• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número4

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número4"

Copied!
6
0
0

Texto

(1)

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Activity

of

Fabaceae

species

extracts

against

fungi

and

Leishmania:

vatacarpan

as

a

novel

potent

anti-Candida

agent

Dandara

Braga

Santana

a

,

Raphaella

Correia

da

Costa

a

,

Renata

Mendonc¸

a

Araújo

b

,

José

Elias

de

Paula

a,1

,

Edilberto

Rocha

Silveira

c

,

Raimundo

Braz-Filho

d,e

,

Laila

Salmen

Espindola

a,∗

aLaboratóriodeFarmacognosia,FaculdadedeCiênciasdaSaúde,UniversidadedeBrasília,CampusUniversitárioDarcyRibeiro,Brasília,DF,Brazil

bInstitutodeQuímica,UniversidadeFederaldoRioGrandedoNorte,Natal,RN,Brazil

cDepartamentodeQuímicaOrgânica,UniversidadeFederaldoCeará,Fortaleza,CE,Brazil

dLaboratóriodeCiênciasQuímicas,UniversidadeEstadualdoNorteFluminense,CamposdosGoytacazes,RJ,Brazil

eDepartamentodeQuímica,UniversidadeFederalRuraldoRiodeJaneiro,Seropédica,RJ,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28May2015 Accepted28July2015 Availableonline15August2015

Keywords:

Enterolobiumellipticum

Sclerolobiumaureum

Vataireamacrocarpa

Vatacarpan

Leishmania

Fungi

a

b

s

t

r

a

c

t

Leishmaniasisandfungalinfectiontreatmentefficacyislimitedbytoxicityandeverincreasing resis-tancetoavailabledrugs,requiringdevelopmentofalternativecompounds.TherichnessofCerradoplant antimicrobialsecondarymetabolitesjustifiesscreeningofFabaceaespeciesextracts:Enterolobium ellip-ticumBenth.,Sclerolobiumaureum(Tul.)Baill.andVataireamacrocarpa(Benth.)Ducke,againstLeishmania (Leishmania)amazonensis,yeastsanddermatophytes.Amongthe26extractstested,morethan50%ofthe totaldemonstratedsignificantantifungalactivityincomparisontothedrugcontrols(minimalinhibitory concentration0.12to≤31.25␮g/ml).Sixextractscapableofcompleteparasiticgrowthinhibitionhadthe

inhibitoryconcentrationindexfor50%valuesfrom9.23to78.65␮g/ml.Theresultsledtotheselection oftheV.macrocarpaethylacetaterootbarkextractforchemicalfractionation.Thisplant, tradition-allyreferredtoasangelim-do-cerradoormaleiteira,isusedtotreatsuperficialmycosesinAmazonia.A previouslyunreportedpterocarpanvatacarpantogetherwiththeknowncompoundmusizinwas iso-lated.Vatacarpandemonstratedaminimalinhibitoryconcentrationvalueof0.98␮g/mlagainstCandida albicansATCC10231,andthuscomparableorsuperiortofluconazoleandamphotericinB.Theresults addtoliterature’sinformationtheabilityofpterocarpanstoactasantimicrobialagents.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Natural products and their ethnopharmacological activities havebeenhistoricallyusedasaprimarysourceofcompoundsfor drugdiscovery.However,forthelasttwentyyears,thetechnical requirementsforhighthroughputscreeningledthe pharmaceuti-calindustrytofocusoncombinatorialchemistrylibrariesinstead. Thispathwaywasonlypartlysuccessfulsinceitcameupwith struc-turesthatlackedthecomplexscaffoldofsecondarymetabolites. Currently,naturalproductsareagainasourceofdrugdiscovery, providingleadcompoundsforclinicaltrials,including antimicro-bialagents(Diasetal.,2012;Harveyetal.,2015).

Theincidenceoffungalinfections hassignificantlyincreased sincethelate1960s,primarilywithcasesofimmune-compromised orhospitalizedpatients.Researchdedicatedtothedevelopment

Correspondingauthor.

E-mail:darvenne@unb.br(L.S.Espindola).

1Inmemoriam.

of new therapeutic strategies has culminated in four antifun-gal classes currently used in clinicalpractice: fluoropyrimidine analogs, polyenes(suchasamphotericinB, themostcommonly usedmedicationfor systemicinfections)azolesand equinocan-dines(Vandeputteetal.,2012).

