• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número5"

Copied!
7
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Identification

of

dysregulated

microRNA

expression

and

their

potential

role

in

the

antiproliferative

effect

of

the

essential

oils

from

four

different

Lippia

species

against

the

CT26.WT

colon

tumor

cell

line

Mayna

Gomide

a,∗

,

Fernanda

Lemos

b

,

Daniele

Reis

c

,

Gustavo

José

d

,

Miriam

Lopes

b

,

Marco

Antônio

Machado

c

,

Tânia

Alves

e

,

Cíntia

Marques

Coelho

a,d,∗

aDepartamentodeBiologia,InstitutodeCiênciasBiológicas,UniversidadeFederaldeJuizdeFora,JuizdeFora,MG,Brazil

bDepartamentodeFarmacologia,InstitutodeCiênciasBiológicas,UniversidadeFederaldeMinasGerais,BeloHorizonte,MG,Brazil

cLaboratóriodeGenéticaMolecular,EmpresaBrasileiradePesquisaAgropecuária,CentroNacionaldePesquisadeGadodeLeite,Brasilia,DF,Brazil

dDepartamentodeGenéticaeMorfologia,InstitutodeCiênciasBiológicas,UniversidadedeBrasília,Brasilia,DF,Brazil

eLaboratóriodeQuímicadeProdutosNaturais,CentrodePesquisasRenéRachou,Fundac¸ãoOswaldoCruz,BeloHorizonte,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28January2016 Accepted10April2016 Availableonline16June2016

Keywords:

Colorectalcancer CT26.WT

Lippiaessentialoil

MicroRNA Cellcyclephases

a

b

s

t

r

a

c

t

Inspiteofadvancesincolorectalcancertreatments,approximately1.4millionnewglobalcasesare esti-matedfor2015.Inthissense,Brazilianplantdiversityoffersamultiplicityofessentialoilsasprospective novelanticancercompounds.Thisstudyaimedtoevaluatetheantiproliferativeeffectoftheessential oilsfromfourLippiaspeciesinCT26.WTcolontumorcells,asameasurementofcellcyclephase dis-tributionandmicroRNAexpression.CT26.WTshowedcellcyclearrestatG2/Mphaseaftertreatment with100␮g/mlofLippiaalba(Mill.)N.E.Br.exBritton&P.Wilson,LippiasidoidesCham.,andLippia lacunosaMart.&Schauer,Verbenaceae,essentialoilsand,atthesameconcentration,Lippiarotundifolia

Cham.essentialoilcausedanaugmentofG0/G1phase.ThemiRNAexpressionprofilingshowschange ofexpressioninkeyoncogenicmiRNAsgenesaftertreatment.Ourfindingssuggestgrowthinhibition mechanismsforallfouressentialoilsonCT26.WTcellsinvolvingdirectorindirectinterferenceoncell cyclearrestand/oroncogenicmiRNAsexpression.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

AccordingtotheInternationalAgencyforResearchonCancer, colorectalcancer(CRC)wasthethirdmostcommoncancerinmen andthesecondmostcommoninwomenworldwidein2012(Ferlay etal.,2015).Approximately1.4millionnewglobalCRCcasesand morethan750,000deathswereprojectedfor2015(Ferlayetal., 2015).Colorectal cancertreatments involve the standard tech-niquesofsurgery,radiationandchemotherapyandafewderivative procedureslikecryosurgery,radiofrequencyablationortargeted therapy.Despitetechnologicaladvances,CRCdemonstratesgreat resistanceandresilienceagainsttherapy.Approximately40%ofall patientstreatedforlocalCRCwillhaverecurrence(Siegeletal., 2012)and thus, thesearch for newanticancer agents remains essential.

∗ Correspondingauthor.

E-mails:mayna.gomide@ufjf.edu.br(M.Gomide),cintiacoelhom@unb.br

(C.MarquesCoelho).

Plantcompoundsfeatureimportantsourcesoftherapeutic com-poundsforcancertreatment.Countrieswithrichflorabiodiversity asBrazilhaveawide rangeofplantspeciesandtherehasbeen aglobalefforttoprospectforbiomoleculeswithpharmacological propertiesintheseregions.Amongthese,monoterpeneshavebeen suggestedasarelevantclassofagentsthatarefoundinseveral plantspecies,includingspeciesoftheLippiagenus,whose phar-macologicalpropertieshavebeenrelatedtosecondarymetabolites, specificallytotheiressentialoils(Pascualetal.,2001).Amongthe beststudiedLippiaspeciesareL.alba(Mill.)N.E.Br.exBritton&P. Wilson,andL.sidoidesCham.,andforbothofthemprevious stud-iesreportedantioxidantactivityindicatingthattheseplantsmight bepotentialtargetstosearchfor antitumorogenicbiomolecules (Ramosetal., 2003;Monteiroet al.,2007).Recently, ourgroup investigated theantiproliferative effectoffive Lippiaspecies on tumorcells,asdeterminedbyMTTassay.Theresultsofthisstudy demonstrated thatL.sidoidesand L.salviifoliaessential oilshad anantiproliferativeeffectonCT26.WTcolontumorcells(Gomide etal.,2013).Monoterpeneslikegeraniolfoundinvegetalessential oilshadalreadybeenshowedtoreducethegrowthofleukemia

http://dx.doi.org/10.1016/j.bjp.2016.04.003

(2)

andmelanomacells(Shoffetal.,1991).Othershavealso demon-stratedthatsyntheticgeranioliseffectiveinvitroandinvivoagainst avarietyofcancertypes,includinghepatoma,pancreaticandeven coloncancer,whichishighlyresistanttochemotherapy(Yuetal., 1995;Burkeetal.,1997;Carnesecchietal.,2001,2002;Duncan etal.,2004;Ongetal.,2006;Wisemanetal.,2007).The monoter-pene limonene is another that has exerted antitumor activity, specificallyagainstbreast, skin,liver,lung andstomachcancers inrodents(Elegbedeetal.,1986;WattenbergandCoccia,1991; CrowellandGould,1994;Millsetal.,1995;Kawamorietal.,1996; Crowell,1999).Additionally,anti-tumoractivityhasbeenreported tomonoterpeneslikecarvone,carveol,mentolandperillylalcohol (Heetal.,1997).

