• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número5"

Copied!
7
0
0

Texto

(1)

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Evaluation

of

limonoid

production

in

suspension

cell

culture

of

Citrus

sinensis

Elisângela

Fumagali

Gerolino

a

,

Talita

Perez

Cantuaria

Chierrito

a

,

Arquimedes

Santana

Filho

b

,

Eliezer

Rodrigues

Souto

c

,

Regina

Aparecida

Correia

Gonc¸

alves

a

,

Arildo

José

Braz

de

Oliveira

a,∗

aProgramadePós-graduac¸ãoemCiênciasFarmaceuticas,DepartamentodeFarmacia,UniversidadeEstadualdeMaringá,Maringá,PR,Brazil bLaboratoriodeQuímicadeCarboidratos,DepartamentodeBioquímica,UniversidadeFederaldoParaná,Curitiba,PR,Brazil

cDepartamentodeAgronomia,UniversidadeEstadualdeMaringá,Maringá,PR,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received5November2014 Accepted22May2015 Availableonline23June2015

Keywords: Citrussinensis Biotechnology Limonoidaglycones Limonin

Plantcellculture

a

b

s

t

r

a

c

t

Theuseofcellandplanttissueculturetechniquestoproduceeconomicallyimportantactivemetabolites

hasbeengrowing.Amongthesesubstancesaretotallimonoidaglycones,whichareproducedby“pera”

orange(Citrussinensis(L.)Osbeck,Rutaceae)andhavereceivedconsiderableattentionbecauseoftheir

anticanceractions.Themainobjectiveofthepresentstudywastoanalyzeandcomparethelevelsof

limonoidaglyconesinseeds,calluscultures(originatingfromseeds),calluscultures(originatingfrom

hypocotyls),cellsuspensionsfromhypocotylscells,andcellsuspensionsfromcotyledons.Thecell

cul-turesorC.sinensiswereobtainedbyinoculatingtwostrainsofcallusinMSmediumsupplementedwith

2.0␮M2,4-dichlorophenoxyaceticacid,7.0␮Mbenzylaminopurine,and3%(w/v)sucroseinthedark.

Thehighestconcentrationsoflimonoidaglyconethatwereobtainedwereobservedincotyledoncell

lines(240mg/100gdryweight)thatwereproducedonday21ofcultureandhypocotylcelllinesonday

7(210mg/100gdryweight).Explantsofdifferentoriginsunderthesamecultureconditionshaddifferent

limonoidaglyconecontent.Thepresentresultsmaysuggeststrategiesforenhancingtheproductivityof

biologicallyimportantlimonoidaglyconesandinvestigatingthecomplexpathwaysofthesesecondary

metabolitesinplanttissuecultures.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Biotechnologyusestechniquesandprocessesthatinvolve liv-ingorganismstoobtainspecificproductsand/ormodificationsthat increasetheproductionofchemicalsubstancesofinterestinless timeandlesscapitalinvestment(DaviesandDeroles,2014). Sec-ondarymetabolitesthatarefoundinplantsaregenerallyproduced inlowconcentrationscomparedwithprimarymetabolites. There-fore,differentstrategies,includinginvitroculturesystems,have beenextensivelystudiedtoincreasetheproductionofsecondary metabolitesinplants(Smetanska,2008;MuranakaandSaito,2010; Gilletal.,2013).Invitrocellculturesrepresentaninteresting alter-nativebecausesecondarymetabolitesofinterestareobtainedin acontrolledenvironmentthatisnotinfluencedbychangesin cli-mateorsoilconditions(Gonc¸alvesandRomano,2013;Collin,2001;

Fumagalietal.,2008).Plantsthataregrownintheirnaturalhabitat

generallyhavevaryingconcentrationsofcompoundsofinterest,

∗ Correspondingauthor.

E-mail:ajboliveira@uem.br(A.J.B.deOliveira).

depending onthe particular cropseason(Salmore and Hunter,

2001;Puricellietal.,2002;RalphsandGardner,2001).Moreover,

theirexploitationintheirnaturalenvironmentcancausegradual geneticerosion(SidhuandBel,1996).

Citrusplantsaregrownworldwide.Therearebasicallyfour com-mercialspeciesofCitrus,amongwhichCitrussinensis(L.)Osbeck, Rutaceae(sweetorange)isnotable.Variousmetaboliteshavebeen isolatedfromspeciesoftheCitrusgenus.Amongthemajor second-arymetabolitesareflavonoidsandlimonoids,andpectinsarethe primarymetabolites(Khaliletal.,2002;Berhowetal.,2000;Okwu,

2008).