Cutaneous leishmaniasis is considered a neglected tropical diseases group,with 1.5million peopleworldwide manifesting skinlesionswhichpersistforseveralmonths,orevenyears(Silva etal.,2013).Pentavalentantimonials(Sb+5)remaintheprimary

treatmentoption,despitetheirtoxicityandlowpatienttolerance, witheitherpentamidineoramphotericin Bused assecondline treatments.

The failure of the aforementioned drug strategies has been attributed to microbial resistance. The use of plants by tradi-tional local communities and the richness of Cerrado species antimicrobialsecondarymetaboliteshavebeenreported(DeAssis etal., 2014;Albernazetal., 2012;MeloeSilvaetal., 2009;De Mesquitaet al.,2005).We screenedFabaceaeextractsfromthe Cerrado:EnterolobiumellipticumBenth.,Sclerolobiumaureum(Tul.) Baill.andVataireamacrocarpa(Benth.)Ducke,againstLeishmania

http://dx.doi.org/10.1016/j.bjp.2015.07.012

(2)

(Leishmania) amazonensis, yeasts and dermatophytes. These antimicrobialresultsledtotheselectionofV.macrocarparootbark ethylacetateextractforfurtherchemicalstudies.Here,wepresent theisolation,structureelucidationandantimicrobialactivityofone pterocarpan.Thisnewnaturalproductwasmoreactivethanthe antifungalreferencefluconazoleandamphotericinB.

Materialsandmethods

Plantextracts

Plant species Enterolobium ellipticum Benth., Sclerolobium aureum (Tul.) Baill. and Vatairea macrocarpa (Benth.) Ducke, Fabaceae,werecollectedin2010fromtheCerradobiomeinthe LagoaFormosaarea,Planaltina,FederalDistrictofBrazil,south lat-itude15◦2734.2′′; south longitude47923.3′′; atan altitudeof 1071m, and subsequently identifiedbybotanist Prof.JoséElias dePaula.VouchernumberswerekeptintheUniversityofBrasilia (UB/UnB)Herbarium(Table1).Plantorganswereseparated,dried, stabilized,pulverizedandextractedbymacerationwithhexane, ethylacetateandethanol.Theextractivesolutionswere concen-tratedin a rotary evaporator, yielding different crude extracts, whichwerestoredat−20◦C.

Antifungalactivitymethod

Theminimalinhibitoryconcentration(MIC)ofeachextractwas determinedforyeasts:CandidaalbicansATCC10231,C.parapsilosis

ATCC 22019 and C. glabrataLMGO 44, using CLSIM27-A3 and M27-S4 protocols(CLSI, 2008a, 2012); and for dermatophytes:

TrichophytonmentagrophytesLMGO 09and Trichophytonrubrum

LMGO 06, following the CLSI M38-A2 protocol (CLSI, 2008b); withminormodificationsaspreviouslydescribedbytheresearch group(DaCosta etal., 2014)(see Supportinginformation).The LMGO (Laboratório de Micologia de Goiás) strains are clinical isolatesfrompatientsattheFederalUniversityofGoiásHospital, Brazil.Itraconazole(Sigma),flucytosine(Sigma)andamphotericin B (Sigma) were used as reference compounds for yeasts and dermatophytes.Afourthpositivecontrolfluconazole(Sigma)was usedforyeastsonly.

Invitroantileishmanialactivity

The extracts were tested against Leishmania (Leishmania)

amazonensis(L(L)a)(MHOM/BR/PH8)promastigotesmaintainedin Schneiderculturemedium(Sigma)with20%heat-inactivatedfetal calfserum,at22–25◦C.ExtractsweredissolvedinDMSO(Sigma) anddilutedinSchneider’smedium(Sigma).Theinhibitory concen-trationindexfor50%(IC50)ofthepromastigoteswasdetermined

bytheMTTmethod.Experimentswereperformedaspreviously described(DaCostaetal.,2014)(seeSupportinginformation)with amphotericinB(Sigma)usedasthereferencedrug.

Generalexperimentalprocedures

Column chromatography was performed using silica gel 60 (230–400mesh, Merck).ThinLayer Chromatography(TLC) was

Table1

Fabaceaespeciesextractactivity–determinationoftheminimuminhibitoryconcentration(MIC–␮g/ml)againstyeastsanddermatophytes,andIC50(␮g/ml)against

Leishmania(Leishmania)amazonensis.

