• Nenhum resultado encontrado

Bioethanol strains of Saccharomyces cerevisiae characterised by microsatellite and stress resistance

N/A
N/A
Protected

Academic year: 2021

Share "Bioethanol strains of Saccharomyces cerevisiae characterised by microsatellite and stress resistance"

Copied!
7
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Biotechnology

and

Industrial

Microbiology

Bioethanol

strains

of

Saccharomyces

cerevisiae

characterised

by

microsatellite

and

stress

resistance

Vanda

Renata

Reis

a

,

Ana

Teresa

Burlamaqui

Faraco

Antonangelo

b

,

Ana

Paula

Guarnieri

Bassi

a

,

Débora

Colombi

c

,

Sandra

Regina

Ceccato-Antonini

a,∗

aUniversidadeFederaldeSãoCarlos(CentrodeCiênciasAgrarias),DepartamentoTecnologiaAgroindustrialeSocio-EconomiaRural, LaboratóriodeMicrobiologiaAgrícolaeMolecular,Araras,SP,Brazil

bUniversidadeEstadualPaulista,InstitutodeBiocienciasdeBotucatu,DepartamentoParasitologia,Botucatu,SP,Brazil cGenotypingLaboratóriodeBiotecnologiaLtda,Botucatu,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received3January2016 Accepted19September2016 Availableonline22December2016 AssociateEditor:GiseleMonteirode Souza Keywords: Fermentation Stresses Yeasts Microsatellite Contaminants

a

b

s

t

r

a

c

t

StrainsofSaccharomycescerevisiaemaydisplaycharacteristicsthataretypicalofrough-type colonies,madeupofcellsclusteredinpseudohyphalstructuresandcomprisedofdaughter budsthatdonotseparatefromthemothercellpost-mitosis.Thesestrainsareknownto occurfrequentlyinfermentationtankswithsignificantlowerethanolyieldwhencompared tofermentationscarriedoutbysmoothstrainsofS.cerevisiaethatarecomposedof dis-persedcells.Inanattempttodelineategeneticandphenotypicdifferencesunderlyingthe twophenotypes,thisstudyanalysed10microsatellitelociof22S.cerevisiaestrainsaswellas stressresistancetowardshighconcentrationsofethanolandglucose,lowpHandcell sed-imentationrates.TheresultsobtainedfromthephenotypictestsbyPrincipal-Component Analysisrevealedthatunlikethesmoothcolonies,theroughcoloniesofS.cerevisiaeexhibit anenhancedresistancetostressfulconditionsresultingfromthepresenceofexcessive glucoseandethanolandhighsedimentationrate.Themicrosatelliteanalysiswasnot suc-cessfultodistinguishbetweenthecolonyphenotypesasphenotypicassays.Therelevant industrialstrainPE-2wasobservedinclosegeneticproximitytorough-colonyalthoughit doesnotdisplaythiscolonymorphology.Auniquegeneticpatternspecifictoaparticular phenotyperemainselusive.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mail:antonini@cca.ufscar.br(S.R.Ceccato-Antonini).

http://dx.doi.org/10.1016/j.bjm.2016.09.017

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Introduction

TheBrazilianindustrialfermentationprocess forfuel alco-holproductionhascertainatypicalcharacteristicsthatallow fortheentryandgrowthofwildyeaststrains.Theconditions aresoconducivetowild-yeastgrowththatoccasionallytheir developmentisfoundtocompetewiththatoftheselected starteryeaststrain.Oneofthemajorreasonsforthisisthatthe methodologyfollowedbytheBrazilianethanolicfermentation industry does notrigorously implement sterile conditions; otherprominentreasonsincludeyeastrecyclingalongwith sugarcaneharvesting.1 Asaresultofthe abovementioned

reasons,contaminationbywildstrainsofSaccharomyceshas a very frequent occurrence in the bioethanol industry. At timesithasbeenobservedthatthe growthpatterns ofthe indigenousstrainsaresorobustthattheydominatethe fer-mentationprocesstotheextentofreplacingthestarteryeast strain. The status or influence of the contaminant strains inthefermentationprocess isdependentupon characteris-ticssuchasthefermentativeperformance,cellsedimentation rate,filamentationaswellasbiofilmdevelopment.2

Indige-nousstrains withrough colony morphologyare frequently observedduringtheethanolicfermentationprocessandare associatedwithpseudohyphalgrowth andhigh sedimenta-tionrate;thesestrainsresultinproblemsthataresimilarto thoseobservedforflocculentstrains.3,4Asawordofcaution,

itistobenotedthatthecellaggregationcausedasaresultof pseudohyphaeshouldnotbeconfusedwithflocculation.

