• Nenhum resultado encontrado

Experimento. Guia do professor. Cilindro = cone + esfera 2? Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia

N/A
N/A
Protected

Academic year: 2021

Share "Experimento. Guia do professor. Cilindro = cone + esfera 2? Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia"

Copied!
17
0
0

Texto

(1)

Experimento

Ministério da

Ciência e Tecnologia

Ministério

da Educação

Secretaria de

Educação a Distância

Guia do professor

licença Esta obra está licenciada sob uma licença Creative Commons

geometria e medidas

Cilindro = cone + esfera⁄2?

Objetivos da unidade

Fazer a comparação de volumes de três sólidos: cone, esfera 1.

e cilindro;

Obter as relações que fornecem o volume do cone e da esfera 2.

(2)

Guia do professor

Sinopse

Reunidos em grupos, os alunos construirão, usando massa de modelar, um cone e um cilindro de alturas iguais ao raio de sua base e uma semiesfera de mesmo raio. Depois, mergulharão os sólidos individualmente num recipiente com água e anotarão a altura que ela atingiu. Fazendo isso, pode-se perceber que a altura que a água sobe para o cone, semiesfera e cilindro são proporcionais a 1, 2 e 3, respectivamente. Dessa forma serão obtidas as relações de volume do cone e esfera a partir do volume do cilindro.

Conteúdo

Geometria Espacial, Volumes.

Objetivos

Fazer a comparação de volumes de três sólidos: cone, esfera e cilindro; 1.

Obter as relações que fornecem o volume do cone e da esfera a partir 2.

do volume do cilindro.

Duração

Uma aula dupla.

Cilindro =

(3)

9_b_dZhe3Yed[!

[i\[hW

Á5 

?djheZk‚€e

O tema Geometria e Medidas envolve não somente conteúdos de geometria, como também estabelece uma forte conexão com números. Em particular, este experimento vem nos mostrar uma relação numérica entre os volumes de alguns sólidos de revolução: a esfera, o cone e o cilindro.

Sabemos que chegar a uma expressão algébrica que representa o volume de uma esfera não é simples, especialmente no Ensino Médio. Contudo, podemos usar outros volumes conhecidos para obtê-la, por exemplo, o volume do cone é a terça parte do volume de um cilindro de mesma base e mesma altura. Mas de que maneira o aluno pode obter essa relação?

É muito comum o aluno ser apresentado a diversas fórmulas prontas, que são de fácil uso, mas também de fácil esquecimento. No experimento, propomos uma vivência do desenvolvimento do assunto relacionado para que a aprendizagem seja mais rica e efetiva. Em geral, nos experimentos, a manipulação, a visualização, os resultados obtidos e as conjecturas propiciam momentos instigantes para o aluno, tornando-o mais atento, mais interessado – no caso em particular, muito mais significativo do que meras aplicações de fórmulas matemáticas. Ressaltamos que conclusões obtidas experimentalmente devem ser demonstradas através de teorias matemáticas.

O desafio do experimento consiste em determinar quantas vezes o espaço contido em um cone cabe em um cilindro que tem a mesma base e a mesma altura que o cone e, além disso, verificar qual é a relação do cone e do cilindro com a semiesfera.

(4)

=k_WZefhe\[iieh

(

 % /

Cej_lW‚€e

Arquimedes é considerado um dos maiores matemáticos de todos os tempos. Nasceu na cidade grega de Siracusa, situada na ilha de Sicília, no ano 287 a.C. e morreu aos 75 anos, assassinado por um soldado quando Siracusa foi conquistada pelo exército romano durante a Segunda Guerra Púnica.

Conta-se que o rei Herão lhe pediu para emitir juízo final sobre se uma coroa tinha sido feita de ouro puro ou se o ourives o tinha enganado, mis-turando prata ao ouro. Certo dia, quando Arquimedes se encontrava em banhos públicos, lugares não só para higiene, como para lazer e reuniões de negócios, notou a subida do nível da água quando entrou na banheira e encontrou a solução do problema: ele deduziu que, sendo o ouro mais denso que a prata, um dado peso de ouro ocuparia um volume menor que um peso igual de prata e, portanto, deslocaria uma menor quantidade de água.

Na sua euforia devido à descoberta, esqueceu-se de se vestir e saiu nu pelas ruas da cidade, correndo até sua casa gritando “Eureka, eureka!”, que significa “Achei, achei!”. Ele verificou que a nova coroa de Herão deslocava mais água que um peso igual de ouro, assim provando a fraude do ourives.