Limonoidsarehighlyoxygenatedmodifiedtriterpenesthatare derivedfromaprecursorwitha4,4,8-trimethyl-17-furanylsteroid skeletonthatisbiosynthesizedbytheacetate–mevalonate path-way in Citrus (Hasegawa and Hoagland, 1977). All naturally occurringCitruslimonoidscontainafuranringthatisattachedto ad-ringatC-17andoxygen-containingfunctionalgroupsatC-3, C-4,C-7,C-16,andC-17(Fig.1).Oxidativedegradationonthe C-17sidechainofeitheroftheseskeletonsresultsinthelossoffour carbonatomsand theformationof ␤-substitutedfuran.Further oxidationandskeletalrearrangementsinoneormoreofthefour

http://dx.doi.org/10.1016/j.bjp.2015.05.008

(2)

O

O

O

O O

O O

O O

O O

O O

H O

A B

C D

O

AcO

O O

O O O

H O O

2

3

5

4

6

1

O O

O O O

H HO HO2C O

O

O O O

H O O

HO HO

OH

O O O

CO2H

H

H H

H A

A' C

B D O

O

O

Fig.1.LimoninbiosynthesispathwayproposedbyBreskaetal.(2007).

rings(designatedA,B,C,andD;Fig.1)giverisetodifferent skele-tonsofCitruslimonoids.Fig.1showsthebiosyntheticpathwayof limonin(1),themostabundantaglyconeinCitrusspecies.

Limonoidshavepropertiesthatinhibittheformationof chem-ically induced tumors in the mouth, stomach,small intestines, colon,lungs,andskininexperimentalanimals(Berhowetal.,2000). Anotherinterestingpropertythathasbeendescribedforlimonoid aglyconeisitsantimalarialactivity(Khaliletal.,2002).

Callusculturesandcellsinsuspensionhavebeenusedtostudy thebiosynthesisofeconomicallyimportantsecondarymetabolites

(Gonc¸alvesetal.,2010),enablingthepropagationofcelllineages

thatcontainalterationsinbiosyntheticcapabilities.

Theproductionofdifferentcompoundsinplantsisgenerally mediatedbyenvironmentalfactorsthatvaryaccordingto physio-logicalconditionsandseasonalvariations(Gilletal.,2013).Thus, cellculturesensurecontrolledconditionsthatcircumvent environ-mentalchangesandallowustoguide,inacontrolledmanner,the synthesisofthesecompounds.

Onlyafewstudieshaveutilizedcallusand/orcellculturesofC. sinensistoobtainsecondarymetabolites.Forexample,Niedzetal.

(1987)soughttoproducevolatilecompoundsfromcalluscultures,

andEndoetal.(2002)usedacellculturethatwasobtainedfrom

embryogeniccallustoproduceCitruslimonoids.

Thepurposeofthepresentstudywastoevaluatetheinvitro productionoflimonoidaglycones usingnon-embryogeniccallus culturesandcellsinsuspensionthatoriginatedfromcotyledons andhypocotylsofBrazilian“laranja-pêra”oranges(Citrussinensis).

Materialandmethods

Instrumentationandgeneralprocedures

Absorption spectra in the infrared regionwere obtained on aKBrtabletinaFouriertransforminfraredspectrometer (FTIR-Bomen, model MB-100C26). The analysis was performed on a diskcomposedof1mgofsteepedsampleswith250mgKBr.The one-dimensional(1D)/two-dimensional(2D)1H and13Cnuclear

magneticresonance(NMR)spectrawereobtainedusingaVarian MercuryPlusspectrometerat300MHzwithCDCl3asthesolvent

andTMSastheinternalstandard.Thespectraofhigh-resolution masseswereobtainedusingBrukerDaltonicsequipment(model microTOF-QII-ESI-TOF).Theplatesthatwereusedforanalytical thin-layerchromatography(TLC)were60F254aluminumsilicagel

sheets(Merck).Thechromatoplatesweredevelopedusing ultravi-oletlight(254and 365nm)andasulfuricvanillin solution.The solvents (hexane, acetone,and acetonitrile) that were used for thepreparationoftheextractsandchromatographicfractionation wereofanalyticalgrade.