Chainformationinyeastisobservedwhentheyounger budfailstoseparatefrom themothercell5;undersuch

cir-cumstancesthe newer cell remainsattached tothe parent post-mitosisleadingtotheformationof‘snowflakeyeasts’.6

AstudyconductedbyReisetal.,4comparingrough-colony

strainswiththeirsmooth-colonycounterparts,demonstrated that the rough-colony strains havesignificantly lower and slowerfermentativekineticswhenmonitoredinabatch sys-tem over a48-h period underconditions wheresugarcane juicewasusedasthesubstrate.Highresidualsugar concen-trationhasbeen documented tobea factorthat isclosely associatedwiththepresenceofwildS.cerevisiaestrainsinthe fermentationprocess.3,4

Environmental conditions are known to be key factors capableofinfluencingandaffectingdifferencesincolonyand cellmorphology.7,8 In addition,signalling cascadessuch as

theMAPK,TORC,SNF1andRIM101pathways,arealsoknown tobeinvolvedininfluencingmorphologicalchanges.8

How-ever,inthelattercase,theresultantmorphologicalchanges areusuallyofatransitorynature.9,10

Curiously, in spite of the presence of clear demonstra-bledifferencesincolonymorphologyand cellarrangement betweensmooth-colonyandrough-colonystrains,the restric-tionanalysisofmitochondrialDNAandPGFE(chromosome karyotyping)bothfailed touncover anyunderlying genetic differences.Thedifferencesinmorphologywere concluded tobeaconsequenceofenvironmentalconditionsthat influ-enceandcausedifferentialgeneexpression.11Kuthanetal.12

reportedthatTy-codinggenesandsubtelomericgenesthatare inducedbystressconditionsinterferewiththecolony mor-phologyofyeasts.AreportbyCavalierietal.13thatanalysed

metabolicpatternsindicatedthatthereweresignificant dif-ferencesinthegeneexpressionprofilesofthecolonyvariants (filigreed,roughandsmooth)especiallywithrespectto ammo-niaandaminoacidtransporters.

Inthatdirection,astudybyRatcliffetal.6thatcompared

a unicellularstrain ofS.cerevisiaeand anevolvedstrainof snowflakeyeastshowedthat1035genesweresignificantly dif-ferentiallyexpressedbetweenthetwo.Theauthorsnotedthat sevenofthetenmostdownregulatedgeneswereregulatedby thetranscriptionfactorACE2inconditionswhereinbothACE2 alleleswereidenticalinthediploidstateoftheyeast.Astudy byRodrigues14onspontaneousderivativesofJAY270/PE-2 pre-sentinganalteredcolonymorphology(roughenedsurfaces, irregularedges,cellsedimentationresemblingflocculationin liquidmedia)revealedthatlossofheterozygosityofthegene ACE2(asaresultofframeshiftmutation)wasresponsiblefor thedevelopmentoftherough-colonyphenotype.PE-2isoneof themostimportantindustrialyeaststrainsusedinthe Brazil-iandistilleries.3 ACE2heterozygosityshouldbeinvestigated

intheyeaststrainsdisplayingrough-colonymorphology fre-quentlyisolatedfromtheethanolicfermentationtoassessthe realoriginofthisphenotype.

In spite ofclear differences in colony morphology and cellarrangement,indepthanalysisintogeneticdifferences between smooth and rough-colony strains have failed to reveal the presenceofany underlying variationsata DNA level so far. The PCRmicrosatellite methodology has been extensivelyusedforS.cerevisiaestrainidentificationespecially whenassessingthewinefermentationpopulations15–17;more

recentlythistechnologyhasbeenusedforassessingthe bio-diversityofnativebioethanolyeaststrains.18Thistechnique

hasbeenrevealedtobesensitiveandrobustenoughtodetect theextensivegeneticdiversityoftheindigenousstrainsofS. cerevisiaeinBrazilianethanol-producingunits.18

MicrosatellitesorSSRs(SimpleSequenceRepeats)areshort segmentsofDNAthatarerepeatedintandemandareknown tobeco-dominantlyinheritedanddispersedthroughoutthe genome.19ThesixteenchromosomesofS.cerevisiaegenome

are known to be very rich in the presence of microsatel-litesaswellasnumerouspolymorphicalleles.20Perezetal.19

evaluatedthegeneticvariabilityof51isolatesofS.cerevisiae using the microsatellite methodology. With the use of six microsatellitestheyuncoveredatotalof57allelesand gen-erated44genotypes.