Dentre os muitos trabalhos de Arquimedes destaca-se “O Método”, no qual é explorado um modo mecânico, através de equilíbrio de pesos em uma alavanca, para investigar problemas de matemática, como a relação entre os volumes da esfera, do cilindro e do cone. Ele também salienta a importância de uma demonstração posterior dos resultados obtidos. Uma referência sobre como Arquimedes obteve o volume de uma esfera segundo “O Método” encontra-se em [Ávila].

(5)

9_b_dZhe3Yed[!

[i\[hW

Á5 

E[nf[h_c[dje

Comentários iniciais

Este experimento contém três etapas principais.

Na primeira, os alunos reunidos em grupos construirão os sólidos que serão comparados. Esta parte, além de trabalhar conceitos geométricos, como figuras planas e espaciais, envolve concentração, atenção, visua-lização, manipulação e desenho, que são importantes habilidades na formação do aluno.

Na segunda etapa, com a utilização das figuras construídas, é feita a comparação: o aluno irá obter, de maneira experimental, as relações numéricas entre os volumes dos três sólidos de revolução.

Na terceira etapa, os alunos serão induzidos a encontrar uma relação entre o volume de um cilindro e de um cone, ambos com mesmo raio e altura, para posterior obtenção dos volumes desses sólidos.

;jWfW' Construção dos sólidos

Nesta etapa cada grupo de alunos construirá moldes em papelão de um cilindro circular reto, de um cone circular reto, ambos com mesmo raio e altura, e também de uma semiesfera com mesmo raio que os anteriores.

Na construção desses moldes, os raios devem ser diferentes para cada grupo. O professor deve sugerir as medidas dos raios, levando em conta o raio do recipiente cilíndrico que será usado na etapa seguinte.

Finalmente, os moldes devem ser preenchidos com as massas para a obtenção dos respectivos sólidos. Atente para o fato de que a tarefa de construir os sólidos com a massa de modelar é interessante, porém requer certa habilidade.

(6)

=k_WZefhe\[iieh

)

 % /

;jWfW( Comparação dos volumes

Os alunos mergulharão cada sólido construído separadamente em um recipiente cilíndrico contendo água. A escolha do recipiente é de funda-mental importância. Se o sólido tiver um raio muito menor que o raio do recipiente, a altura da água após a imersão poderá ficar muito próxima à altura inicial e as relações algébricas desejadas ficarão muito difíceis de ser obtidas. É importante também ter cuidado com as medições, que devem ser orientadas pelo professor.

Cada grupo de alunos pode construir tabelas do tipo:

Observação: Entende-se por altura da água deslocada a diferença entre

o nível da água após o objeto ser mergulhado no recipiente e o nível inicial da água neste recipiente. O volume de cada sólido será igual ao volume da água deslocada em cada caso.

Esperamos que as razões cone



cilindro e semiesfera



cilindro obtidas sejam,

respectivamente, próximas a 



 e 



, e que os alunos percebam que o deslocamento que a semiesfera produz no nível da água equivale ao dobro

Altura da água deslocada

cone

semiesfera

cilindro

Razão entre os volumes

conecilindro

semiesferacilindro

tabela 1

(7)

9_b_dZhe3Yed[!

[i\[hW

Á5 

do deslocamento produzido pelo cone quando cada objeto é mergulhado separadamente.

A partir disso, os alunos podem notar que o volume da semiesfera é o dobro do volume do cone. Sendo



cone e



semiesfera os volumes do cone e

da semiesfera, respectivamente, então



semiesfera

 

cone,

aproximada-mente.

Da mesma forma, esperamos que os alunos observem que, quando colocamos o cone e o cilindro, um de cada vez, no recipiente, o nível da água sobe três vezes mais quando o cilindro é mergulhado em comparação com a submersão do cone. Portanto, o volume do cilindro é três vezes o volume do cone. Sendo



cilindro o volume do cilindro, então



cilindro

 

cone.

Finalmente, podemos escrever



semiesfera









cilindro e



cone







semiesfera







cilindro



.

Assim, os alunos intuitivamente poderão perceber que o volume do

cone é igual à terça parte do volume do cilindro e o volume da semiesfera é igual a dois terços do volume do cilindro (este resultado será justificado

no fechamento deste Guia).

;jWfW) Generalização do volume do cone

O objetivo desta etapa é obter, de modo geral, uma relação entre o volume de um cone e de um cilindro de mesmo raio



da base e mesma altura



. O procedimento é similar ao que foi desenvolvido nas etapas 1 e 2.

(8)

=k_WZefhe\[iieh

*

 % /

Fechamento

O Fechamento é uma importante ferramenta para o professor concluir os resultados, avaliar o método de aula e a fixação da aprendizagem do aluno.

O professor pode iniciar o Fechamento expondo na lousa uma tabela como a que segue para socializar os resultados de todos os grupos.