Themoleculardrivingforces of CRCcanbecategorized into genomicinstability,genomicmodificationsandepigenetic alter-ations(Kanthanetal.,2012).Morerecently,severalstudieshave observedthatanimbalanceinmiRNAregulatingcellcycle onco-genescouldalsobelinkedtocancerdevelopment.InCRC,studies havedemonstratedanassociationofaberrantmiRNAexpression andcancerdevelopmentwheresomemiRNAhavebeenreported tobeconsistentlydysregulatedinthisdisease(Huangetal.,2010). Theaimofthepresentstudywastoevaluatethe antiprolifera-tiveeffectoftheessentialoilsextractedfromfourdifferentLippia

speciesinCT26.WTcolontumorcellsasameasurementofcellcycle phasedistributionandmiRNAsexpression.

Materialsandmethods

Plantmaterial

FreshleaveswerecollectedfromLippiaalba(Mill.)N.E.Br.ex Britton&P.Wilson,L.sidoidesCham.,L.rotundifoliaCham.andL. lacunosaMart.&Schauer,Verbenaceae,attheExperimentalStation locatedonthecampusoftheFederalUniversityofJuizdeFora, JuizdeFora,Brazil(21◦4648.4′′S432224.4′′W).Eachoneofthe

LippiaspecieswascollectedfromNovembertoDecember2010.

ThevoucherspecimensoftheLippiaspeciesevaluatedinthisstudy aredepositedattheHerbariumof theBotanyDepartmentfrom theFederalUniversityofJuizdeForaandthevoucherspecimens numbersare:L.alba:48374,L.sidoides:49007,L.rotundifolia:31376 andL.lacunosa:51920.

Extractionofessentialoils

TheessentialoilsfromleavesoftheLippiaspecieswereobtained byhydrodistillationinaClevenger-typeapparatusfor2h.Theoils wereweighedandaliquotsof5mgofeachoneofthemwerestored at−80◦Cinsealedvialscoveredwithaluminumfoiluntiluse.For eachoneoftheassaysdescribedonealiquotwasthawedand dis-solvedin4%dimethylsulfoxide–DMSO(Sigma,St.Louis,MO,USA) andpurifiedwatermakingupaworkingsolutionof1mg/ml.

Gaschromatography/massspectrometryanalysis

The chemical composition of the essential oil of each Lip-pia specie was determined by gas chromatography coupled to mass spectrometry performed on a Shimadzu QP5050A GC/MS instrument, equipped with a PTE-5 Supelco column (30m×0.25mm×0.25␮m),asperformedbyGomideetal.(2013). Retentionindexes(RI)werecalculatedfromretentiontimes gen-eratedfromtheanalysisofeachoilincomparisonwithastandard n-alkanessolution,C8-C20,andusedtodeterminethecomponents ofeachoneoftheessentialoils,accordingtoAdams(1995).The amountofcompoundswasdeterminedbypeaksareaintegration ofthespectra.

Celllinesandculturecondition

Mouse colon carcinoma CT26.WT cells were obtained from ATCC(CRL-2638)andweregrownat37◦Cwith5%CO2inRPMI 1640mediumpH7.4(Cultilab,Campinas,SP,Brazil)supplemented with10%fetalbovineserum(FBS),0.1mg/mlampicillin,0.1mg/ml kanamycin, 0.005mg/ml amphotericin, 0.2% NaHCO3 and 0.2% HEPES(Sigma,St.Louis,MO,USA).

Cellcycleanalysis

CT26.WTcellswereseededonto24-wellplatesatadensityof 2×104cells/wellinRPMIsupplementedwith10%FBS.Afterthe cells visiblyreachedaround50%confluence theywereexposed for 12or 24hwithRPMI supplemented with10%FBS contain-ingtheworkingsolutionwiththeessentialoilsofthefourLippia

speciesattheconcentrationsof10,50and100␮g/ml.The nega-tivecontrolsamplescontained0.4%DMSO,whichisequivalentto thepercentagefoundinthehighestconcentrationevaluated.Then, thecellswerecollectedandresuspendedin300␮lofHFSsolution (0.05%propidiumiodide,1%sodiumcitrateand0.5%TritonX-100) (Sigma,St.Louis,MO, USA).Cellswereincubatedfor2hat4◦C. TheDNAcontentofthestainedcellswasanalyzedusingFACScan andCellQuestprograms(BDBioscience,SanJose,CA,USA).The his-togramsshowingcellcyclephasedistributionsinG0/G1,S,G2/M andsub-G1cells(usedasmeasureofdeadcells)wereanalyzed usingFlowJoversion7.6.4(Treestar,Inc.,SanCarlos,CA).Allassays wereperformedatleastthreetimes,andatleast15,000events persamplewereanalyzed.Toverifytheexistenceofstatistical dif-ferencesamongthesamplesANOVAfollowedbyBonferronitest wasperformed.Differencesbellow0.05(p<0.05)wereconsidered significant.

MicroRNAanalysis

CT26.WTcellswereseededinthreedifferent25cm2flaskseach oneatadensityof2×104cells/wellinRPMIsupplementedwith 10%FBS.Afterthecellsvisiblyreachedaround50%confluencethey weretreatedwithRPMIsupplementedwith10%FBScontainingthe essentialoilofL.alba,L.rotundifolia,L.sidoidesorL.lacunosaata finalconcentrationof100␮g/ml.Cellswereincubatedforaperiod of12h.

(3)

fixedreallocationrandomizationtest(Pfaffletal.,2002)andCt method(LivakandSchmittgen,2001).Relativeexpressionvalues areshownasmean±standarderror(SEM)anddifferencesbellow 0.05(p<0.05)wereconsideredsignificant.