Despite the result of loss of heterozygosity of ACE2 to be the probable origin of rough-colony morphology in S.

cerevisiae,6,14 previousstudiesherereportedweremore

con-clusiveregardingtothedifferencesingeneexpressionthan tothegeneticdifferentiationatDNAlevelbetweendifferentS.

cerevisiaephenotypes.Inviewoftheremarkablyhigh

discrim-inatorypowerofthemicrosatellitemarker-basedassessment, thistechniquewasappliedinourstudyinanattemptto eval-uate the genetic variability amongst strains ofS. cerevisiae isolated from industrial ethanol units. The ultimate objec-tiveofthestudywastodiscoverageneticpatternthatcould beusedtodifferentiatebetweenthetwocolonyphenotypes (roughandsmooth).Additionally,thephenotypic character-istics such as resistance to stress and cell sedimentation werealsosurveyed.Itwashypothesisedthattheassociation betweenmoleculartraitsandphenotypicfeaturescouldhelp

(3)

indifferentiatingbetweencolonyphenotypeswhichinturn woulddiscriminatethemintoseparategroupstobetreated differentlyinthefermentationunit.

Materials

and

methods

Yeaststrains,identificationandcultureconditions

Yeastculturesofbothsmoothandroughcolonieswere col-lected fromdifferent ethanol-producingunits(Table1)and subjectedtoPCRandITSregionsequencing(primersITS-1and ITS-4)21toconfirmidentityasS.cerevisiae.ThePCRconditions

employedforITSamplificationwereasdescribedbefore.18

Fol-lowingidentityconfirmation,twenty-twostrains(elevenfrom eachcolonyphenotype)wereselectedformicrosatelliteand stressresistanceanalysis.Thesestrainsweremaintainedon YPD(w/v:1%yeastextract,2%glucose,2%peptone,2%agar; forbrothpreparation,agarwasomitted)slantsat4◦Cwith regulartransferstonewmedium.

Microsatelliteanalysis

A total of ten microsatellite loci (Table 2) were analysed bycapillaryelectrophoresisand thepatternsthus obtained wereusedforcreatingaphenetictree.Population1.2.30 soft-warewithalgorithmMinimumGeneticDistance–DM22 for

distancemethod and UnweightedPair Group Method with ArithmeticMean(UPGMA)astheclusteringmethodwereused forthis purpose.Thereaction conditions formicrosatellite amplifications, capillary electrophoresis and diversity pop-ulationanalysis were described previouslyby Antonangelo etal.18

Phenotypiccharacterisation

Phenotypic characterisation was performed based on the resistancetothestressandcell sedimentationrate.To ver-ifyresistancetolowpH,yeastcellsweretransferredfromthe YPDdishestoasalinesolutionandthecellconcentrationwas adjustedsoastoyieldafinalcountofca.108cells/mL.A10␮L aliquotwasplatedontoaPetridishcontainingYPDwiththe followingpHvalues:6.0,5.0,4.0,3.0,2.0,1.75,1.5,1.25,1.0. Theinoculateddisheswereincubatedat30◦Cfor4days.Yeast growthwasscoredas(1)andabsenceofgrowthas(0).Inorder toavoidliquefactionoftheculturemediumduetothelow pH,agarwassterilisedinalowamountofwaterseparately fromthesolutioninwhichtheothernutrientsofthemedium were dissolved. Thenutritivesolution was adjustedto the requiredpHvaluepriortosterilisation.Followingautoclaving, bothsolutions(agarand nutritivesolutions)weremixed,at 55◦C,andimmediatelypouredintosterilePetridishes.

Thesame procedure was utilisedfor thepreparationof PetridishescontainingYPD(pH6.0)withethanolinfinal con-centrations of 0,3, 6, 9, 12, 12.5,13, 13.5, 14,14.5, 15,18, 21% (v/v).Subsequent toinoculation, thePetridishes were wrappedinplasticfilminordertoavoidethanolevaporation. Growth wasevaluatedintheinoculatedPetridishesafter4 daysofincubationat30◦Candscoredasdescribedbelow.

YPD(pH6.0)withglucoseinthefinalconcentrationsof100, 150,200,250,300,400and500g/Lwasalsoutilisedtoverify resistanceoftheyeaststrainstohighsugarconcentrations. Theproceduresfollowedforyeastinoculation,incubationand growthscorewerethesameasdescribedabove.

The cell sedimentation assay was performed according to the protocol described by Wang et al.23 and modified

by Reis et al.4 After growth in the multiplication medium

(sugar cane juice with approximately 4%reducing sugars),

Table1–Saccharomycescerevisiaestrainsanalysedbymicrosatellitemarkers,forstressresistanceandcellsedimentation rate.

