• Nenhum resultado encontrado

7 -MATERIAIS SEMICONDUTORES

N/A
N/A
Protected

Academic year: 2021

Share "7 -MATERIAIS SEMICONDUTORES"

Copied!
92
0
0

Texto

(1)
(2)

Isolantes, Semicondutores e Metais

• Isolante – é um condutor de eletricidade

muito pobre;

• Metal – é um excelente condutor de

eletricidade;

• Semicondutor – possui condutividade entre

os dois extremos acima.

(3)

Semicondutores

O material básico utilizado na construção de dispositivos eletrônicos semicondutores, em estado natural, não é um bom condutor, nem um bom isolante.

(4)

Silício e o Germânio

• O silício e o germânio são muito utilizados

na construção de dispositivos eletrônicos.

• O silício e o mais utilizado, devido as suas

características

serem

melhores

em

comparação ao germânio e também por ser

mais abundante na face da terra.

(5)

Temperatura, Luz e Impurezas

• Em comparação com os metais

e os

isolantes, as propriedades elétricas dos

semicondutores são afetadas por variação

de

temperatura,

exposição

a

luz

e

(6)

MODELOS ATÔMICOS DE BOHR

• O átomo -

é constituído por partículas

elementares, as mais importantes para o nosso

estudo são os elétrons, os prótons e os nêutrons.

• Camada de Valência

- A última camada

eletrônica (nível energético) é chamada camada de

valência. O silício e o germânio são átomos

tetravalentes, pois possuem quatro elétrons na

camada de valência.

(7)
(8)

Camada de Valência



O silício e o germânio são átomos tetravalentes, pois

possuem quatro elétrons na camada de valência.



O potencial necessário para tornar livre qualquer um

dos elétrons de valência é menor que o necessário para

remover qualquer outro da estrutura.



Os elétrons de valência podem absorver energia

externa suficiente para se tornarem elétrons livres.

(9)
(10)

Corrente em Semicondutores

• Elétrons na banda de valência: movem-se ocupando posições disponíveis no reticulado, preenchendo os vazios deixados pelos elétrons livres - Condução de lacunas migrando ao longo do material no sentido oposto ao movimento do elétron livre.



Em um semicondutor intrínseco, tanto elétrons quanto lacunas

contribuem para o fluxo de corrente.



Elétrons livres de sua posição fixa no reticulado: movem-se na

(11)

MATERIAIS EXTRÍNSECOS

 Dopagem - A adição de certos átomos estranhos aos átomos de silício ou germânio, chamados de átomos de impurezas, pode alterar a estrutura de camadas (bandas) de energia de forma suficiente mudar as propriedades elétricas dos materiais intrínsecos.

 Material extrínseco - Um material semicondutor que tenha sido submetido a um processo de dopagem por impurezas é chamado de material extrínseco.

(12)

MATERIAL DOPADO

TIPO N

 Um método de dopagem consiste na utilização de elementos contendo 5 elétrons na camada de valência (penta-valente), como o antimônio, arsênio e fósforo.

 O quinto elétron, porém, fica desassociado de qualquer ligação. Esse elétron pode tornar-se livre mais facilmente que qualquer outro, podendo nessas condições vagar pelo cristal.

(13)

MATERIAL DOPADO

TIPO P

 O material tipo P é formado pela dopagem do

semicondutor intrínseco por átomos trivalentes como o

boro, gálio e índio.

 Há agora um número insuficiente de elétrons para

completar as ligações covalentes. A falta dessa ligação é

chamada de lacuna ou (buraco).

 Como uma lacuna pode ser preenchida por um elétron, as

impurezas trivalentes acrescentadas ao silício ou germânio

intrínseco, são chamados de átomos aceitadores ou

receptores.

(14)

Semicondutores dopados ou extrínsecos

• Impurezas penta-valentes: antimônio, arsênico, fósforo

produzem semicondutores do tipo-n, por contribuírem com

elétrons extras (impurezas doadoras).