Resultsanddiscussion

CompositionoftheessentialoilsobtainedfromfourLippiaspecies

Since previous studies have demonstrated that the quan-tity of the main components of the essential oils obtained fromLippia speciesvariesaccordingtothesamplingperiod,gas chromatography–massspectrometryanalysis(GC–MS)was per-formedtoquantifyeachoilcomposition.Themostconcentrated compounds(above6%oftotal composition)wereidentifiedand areshowninTable1.Atotalofninemaincompoundswerefound for allspecies. In L. alba oil(Alb), geranial and citral predomi-nate.ForL.sidoidesoil(Sid),thymolando-cymenewerethemost concentrated. The major constituent of L. rotundifolia essential oil(Rot)was␤-myrceneandfinally,␤-myrceneandmyrcenone werethemostabundantinL.lacunosaoil(Lac).Thisdataagrees withpreviousresultsfromGomideetal.(2013),andtheobserved chemotypesvalidatetheidentitiesoftheLippiaspeciesusedinthis study.

TheantiproliferativeeffectofessentialoilsfromLippiaspeciesas determinedbythedistributionofCT26.WTcolontumorcellcycle phases

Several studies have shown that terpenes present chemo-preventive and therapeutics properties against human cancers (Kinghornetal.,2003).Amongtheterpenes,theclassof monoter-peneshasemergedas anadvantageousagentto beusedasan anticancer drug for treatment of tumors that are resistant to chemotherapyandtominimizethesideeffectsofcurrent treat-ments(Shoffetal.,1991;Yuetal.,1995;Burkeetal.,1997;He etal.,1997;Crowelletal.,1999;Duncanetal.,2004;Wisemanetal., 2007;Paduchetal.,2007).Severalmonoterpenesareidentifiedin

LippiaspeciesBrazilbeingoneofthelargestcentersofdiversityof thisgenus,comprising70–75%ofallknownspecies.

A previous study showed potent antiproliferative effects in CT26.WTcells treated withLippia essential oils (Gomide et al., 2013).Inthisstudy,CT26.WTcellsweretreatedfor12and24h withtheessentialoilsextractedfromL.alba,L.sidoides,L. rotundi-foliaandL.lacunosa.ItwasobservedthatallfourLippiaessential oilsaffectedtheCT26.WTcelllinebyinducingcellcyclearrests eitherinG0/G1orinG2/Mphases.Therepresentativehistograms ofthecellcyclephasedistributionofCT26.WTcellsareshownin Fig.1.Table2presentsthepercentagesofsub-G1,G0/G1,Sand

G2/MCT26.WTtreatedcellsasmeasuredbyflowcytometryafter PIstaining.

At50and100␮g/ml,resultsshowthattreatmentwithAlblead toasignificantincreaseofG2/Mphaseafter12and24h.Decreasing theconcentrationsto10␮g/mlstillshowsanincreaseofG0/G1 phasecellsforthesametimes(Table2andFig.1).Inagreementwith ourresults,theantiproliferativeeffectofgeranial,themajor com-poundofAlb(Table1),hadalreadybeendemonstrated.Carnesecchi etal.(2001)andWisemanetal.(2007)observedgeraniol(its oxi-dizeformisgeranial)cellcyclearrestingeffects.Thefirstreported geraniolaffectedprogressionthroughtheSphaseofthecellcycle oncoloncancercells,whilethesecondreportedaG0/G1cellcycle arrestonpancreaticcancercells.Inaddition,Wisemanetal.(2007) reportedaroleforp21Cip1andp27Kip1asmediatorsofG0/G1 cellcyclearrestinpancreaticadenocarcinoma,andreduced lev-elsofexpressionofcyclinsA,B1andtheCDK2.Inagreementwith thesepreviousstudies,oursresultsalsoindicatedthatthe antipro-liferativeeffectsofAlbmightrelatetoitsabilitytoaffectthecell cycle,specificallyatG2/Mphase.Similarresultswereobservedby Chaoukietal.,2009whenMCF-7breastcancercellsweretreated for48and72hwithcitral,anothermajorcompoundfoundinAlb (Table1).

SidalsoaffectedCT26.WTcellcycle.Treatmentwith100␮g/ml showedanincreasedpercentageofG2/MphaseanddecreasedS phasecellsafter12h,whileanincreaseinG0/G1wasobservedafter 24h.Theantiproliferativeeffectofthymol,themajorcompound ofSid,hadbeenpreviouslydemonstrated.Recently,Jaafarietal. (2012)andDebetal.(2011)obtainedcellcyclearrestatsubG0/G1 afterthymoltreatmentinleukemiccells.

TheRotcausedanincreaseofCT26.WTcellsonG0/G1phase at50and100␮g/mlafter12and24hoftreatment(Table2and Fig.1).Treatmentwith50and100␮g/mlofLacleadtoaG2/Mphase increaseafter12and24haswellasaconsiderabledecreaseinS phase.At100␮g/mltherewasalsoanincreaseinG0/G1phaseafter 24hoftreatment(Table2andFig.1).AbdallahandEzzat(2011) showedthattheessential oilextractedfromPituranthos tortuo-sus,whichcontains␤-myrcene(majorcompoundofRotandLac) showedcytotoxicityagainstcolon,liverandbreastcancercelllines. Therewereveryfewstudiesreportingeffectsofotheridentified compoundsfromthoseLippiaoils.

IdentificationofdifferentialexpressionofmiRNAsinLippia

essentialoilCT26.WTtreatedcells

SeveralstudiesshowthatmiRNAsaremasterregulatorsofcell cyclegenesindifferentcancerandtherefore,wedecidedto inves-tigateifmiRNAsdysregulationwereinvolvedintheobservedcell cycle interference caused by essential oils from Lippia species. ToidentifydifferentialexpressionpatternsofmiRNAsintreated

Table1

PercentagechemicalcompositionofthemajoritycompoundsoftheessentialoilsextractedfromleavesofLippiaalba,L.sidoides,L.rotundifoliaandL.lacunosa,asdetermined bygas-chromatographyfollowedbymassspectrometry.