Fabaceaefamily species Vouchernumber

Extract Plantpart (solvent)/%yield

MIC(␮g/ml) IC50(␮g/ml)

L.(L.)amazonensis

C.albicans ATCC10223

C.parapsilosis ATCC22019

C.glabrata LMGO44

T.mentagrophytes LMGO09

T.rubrum LMGO06

Enterolobiumellipticum Benth

(UB)3739

RW(h)/0.37 250 250 125 500 250 >100 RW(ea)/0.56 1.95 3.91 >1000 500 62.5 >100 RW(e)/9.05 >1000 >1000 >1000 >1000 1000 70.05 RB(ea)/1.44 500 125 >1000 500 500 >100 SW(h)/0.32 >1000 1000 500 1000 500 78.65 SW(ea)/0.61 0.98 31.25 >1000 250 250 >100 SB(h)/0.55 1000 500 250 500 1000 25.87 SB(ea)/2.18 >1000 15.62 >1000 125 500 9.23 L(ea)/5.64 125 15.62 >1000 250 >1000 >100

Sclerolobiumaureum (Tul.)Baill. (UB)3818

RW(h)/0.42 >1000 >1000 >1000 1000 250 >100 RW(ea)/0.62 0.48 0.12 31.25 31.25 31.25 >100 RW(e)/6.06 1.95 3.91 15.62 31.25 31.25 >100 RB(ea)/1.98 7.81 7.81 15.62 15.62 31.25 >100 SW(h)/0.25 1000 500 500 500 31.25 >100 SW(ea)/0.66 0.48 15.62 15.62 15.62 31.25 >100 SW(e)/3.47 0.12 0.12 0.12 15.62 31.25 >100 SB(ea)/2.05 7.81 15.62 7.81 15.62 31.25 >100 L(ea)/4.74 250 7.81 1000 >1000 >1000 >100

Vataireamacrocarpa (Benth.)Ducke (UB)3815

RW(h)/0.48 0.98 1.95 500 62.5 500 72.39 RW(ea)/0.90 3.91 3.91 250 125 500 >100 RB(ea)/9.78 0.98 0.98 31.25 62.5 125 71.47 SW(h)/0.43 250 250 >1000 1000 125 >100 SW(ea)/0.78 1.95 1.95 500 62.5 125 >100 SW(e)/4.25 0.24 1.95 500 31.25 62.5 >100 SB(ea)/4.84 1.95 1.95 250 31.25 31.25 >100 L(ea)/8.58 1.95 1.95 250 62.5 62.5 >100 Itraconazole 0.125 0.0625 0.125 0.25 0.125 –

Flucytosine 0.25 0.0635 0.125 – –

Fluconazole 1 0.5 4 4 2 –

AmphotericinB 4 4 16 4 – 0.067

(3)

performedonprecoatedsilicagelaluminumplates(TLCSilicagel 60 F254, Merck).The compounds werevisualizedby UV

detec-tionand/orsprayedwithasolutionofvanillin/sulphuricacid/EtOH. OpticalrotationwasmeasuredonaPerkinElmer341polarimeter. TheIRspectra(KBRpellets)wererecordedusingaPerkin-Elmer FT-IR1000spectrometer.Thehighresolutionelectrospray ioniza-tionmassspectra(HRESIMS)wereacquiredusingaLCMS-IT-TOF (225-07100-34)Shimadzuspectrometer.Themassspectrawere recordedonaShimadzuQP5000/DI-50spectrometer,operating withelectron impactat 70eV. The1D and 2D NMR datawere acquiredonaBrukerAvanceDPX-300spectrometer,equippedwith a5mmmultinuclearinverseprobe,usinggradientfieldintheZ directionandamagnitudeof10A.Chemicalshifts,givenonthe ıscale,werereferencedtotheresidualundeuteratedportionof theCDCl3,deuteratedsolvent.Allstandardpulsesequenceswere

providedbytheBrukerTOP-SPINsoftware.Allexperimentswere conductedatroomtemperature.

Extractionandisolation

A 115.70g portion of V. macrocarpa root bark was dried, powderedandsubsequentlymaceratedinethylacetateatroom temperature,yielding11.83gofextractaftersolventevaporation underreducedpressure.An8.28gportionoftheEtOAcextractwas fractionatedwithhexane,EtOAcandMeOHasthebinarymixture ofincreasingpolarityandyielded65fractionswhichwereanalyzed byTLC.