Plantmaterial,calluscultures,andcells

(3)

inoculatedinbottledMSculture(MurashigeandSkoog,1962) sup-plementedwith30gsucrose,2.0␮M2,4-dichlorophenoxyacetic acid(2,4-D), 7.0␮Mkinetin,and 0.8%(w/v)agarandincubated at28◦Cinthedarktoinducecallusformation.Aftergermination

andseedlingdevelopment,thehypocotylsandsterilecotyledons wereusedasexplants.TheyweretransferredtoMSmedium sup-plementedwith 2.0␮M2,4-dichlorophenoxyacetic acid(2,4-D), 7.0␮Mkinetin,and0.8%(w/v)agarandthenincubatedat28◦C

inthedarktoinducecallusformation.Afterward,totallimonoid aglyconesweremeasuredinthethird-generationsubculture,and thegrowthprofilewasstudiedinaliquidcellculturesuspension.

Establishmentofcellculturesinsuspension

Freshcallus(0.6g)weretransferredtoaflaskthatcontained 50mlofMSliquidmediumsupplementedwith2.0␮M2,4-Dand 7.0␮Mkinetinandthencultivatedat28◦Cinthedarkonanorbital

shakerat120rotationsperminuteforfourweeks.Thesuspended cellswereremovedeverysevendays(intriplicate),weighed(fresh weight),andfrozenforsubsequentlyophilizationandverification ofthedryweightatintervalsof7,14,21,28,and35daysofculture. Thisprocedurewasperformedforthetwotypesofcallusthat wereinducedunderlaboratoryconditions:callusthatarosefrom hypocotylsandcallusthatarosefromseeds.

Obtaininglimonoidaglycones

Theisolationoflimonoidaglyconesoccurredafterextracting seedsfromthe“laranja-pêra”orange(C.sinensis,287.72g),which weredried,crushedbyturbolysis,andextracted,firstunderreflux inhexane(toeliminateoils)andtheninacetonefor4htoobtain limonoidaglycones.Theacetoneextractoftheseeds(AES;1.31g) was concentrated and resuspended in acetonitrileand filtered. Afterevaporationofthesolvent,weobservedcrystalformation. Thesamplewaspurifiedusingpreparativethin-layer chromatog-raphy(PTLC)usingCH2Cl2:acetone(9:1,v/v)asthemobilephase

insilicagel60,whichallowedisolationofthelimonoidaglycone limonin(1).Thestructureofthislimonoidwasdeterminedby1D and2D1H and13CNMR,mass spectrometry,infrared

spectros-copy, and comparisonswith theliterature(Khalil et al.,2002): limonin(1):IVmax(KBr)3488,2986,1758(lactone),1708(C O),

1391cm−1.The1Hand13CNMRdatawereinagreementwiththe

literature(Khaliletal.,2002;EM-IES493,2071[M+Na+],C 26H30O8

(calculatedmass,470.19).

O O

O O

O

O O

O

H H

1

A A'

B C

D 21

20 22 23

1 2 3

10

4

25

26 6

5 7 8 9 24 11

12 18

1317 16

15 14

Extractionoftotallimonoidaglyconesfromseedsandcallusand suspensionculturesofC.sinensis

CallusandsuspensionculturesofC.sinensiswerelyophilized andthensubjectedtoextractionbyrefluxinacetonefor4h(Ohta etal.,1993).Theacetonicextractswerefiltered,concentrated,and storedat−20◦Cuntilanalysis.

Theseedshadpreviouslyundergoneextractionbyrefluxin hex-anetoremovetheoilandsubsequentlysubjectedtoextractionby refluxinacetonetoobtainlimonoidaglyconesextract(Ohtaetal., 1993).Afterevaporationofthesolvent,themasswasdetermined, andthesampleswerestoredat−20◦Cuntilanalysis.

Quantificationoftotallimonoidaglycones

Total limonoid aglycones were quantified in a spectropho-tometer(VarianCary100UV-VIS).Afterdilutionoftheextracts inacetonitrileandreactionwithfreshlypreparedErlichreagent (0.1g4-dimethyl-amino-benzaldehyde,2.4mlperchloricacid,and 3.0mlaceticacid),thesampleswerehomogenizedandleft undis-turbedwithoutstirringfor30min.Readingswerethenperformed

at503nm(BreskaandIbarra,2007).