Compounds RIa L.alba L.sidoides L.rotundifolia L.lacunosa

␤-Pinene 980 16.30

␤-Myrcene 991 52.39 53.52

␣-Phellandrene 1005 13.27

o-Cymene 1022 30.08

Limonene 1031 22.43 10.94

Myrcenone 1148 25.41

Citral 1240 20.54

Geranial 1270 29.24

Thymol 1290 38.42

Total 72.21 68.50 92.90 78.93

Numberofretainedcompoundsselected 7 8 5 4

(4)

0

100 101 M1

102

FL3-H

103 104 80 160 Counts 240 320 400 L. alba Control – 12h

A

B

C

D

L. alba Control – 24h

L. sidoides Control – 24h

L. rotundifolia Control – 12h

L. lacunosa Control – 24h

L. lacunosa 50 µg/ml – 24h

L. lacunosa 100 µg/ml – 24h L. rotundifolia

100 µg/ml – 12h L. sidoides 100 µg/ml – 24h L. alba 10 µg/ml – 24h L. alba 10 µg/ml – 12h

L. alba 100 µg/ml – 12h

L. alba 100 µg/ml – 24h

0

100 101 M1

102

FL3-H

103 104 80 160 Counts 240 320 400 0

100 101 M1

102

FL3-H

103 104 80 160 Counts 240 320 400 0

100 101

M1

102

FL3-H

103 104

80 160 Counts 240 320 400 0

100 101

M1

102

FL3-H

103 104

80 160 Counts 240 320 400 0

100 101 M1

102

FL3-H

103 104 80 160 Counts 240 320 400 0

100 101 M1

102

FL3-H

103 104 80 160 Counts 240 320 400 0

100 101 M1

102

FL3-H

103 104 80 160 Counts 240 320 400 0

100 101

M1

102

FL3-H

103 104

80 160 Counts 240 320 400 0

100 101 M1

102

FL3-H

103 104 80 160 Counts 240 320 400 0

100 101

M1

102

FL3-H

103 104

80 160 Counts 240 320 400 0

100 101

M1

102

FL3-H

103 104

80 160 Counts 240 320 400 0

100 101 M1

102

FL3-H

103 104 80 160 Counts 240 320 400

Fig.1.RepresentativehistogramsofthecellcyclephasedistributionofCT26.WTcellsafter12and24htreatmentwithdifferentconcentrationsoftheessentialoilsextracted

fromLippiaalba(A),L.sidoides(B),L.rotundifolia(C),andL.lacunosa(D).DNAcontentofthestainedcellswasanalyzedusingFACScanandCellQuestprogram.Thenegative

controlsamplescontained0.4%DMSO,whichisequivalenttothepercentagefoundinthehighestconcentrationevaluated.Allassayswereperformedatleastthreetimes, andatleast15,000eventspersamplewereanalyzed.

CT26.WTcellsweusedreal-timePCR-basedmiRNAexpression pro-filingarraywithapanelof95cancer-relatedmiRNAsandanU6 transcripttonormalizesignal.Table3showstheproportionof miR-NAsfromCT26.WTcellstreatedwiththeessentialoilsfromLippia

speciesthatshoweddifferentialexpressionfromcellstreatedwith 0.4%dimethylsulfoxide(DMSO).Theresultsshowedthat27.36%of analyzedmicroRNAsweredysregulatedonCT26.WTcellstreated withAlbandLacand36.84%oncellstreatedwithSidandRot.

Fig.2showsa heatmapcomparingdifferentmiRNAs expres-sionafterCT26.WTcellstreatmentwithLippia oils.Somegenes

(5)

Table2

Percentagesofsub-G1,G0/G1,SandG2/MofCT26.WTcellsafter12and24htreatmentwiththeessentialoilsextractedfromLippiaalba,L.sidoides,L.rotundifoliaandL.

lacunosa,asdeterminedbyflowcytometryafterPIstaining.Thenegativecontrolsamplescontained0.4%DMSO,whichisequivalenttothepercentagefoundinthehighest

concentrationevaluated.Allassayswereperformedatleastthreetimes,andatleast15,000eventspersamplewereanalyzed.Statisticaldifferencesweredeterminedwith ANOVAfollowedbyBonferronitest(p<0.05).

Essentialoil (solutions)

sub-G1 G0/G1 S G2/M

12h 24h 12h 24h 12h 24h 12h 24h

Lippiaalba Negativecontrol

<4 <5

25.65±1.58a 27.37±1.30a 40.34±2.82a 39.38±1.38a 24.25±4.03a 23.46±1.56a

10␮g/ml 31.12±2.04b 32.35

±0.75b 39.91

±0.96a 35.29

±1.20a 17.96

±0.83b 23.11

±0.34a

50␮g/ml 23.69±0.1a 23.07

±0.82c 20.53

±1.40b 17.31

±2.35b 41.89

±0.87c 45.31

±2.75b

100␮g/ml 21.03±0.61a 21.26

±1.17c 30.98

±2.50c 27.33

±2.27c 32.40

±2.34d 39.03

±1.32c

Lippiasidoides Negativecontrol

<4 <2

28.59±3.44a 29.62

±2.00a 38.35

±3.32a 39.12

±2.48a 18.81

±3.93a 18.32

±1.40a

10␮g/ml 26.82±3.18a 33.82

±1.50ab 35.50

±3.35a 34.30

±1.91ab 18.86

±1.69a 19.52

±1.77a

50␮g/ml 27.84±1.69a 31.35

±2.84a 25.98

±2.32b 37.04

±0.90a 26.15

±1.38ab 18.93

±1.59a 100␮g/ml 23.64±1.76a 38.17±1.92b 19.14±2.66c 30.31±1.15bc 33.25±5.88b 21.23±1.88a

Lippiarotundifolia Negativecontrol

<3 <1

29.76±1.87a 36.55

±0.47a 38.75

±2.44a 29.60

±1.17a 15.57

±2.36a 20.46

±1.19a

10␮g/ml 33.77±2.74a,b 37.90

±1.80a,c 35.54

±2.33ab 28.04

±1.58ab 15.93

±2.48a 20.98

±2.00a

50␮g/ml 36.01±1.28b 40.99±1.79bc 33.59±1.26b 24.53±0.42b 15.28±3.06a 20.86±1.91a

100␮g/ml 41.65±2.11c 38.30±0.80ac 26.01±1.81c 24.71±0.60ab 16.02±1.35a 21.09±1.77a

Lippialacunosa Negativecontrol

<5 <6

33.49±1.51a 28.27±3.27a 35.30±1.99a 34.75±2.11a 17.79±1.34a 26.27±2.53ab 10␮g/ml 33.32±5.53a 32.78±0.87a 24.49±6.19b,d 30.86±0.54b 19.63±1.52a 23.25±1.49a

50␮g/ml 19.51±3.21b 19.53±5.35b 9.12±0.44c 20.82±1.00c 33.38±1.76b 29.87±2.32bc

100␮g/ml 35.99±2.10a 48.93

±1.84c 15.39

±7.05cd 4.98

±1.93d 33.86

±6.82b 34.98

±2.70c Thevaluesrepresenttheaverageofatleastthreereplicates±SD.

a,b,c,dDifferentlettersindicatesignificantstatisticaldifferencesineachcellcyclephaseandexposuretimecolumnbyessentialoil.

treatmentwithLippiaessentialoils.DataindicatesAlb,RotandSid treatmentcorrelatestoreversedmiR-15bexpressioninCT26.WT coloncancercellline.