Flashchromatographyoffractions 19–22(749.9mg),by elu-tionwithhexane,ethylacetateandMeOHasabinarymixtureof increasingpolarityyielded316fractionsanalyzedbyTLC.

Fraction3(50–61)(5.10mg)correspondedtomusizin(2). Fraction 9 (176–179) (27.5mg) and fraction 10 (180–183) (40.3mg)wereregroupedfollowingTLCanalysis.Anewflash chro-matographywasconductedwhichyielded141fractionsanalyzed byTLC.Fraction3(16–21)(4.60mg)wasfoundtobeapreviously unreportedpterocarpan–namedhereinasvatacarpan(1).

Vatacarpan(1).Whitesolid;m.p.135.2–136.4◦C;[]

D=+63◦ (c.0.1,MeOH);1Hand13CNMR(CDCl

3,300MHz)seeTable2;

HR-ESI-TOFMS(1)m/z423.2166[M+H]+(calcdforC

26H30O5).

Musizin(2).Browncrystals,1H(CDCl3,300MHz):6.99(s,H-4),

7.08(d,7.8,H-5),7.48(t,7.8,H-6),6.84(d,7.8,H-7),2.76(s,H-12), 2.66(s,H-13),17.35(s,OH-1),10.24(s,OH-8)and13CNMR:205.2

(C-11),168.8(C-1),158.8(C-8),138.4(C-10),133.0(C-6),132.4 (C-3),122.1(C-4),117.7(C-5),113.8(C-2),113.2(C-9),111.4(C-7), 32.4(C-12),25.5(C-13).

2'

2'' 3'

3''

4'' 4'

5'

5''

1'

4 4a

1a 11a

10a 8 7

7 6

5 4

10 3

9

8 1

11 2 12

13

6

7a 6a 3

2

1

1''

HO

H

3

CO

OH

OH

O

O

O

2

10 9

OH

1

Resultsanddiscussion

Atotalof26extractswerepreparedfromtheFabaceae fam-ily:ninefromE.ellipticum,ninefromS.aureum,andeightfrom

V.macrocarpa.Ofalltheextracts,85%presentedactivityagainst aminimumofonefungalstrainusingtheactiveextractcriterion (MIC≤125␮g/ml)specifiedbyAlbernazetal.(2010).Inaddition,

Table2

1H(300MHz)and13C(75MHz)NMRdataassignmentsforvatacarpan(CDCl 3).

Carbon number

HSQC HMBC

ıC ıH 2JCH 3JCH

1 114.3 6.95(s) H-11a 1a 123.2 –

2 143.7 –

3 146.6 – H-1/MeO-3

4 116.0 –

4a 147.3 – H-1/H-11a

6 70.6 4.02(d,10.0) 3.64(d,10.0)

H-11a

6a 46.7 – 7 124.4 7.01(d,7.9)

7a 123.9 – H-8/H-10

8 107.7 6.36(dd,7.9,2.2) H-10/H-7a

9 156.8 – H-7

10 98.6 6.34(d,2.2)

10a 160.9 – H-7

11a 83.1 5.10(s) H-1 1′ 26.7 3.34(d,6.5)

2′ 122.8 5.14(t,6.5) 3H-4/3H-5′ 3′ 131.0 3H-4/3H-5

4′ 18.1 1.76(s) 3H-5′ 5′ 25.9 1.66(s) 3H-4′ 1′′ 31.2 2.45(d,7.5) H-6 2′′ 118.9 5.23(t,7.8) 3H-4′′/3H-5′′ 3′′ 135.6 3H-4′′/3H-5′′

4′′ 18.2 1.54(s) 3H-5′′ 5′′ 26.2 1.70(s) 3H-4′′ MeO-5 61.7 3.79(s)

morethan50%ofthetotalsamplesdemonstratedsignificant activ-ityincomparisontothedrugcontrols(MIC0.12to≤31.25␮g/ml) (Table1).Theinhibitoryconcentrationindexfor50%ofthe pro-mastigotesfromL.(L.)amazonensis(IC50determinedbytheMTT

method)wascalculatedforthesixextractscapableofcomplete parasiticgrowthinhibitionataconcentrationof100␮g/ml:four extractsfromE.ellipticumandtwofromV.macrocarpa(IC509.23to