Em seguida, proponha também uma reflexão sobre o que foi obtido, chegando à conclusão de que experimentalmente foram obtidas as razões entre os volumes como sendo cone



cilindro







 e semiesfera



cilindro







,

aproximadamente. Isso deve ser então verificado com o uso de resultados teóricos da matemática.

Sabendo que o volume de um paralelepípedo é igual ao produto da área da base pela a altura, e o volume de uma pirâmide é igual a um terço do produto da área da base pela a altura, vamos obter as expressões do volume do cilindro e do volume do cone utilizando o Princípio de Cavalieri.

Sejam dados dois sólidos e um plano. Se todo plano paralelo ao plano dado secciona os dois sólidos segundo figuras de mesma área, então esses sólidos têm o mesmo volume.

conecilindro semiesferacilindro

Grupo 1 Grupo 2 Grupo 3 … tabela 3 Princípio de Cavalieri

(9)

9_b_dZhe3Yed[!

[i\[hW

Á5 

Na figura temos dois sólidos



e



e o plano



. Qualquer plano



, paralelo a



, corta os sólidos segundo secções de mesma área



. O Princípio de Cavalieri afirma que o volume de



é igual ao volume de



.

O volume do cilindro

O procedimento é tomar um cilindro circular reto e um paralelepípedo, ambos com alturas e áreas de base iguais, e assentá-los em um mesmo plano.

Toda secção do cilindro, que é paralela à base, é congruente a ela e, portanto, tem a mesma área. Ocorre o mesmo com o paralelepípedo. Logo, as áreas



’ e



’’ são iguais. Pelo Princípio de Cavalieri, os dois sólidos têm o mesmo volume, que é igual ao produto da área



da base pela sua altura



.

 ’

 ’

 ’

(10)

=k_WZefhe\[iieh

+

 % /

Concluímos que:

O volume de um cilindro circular reto com raio



da base e altura



é dado por

 





.

O volume do cone circular reto

Consideremos um cone com altura



e base com área



e uma pirâmide também com altura



e base com área



, tais que suas bases estejam contidas num mesmo plano.

fig. 3 fig. 2     ’  ’  ’’ ’’      

(11)

9_b_dZhe3Yed[!

[i\[hW

Á5 

Com argumentos geométricos envolvendo semelhança e área de triângulos, podemos mostrar que qualquer plano paralelo ao plano das bases, distando



 dos vértices, secciona ambos os sólidos segundo regiões de áreas



 e



, temos









  











 









, ou seja,





 

.

Então, pelo Princípio de Cavalieri, o cone e a pirâmide têm volumes iguais. E, sabendo que o volume da pirâmide é igual a um terço do produto da área da base pela altura, concluímos que:

O volume de um cone circular com raio



da base e altura



é dado por









  





. O volume da esfera

Consideremos uma esfera



de raio



.

Chamemos de



o sólido que restar no cilindro de raio



e altura



, ao serem retirados dele, a partir de suas bases, dois cones congruentes, de raio



e altura



, como na figura.

Assim, consideremos apoiados sobre um plano horizontal



a esfera e o sólido



. Vamos agora comparar esses dois sólidos.

fig. 4       

(12)

=k_WZefhe\[iieh

,

 % / Um plano paralelo a



que dista



do centro da esfera a intersecciona segundo um círculo de área





 





. A secção do sólido



por esse mesmo plano é a coroa circular limitada pelas circunferências de raio



e



, como mostra a figura, e sua área também é





 





. Logo, pelo Princípio de Cavalieri, o volume da esfera de raio



é dado por

 



    









 



  









 

 Assim, temos:

O volume de uma esfera de raio



é dado por









 

.

Chegamos então, a partir desses resultados, às relações obtidas experi-mentalmente:



cone



cilindro







e



semiesfera



cilindro







Consequentemente,



cone

 

semiesfera

 

cilindro

e



cone







semiesfera







cilindro



Sugestões

Depois de obtido o volume da esfera, poderá ser apresentada a área da 1.

superfície esférica. Ver [Lima, 2000, p. 269-270].

O volume de uma cunha esférica e a área de um fuso esférico também 2.

podem ser obtidos, respectivamente, do volume e da área da esfera através da observação de que ambos são proporcionais ao ângulo diedro correspondente.

(13)

9_b_dZhe3Yed[!

[i\[hW

Á5 

LWh_W‚[i

Os sólidos construídos na etapa 1 deste experimento podem ser utilizados para abordar alguns conceitos de simetria do cone, cilindro, esfera e semies-fera. A seguir apresentamos uma sugestão relativa a essa abordagem.