Limonin(1)thatwasisolatedfromtheseedswasusedasthe standard to constructtheanalytical (calibration)curve.From a 500␮g/mlstocksolutioninacetonitrile,10–100␮g/mlofthe solu-tionswasprepared,andtheanalyticalcurvewasconstructedby linearregression.

Theanalysesoftotallimonoidaglyconeswereperformedwith the following samples: seeds, callus cultures (originating from seeds),calluscultures(originatingfromhypocotyls),cell suspen-sionfromhypocotylscells,andcellsuspensionfromcotyledons, whichwereobtainedondays7,14,21,28,and35ofcultureafter lyophilizationtoobtainthedryweight.

Statisticalanalysis

Thedatawereanalyzedbyanalysisofvariance,andmeanswere comparedusingDuncan’stestandOriginMicrocal9.0software. Valuesofp<0.05wereconsideredstatisticallysignificant.Forthe determinationof totallimonoids,theresultswerebasedonthe averageofthreeindependenttestswiththreereplicationseach. Theresultsareexpressedasthemean±standarddeviation.

Results

Fromtheacetoneextractoftheseeds,weusedPTLCtoisolate andsubsequentlyidentifylimonoidaglycone(1),aprocedurethat wasmonitoredbyananalyticalcharge-coupleddevice.The extrac-tionmethodthatwasproposedbyOhtaetal.(1993)allowsoneto obtainanextractthatisrichinlimonoidaglyconesandonlytraces oflimonoidglucosides.

The mass spectra of compound 1 showed a molecular ion [M+Na]+ atm/z=493.2171,equivalenttothemolecularformula

C26H30O8,and12degrees ofunsaturation.Thespectraldatafor

compound1indicatedthepresenceoftwolactones,oneketone, fourmethyls,andonefuranring.Thephysicalandspectraldata (infraredspectroscopy,1Hand13CNMR,DEPT,and2Dcorrelation

techniques)showninattachmentthatwereconsistentwiththose reportedforlimonincompound1inKhaliletal.(2002).

Thedeterminationoftotallimonoidaglyconeswasperformed usingthemethodthatwasdevelopedbyBreskaandIbarra(2007), whichestimatestotallimonoidaglyconeconcentrationsinsamples ofCitrusinlimonin(1)equivalents.

Underthepresentconditions,theformationofacolorimetric complexwaslinearwithincreasingconcentrationsoflimonin,even withconcentrationsthatexceeded100␮g/ml.Thecorrelation coef-ficient(R2)fortheanalyticalcurvewas0.9984(Fig.2).

(4)

0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0 20 40 60 80 100

[18/4/2008 14:41 "/graph1" (2454574)] Linear regression for data1_B: Y = A+B * X

Error Value Parameter

---1.01045 –12.53021 A

3.25581 236.42961 B

---

-P N SD R

---<0.0001 10 1.24984 0.99924

---Lim

o

ni

n

co

nce

ntr

a

tion

(

μ

g/m

l)

Absorbance

Fig.2.Analyticalcurveforthequantificationoftotallimonoidaglyconesusing limonin(1)asthestandard.Thestandardoflimonin(10–100␮g/ml)wasdissolved inacetonitrileandreactedwithacolorimetricreagent.

calluscultureswhenconsideringtheirreadyavailabilityandrate ofmultiplication(Fig.3).

Thedeterminedquantityoflimonoidaglyconesintheextractof C.sinensis(Pera-Rio)seeds(Table1)washigherthantheonefound intheseedsofothervarietiesofCitrussinensis,including Valen-ciaorange(213.6mg/100g),Rubybloodorange(219.3mg/100g), Queenorange(173.1mg/100g),andJaffaorange(224.2mg/100g;

RouseffandNagy,1982).

Consideringthegrowthrateandproductionoflimonoid agly-conesfromthetwocelllinesinsuspension,theresultingcellsfrom cotyledonshadaslowergrowthratethanthecellsfromhypocotyls butwithhigherconcentrationsoflimonoidaglycones(Fig.4).

Agreateramountoflimonoidaglycone(240mg/100gofcelldry weight)wasaccumulatedinthecallusculturesfromcotyledons, butthedifferencewassmallcomparedwithcallusculturesfrom

0 50 100 150 200 250 300 350

35 28

21 14

7 0

0 50 100 150 200 250 300

35 28

21 14

7 0

Cell growth (mg/fflask)

Cell growth (mg/fflask)

TLA (mg/100 g of dried mass)

TLA (mg/100 g of dried mass)

Culture time (days)

Culture time (days)

A

B

Fig.4.Cellgrowth(mg, )andproductionoftotallimonoidaglycones(mg/100g dry weight,---)in calluscultureinsuspension ofCitrussinensisfrom:(A) hypocotylsand(B)cotyledons.CallusweregrowninMSmedium(Murashigeand Skoog,1962)supplementedwith2.0␮M2,4-dichlorophenoxyaceticacid,7.0␮M kinetin,and3.0%(w/v)sucrose.