Strain Ethanol-producingunit Codeofisolation Colonymorphology

2 UsinaSantaAdélia VF4 Smooth

3 UsinaSantaAdélia VF5 Smooth

4 UsinaSantaAdélia VF6 Rough

6 UsinaSantaAdélia VF8 Rough

7 UsinaSantaAdélia VF9 Rough

8 UsinaSantaAdélia VF10 Rough

9 UsinaSantaLúcia 45 Rough

10 UsinaSantaLúcia 47 Rough

12 UsinaSantaLúcia 51 Smooth

15 UsinaSantaLúcia 2 Smooth

16 UsinaDiamante 385 Rough

PE2 UsinadaPedra PE-2 Smooth

18 UsinaSantaLúcia FM Smooth

19 Unknown URC Rough

33 UsinaSantaAdélia A1 Smooth

35 UsinaSantaAdélia M1 Rough

36 UsinaSantaAdélia M2 Smooth

CAT1 UsinaVOCatanduva CAT-1 Smooth

BG1 UsinaBarraGrande BG-1 Smooth

SA1 UsinaSantaAdélia SA-1 Smooth

47 UsinaSantaAdélia VF-1 Smooth

(4)

Table2–MicrosatellitelocionSaccharomycescerevisiaechromosomes,OpenReadingFrames(ORF)andprimersequences (forward/fw;reverse/rv).Thenumbersinsuperscript(inLociname)arerelatedtothereferenceswhereintheprimer designswereobtained.

Lociname Chromosome–coordinates ORF Primersequence

G115,30 XVI536832-536675 SC8132X Fw:5CTGCTCAACTTGTGATGGGTTTTGG3

Rv:5CCTCGTTACTATCGTCTTCATCTTGC3

G219,27,31 XIII87140-86862 YMLO91C Fw:5AAAAGCGTAAGCAATGGTGTAGAT3

Rv:5AGCATGACCTTTACAATTTGATAT3

G315,16,27,30,31 XV823021-822769 YOR267C Fw:5TACTAACGTCAACACTGCTGCCAA3

Rv:5GGATCTACTTGCAGTATACGGG3

G415,16,27,30,31 XVI536841-536424 YPL009C Fw:5AACCCATTGACCTCGTTACTATCGT3

Rv:5TTCGATGGCTCTGATAACTCCATTC3

G516,19,27,31 IV778622-779023 YDR160W Fw:5TGGGAGGAGGGAAATGGACAG3

Rv:5TTCAGTTACCCGCACAATCTA3

G616,27 VI210262-210403 YFR028C Fw:5GTGTCTTGACACAATAGCAATGGCCTTCA3

Rv:5GCAAGCGACTAGAACAACAATCACA3

G716,19,27,31 VII245604-245701 YGL139W Fw:5CTTTTTATTTACGAGCGGGCCAT3

Rv:5AAATCTCATGCCTGTGAGGGGTAT3

G816,19,27,31 VII467642-467744 YGL014W Fw:5CAGGTCGTTCTAACGTTGGTAAAATG3

Rv:5GCTGTTGCTGTTGGTAGCATTACTGT3

G1215,16,19,31 XIII86902-87140 SCAAT1 Fw:5AAAGCGTAAGCAATGGTGTAGATACTT3

Rv:5CAAGCCTCTTCAAGCATGACCTTT3

G1316,19,31 IV776163-778721 YDR160W Fw:5TGGGAGGAGGGAAATGGACAG3

Rv:5TTCAGTTACCCGCACAATCTA3

thecellswerecollectedbycentrifugation,washedtwicewith sodiumcitratebuffer(50mM;pH3.0)containing5mMEDTA and then washed againwith waterat4◦C. Thecells were resuspended in chilled distilled water and diluted or con-centrateduntil anOD (600nm)of2.0was reached(Thermo

Biomate® spectrophotometer). After vigorousshaking,

sam-plesfromtheupperportionofthetubeweretakenat0minand 10minintervalsandtheOD(600nm)wasobtained.The sed-imentationrate(%)wascalculatedasfollows:sedimentation (%)=[(OD0min−OD10min)×100]/OD0min.

ThePrincipal-ComponentAnalysis(PCA) was appliedto theresultsofphenotypiccharacteristics,consideringabinary matrixofdatainwhichthelinescontainedtheyeaststrains and the columns represented absence of growth (level 0) or growth (level 1) for each characteristic analysed (resis-tance to low pH, high sugar concentration, high ethanol concentration).Forcellsedimentationassay,thelevels0and 1 were applied to results below 10% or higher than 10%,

respectively.Thefunction‘prcomp’ofthestatisticalsoftware RwereutilisedforthePCA.24