• Impurezas trivalentes: boro, alumínio, gálio produzem

semicondutores do tipo-p, por produzirem lacunas ou

deficiência de elétrons (impurezas aceitadoras).

(15)

Estrutura de bandas de energia

Banda de condução Banda proibida Banda de Valência Elétrons livres Lacunas Banda de condução Banda de Valência

(16)
(17)
(18)
(19)
(20)
(21)

Propriedades de transporte de carga

Geração, recombinação e tempos de vida de portadores

Processos de recombinação de portadores em semicondutores.

- Transições com libertação de energia pelo processo Auger (possível em todos os semicondutores)

- Transições diretas com emissão de radiação (possível nos semic. de hiato direto)

Recombinação direta

(22)

Em semicondutores de hiato direto, a taxa de recombinação (Re) é:

Rec é o coeficiente de recombinação (depende do material e está relacionado com a probabilidade de recombinação direta elétron-buraco)

 O excesso de portadores de um tipo leva à diminuição da população de portadores do outro tipo, pelo processo de recombinação.

(23)
(24)

 Em semicondutores de hiato direto, o tempo de vida dos portadores minoritários depende essencialmente da concentração de dopante.

(25)

Em semicondutores de hiato indireto, a recombinação direta inter-bandas é muito menos provável, uma vez que é necessário que no instante da transição exista a participação de um fonão que permita ao portador mudar o seu momento linear.

Por isso o coeficiente de recombinação tem os seguintes valores típicos:

Rec ~ 10-10 cm3/s para semicondutores de hiato direto

Rec ~ 10-15 cm3/s para semicondutores de hiato indireto

Um fônon ou fonão, na física da matéria condensada, é uma quase-partícula

(26)

Nos semicondutores de hiato indireto o processo mais provável é a captura inicial de um dos portadores numa armadilha eletrônica, seguindo-se a captura do outro portador.

(27)

Em semicondutores de hiato indireto, o tempo de vida dos portadores minoritários depende da concentração de

(28)

estados-Difusão de portadores

Perante um desequilíbrio espacial na concentração de portadores, a 2ª Lei de Fick, enuncia que:

Este fluxo de portadores por difusão dá origem a uma corrente elétrica de densidade:

(29)
(30)

Emissão termiônica

(31)
(32)

Emissão termiônica

A corrente termiônica obedece à expressão:

Onde A* é a constante efetiva de Richardson:

Os díodos MIS e os díodos de Schottky são baseados no efeito de emissão termiônica

(33)

Efeito de tunelamento

Baseia-se em fenômenos da mecânica quântica.

Elétrons com energia menor que a barreira, têm uma probabilidade não nula de a poderem atravessar, Tt:

(34)
(35)

Efeito de carga espacial

Num semicondutor, a densidade “líquida” de carga, ρ, em cada ponto é dada pelas contribuições dos portadores e dos íons da rede:

Se a distribuição espacial da carga não for equilibrada, esta gera um campo elétrico interno.

Este campo vai condicionar a corrente no interior do semicondutor. Em equilíbrio, n = ND+ e p = N

A- e portanto ρ = 0.

O desequilíbrio de carga pode ser gerado pela injeção de portadores nos extremos da amostra.

(36)

Efeito de carga espacial

Uma injeção intensa de portadores nos extremos da amostra causa um desequilíbrio na distribuição de cargas.

Esse desequilíbrio causa o aparecimento de um campo elétrico interno que se opõe ao campo externo (aplicado).

(37)
(38)

Um fônon ou fonão, na física da matéria condensada, é uma

quase-partícula que designa um quantum de vibração em um retículo

cristalino rígido.

Propriedades de transporte de carga

Fonões acústicos e ópticos, transversais e longitudinais

Fonões acústicos estão relacionados com a temperatura (unidades

quânticas kT), propagam-se à velocidade do som e têm comprimentos de onda dessa ordem de grandeza.

