientthrough

contaminatedcontainers,rubber diaphragms,needlesand

infusionsets.

Anestheticagentsmaybecontaminatedby

microorgan-ismsduringpreparation.Forthisreason,theantimicrobial

effectsoftheusedagentsareimportant.8Itisknownthat

propofolsupportsthegrowthofmicroorganisms.2---4,7,8,15---18

Ontheotherhand,morphinesulphate,thiopentalsodium,

fentanyl citrate, dexmedetomidine, atracurium,

rocuro-niumandmidazolamhaveantimicrobialeffects.3,5---8

Sugammadex is a modified gamma cyclodextrin.9---11

Cyclodextrins are molecules that are often used in the

food and pharmaceutical industries. They are commonly

usedtoconvertlipophilicmedicationstohydrophilicforms.

(3)

Antimicrobialfeaturesofsugammadex 107

alipophiliccore.Otherapplicationsofcyclodextrinsinclude

the field of microbiology. Some cyclodextrins, such as

dimethyl-b-cyclodextrin, have been used to increase

pro-ductionofH.pylori.12Whenaddedtoagargelscyclodextrins

suchasalpha-andbeta-cyclodextrin/hexadecaneare

suit-able foodbeds for the growth of microorganisms such as

CandidalipolyticaandC.tropicalis.19 Researchhasshown

that cyclodextrin molecules, such as beta-cyclodextrin,

when added to liquid cultures neutralize potential toxic

combinations and increase the growth of microorganisms

such as H. pylori.20---22 Solid cultures including modified

cyclodextrins have been used for selective isolation of

microorganismssuchasBordetellapertussis.23---26

However other cyclodextrins, such as

hydroxypropyl-b-cyclodextrin, have been reported to prevent bacterial

production when used to coat vascular prostheses.13

Previous studies have reported methyl-beta-cyclodextrins

inhibitingthegrowthofbacillustypes.27Researchersfound

thatmethyl-beta-cyclodextrinscrossedthecellmembranes

of bacillus species and caused cell lysis; however they

emphasized that this activity wasnot observed for other

gramnegativeandpositivebacteria.27Anotherstudyfound

thatcyclodextrinderivativesactedlikeantimicrobialpeptid

polymixinBandcouldinhibitbacterialproliferation.28

There are no studies evaluating the effect of

sugam-madex, a modified gamma cyclodextrin molecule lately

beingusedinanestheticpractice,onbacterialproduction.

Inourstudy,wefoundthatsugammadexdidnothave

antimi-crobialpropertieswithrespecttothegrowthofS.aureus,

E.coli,P.aeruginosaandE.fecalis.

MostbacteriapreferafairlynarrowpHrange,between6

and8,forsurvival.3,17ThegrowthofS.aureus(ATCC25923),

E.coli(ATCC25922)orP.aeruginosa(ATCC27853)wasnot

affectedby growthconditionswitha pHbetween5.0 and

8.0.29Thebactericidalpropertiesofthiopentalarethought

to berelated to itshigh pH.30 Similarly, the pH rangeof

midazolam was shown to be responsible for its bacterial

inhibitoryeffect.5,7,31 Inourstudy,priortoperformingthe

recommendeddilution,thepHofsugammadexwas

approx-imately 7.5.The dilutedsugammadexhadpH ina narrow

rangebetween6.97and7.25.ThesepHvaluesarewithinthe

rangeforproliferationofthetestmicroorganismsS.aureus

(ATCC25923),E.coli(ATCC25922)andP.aeruginosa(ATCC

27853).

In conclusion,sugammadexhad noantibacterialeffect

onS.aureus,E.fecalis,E.coliandP.aeruginosa.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

References

1.HeldmannE,BrownDC,ShoferF.Theassociationofpropofol usagewithpostoperativewoundinfectionrateincleanwounds: aretrospectivestudy.VetSurg.1999;28:256---9.

2.HenryB,Plante-JenkinsC,OstrowskaK.AnoutbreakofSerratia marcescensassociatedwiththeanestheticagentpropofol.Am JInfectControl.2001;29:312---5.

3.Crowther J, Hrazdil J, Jolly DT, Galbraith JC, Greacen M, Grace M.Growth of microorganisms in propofol,thiopental,

and a1:1 mixtureofpropofoland thiopental.AnesthAnalg. 1996;82:475---8.

4.SosisMB,BravermanB,VillaflorE.Propofol,butnot thiopen-tal, supports thegrowth of Candida albicans. Anesth Analg. 1995;81:132---4.

5.Keles¸ GT, Kurutepe S, Tok D, Gazi H, Dinc¸ G. Com-parison of antimicrobial effects of dexmedetomidine and etomidate-lipurowiththose ofpropofol and midazolam. Eur JAnaesthesiol.2006;23:1037---40.

6.Ayoglu H, Kulah C, Turan I. Antimicrobial effects of two anaestheticagents:dexmedetomidineandmidazolam.Anaesth IntensiveCare.2008;36:681---4.

7.Graystone S, Wells MF, Farrell DJ. Do intensive care drug infusions support microbial growth? Anaesth Intensive Care. 1997;25:640---2.

8.HanciV,CömertF,Ayo˘gluH,KulahC,YurtluS,TuranIO. Evalua-tionoftheantimicrobialeffectsofatracurium,rocuroniumand mivacurium.Antimicrobialeffectsofmusclerelaxants.Drugs TherStud.2011;1:e2,http://dx.doi.org/10.4081/dts.2011.e2. 9.NaguibM,Sugammadex:.anothermilestoneinclinical

neuro-muscularpharmacology.AnesthAnalg.2007;104:575---81.