(5)

Table1

Contentoftotallimonoidaglyconesinseeds,callusandcellssuspensioncultureof Citrussinensis.

Samplea LTA(mg/100gdryweight)

Seeds 400±7.0

Callus(cotyledons) 10.0±0.5

Callus(hypocotyls) 200±1.0

Cellsuspension(hypocotyls)b 210 ±3.0 Cellsuspension(cotyledons)b 240

±5.0

aAnalyzeswereperformedintriplicate.

bThevaluesrefertothepeakproductionofLTAonthegrowthcurve.

hypocotyls(210mg/100gcelldryweight),eventhoughthiscell linehasagreatergrowthrate.

Discussion

Limonin(1)wasusedasthestandardforthespectrophotometric analysistodeterminethelevels oflimonoid aglyconesbecause itis themajorcomponentof Citrusspecies, themostabundant limonoidaglycone,andcommerciallyavailable(Bilaletal.,2013).

Furthermore,formostCitruslimonoids,thestructureofBCDrings (Fig.1)remainsthesame,whereasbiosyntheticreactionsare con-centratedontheconversionoftheAringofnomalin(2)totheA–A′

two-ringstructureoflimonin(1)(BreskaandIbarra,2007).Mostof theotheraglyconesthathavebeenisolatedfromCitruswere inter-mediates,withvariationsinthestructureoftheAring,including obacunone(3)andichangin(5)(RoyandSaraf,2006).

Althoughthis colorimetricmethodisnot currentlythemost widelyusedforCitruslimonoidanalyses(Tianetal.,2003;Vikram

etal.,2007;Solemainetal.,2005),wechosethismethodologyto

determinelimonoidaglyconecontentbecauseitdoesnotrequire expensiveequipment,thusincreasingthepotentialforits applica-tionintheanalysisoflimonoidaglyconesincallusculturesandcell suspensionsofCitrusspecies.

The combinationsof phytoregulators that wereused in this studyweresimilartothoseusedbyMansellandMcIntosh(1991), whousedacombinationof2,4-Dandkinetin,whichdifferfrom

Endoetal.(2002),whousedonlycytokinin.

Thelimonoidaglyconesconcentrationwasthehighestinthe C.sinensisseedextractcomparedwithextractsofcallusthatwere obtainedfromhypocotylandcotyledonexplants(Table1).

Squalene

Nomalin (2)

Ichangin

Limonoid A-ring lactone (LARL)

Limonin Limonin

17-β-D-glucopyranoside LGT

LLH

O O

O

O O

O O

O

H H

O O

O O O

H

2

1

O O

AcO

CO2H O

O O

O

O

O

O

O H

H

OH OH OH

HO

LGBG

Mechanical harvest demage and acid pH (there are only in seeds)

Intermediate stored in the leaves, fruits and seedlings

There are only in seeds Obacunone

Fig.5.MajorenzymesinvolvedinthekeystepsoflimonoidbiosynthesisinCitrus.LGT,limonoidglucosyltransferase;LLH,limonoidd-ringlactonehydrolase;LGBG,limonoid

(6)

Importantly, callus from both hypocotyls and cotyledons wereabletoproducelimonoidaglycones. However,callusfrom hypocotylshada greaterability tobiosynthesizelimonoid agly-cones. This increased biosynthesis of callus from hypocotyl explantscanbeexplainedbythefactthatnomalin(2)isthemost likelyinitialprecursorofallknownlimonoidsinCitrus.Nomalin(2) hasbeenshowntobebiosynthesizedbytheacetate–mevalonate pathwayinthephloemregionofthestem,whichispresentinthe hypocotylexplantsthatareutilizedforcallusinduction(Moriguchi etal.,2003).Thisprecursorthenmigratestoothertissues,suchas leaves,fruittissues,andseeds,whereotherlimonoidsare biosyn-thesizedindependently(Fig.5).Thistoocanexplainthesmaller quantitiesof limonoidaglycones in the callus from seeds that requirenomalin(2)to biosynthesizelimonoidaglycones (Endo

etal.,2002).