78.65␮g/ml);withnoactivityobservedforS.aureum(Table1). InspiredbytheclinicaluseofamphotericinBinthetreatmentof fungalinfectionsandleishmaniasis,weselectedtheV.macrocarpa

rootbarkEtOAcextractforchemicalstudiesbasedonitsactivity, yield,quantityandpolarity.Silica-gelopencolumn chromatogra-phyofthis8.28gextract(fungalMIC0.98–125␮g/mlandparasite IC5071.47␮g/ml)yielded65fractions.

Fractionationrevealedanunreportedcompoundnamedherein asvatacarpan(1),togetherwithmusizin(2)(Covelletal.,1961).All compoundstructureswereestablishedusingspectroscopic tech-niques,including1Dand2DNMRanalysis,andcomparisonwith previouslyreporteddata.

Compound 1, was a white solid (m.p. 135.2–136.4◦C). The infrared (IR) spectrum showedabsorption bands at 3384cm−1 characteristicofhydroxylgroupsandat1620and1570cm−1ofthe skeletalvibrationsofthebenzenering.Asymmetricandsymmetric C O Cstretchingofaryl-alkyletherat1261–1199and1085cm−1, respectively,werealsoobservedinadditiontophenolabsorptions at1380and1165cm−1.TheHRESIMSof1displayedamolecular ionpeakatm/z423.2166correspondingtothemolecularformula C26H30O5.

Inthe1HNMRspectrum(300MHz,CDCl

3),amethoxygroupat

ıH3.79(s)andanaromaticprotonatıH7.26(H1,s)wereobserved,

consistentwithapentasubstitutedbenzenemoietyandthree aro-maticprotonscompatiblewiththepresenceofanABXspinsystem atıH6.34(H10,d,2.2),6.36(H8,dd,7.9,2.2)and7.01(H7,d,7.9).

(4)

5.14(H2′,t,J=6.5Hz)and5.23(H2′′,t,J=7.5Hz),inadditiontothe twomethyleneprotonsatıH3.34(H1′,d,J=6.5)and2.45(H1′′,d, J=7.5).ThecorrelationofthesesignalsintheCOSYspectrum con-firmedthetwoprenylmoieties.Inaddition,the1HNMRspectrum

revealedsignalsforadiastereotopicmethyleneatıH4.02(H6␣,d, 10.0)and3.64(H6␤,d,J=10.0Hz)andanoxymethineprotonatıH

5.10(H11a,s)typicaloftheoxymethyleneandoxymethineprotons

oftheheterocyclicringB(2H-6)andC(H-11a)ofa6a-substituted pterocarpanskeleton,respectively.Thepterocarpanskeletonwas supportedbythecorrelationdisplayedbetweenH-6andH-11ain theNOESYspectrum.

The13CandDEPT135◦NMRspectroscopicdataof1(Table2) revealed26carbonatoms,correspondingto:fourmethyls(␦C18.1,

18.2,25.9and26.2);amethoxyl(␦C61.7);threemethylenes(␦C

70.6,31.2and 26.7);one oxymethine(␦C 83.1); one

nonhydro-genated(␦C46.7);fourolefiniccarbons(ıC118.9,122.8,131.0and

135.6);fourhydrogenatedaromaticcarbons(␦C98.6,107.7,114.3

and124.4);andeightquaternaryaromaticcarbons(␦C116.0,123.2,

123.9,143.7,146.6,147.3,156.8and160.9).The1H,13C-HSQC

spec-trumexhibitedcorrelationbetweenthehydrogensat␦H4.02(H6␣,

d,10.0),3.64(H6␤,d,10.0Hz)and5.10(H11a,s)withthe

oxycar-bonsat␦C70.6(C-6)and83.1(C-11a),respectively.TheseNMR

signalstogetherwiththemethinecarbonat␦C46.7(C-6a),ratified

thepresenceofa6a-substitutedpterocarpanskeleton. Thedeshieldingofthemethylenehydrogens2H-1′ (

H 3.34)

when compared with the 2H-1′′ (

H 2.45), was associated to

anisotropiceffectofthearomaticringa-locatedattheC-1′carbon. Inaddition,theHMBCcorrelationofthe2H-1′(