10.BrullSJ,Naguib M.Selectivereversalofmusclerelaxationin generalanesthesia:focusonsugammadex.DrugDesDevTher. 2009;3:119---29.

11.Rex C, BergnerUA, Pühringer FK. Sugammadex: a selective relaxant-binding agent providing rapid reversal. Curr Opin Anaesthesiol.2010;23:461---5.

12.JooJS,ParkKC,SongJY,etal.Thin-layerliquidculture tech-nique for the growth of Helicobacter pylori. Helicobacter. 2010;15:295---302.

13.Jean-BaptisteE,BlanchemainN,MartelB,NeutC,Hildebrand HF,HaulonS.Safety,healing,andefficacyofvascularprostheses coatedwithhydroxypropyl-b-cyclodextrinpolymer: experimen-tal in vitro and animal studies. Eur J Vasc Endovasc Surg. 2012;43:188---97.

14.Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Document M100-S15.Wayne,PA:ClinicalandLaboratoryStandards Insti-tute;2005.

15.Langevin PB, Gravenstein N, Doyle TJ, et al. Growth of

StaphylococcusaureusinDiprivanandIntralipid:implications on the pathogenesis of infections. Anesthesiology. 1999;91: 1394---400.

16.DurakP,KarabiberN,Ayo˘gluH,YılmazTH,ErdemliÖ. Inves-tigation on antibacterial activities of atracurium, lidocaine, propofol, thiopentone, and midazolam. Acta Anaesth Ital. 2001;52:39---43.

17.ArduinoMJ,BlandLA,McAllisterSK,etal.Microbialgrowthand endotoxinproductionintheintravenous anestheticpropofol. InfectControlHospEpidemiol.1991;12:535---9.

18.SosisMB,Braverman B.Growth ofStaphyloccoccusaureusin fourintravenousanaesthetics.AnesthAnalg.1993;77:766---78.

19.BarR.Anewcyclodextrin-agarmediumforsurfacecultivation ofmicrobesonlipophilicsubstrates.ApplMicrobiolBiotechnol. 1990;32:470---2.

20.Douraghi M, Kashani SS, Zeraati H, Esmaili M, Oghalaie A, MohammadiM.Comparativeevaluationofthreesupplements forHelicobacterpylorigrowthinliquidculture.CurrMicrobiol. 2010;60:254---62.

21.MarchiniA,d’ApolitoM,MassariP,AtzeniM,CopassM,Olivieri R.CyclodextrinsforgrowthofHelicobacterpyloriand produc-tionofvacuolatingcytotoxin.ArchMicrobiol.1995;164:290---3.

22.OlivieriR,BugnoliM,ArmelliniD,etal.Growthof Helicobac-terpyloriinmediacontainingcyclodextrins.JClinMicrobiol. 1993;31:160---2.

(4)

108 V.Hancietal.

24.LetowskaI,ChodorowskaM,KaczurbaE,Kukli´nskaD,TyskiS. Bacterialgrowthandvirulencefactorsproductionbydifferent

Bordetellapertussisstrains.ActaMicrobiolPol.1997;46:45---55.

25.Imaizumi A, Suzuki Y, Ono S, Sato H, Sato Y. Heptakis(2,6-O-dimethyl)beta-cyclodextrin: a novel growth stimulant for

BordetellapertussisphaseI.JClinMicrobiol.1983;17:781---6.

26.SuzukiY,ImaizumiA,GinnagaA,SatoH,SatoY.Effectof hep-takis(2,6-0-dimethyl)beta-cyclodextrinoncellgrowthandthe productionofpertussistoxinandfilamentoushemagglutininin

Bordetellapertussis.DevBiolStand.1985;61:89---92.

27.ZhangHM,LiZ,UematsuK,KobayashiT,HorikoshiK. Antibac-terial activity of cyclodextrins against Bacillus strains. Arch Microbiol.2008;190:605---9.

28.YamamuraH,SuzukiK,UchiboriK,etal.Mimickingan antimi-crobial peptide polymyxin B by use of cyclodextrin. Chem Commun(Camb).2012;48:892---4.

29.GudmundssonA,ErlendsdottirH,GottfredssonM.ImpactofpH andcationicsupplementationoninvitropostantibioticeffect. AntimicrobAgentChemother.1991;35:2617---24.

30.Clinton LW, warriner CB, McCormack JP, Alison MC. Recon-stituted thiopentone retains its alkalinity without bacterial contamination for up to four weeks. Can J Anaesth. 1992;39:504---8.

Imagem

Table 1 The pH values of tested dilutions of sugammadex.

Referências

Documentos relacionados

As doenças mais frequentes com localização na cabeça dos coelhos são a doença dentária adquirida, os abcessos dentários mandibulares ou maxilares, a otite interna e o empiema da

A formação de docentes para atuar na educação básica far-se-á em nível superior, em curso de licenciatura, de graduação plena, em universidades e institutos superiores

É importante destacar que as práticas de Gestão do Conhecimento (GC) precisam ser vistas pelos gestores como mecanismos para auxiliá-los a alcançar suas metas

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Foi usando ela que Dold deu condições para a SEP ser uma propriedade local dos espaços (Teorema de Extensão de Seção) o que possibilitou a ele reobter todos os resultados de

Tendo como base teórica a Análise do Discurso de Linha Francesa, esta pesquisa pretendeu demonstrar que o discurso, no ciberespaço, assim como em toda e qualquer enunciação, não