Plantcellsuspensionsculturesnormallyareinitiatedwithcallus culturelinesthatproducehighamountsofinterestingsecondary metabolite,suchaslimonoids(Ravaletal.,2003).Callusorcell cul-turescanbeundercatabolicrepression,whichpreventsthemfrom producinglimonoidsorcausesthemtoproducelimonoidsinvery smallamounts.Underfavorableconditions,however,theycan pro-ducelimonoidsagain(Ravaletal.,2003).Thecallusculturesfrom hypocotylsofC.sinensisexhibitedthischaracteristic(Table1).Thus, wealsoevaluatedlimonoidaglyconeproductionincalluscultures fromcotyledonsandcellsuspensions.

Asshown in Fig.4, both cultures had a lag phase of 14–21 daysafterinoculation,followedbyarapidgrowthphasethat sta-bilizedafter28daysofcultivation.Inthecallusculturethatwas obtainedfromhypocotyls,thelevelsoftotallimonoidaglycones increased,togetherwithanincreaseinbiomass.Thus,the concen-trationsofthesecompoundsremainedatconstitutivelylowlevels forthebiosynthesisofthesecompoundsundercultureconditions

(MansellandMcIntosh,1991).

The suspension culturefrom cotyledons however showed a dramatic increase in limonoid aglycone concentrations on day 7,which maybe attributableto theconversion of

limonin-17-␤-d-glucopyranoside (7) to limonin aglycone (1) by limonoid glucoside ␤-glucosidase (Fig. 5) that probably was induced by adaptation to suspension culture stress through a shear effect or aeration, mimicking the same conditions and damage that occur with mechanical harvest in orange juice processing or seed germination. This conversion of limonoid glucosides to limonoidaglyconesoccurredonlyintheseedscells(Berhowetal.,

2000).

Inthis first momentoccurreda conversion oflimonoid gly-cosidesstockedtolimonoidaglycones,showedbyincrementof TLAconcentrationfromcotyledonscellline(onday7),afterthe TLAconcentrationwasdrasticallyreducedbut withmeasurable concentrationsbycolorimetricassay(day14)asshowninFig.5. Howeverinthehypocotylscellssuspensionatday14,theTLA con-centrationwasreducedtoalevelbelowthedetectionlimitofthe assay(day14).

Theresultssuggest thatde-differentiatedcallustissuesfrom cotyledonshavealimitedcapacitytoproducelimonoidaglycones. However,callusfromhypocotylsexplantsappeared tobemore promisingforthispurpose.Ontheotherhandwhenworkingwith suspensioncellslinesthatareobtainedfromcotyledonscallusare themostappropriatebecausetheyhavethecapacitytoproduceTLA bydirectbiosynthesisandfromhydrolyzeoflimonoidglucosidesto TLA.Clearly,tissueculturesandcellsuspensionsarevaluabletools forstudyingthebiosynthesisoflimonoidaglyconesfromCitrus.The analysisandevaluationoftechniquesthatareusedtosuppressor enhancelimonoidaglyconesbiosynthesisinplantsarepossible.The resultsthatwereobtainedusingthesetechniques,combinedwith moleculartechniques,willaidinthedevelopmentofpracticaluses ofthesecultures.

Authors’contributions

EFG(Ph.D.student)andERScontributedtotherunningofthe plantcellculturelaboratoryworkandanalysis.EFGandAPSF con-tributedtoMS,NMRandcolorimetricdateanalysisanddiscussion. TCPC(undergraduatestudent)contributedtomaintenanceand cul-tivationofplantcellculturesandphytochemicalwork.AJBOwrote manuscript.RACGcontributedtocriticalreadingofthemanuscript. AJBOandRACGdesignedthestudy,supervisedthelaboratorywork andcontributedtothecriticalreadingofthemanuscript.Allthe authorshavereadthefinalmanuscriptandapprovedsubmission. Allauthorsreadandapprovedthefinalmanuscriptsubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

WethankCNPqandCAPESforfinancialsupport.Wealsothank Dr.EliezerRodriguesSouto,DepartmentofAgronomy,State Uni-versityofMaringá,Maringá,PR,Brazil,forallowingustousehis laboratoryfortheinductionandmaintenanceofcallusculturesof C.sinensis.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.bjp.2015.05.008.