Results

Themolecular-typingwork wasperformedwithagroupof

22S.cerevisiaestrainsisolatedfromalcohol-producingunits

which was separated by the characteristics of colony and cellmorphologyintwogroups:‘smooth’and‘rough’colony phenotypes. Theaspects ofcolonyand cell morphologyof bothphenotypesareillustratedinFig.1.Geneticanalysisby microsatellite assay byusing 10 microsatellite loci didnot revealtheclusteringofyeastswithinthegroups‘smooth’and ‘rough’colonyphenotypes.Thegreatestgeneticsimilaritywas observedindeedbetweenyeaststrainsfromdivergentcolony types,asstrains47and35,or33and52(lowerleftbranchofthe tree).Interestingly,theindustriallyrelevantstrainPE-23was

Colony

Cells

Colony

Cells

Fig.1–Colony(growinginYPDmedium)andcells(magnificationof400×atopticalmicroscopy)ofasmoothcolony(left) andaroughcolony(right)ofS.cerevisiaestrains(ReprintedfromReisetal.4).

(5)

12

PE2 36 16 9 7 6 35 47 33 52 4 3 2 15 19 18 10 8 CAT1 SA1 BG1

Fig.2–Phenetictreecreatedwiththemicrosatellitelociby usingthePopulation1.2.31softwareandUPGMAclustering method.Thelegendinsidetheboxisreferenttothestrain code(asinTable1).Rough-colonystrainsaredenotedin circles;smooth-colonystrainsinsquares.

foundclosetorough-colonystrainsintheupperleftbranchof thetree(Fig.2).

Phenotypiccharacteristicsbasedontheresistancetothe stress and cell sedimentation rate were then analysed in an attempt to cluster the strains. Upon applying the PCA methodtothesetoffourphenotypiccharacteristicsandtheir sublevels, a biplot was obtainedand shown in Fig. 3. The PCA-1explained73.62%ofthedatatotalvariability.Themost pronouncedeffectobservedinFig.3isthe strongopposite contributionsmadetoPC1bytheresistancetolowpH(1.25 and1.5)displayedbyindustrialyeaststrainsCAT-1andPE-2in therightupperquadrant,ontheonehand,andrough-colony yeasts(eightoutofelevenstrains)totheresistanceofboth highethanolandsugarconcentrationsbesidessedimentation rateintheleftatthemiddle,ontheotherhand.Other rough-colonystrainswerefoundintheupperquadrant(strain36),a littledistantfromtheindustrialyeaststrainsbecauseofthe highsedimentationrateaswell;thestrain06duetothe exclu-sivelyresistancetohighethanolconcentrationinthemiddle ofthePCAbiplot;andthestrain52duetothesensitivityto lowpHbutresistancetohighsugarconcentrationandhigh sedimentationrate,closertotherough-colonystrainsthanto thesmooth-colonystrains.

Theisolationofthemajorityofsmooth-colonystrainsin therightinferiorquadrant(6outof11)inFig.3revealedits sensitivitytolowpH,highsugarandethanolconcentrations andsedimentationratebelow10%.Onesmooth-colonystrain wasputtogether toPE-2and othertwo(strains12 and15) wereplacedinthemiddleofthebiplotduetotheresistance toethanol.Otherparametersanalysedinthisstudy(<300g/L glucose;<13%and>14.5%ethanol;pH<1.25and>1.5)didnot

representsignificantvariationforthisgroupofstrains.Forthis reasontheycrowdedatpointzeroofthebiplot(Fig.3).

Insummary,therough-colonystrainsarefoundintheleft sideofthebiplot1(exceptforstrain06whichisquitecloseto thelimit)inwhichtheparameters:sedimentationrate,high sugarandethanolconcentrationstogetherwithlowpHwere key determinantsin the distributionofthe strains; on the otherhand,allthesmooth-colonystrainswerefoundonthe rightsideofthebiplot,togetherwithresistancetoethanoland lowpH.

Discussion

An analysis of results obtained from the phenotypic tests byPCArevealedthatunlikethesmoothcolonies,therough coloniesofS.cerevisiaeexhibitedanenhancedresistanceto stressfulconditionsresultingfromthepresenceofexcessive glucoseandethanol.ResultsobtainedbyVoordeckersetal.8

verifiedthatwrinkly(rough)coloniesofS.cerevisiaeweremore resistanttootherstressorssuchasheatanddesiccation.

Della-Bianca etal.25 reportedthatPE-2 cells exhibiteda superiorsurvivalrateundernon-proliferativeconditions,such aspH1.5,ascomparedtoregularlaboratoryorcommercial yeaststrains.AstudyconductedbyBassietal.26demonstrated

thatPE-2wasonlyminimallyaffectedbycelltreatmentsbased onlowpHandorethanoladdition.