Interagem com a matéria, fazendo oscilar localmente todos os átomos na mesma direção.

(39)

Fonões transversais são oscilações na direção perpendicular à da

propagação.

Fonões longitudinais são oscilações na direção da propagação.

Fonões ópticos correspondem à vibração inter-atômica e vibram com

frequências elevadas (da ordem das micro-ondas ou mesmo infravermelhos).

Interagem com a matéria fazendo oscilar localmente os átomos em direções opostas.

Os átomos vizinhos comportam-se como se pertencessem a sub-redes diferentes, propagando-se a oscilação em cada sub-rede.

(40)

Propriedades ópticas (resumo)

As propriedades ópticas dos semicondutores são caracterizadas pelo índice de refração complexo,

݊

.

A parte real, vulgarmente designada de “índice de refração”, está relacionada com as propriedades de transmissão da luz:

c = velocidade da luz no vácuo v = velocidade da luz no material

(41)
(42)

Existem três tipos de transições eletro-ópticas:

- As transições diretas “permitidas” (a). - As transições diretas “proibidas” (b). - As transições indiretas “permitidas” ou “proibidas” (c).

As transições diretas “permitidas” ocorrem para qualquer valor de k, mas dão-se sem alteração de k.

São muito frequentes.

As transições diretas “proibidas” ocorrem para valores de k ≠ 0, mas dão-se com alteração de k. O k final inclui o momento (muito pequeno

(43)

As transições indiretas ocorrem para qualquer valor de k, mas dão-se necessariamente com alteração de k. Estas transições são assistidas por fonões, quer por absorção, quer por emissão.

O k final inclui a soma ou a diferença do momento do fonão.

Por outro lado, Efinal = Efóton ± Efonão= Eg, consoante o fonão seja absorvido ou emitido.

As transições indiretas também podem ser “permitidas” ou proibidas”.

(44)

Nos materiais de hiato direto, a transição entre bandas ocorre quase sempre sem alteração de k, - transições “permitidas”

Se a transição ocorrer em k=0 então só pode ser uma transição “permitida”.

 Nos semicondutores de hiato direto as transições são quase exclusivamente do tipo “permitido”. No caso particular de fótons com hν = Eg a transição é do tipo “permitida”.

Para estas transições γ = ½ e portanto o coeficiente de absorção de materiais com hiato direto vem:

(45)

Nos materiais de hiato indireto, a transição entre bandas ocorre sempre com alteração de k e participação de fonões

- transições indiretas.

A distinção entre transições “permitidas” e “proibidas” é semelhante à das transições diretas (o momento do fotão não ser ou ser incluído no momento do elétron, durante a transição).

Para as transições “permitidas”, γ = 2; para as “proibidas”, γ = 3

Como as transições “permitidas” são sempre muito mais frequentes, fixemos γ = 2.

(46)
(47)
(48)

OPERAÇÃO DO DIODO

(JUNÇÃO P-N)

– Dispositivos

eletrônicos

como

transistors, circuitos integrados, chips,

etc...

usam

a

combinação

de

semicondutores extrínsecos tipo “p” e

tipo “n” .

• DIODO  é um dispositivo que permite a

corrente fluir em um sentido e não em

outro.

É

construído

juntando

um

(49)

JUNÇÃO P-N

-Quando uma tensão é aplicada como no esquema abaixo, os dois tipos de cargas se moverão em direção à junção onde se recombinarão. A corrente elétrica irá fluir. -Como no esquema abaixo, a tensão

causará o movimento de cargas para longe da junção. A corrente não irá fluir no dispositivo.