References

Bilal,H.,Akram,W.,Hassan,S.A.,Sahar,S.,Iqbal,M.M.,2013.Determinationof limoninandnomilincontentsindifferentcitruscultivarsusinghigh perfor-manceliquidchromatography.Pak.J.Sci.Ind.R.B56,36–40.

Berhow,M.A.,Hasegawa,S.,Manners,G.D.,2000.Citruslimonoids.Functional Chem-icalsinAgricultureandFood,2000.AmericanChemicalSociety,Washington,DC, pp.253–260.

Breska,A.P.,Ibarra,P.,2007.Colorimetricmethodfortheestimationoftotallimonoid aglyconesandglucosidecontentsinCitrusjuices.J.Agric.Food Chem.13, 5013–5017.

Collin,H.A.,2001.Secondary productformationinplanttissuecultures. Plant GrowthRegul.34,119–134.

Davies,K.M.,Deroles,S.C.,2014.Prospectsfortheuseofplantcellculturesinfood biotechnology.Curr.Opin.Biotechnol.26,133–140.

Endo,T.,Kita,M.,Shimada,T.,Moryguchi,T.,Hidaka,T.,Matsumoto,R.,Hasegawa, S.,Omura,M.,2002.Modificationoflimonoidmetabolisminsuspensioncell culturesofCitrus.PlantBiotechnol.19,397–403.

Fumagali,E.,Gonc¸alves,R.A.C.,Machado,M.F.P.S.,Vidoti,G.J.,Oliveira,A.J.B.,2008. Produc¸ãodemetabólitossecundáriosemculturadecélulasetecidosdeplantas: OexemplodosgênerosTabernaemontanaeAspidosperma.Rev.Bras.Farmacogn. 18,627–641.

Gill,S.S.,Anjum,N.A.,Hasanuzzaman,M.,Gil,R.,Trivedi,D.K.,Ahmad,I.,Pereira,E., Tuteja,N.,2013.Glutathioneandglutathionereductase:aboonindisguisefor plantabioticstressdefenseoperations.PlantPhysiol.Biochem.70,204–212. Gonc¸alves,S.,Romano,A.,2013.Invitrocultureoflavenders(Lavandulaspp.)and

theproductionofsecondarymetabolites.Biotechnol.Adv.31,166–174. Gonc¸alves,R.A.C., Cunha,A.C.,Oliveira, J.B.O.,Machado,M.F.P., Santos,R.A.M.,

2010. Aplicac¸ões da cultura de células e tecidos de plantas em reac¸ões de biotransformac¸ão. In: Marsaioli, A.J.,Porto, A.L.M. (Eds.), Biocatálise e Biotransformac¸ão:FundamentoseAplicac¸ões.EditoraSchoba,SãoPaulo,pp. 102–157,2010.

Hasegawa,S.,Hoagland,J.E.,1977.BiosynthesisoflimonoidsinCitrus. Phytochemi-stry16,469–471.

Khalil,A.T.,Maatooq,G.T.,ElSayed,K.A.,2002.LimonoidsfromCitrusreticulate.Z. Naturforsch.58c,165–170.

Mansell,R.L.,McIntosh, C.A.,1991. Citrusspp.VitroCulturetheProductionof NaringinLimonin.In:Bajaj,Y.P.S.(Ed.),Medicinaland AromaticPlantsIII, BiotechnologyinAgricultureandForestry,vol.15.Spring-Verlag,Berlin, Heildel-berg,pp.193–210.

Moriguchi,T.,Kita,M.,Hasegawa,S.,Omura,M.,2003.Molecularapproachtocitrus flavonoidandlimonoidbiosynthesis.J.FoodAgric.Environ.1,22–25. Murashige,T.,Skoog,F.A.,1962.Revisedmediumforrapidgrowthandbioassays

(7)

Muranaka,T.,Saito,K.,2010.Productionofpharmaceuticalsbyplanttissuecultures. In:Mander,L.,Liu,H.W.(Eds.),ComprehensiveNaturalProductsII:Chemistry andBiology,vol.3.Elsevier,Oxford,pp.615–628.

Niedz,R.P.,Moshonas,M.G.,Peterson,B.,Shapiro,J.P.,Shaw,P.E.,1987.Analysisof sweetorange(Citrussinensis(L.)Osbeck)callusculturesforvolatilecompounds bygaschromatographywithmassselectivedetector.PlantCellTissueOrg.51, 181–185.