The microsatellite analysis was not successful to dis-tinguish between the colony phenotypes as phenotypic assays. Analysisby RFLP-mtDNAand electrophoretic kary-otyping(PFGE)werealsoineffectivetodistinguishthesmooth strain from the rough strain.11 Jubanyet al.27 verified the

polymorphisms at microsatelliteloci and singlenucleotide polymorphisms (SNPs)for molecular genotyping ofS.

cere-visiaestrainsandnocorrelationcouldbeestablishedbetween

pseudohyphal growth,flocculation and SNPs inFLO8 gene, which is requiredforflocculation and filamentous growth. Antonangelo28 hasnotalsofoundSNPs forthegenesFLO1,

FLO8andMSS11whensmoothandrough-colonystrainswere

analysed.Itmaysuggestthatdifferencesbetweenthecolony typesofS.cerevisiaemaybeattributedtodifferencesingene expressionratherthanDNAsequencesasobservedbefore.11

Thegeneticapproachalsofailedtorevealthepresenceof spe-cificmolecular markersthat couldbeused todiscriminate betweentheroughandsmoothcoloniesanddefinegenetic characteristicsassociatedwithcolonyphenotype.

ThepresenceofPE-2,astraindisplayingsmoothcolonies and dispersed cells, in close genetic proximity to rough-colony strains is intriguing. PE-2 and CAT-1 are the two most popular and relevant strains of S. cerevisiae used by the Brazilian distilleries.3 PE-2 is an extremely persistent

and dominant yeast strain in the fermentation tanks sce-nario. This importantindustrial strain isnon-flocculant in pureculture.29AccordingtoBassoetal.,3roughcolonieswere

observedinselectedindustrialstrains(0–10%ofthecolonies foreachstrain),includinginPE-2,duringtheirimplantation intoethanol-producingunits.

There was no association between the microsatellite marker-based data and thestress resistanceprofile in dis-criminating between rough- and smooth-colony strains of

(6)

0.4 –2 –1 0 1 2 3 0.2 0.0 –0.2 –0.2 –2 –1 0 1 2 3 0.0 0.2 PC1 PC2 0.4 52 E 13 12 15 6 G(300)G(400) E(14.5) pH(1.25) PE–2 36 33 CAT–1 pH(1.5) E E(13.5) 4 35 7 19 9 S 8 10 G(500) 16 14 2 SA1 BG1 47 18 3

Fig.3–Principal-ComponentAnalysis(PC1andPC2)oftheyeaststrains(rough-colonystrainsincircles;smooth-colony strainsinsquares)andthephenotypiccharacteristics.Numbersinsidethecirclesandsquaresrefertothestraincodeasin

Table1.Thelegendsinthevectorsdesignatethephenotypiccharacteristicsandthenumberinparenthesesindicatethe values(pH1.25and1.5;Eforethanol,13,13.5,14,14.5%;Gforglucose,300,400and500g/L;Sforsedimentationrate,above 10%)ofthecharacteristic,asdescribedin“Materialandmethods”section.

S.cerevisiae.However,itwasinstrumentalinprovidingnew

insightsintotheprobableoriginsoftherough-colonystrains. Recentstudieshaveindicatedthatdisruptionofasinglegene,

ACE2,isresponsibleforthesnowflakephenotypeoftheyeast

strainY556aswellasintheindustrialyeaststrainPE-2.14

How-ever,fortheroughandsmoothcolonystrainsherestudied, wedidnotobservethisfindingwhenACE2genewasassessed (datanotpublished).

Insummary,thisstudyrevealedthatthetwomajorgroups basedoncolonyphenotype(smoothandroughcolonies)inS

cerevisiaehadcleardifferentiationregardingstressresistance

tohighsugar andethanolconcentrations, lowpHandhigh cellsedimentationrate.Thegeneticprinciples(gene expres-sionpatterns aswellas sequence-levelvariationsingenes regardedtostressresistancetohighethanolandsugar con-centrations) that define and account for the rough-colony phenotypeinS.cerevisiaeposeanextremelyrelevantquestion thatdeservesathoroughanalysis.Itliesattheheartofan importantissueandneedstobeintensivelystudiedinorder toverifytheoriginsofthiscolonyphenotypewithrespectto bioethanolfermentation.Resultsofsuchastudymaydefine principlesthatcouldhelpusavoidingorminimisingthe occur-renceofrough-colonyformationinS.cerevisiae.

Conclusions

Themicrosatelliteanalysiswasnotsuccessfultodistinguish betweenthecolonyphenotypesasphenotypicassays.Unlike thesmoothcolonies,theroughcoloniesofS.cerevisiaeexhibit anenhancedresistancetostressfulconditionsashigh con-centrationsofglucoseand ethanolandhighsedimentation rate.TherelevantindustrialstrainPE-2wasobservedinclose geneticproximitytorough-colonyalthoughitdoesnotdisplay thiscolonymorphology.Auniquegeneticpatternspecifictoa particularphenotyperemainselusive.