(50)
(51)
(52)
(53)
(54)
(55)

O díodo de junção pn

A formação da junção

(equações fundamentais)

1- A recombinação é causada pela difusão de portadores

2- A difusão é causada pelo gradiente de concentração de portadores

3 - O campo elétrico emergente tende a separar as cargas impedindo a continuação do processo de recombinação

(56)
(57)

O díodo de junção pn

A formação da junção (equações fundamentais)

Região de depleção ou região de carga espacial

Região de Depleção:

• Não há portadores livres

Região de Carga Espacial:

• Existe um campo elétrico (¸ ) causado pela distribuição de carga ao longo de χd

Estende-se mais para o lado

menos dopado (igualdade do nº de cargas ionizadas)

(58)

O díodo de junção pn

A formação da junção (equações fundamentais)

Região de depleção ou região de carga espacial

ρ = densidade de carga (C/cm3) ψ = potencial elétrico (V)

ε0 = constante dielétrica do vácuo (F/cm)

ε = constante dielétrica relativa do semicondutor - Equação do Campo Elétrico:

- Equação de Poisson :

(59)

- A carga elétrica

Durante a recombinação:

(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)

Polarização direta fraca

Para pequenas polarizações diretas (V < ~0,7V) • Redução da RCE (Região de Carga Espacial) • Não há corrente apreciável

(71)

Para polarizações diretas apreciáveis (V> ~0,7V) • Há portadores que atravessam a junção em grande quantidade

(72)

Polarização inversa

Para polarizações inversas (V < 0V)

χ

d aumenta de extensão - injeção de minoritários aumenta recombinação • ¸ (campo elétrico) aumenta de intensidade

(73)

Polarização inversa muito forte (ruptura)

Ruptura por instabilidade térmica: (processo de geração térmica)

• Dá-se apenas em diodos feitos de material semicondutor com hiato pequeno (ex. Ge).

• Devido ao baixo Eg, ni e portanto ISAT são relativamente elevados.

• Em polarização inversa, o produto ISAT.VR (potência dissipada) é suficiente para aumentar a temperatura da junção.

• O aumento da temperatura leva ao aumento de nie portanto de ISAT • Esta realimentação positiva leva ao surgimento de uma corrente inversa considerável, acompanhada de um aumento intenso da temperatura: ruptura do diodo.

(74)

Polarização inversa muito forte (ruptura)

Ruptura por efeito de avalanche: (processo de ionização por impacto)

• Dá-se para a maior parte dos diodos.

• Os portadores livres na região de depleção estão sob um campo elétrico muito forte: entre 2 colisões sucessivas com átomos da rede, adquirem uma energia cinética superior a Eg. Nestas condições, ao dar-se a colisão, libertam elétrons das ligações covalentes.

• Estes portadores provenientes da ionização são acelerados pelo mesmo processo e chocam com outros e-, arrancando-os também das ligações covalentes.

• Aumento exponencial de e- arrancados: A corrente inversa torna-se muito elevada – ruptura do diodo.

(75)

Ruptura por efeito de avalanche:

• A ruptura inicia-se quando é atingido na junção um valor crítico de campo elétrico, ¸C :

(76)

Polarização inversa muito forte (ruptura)

Ruptura por efeito de Zener: (processo de efeito de túnel)

• Dá-se para díodos com NA e ND muito elevados.

• A RCE é estreita e a barreira de potencial muito intensa (

¸

grande).

• Polarização inversa dá aos elétrons energia suficiente para atravessar essa barreira por efeito de túnel.

• A corrente inversa é controlada pela tensão necessária para que se inicie o processo: Tensão de Zener.

(77)
(78)

Exemplos

junção pn: retificador;de sinal; zener; LED (diodo emissor de luz); fotodiodo.

junção n-metal : diodo

Schottky

(79)

Diodo Retificador

Característica: Uma corrente fluirá se aplicarmos uma

tensão através da junção em um determinado sentido, mas se a tensão for aplicada em sentido oposto, somente uma pequena corrente fluirá (praticamente nula).

(80)

Diodo Zener

Característica: Difere do diodo retificador por poder operar em

condução inversa, sem se danificar (respeitados os limites de corrente). Usando, em geral, como regulador de tensão. Observe que em condução reversa temos o ponto em que ocorre a "ruptura" quando então a corrente pode aumentar muito no sentido reverso mas a tensão no diodo não varia.