Simetrias do cone

Para uma introdução ao estudo sobre algumas simetrias do cone, inicial-mente solicite aos alunos que dividam o cone construído na etapa 1 através de sua secção meridiana em duas partes iguais e que coloquem uma dessas partes junto a um espelho, como na figura.

fig. 5

espelho

(14)

=k_WZefhe\[iieh

-

 % / Os alunos devem observar que a reflexão dessa parte do cone, em relação ao espelho, é, visualmente, a outra parte do cone.

Mais formalmente, consideremos um cone circular reto e um plano



contendo o eixo deste cone. Lembramos que o eixo de um cone circular reto é a reta perpendicular à sua base passando por seu centro. Esse plano divide o cone em duas partes iguais.

A reflexão em relação ao plano α de cada uma das partes do cone coincide com a outra parte. Dizemos que o cone tem simetria de reflexão

em relação ao plano



. Dizemos também que o plano



é um plano de

simetria do cone.

De modo análogo, podemos também explorar algumas simetrias em relação ao plano do cilindro, da esfera e da semiesfera.

Também podemos dizer, de um modo geral, que uma figura é simétrica em relação a um determinado plano se sua reflexão em relação a esse plano coincide com ela.

(15)

9_b_dZhe3Yed[!

[i\[hW

Á5 

8_Xb_e]hWÅW

Ávila, Geraldo. Arquimedes, a esfera e o cilindro. Revista do Professor da Matemática. São Paulo, nº 10, p. 11-20, 1987.

Eves, Howard. Introdução à História da Matemática. 4ª ed. Campinas: Editora da Unicamp, 2004.

Lima, Elon Lages; Carvalho, Paulo Cezar Pinto; Wagner, Eduardo; Morgado, Augusto César. A Matemática do Ensino Médio, Vol 2, Coleção do Professor de Matemática, (3ª Edição). Rio de Janeiro: sbm, 2000. Lima, Elon Lages. Medida e Forma em Geometria, Coleção do Professor de Matemática. Rio de Janeiro: sbm, 1991.

(16)
(17)

Ficha técnica

Ministério da

Ciência e Tecnologia

Ministério

da Educação

Secretaria de

Educação a Distância

Matemática Multimídia Coordenador Geral

Samuel Rocha de Oliveira

Coordenador de Experimentos

Leonardo Barichello

Instituto de Matemática, Estatística e Computação Científica (imecc – unicamp) Diretor

Jayme Vaz Jr.

Vice-Diretor

Edmundo Capelas de Oliveira

Universidade Estadual de Campinas

Reitor

Fernando Ferreira Costa

Vice-Reitor

Edgar Salvadori de Decca

Pró-Reitor de Pós-Graduação

Euclides de Mesquita Neto

licença Esta obra está licenciada sob uma licença Creative Commons

Autoras

Claudina Izepe Rodrigues, Eliane Quelho Frota Rezende e Maria Lúcia Bontorim de Queiroz

Revisores Matemática

Antônio Carlos Patrocínio

Língua Portuguesa Carolina Bonturi Pedagogia Ângela Soligo Projeto gráfico Preface Design Ilustrador

Referências

Documentos relacionados

8.8 A documentação do candidato ficará arquivada na Secretaria Municipal de Obras e Urbanismo do Município, pelo prazo de 01 (um) ano antes de ser remetida ao arquivo geral,

EFEITOS AGUDOS DO NOVO MÉTODO SARCOPLASMA STIMULATING TRAINING VERSUS TREINAMENTO DE FORÇA TRADICIONAL SOBRE O VOLUME TOTAL DE TREINAMENTO, LACTATO E ESPESSURA MUSCULAR.. BRASÍLIA/DF

Prato _creche e pré-escolar Massa macarronete gratinada simples com pescada e legumes* e salada* Sobremesa Fruta da época **. 4ª FEIRA ALMOÇO MERENDA

4.2.8 Candidatos que comprovarem ter residido em um determinado país há no máximo 5 (cinco) anos, por um período superior a 12 (doze) meses, com evidência de

O objetivo desta Nota Técnica é apresentar a conclusão do acompanhamento da execução das obras do setor de distribuição e transmissão de energia elétrica relacionadas

Helena, que trabalha na área da Engenharia, encantada com Ciências Humanas, nos pede que comentemos como as línguas funcionam. A indagação de nossa leitora nos oferece

(B) A deliberação para exclusão do sócio majoritário não remisso deve ocorrer por assembléia convocada especificamente para tal fim, sendo a deliberação comunicada ao

Quanto ao período médio de incubação e a viabilidade de ovos (Tabela 3) verifica-se os maiores valores para incubação de ovos quando as lagartas foram alimentadas com plantas