Ohta,H.,Fong,C.H.,Berhow,M.,Hasegawa,S.,1993.Thin-layerandhigh perfor-manceliquidchromatographicanalysesoflimonoidsandlimonoidglucosides inCitrusseeds.J.Chromatogr.639,295–302.

Okwu,D.E.,2008.Citrusfruits:arichsourceofphytochemicalandtheirrolesin humanhealth.Int.J.Chem.Sci.6,451–471.

Puricelli,L.,Innocenti,G.,DelleMonache,G.,Caniato,R.,Filippini,R.,Cappelletti,E.M., 2002.InvivoandinvitroproductionofalkaloidsbyHaplophyllumpatavinum. Nat.Prod.Lett.16,95–100.

Raval,K.N.,Hellwig,S.,Prakash,G.,Ramos-Plasencia,A.,Srivastava,A.,Büchs,J.,2003. Stageprocessfortheproductionofazadirachtin-relatedlimonoidsinsuspension cultureofAzadirachtaindica.J.Biosci.Bioeng.96,16–22.

Ralphs,M.H.,Gardner,D.R.,2001.Distributionofnorditerpenealkaloidsintall lark-spurplantpartsthroughthegrowingseason.Biochem.Syst.Ecol.29,117–124.

Rouseff,R.L.,Nagy,S.,1982.DistributionoflimonoidsinCitrusseeds.Phytochemistry 21,85–90.

Roy,A.,Saraf,S.,2006.Limonoids:overviewofsignificantbioactivetriterpenes dis-tributedinplantskingdom.Biol.Pharm.Bull.29,191–201.

Salmore,A.K.,Hunter,M.D.,2001. Environmentalandgenotypicinfluenceson isoquinolinealkaloid content inSanguinaria canadensis. J. Chem. Ecol. 27, 1713–1747.

Sidhu, O.P., Bel,H.M., 1996. Seasonal variation in azaradirachtin inseeds of Azadirachtaindica.Curr.Sci.70,1084–1085.

Solemain,A.,Parvin,Z.,Esmaeil,M.,2005.QuantificationoflimonininIranianorange juiceconcentratesusinghigh-performanceliquidchromatographyand spectro-photometricmethods.Eur.FoodRes.Technol.221,202–207.

Smetanska,I.,2008.Productionofsecondarymetabolitesusingplantcellcultures. Adv.Biochem.Eng.Biotechnol.111,187–228.

Tian,Q.,Li,D.,Barbacci,D.,Schwartz,S.J., Patil,B.S.,2003.Electronionization mass spectrometry ofcitrus limonoids. RapidCommun. Mass Espectrom., 2517–2522.

Imagem

Fig. 1. Limonin biosynthesis pathway proposed by Breska et al. (2007).
Fig. 3. Callus from C. sinensis cultivated in MS medium (Murashige and Skoog, 1962) supplemented with 2.0 ␮M 2,4-dichlorophenoxyacetic acid, 7.0 ␮M kinetin, 3.0% sucrose (w/v), and 0.8% (w/v) agar and incubated at 28 ◦ C in the dark
Fig. 5. Major enzymes involved in the keysteps of limonoid biosynthesis in Citrus. LGT, limonoid glucosyltransferase; LLH, limonoid d-ring lactone hydrolase; LGBG, limonoid glucoside ␤-glucosidase.

Referências

Documentos relacionados

Figure 8 - Regeneration percentage of bacuri plants (Platonia insignis Mart.) originating from the primary root of. seeds of different

differences between the mean values obtained for the physiological quality of the seeds originating from the different lots assessed, but these differences were not as marked as

Through means obtained for dry mass of roots of the seedlings of the two cultivars assessed, originating from the seeds inoculated with both the strains of the fungus, or

These authors have observed that the values for percentages of germination and vigor of the seeds that were produced in the primary racemes (which are bigger and originated from the

The calli obtained from cotyledons of hypocotyls (from the culture means that were more efficient in the induction of callus) were divided and inoculated in means supplemented

obesum propagation is performed mainly by seeds, since the plants originating from seeds exhibit more swollen caudex and primary roots than those propagated..

Beyer e Jensen (1993) não observaram alteração significativa no teor de colesterol da gema após a adição de 20% de farinha de cevada na dieta para poedeiras..

In the present study trigonelline has been isolated from various plant parts and callus cultures of Moringa oleifera Lam., Moringaceae, and was identified