(81)

Diodo de Sinal

Característica: Exceto pelas características referentes à rapidez

com que passa de um estado para outro é idêntico ao diodo retificador. Se o requisito é velocidade na transição de estados, opta-se pelo uso do diodo de sinal.

(82)

Diodo Emissor de Luz (LED)

Característica: Emite luz quando sua junção está diretamente

polarizada. Seu invólucro é translúcido, permitindo a observação da luz emitida. É uma fonte de luz monocromática, emitindo luz na faixa do infravermelho (não visível), ou na faixa do espectro visível (vermelho, laranja, amarelo, verde, azul).

A tensão da barreira de depleção é de aproximadamente 2V. A corrente para a emissão de luz em intensidade adequada à visualização, se situa em torno de 10 a 15mA.

(83)

Exemplo

Um LED é constituído a partir de uma junção p-n baseada num material semicondutor cuja lacuna de energia é

1,9eV. Qual é o comprimento de onda emitido? Em que região do espectro eletromagnético este LED emite ?

(84)

Fotodiodo

Característica: Tem sua corrente ampliada em polarização inversa,

quando incide luz em sua junção. Seu uso se dá, em geral, em conjunto com o LED formando um par receptor-emissor de luz. Se caracterizam tanto pela sua sensibilidade como pela velocidade com que respondem às variações da intensidade da luz incidente. Nos computadores são usados, entre outros, para receber as informações de um feixe de laser que incide na superfície de um CD.

(85)

Transistor

Dispositivo controlador de intensidade de corrente, possui três terminais: emissor, base, coletor.

O mecanismo pelo qual controla a intensidade de corrente varia, podendo classificá-los como:

•Transistores Bipolares;

(86)

Transistores Bipolares

A corrente do coletor é controlada, enquanto a corrente da base é o mecanismo controlador.

Cada uma das junções do transistor se comporta de forma anteriormente apresentada para diodos de junção.

(87)
(88)

Transistores FET’s

A intensidade de corrente nos transistores de efeito de campo é controlada por meio de uma tensão.

Existem dois tipos de transistores de efeito de campo: •JFET : Transistor de efeito de campo de junção;

•MOSFET: Transistor de efeito de campo metal-óxido semicondutor.

MOSFET’s – base para construção dos circuitos lógicos CMOS.

Vantagens: baixa dissipação de potência e comportam mais componentes por unidade de área.

(89)
(90)
(91)
(92)

Referências

Documentos relacionados

Outro ponto que merece destaque é o fato de que apesar de uma das principais características do campesinato ser a produção familiar para manutenção e reprodução do sistema

 Os principais objetivos que levam as empresas a implantarem um sistema de gestão e gerenciamento ambiental são: melhoria da imagem da empresa em relação a

I Dividir o problema em um ou mais casos mais pequenos que o original, mais pr´ oximos do caso base. I Chamar recursivamente a fun¸ c˜ ao para os casos

Analisando a dimensão técnica com base nos resultados encontrados na pesquisa realizada e no referencial teórico elaborado nesta tese, constatou-se que existem

• Dimensões consideradas: PROCESSOS SISTEMAS INFRA TI CONTRATOS CONTAS CONTÁBEIS RISCOS 20-F RISCOS FORM.REF.(CVM 480) CARTA CONTROLES AUD.EXT.. SUSTENTABILIDADE SOCIETÁRIO

Pode-se perceber que a COTRISOJA, como uma organização que está inserida em uma comunidade e dependente desta para a concretização de seus objetivos não foge de

As recomendações, de uma rotina para a reposição e controle da maleta de emergência, contendo medicamentos e materiais utilizados em situações de urgência e emergência da

A nova NR-10 (Norma Regulamentadora nº 10) estabelece requisitos e condições mínimas para a implementação de medidas de controle e sistemas de prevenção de acidentes, de forma