ReversionofexpressionwasobservedformiR-92,miR-93, miR-135b,miR-155,miR-191,miR-181aandmiR-186geneswhichwere previouslyfoundtobeupregulatedincoloncancer(Voliniaetal., 2006;Monzoetal.,2008;Schepeleretal.,2008;Arndtetal.,2009; Sarveretal.,2009;Earleetal.,2010;Huangetal.,2010)andwere downregulatedinCT26.WTcellsaftertreatmentwithAlb,Sidand Rot(Fig.2).Incontrast,miR-143appearedupregulatedonCT26.WT cellstreatedwithAlb,RotandLac(Fig.2),buthasbeenshowntobe consistentlydownregulatedincolorectalcancer(Chenetal.,2009; Kuldaetal.,2010).Chenetal.(2009)showedthatmiR-143actsasa tumorsuppressorbyinhibitingtheKRASoncogenetranslation.Alb, RotandLacseemtoincreaseexpressionofmiR-143whichcould possiblycausearecoveryofKRAStumorsuppressorrole.

Inthisstudy,miR-192genewasupregulatedonCT26.WTcells exposedtoAlbandLacanddownregulatedbyRot(Fig.2).Chen etal.(2009)andEarleetal.(2010)demonstratedthat miR-192 wasdownregulatedincolorectalcancer.Theseresultsindicatethat AlbandLacmightberevertingexpressionofmiR-192inthistype ofcancer.Braunetal.(2008)alsodemonstratedthatmiR-192is capableofsuppressingcarcinogenesisbyincreasingthelevelofa G1cellcycleinhibitorp21,leadingtocellcyclearrestinG1phase andinG2/MphaseinHCT116humancolorectalcancercellline. Inagreement, cellcyclearrestatthesephaseswasobservedon CT26.WTcellstreatedwithAlbandLac(Table2andFig.1). Expres-sionofmiR-222wasdecreasedinCT26.WTcellsexposedtoAlb,Sid andRot(Fig.2).Visoneetal.(2007)showedthattheexpressionof miR-222togetherwithmiR-221inhumanthyroidcarcinomacell lineinducedcellcycleprogressiontotheSphaseandreducedthe expressionleveloftheG1cellcycleinhibitorp27KIP1.

AfewmiRNAgenesshowedreversedexpressionaftertreatment exclusivelywithone of thefour Lippia essential oils.The miR-NAsmiR-196a,miR-214,miR-149andmiR-30bwereshowntobe downregulatedincolorectalcancer(Monzoetal.,2008;Schepeler

Table3

TotalmicroRNAsdifferentiallyexpressedafterCT26.WTcelllinetreatedwithLippia

essentialoils.

miRNA L.alba L.sidoides L.rotundifolia L.lacunosa

Total 59 59 57 59

Significants(p<0.05) 26 35 35 26

Upregulated 8 13 12 23

Downregulated 18 22 23 3

etal.,2008;Chenetal.,2009;Earleetal.,2010)andourresults demonstratedthatthesemiRNAwereupregulatedafterCT26.WT cellsweretreatedwithLac(Fig.2).Onthecontrary,miR-17-5p andmiR-17-3pweredownregulatedonCT26.WTcellsbyAlband Lacessentialoils,respectively(Fig.2).Bandresetal.(2006)and Voliniaetal.(2006)observedmiR-17-5pupregulationin colorec-talcancertissue.Monzoetal.(2008)reportedthatthismiRNAis acriticalmemberofafunctionalgroupinvolvedinregulatingthe expressionofE2F1,anupstreamregulatorof TP53incolorectal cancercells. Theyalsoshowedthat cells transfected with anti-miR-17-5p,hadanincreasedE2F1expression,reducingcellgrowth inadosedependentmanner.Inanothertransfectionexperiment, Kanaanetal.(2012)transfectedmiR-17incoloncancerlinesHT-29 andHCT-116andshowedthatmiR-17isanE2F1regulator. Fur-thermore,Cloonanetal.(2008)haveshownthatmiR-17-5pacts specificallyonthetransitionfromG1/Scellcyclephases,interfering withmorethan20genes.

Taken together,theseresultssuggestthat apossible mecha-nismforLippiaoilsgrowthinhibitionmightbethroughreversion ofexpressionofmiRNAsregulatingcellcycleinhibitors.

(6)

miR-202 miR-142-3p miR-219 miR-143 miR-15a miR-19a+b miR-218 miR-154 miR-106b miR-210 miR-7 miR-107 miR-18a miR-199a+b miR-30b miR-194 miR-22 miR-125a miR-149 miR-150 miR-185 miR-196a miR-92 miR-30a-5p miR-21 miR-191 miR-192 miR-214 miR-27a+b miR-106a miR-15b miR-181a miR-132 miR-296 miR-186 miR-93 miR-16 miR-195 miR-103 miR-145 miR-151 miR-20a miR-24 miR-25 miR-17-3p miR-17-5p miR-222 miR-23a miR-26a miR-125b miR-30c miR-181c miR-9-1 miR-155 miR-30a-3p miR-135b miR-140

Lac Rot

Sid Alb

0 0.25 0.63 1.00 3.25 5.50

Fig.2.HeatmapofdifferentiallyexpressedmicroRNAsinCT26.WTcelllineafter treatmentwithLippiaoils.CT26.WTcellsweretreatedwith100mg/mlofL.alba

(Alb),L.sidoides(Sid),L.rotundifolia(Rot)andL.lacunosa(Lac)essentialoilsfor12h. ApooloftriplicatesofeachtreatmentwassubjectedtomicroRNAsanalysisby real-timePCRtestusingapanelof95cancer-relatedmicroRNA.TheCtvaluesobtained werenormalizedfromtheU6transcribedandanalyzedbytheRESTsoftware (sig-nificancelevelp<0.05).Thevaluesoffoldchangeobtainedabove1,referredto up-regulatedmicroRNAs,weredividedintotwogroupsaswellasthosebetween0 and1correspondingtothedown-regulatedmicroRNA.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare thatnoexperimentswereperformedonhumansoranimalsfor thisstudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata appearinthisarticle.