Conflicts

of

interest

Theauthorsdeclarethattheyhavenoconflictofinterest.

Acknowledgments

ThisstudywassupportedbyFundac¸ãodeAmparoaPesquisa doEstadodeSãoPaulo(researchsupport2009/14617-4)and

(7)

Coordenac¸ãodeAperfeic¸oamentodePessoaldeNivelSuperior (fellowshiptothefirstauthor).

r

e

f

e

r

e

n

c

e

s

1. AmorimHV,LopesML,OliveiraJVC,BuckeridgeMS, GoldmanGH.Scientificchallengesofbioethanolproduction inBrazil.ApplBiochemBiotechnol.2011;91:1267–1275.

2. FidalgoM,BarralesRR,IbeasJI,JimenezJ.Adaptiveevolution bymutationsintheFLO11gene.PNAS.2006;103:11228–11233.

3. BassoLC,AmorimHV,OliveiraAJ,LopesML.Yeastselection forfuelethanolproductioninBrazil.FEMSYeastRes.

2008;8:1155–1163.

4. ReisVR,BassiAPG,SilvaJCG,Ceccato-AntoniniSR. CharacteristicsofSaccharomycescerevisiaeyeastsexhibiting roughcoloniesandpseudohyphalmorphologywithrespect toalcoholicfermentation.BrazJMicrobiol.2013;44:

1121–1131.

5. SoaresEV.FlocculationinSaccharomycescerevisiae:areview.J ApplMicrobiol.2010;110:1–18.

6. RatcliffWC,FankhauserJD,RogersDW,GreigD,TravisanoM. Originsofmulticellularevolvabilityinsnowflakeyeast.Nat

Commun.2015;6,http://dx.doi.org/10.1038/ncommms7102.

7. VopalenskáI,HulkováM,JanderováB,PalkováZ.The morphologyofSaccharomycescerevisiaecoloniesisaffectedby celladhesionandthebuddingpattern.ResMicrobiol.

2005;156(9):921–931.

8. VoordeckersK,MaeyerD,vanderZandeE,etal. Identificationofacomplexgeneticnetworkunderlying

Saccharomycescerevisiaecolonymorphology.MolMicrobiol.

2012;86(1):225–239.

9. Ceccato-AntoniniSR.Biotechnologicalimplicationsof filamentationinSaccharomycescerevisiae.BiotechnolLett.

2008;30:1151–1161.

10.RatcliffWC,DenisonRF,BorrelloM,TravisanoM. Experimentalevolutionofmulticellularity.PNAS.

2012;109(5):1595–1600.

11.LopesDD[M.Sc.Dissertation]Estudomolecularemorfológicode levedurasdeprocessosfermentativosdeproduc¸ãodeetanol.

Londrina,Brasil:UniversidadeEstadualdeLondrina;2010,58 pp.

12.KuthanM,DevauxF,JanderováB,SlaninováI,JacqC,Palková Z.DomesticationofwildSaccharomycescerevisiaeis

accompaniedbychangesingeneexpressionandcolony morphology.MolMicrobiol.2003;3:745–754.

13.CavalieriD,TownsendJP,HartlDL.Manifoldanomaliesin geneexpressioninavineyardisolateofSaccharomyces cerevisiaerevealedbyDNAmicroarrayanalysis.PNAS.

2000;97:12369–12374.

14.RodriguesA[Ph.D.thesis]Identificac¸ãoecaracterizac¸ãodegenes efatoresrelacionadosàfloculac¸ãoedesenvolvimentodeuma leveduraindustrialnãofloculante.Campinas,Brasil: UniversidadeEstadualdeCampinas;2013,165pp.

15.González-TecheraA,JubanyS,CarrauFM,GaggeroC. Differentiationofindustrialwineyeaststrainsusing microsatellitemarkers.LettApplMicrobiol.2001;33:71–75.

16.LegrasJL,RuhO,MerdinogluD,KarstF.Selectionof hypervariablemicrosatellitelociforthecharacterizationof

Saccharomycescerevisiaestrains.IntJFoodMicrobiol.

2005;102:73–83.

17.VaudanoE,Garcia-MorunoE.Discriminationof

Saccharomycescerevisiaewinestrainsusingmicrosatellite multiplexPCRandbandpatternanalysis.FoodMicrobiol.

2008;25:56–64.

18.AntonangeloATBF,AlonsoDP,RibollaPEM,ColombiD. Microsatellitemarker-basedassessmentofthebiodiversity ofnativebioethanolyeaststrains.Yeast.2013;30:307–317.