Righttoprivacyandinformedconsent. Theauthorsdeclarethat nopatientdataappearinthisarticle.

Authors’contributions

MSG (M.Sc.student) contributed in collectingplant sample, extractingandanalyzingtheessentialoil,runningthelaboratory work,analysisofthedataanddraftedthepaper.FOLandMTPL con-tributedtobiologicalstudiesanddatadiscussion.DRLRandMAM contributedtomicroRNAanalysisandtodatadiscussion.GPCJ con-tributedtocriticalreadingofthemanuscript.TMAAcontributedin GC/MSanalysis.CMCdesignedthestudy,supervisedthe labora-toryworkandcontributedtocriticalreadingofthemanuscript. Alltheauthorshavereadthefinalmanuscriptandapprovedthe submission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

TheauthorsthankFundac¸ãodeAmparoàPesquisadoEstadode MinasGeraisforthefinancialsupportunderGrantAPQ-00722-09. WearealsogratefulforthetechnicalassistancefromLaboratóriode SubstânciasAntitumoraisatUniversidadeFederaldeMinasGerais, fromLaboratóriodeGenéticaMolecularatEmpresaBrasileirade PesquisaAgropecuáriaandfromLaboratóriodeQuímicade Produ-tosNaturaisatFundac¸ãoOswaldoCruz.Finally,wealsothankDra. LucíolaBastosfromtheDepartmentofPhysiologyandBiophysics, BiologicalSciencesInstitute, FederalUniversityofMinasGerais, Brazil,forcollaboratinganddonatingCT26.WTcelllinewhichwas usedinthisstudy.

References

Abdallah,H.M.,Ezzat,S.M.,2011.Effectofthemethodofpreparationonthe com-positionandcytotoxicactivityoftheessentialoilofPituranthostortuosus.Z. Naturforsch.C66,143–148.

Adams,R.P.,1995.IdentificationofEssentialOilComponentsbyGas Chromatogra-phy/MassSpectrometry,2nded.AlluredPublishingCorporation,CarolStream, Illinois,pp.469.

Arndt,G.M.,Dossey,L.,Cullen,L.M.,Lai,A.,Druker,R.,Eisbacher,M.,Zhang,C.,Tran, N.,Fan,H.,Retzlaff,K.,Bittner,A.,Raponi,M.,2009.Characterizationofglobal microRNAexpressionrevealsoncogenicpotentialofmiR-145inmetastatic colo-rectalcancer.BMCCancer9,374.

Bandres,E.,Cubedo,E.,Agirre,X.,Malumbres,R.,Zarate,R.,Ramirez,N.,Abajo,A., Navarro,A.,Moreno,I.,Monzo,M.,Garcia-Foncillas,J.,2006.Identificationby real-timePCRof13maturemicroRNAsdifferentiallyexpressedincolorectal cancerandnon-tumoraltissues.Mol.Cancer5,29.

Braun,C.J.,Zhang,X.,Savelyeva,I.,Wolff,S.,Moll,U.M.,Schepeler,T.,Orntoft,T.F., Andersen,C.L.,Dobbelstein,M.,2008.p53-responsivemicroRNAs192and215 arecapableofinducingcellcyclearrest.CancerRes.68,10094–10104. Burke,Y.D.,Stark,M.J.,Roach,S.L.,Sen,S.E.,Crowell,P.L.,1997.Inhibitionof

pancre-aticcancergrowthbythedietaryisoprenoidsfarnesolandgeraniol.Lipids32, 151–156.

Carnesecchi,S.,Langley,K.,Exinger,F.,Gosse,F.,Raul,F.,2002.Geraniol,acomponent ofplantessentialoils,sensitizeshumancoloniccancercellsto5-Fluorouracil treatment.J.Pharmacol.Exp.Ther.301,625–630.

Carnesecchi,S.,Schneider,Y.,Ceraline,J.,Duranton,B.,Gosse,F.,Seiler,N.,Raul, F.,2001.Geraniol,acomponentofplantessentialoils,inhibitsgrowthand polyaminebiosynthesisinhumancoloncancercells.J.Pharmacol.Exp.Ther. 298,197–200.

Chaouki,W.,Leger,D.Y.,Liagre,B.,Beneytout,J.L.,Hmamouchi,M.,2009.Citral inhibitscellproliferationandinducesapoptosisandcellcyclearrestinMCF-7 cells.Fundam.Clin.Pharmacol.23,549–556.

(7)

Cloonan,N.,Brown,M.K.,Steptoe,A.L.,Wani,S.,Chan,W.L.,Forrest,A.R.,Kolle,G., Gabrielli,B.,Grimmond,S.M.,2008.ThemiR-17-5pmicroRNAisakeyregulator oftheG1/Sphasecellcycletransition.GenomeBiol.9,R127.

Crowell,P.L.,1999.Preventionandtherapyofcancerbydietarymonoterpenes.J. Nutr.129,775S–778S.

Crowell,P.L.,Gould,M.N.,1994.Chemopreventionandtherapyofcancerbyd -limonene.Crit.Rev.Oncog.5,1–22.

Deb,D.D.,Parimala,G.,SaravanaDevi,S.,Chakraborty,T.,2011.Effectofthymolon peripheralbloodmononuclearcellPBMCandacutepromyeloticcancercellline HL-60.Chem.Biol.Interact.193,97–106.

Duncan,R.E.,Lau,D.,El-Sohemy,A.,Archer,M.C.,2004.Geraniolandbeta-ionone inhibitproliferation,cellcycleprogression,andcyclin-dependentkinase2 activ-ityinMCF-7breastcancercellsindependentofeffectsonHMG-CoAreductase activity.Biochem.Pharmacol.68,1739–1747.