19.PerezMA,GallegoFJ,MartinezI,HidalgoP.Detection, distributionandselectionofmicrosatellites(SSRs)inthe genomeoftheyeastSaccharomycescerevisiaeasmolecular markers.LettApplMicrobiol.2001;33:461–466.

20.YoungET,SloanJS,vanRiperK.Trinucleotiderepeatsare clusteredinregulatorygenesinSaccharomycescerevisiae. Genetics.2000;154:1053–1068.

21.WhiteTJ,BrunsT,LeeS,TaylorJ.Amplificationanddirect sequencingoffungalribosomalRNAgenesfor

phylogenetics.In:InnisMA,GelfaudDH,SninskyJJ,WhiteTJ, eds.PCRProtocols:AGuidetoMethodsandApplications.San Diego:AcademicPress;1990:315–322.

22.NeiM.MolecularEvolutionaryGenetics.NewYork:Columbia UniversityPress;1987.

23.WangFZ,ShenW,RaoZM,FangHY,ZhanXB,ZhugeJ. Constructionofaflocculatingyeastforfuelethanol production.BiotechnolLett.2008;37:97–102.

24.RCoreTeam.R:ALanguageandEnvironmentforStatistical Computing;2012.Vienna.Availableat:

http://www.R-project.org.

25.Della-BiancaBE,HulsterE,PronkJT,MarisAJA,GombertAK. PhysiologyofthefuelethanolstrainSaccharomycescerevisiae

PE-2atlowpHindicatesacontext-dependentperformance relevantforindustrialapplications.FEMSYeastRes.

2014;14:1196–1205.

26.BassiAPG,SilvaJCG,ReisVR,Ceccato-AntoniniSR.Effectsof singleandcombinedcelltreatmentsbasedonlowpHand highconcentrationsofethanolonthegrowthand fermentationofDekkerabruxellensisandSaccharomyces cerevisiae.WorldJMicrobiolBiotechnol.2013;29:1661–1676.

27.JubanyS,TomascoI,PoncedeLeonI,etal.Towardaglobal databaseforthemoleculartypingofSaccharomycescerevisiae

strains.FEMSYeastRes.2008;8:472–484.

28.AntonangeloATBF[Ph.D.thesis]Genotipagemdeleveduras presentesnoprocessoindustrialdeproduc¸ãodeálcoolcombustível eestudodopolimorfismodegenesenvolvidosnoprocesso fermentativoemSaccharomycescerevisiae.Botucatu,Brasil: UniversidadeEstadualPaulistaJuliodeMesquitaFilho;2012, 83pp.

29.Carvalho-NettoOV,CarazolleMF,MofattoLS,etal.

Saccharomycescerevisiaetranscriptionalreprogrammingdue tobacterialcontaminationduringindustrialscale

bioethanolproduction.MicrobCellFact.2015;14:13.

30.FieldD,WillsC.Abundantmicrosatellitepolymorphismin

Saccharomycescerevisiae,andthedifferentdistributionsof microsatellitesineightprokaryotesandS.cerevisiae,result fromstrongmutationpressuresandavarietyofselective forces.PNAS.1998;95(4):1647–1652.

31.RichardsK,GoddardM,GardnerR.Adatabaseof

microsatellitegenotypesforSaccharomycescerevisiae.Antonie vanLeeuwenhoek.2009;96:355–359.

Referências

Documentos relacionados

The killer strain CCA 510 showed a powerful killer activity against 101 out of 110 yeast strains isolated from the ethanol fermentation process, i.e., 92% of these yeast

Two Saccharomyces cerevisiae strains were tested as the starter yeasts in a traditional cachaça distillery.. The strains used were

The selected potential mutant strains as well as the wild strain were tested for lipase yield by fermentation.. The positive mutation rate for each treatment

The percentage [and isolated strains] of mycocin producing yeast species in communities found in tropical fruits was 24% of the species [13% of strains] for Amapa fruit, 27% of

The phylogenetic analysis of the entire S1 gene showed that the BCoV Brazilian strains were more distant from the Mebus strain (97.8% identity for nucleotides and 96.8% identity

Reviewer #3: The manuscript describes the genetic characterization and construction of an auxotrophic strain of Saccharomyces cerevisiae JP1, a Brazilian industrial yeast strain

A partir da presente pesquisa buscou-se conceituar e analisar as novas formas de economia colaborativa que estão se consolidando na sociedade globalizada, bem como a real necessidade

Temos ouvido cantar “Grândola, Vila Morena” de Zeca Afonso em forma de pro- testo com o Governo e as suas políticas excessivamente recessivas. A canção é um símbolo da