Earle,J.S.,Luthra,R.,Romans,A.,Abraham,R.,Ensor,J.,Yao,H.,Hamilton,S.R.,2010. AssociationofmicroRNAexpressionwithmicrosatelliteinstabilitystatusin colorectaladenocarcinoma.J.Mol.Diagn.12,433–440.

Elegbede,J.A.,Elson,C.E.,Tanner,M.A.,Qureshi,A.,Gould,M.N.,1986.Regressionof ratprimarymammarytumorsfollowingdietaryd-limonene.J.Natl.CancerInst. 76,323–325.

Ferlay,J.,Soerjomataram,I.,Dikshit,R.,Eser,S.,Mathers,C.,Rebelo,M.,Parkin, D.M.,Forman,D.,Bray,F.,2015.Cancerincidenceandmortalityworldwide: sources,methodsandmajorpatternsinGLOBOCAN2012.Int.J.Cancer136, E359–E386.

Gomide,M.S.,Lemos,F.O.,Lopes,M.T.P.,Alves,T.M.A.,Viccini,L.F.,Coelho,C.M.,2013. TheeffectoftheessentialoilsfromfivedifferentLippiaspeciesontheviability oftumorcelllines.Rev.Bras.Farmacogn.23,895–902.

He,L.,Mo, H.,Hadisusilo,S.,Qureshi,A.A.,Elson,C.E.,1997.Isoprenoids sup-pressthegrowthofmurineB16melanomasinvitroandinvivo.J.Nutr.127, 668–674.

Huang,Z.,Huang,D.,Ni,S.,Peng,Z.,Sheng,W.,Du,X.,2010.PlasmamicroRNAsare promisingnovelbiomarkersforearlydetectionofcolorectalcancer.Int.J.Cancer 127,118–126.

Jaafari,A.T.M.,Mouse,H.A.,M’bark,L.A.,Aboufatima,R.,Chait,A.,Lepoivre,M.,Zyad, A.,2012.Comparativestudyoftheantitumoreffectofnaturalmonoterpenes: relationshiptocellcycleanalysis.Rev.Bras.Farmacogn.22,534–540. Kanaan,Z.,Rai,S.N.,Eichenberger,M.R.,Barnes,C.,Dworkin,A.M.,Weller,C.,Cohen,

E.,Roberts,H.,Keskey,B.,Petras,R.E.,Crawford,N.P.,Galandiuk,S.,2012. Dif-ferentialmicroRNAexpressiontracksneoplasticprogressionininflammatory boweldisease-associatedcolorectalcancer.Hum.Mutat.33,551–560. Kanthan,R.,Senger,J.L.,Kanthan,S.C.,2012. Moleculareventsinprimaryand

metastaticcolorectalcarcinoma:areview.Patholog.Res.Int.2012,597497. Kawamori,T.,Tanaka,T.,Hirose,Y.,Ohnishi,M.,Mori,H.,1996.Inhibitoryeffects

ofd-limoneneonthedevelopmentofcolonicaberrantcryptfociinducedby azoxymethaneinF344rats.Carcinogenesis17,369–372.

Kinghorn,A.F.N.,Soejarto,D.,Cordell,G.,Swanson,S.,Pezzuto,J.,Wani,M.,Wall,M., Oberlies,N.,Kroll,D.,etal.,2003.Novelstrategiesforthediscoveryof plant-derivedanticanceragents.Pharm.Biol.41,53–67.

Kulda,V.,Pesta,M.,Topolcan,O.,Liska,V.,Treska,V.,Sutnar,A.,Rupert,K.,Ludvikova, M.,Babuska,V.,HolubecJr.,L.,Cerny,R.,2010.RelevanceofmiR-21andmiR-143 expressionintissuesamplesofcolorectalcarcinomaanditslivermetastases. CancerGenet.Cytogenet.200,154–160.

Livak,K.J.,Schmittgen,T.D.,2001.Analysisofrelativegeneexpressiondatausing real-timequantitativePCRandthe2-Ctmethod.Methods25,402–408. Mills,J.J.,Chari,R.S.,Boyer,I.J.,Gould,M.N.,Jirtle,R.L.,1995.Inductionof

apo-ptosisinlivertumorsbythemonoterpeneperillylalcohol.CancerRes.55, 979–983.

2013. miRBase:themicroRNAdatabase[Internet].Griffiths-Jones Lab,Faculty ofLifeSciences,UniversityofManchester,Manchester,UK,Availablefrom: http://www.mirbase.org/index.shtml(modified2014June;cited2013March). Monteiro,M.V.,deMeloLeite,A.K.,Bertini,L.M.,deMorais,S.M.,Nunes-Pinheiro, D.C.,2007.Topicalanti-inflammatory,gastroprotectiveandantioxidanteffects oftheessentialoilofLippiasidoidesCham.leaves.J.Ethnopharmacol.111, 378–382.

Monzo,M.,Navarro,A.,Bandres,E.,Artells,R.,Moreno,I.,Gel,B.,Ibeas,R.,Moreno,J., Martinez,F.,Diaz,T.,Martinez,A.,Balague,O.,Garcia-Foncillas,J.,2008. Overlap-pingexpressionofmicroRNAsinhumanembryoniccolonandcolorectalcancer. CellRes.18,823–833.

Ng,E.K.,Chong,W.W.,Jin,H.,Lam,E.K.,Shin,V.Y.,Yu,J.,Poon,T.C.,Ng,S.S.,Sung, J.J.,2009a.DifferentialexpressionofmicroRNAsinplasmaofpatientswith colorectalcancer:apotentialmarkerforcolorectalcancerscreening.Gut58, 1375–1381.

Ng,E.K.,Tsang,W.P.,Ng,S.S.,Jin,H.C.,Yu,J.,Li,J.J.,Rocken,C.,Ebert,M.P.,Kwok,T.T., Sung,J.J.,2009b.MicroRNA-143targetsDNAmethyltransferases3Aincolorectal cancer.Br.J.Cancer101,699–706.

Ong,T.P.,Heidor,R.,deConti,A.,Dagli,M.L.,Moreno,F.S.,2006.Farnesolandgeraniol chemopreventiveactivitiesduringtheinitialphasesofhepatocarcinogenesis involvesimilaractionsoncellproliferationandDNAdamage,butdistinctactions onapoptosis,plasmacholesterolandHMGCoAreductase.Carcinogenesis27, 1194–1203.

Paduch,R.,Kandefer-Szerszen,M.,Trytek,M.,Fiedurek,J.,2007.Terpenes: sub-stancesusefulinhumanhealthcare.Arch.Immunol.Ther.Exp.(Warsz)55, 315–327.

Pascual,M.E.,Slowing,K.,Carretero,E.,SanchezMata,D.,Villar,A.,2001.Lippia: traditionaluses,chemistryandpharmacology:areview.J.Ethnopharmacol.76, 201–214.

Pfaffl,M.W.,Horgan,G.W.,Dempfle,L.,2002.Relativeexpressionsoftwaretool (REST)forgroup-wisecomparisonandstatisticalanalysisofrelativeexpression resultsinreal-timePCR.NucleicAcidsRes.30,e36.

Ramos,A.,Visozo,A.,Piloto,J.,Garcia,A.,Rodriguez,C.A.,Rivero,R.,2003.Screening of antimutagenicity viaantioxidant activity in Cuban medicinal plants.J. Ethnopharmacol.87,241–246.

Sarver,A.L.,French,A.J.,Borralho,P.M.,Thayanithy,V.,Oberg,A.L.,Silverstein,K.A., Morlan,B.W.,Riska,S.M.,Boardman,L.A.,Cunningham,J.M.,Subramanian,S., Wang,L.,Smyrk,T.C.,Rodrigues,C.M.,Thibodeau,S.N.,Steer,C.J.,2009.Human coloncancerprofilesshowdifferentialmicroRNAexpressiondependingon mismatchrepairstatusandarecharacteristicofundifferentiatedproliferative states.BMCCancer9,401.

Schepeler, T.,Reinert,J.T.,Ostenfeld, M.S.,Christensen, L.L.,Silahtaroglu, A.N., Dyrskjot,L.,Wiuf,C.,Sorensen,F.J.,Kruhoffer,M.,Laurberg,S.,Kauppinen,S., Orntoft,T.F.,Andersen,C.L.,2008.DiagnosticandprognosticmicroRNAsinstage IIcoloncancer.CancerRes.68,6416–6424.

Shoff,S.M.,Grummer,M.,Yatvin,M.B.,Elson,C.E.,1991.Concentration-dependent increaseofmurineP388andB16populationdoublingtimebytheacyclic monoterpenegeraniol.CancerRes.51,37–42.

Siegel,R.,DeSantis,C.,Virgo,K.,Stein,K.,Mariotto,A.,Smith,T.,Cooper,D.,Gansler, T.,Lerro,C.,Fedewa,S.,Lin,C.,Leach,C.,Cannady,R.S.,Cho,H.,Scoppa,S.,Hachey, M.,Kirch,R.,Jemal,A.,Ward,E.,2012.Cancertreatmentandsurvivorship statis-tics,2012.CACancerJ.Clin.62,220–241.

Visone,R.,Russo,L.,Pallante,P.,DeMartino,I.,Ferraro,A.,Leone,V.,Borbone,E., Petrocca,F.,Alder,H.,Croce,C.M.,Fusco,A.,2007.MicroRNAs(miR)-221and miR-222,bothoverexpressedinhumanthyroidpapillarycarcinomas,regulate p27Kip1proteinlevelsandcellcycle.Endocr.Relat.Cancer14,791–798. Volinia,S.,Calin,G.A.,Liu,C.G.,Ambs,S.,Cimmino,A.,Petrocca,F.,Visone,R.,Iorio,M.,

Roldo,C.,Ferracin,M.,Prueitt,R.L.,Yanaihara,N.,Lanza,G.,Scarpa,A.,Vecchione, A.,Negrini,M.,Harris,C.C.,Croce,C.M.,2006.AmicroRNAexpressionsignature ofhumansolidtumorsdefinescancergenetargets.Proc.Natl.Acad.Sci.U.S.A. 103,2257–2261.

Wattenberg,L.W., Coccia,J.B., 1991.Inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanonecarcinogenesisinmicebyd-limoneneandcitrusfruitoils. Carcinogenesis12,115–117.

Wiseman,D.A.,Werner, S.R., Crowell,P.L.,2007.Cell cyclearrestby the iso-prenoidsperillylalcohol,geraniol,andfarnesolismediatedbyp21(Cip1)and p27(Kip1)inhumanpancreaticadenocarcinomacells.J.Pharmacol.Exp.Ther. 320,1163–1170.

Imagem

Fig. 1. Representative histograms of the cell cycle phase distribution of CT26.WT cells after 12 and 24 h treatment with different concentrations of the essential oils extracted from Lippia alba (A), L
Fig. 2. Heatmap of differentially expressed microRNAs in CT26.WT cell line after treatment with Lippia oils

Referências

Documentos relacionados

Sentimento de culpa, baixa autoestima, pouco interesse pelo bebê, tristeza constante, insônia, entre outros, são sintomas de depressão pós-parto, e

[27] Assim, a análise do sistema foi realizada com base em 9 indicadores, selecionados conforme os domínios e aspetos de avaliação de desempenho, tendo

As etapas acompanhadas para a produção de alevinos revertidos de tilápia foram: manejo dos reprodutores em tanques de repouso; acasalamento em hapas; coleta total de ovos, larvas

A matéria orgânica é essencial para a qualidade e produtividade do solo, sendo seu processo de humificação afetado pelo clima, tipo de solo e sistemas de manejo do solo, resultando

Therefore, this study aimed to characterize the pattern of malocclusion among Brazilian preschoolers and identify the factors as- sociated with its presence, based on data from the

O modelo hierárquico evidenciou que mulheres mais velhas, com baixa escolaridade, donas de casa, se- paradas ou viúvas, que não consumiam frutas/ verduras/legumes diariamente,

• Common mental disorders : the pres- ence of CMD was assessed by the Self-Reporting Questionnaire 20 (SRQ-20), developed by the World Health Organization for the tracking of

A survey that aimed to describe aspects of the work and level of satisfaction with the work of employees of two state prisons of Avaré (SP) showed that 56.8% of professionals who