H3.34)withthe

carbonsat␦C116.0(C-4),and147.3(C-4a)establishedtheposition

theoneprenylfragmentatC-4inthearomaticringA.OtherHMBC correlationofthemethoxylprotons(s,3.79)withthesignalat␦C

146.6(C-3),andconcomitantcorrelationoftheH-1(s,6.95)with thesignalsat␦C123.2(C-1a),146.6(C-3),and83.1(C-11a),

indi-catedthepositionofthemethoxylandhydroxylgroups,atC-3and C-2,respectively,confirmedthesubstitutionpatterninaromatic ringA.ThelocationofthehydroxylgroupattheC-9carbonofthe trisubstitutedaromaticringDwasbasedonHMBCcorrelationof thehydrogenat␦H7.01(H-7)tothecarbonsat␦C156.8(C-10a)

and160.9(C-9)andconcomitantcorrelationofthehydrogensat ␦H6.36(H-8)and6.34(H-10)withthecarbonat␦C123.9(C-7a),

inaccordancewithbiogeneticbackgrounds(Dewick,2002). TherelativestereochemistryoftheBandDpterocarpanrings wasdeterminedbytheNOESYexperiment,whichrevealeddipolar interactionsofthemethylene2H-1′′withthehydrogensH-6and H-11a.Inaddition,thepositiveopticalrotationvalue[␣]D=+63◦

(c.0.1,MeOH)wasdecisivefortheassignmentoftheabsolute ste-reochemistryofthestereogeniccentersC-6aandC-11aasS(Araújo etal.,2008).Thus,compound1wasidentifiedas(+)-6aS,11aS -2,9-dihydroxy-3-methoxy-4,6a-diprenyl-pterocarpanonthebasis of theNMR(1Dand2D,Table2)spectraldataandHRESIMS(positive mode).

Pterocarpans,thesecondlargestgroupofnaturalisoflavonoids, receivedthis name fromPterocarpusspecies,thefirst sourceof thisclassofcompounds.Sincethen,manystructurallydiverse pte-rocarpanshavebeenisolatedand somedemonstrateinteresting biological activities(Goel et al.,2013). Pterocarpanshave been mainlyfoundinalargenumberofFabaceaespecies,andhavebeen reportedtoexhibitantifungal(Jiménez-Gonzálezetal.,2008)and antiprotozoal(Vieiraetal.,2008)activities.

Compound2wasobtainedasbrowncrystals.TheIRspectrum showedabsorptionbandsofO Hstretchingat3297cm−1and car-bonylconjugatedC Ostretchingat1628cm−1.Phenolabsorptions werealso observedat 1378–1317cm−1 and 1280–1160 associ-atedtoC Ostretching,andat1580and1440cm−1oftheskeletal vibrationsof the aromaticring. The NMR spectra (see Suppor-tinginformation)showedthepresenceoftwomethylgroups,an

chelatogenichydroxylgroup,acarbonylgroup,andanaphthalene ring.Followinganalysisbyspectroscopicmeansandcomparison withthedatafromtheliterature,compound2wasidentifiedas musizin(Covellet al.,1961)otherwise named dianellidin (Dias etal.,2009)andnepodin(LiandMcLaughlin,1989).

TheliteraturedescribestheactivityofmusizinagainstC.albicans

ATCC14053andTrichophytonmentagrophytesATCC28185(Dias et al., 2009), and as a potent antiprotozoal compound against malariaparasites(LeeandRhee,2013).

Vatacarpan(1)wasactiveagainstC.albicansATCC10231with a MIC value (MIC 0.98␮g/ml) comparable to fluconazole (MIC 1.00␮g/ml)andsuperiortoamphotericinB(MIC4.00␮g/ml).

The literature reports the production of pterocarpans as a responseto bioticand abioticfactors,suchasfungal andother pathogenchallenges(Jiménez-Gonzálezetal.,2008; Goeletal., 2013).Pterocarpansaccumulateininfectedtissue,thesiteof anti-fungalactivity.Forsomeofthemhighconcentrationsarereached rapidly,then slowlydecrease as the infectionceases ( Jiménez-Gonzálezet al., 2008).Several studies have tried torelate the structureofthepterocarpansystemwiththeirfungicidalactivity.

Investigations have shown that the roots of some plants whichcontainpterocarpanshaveastrongactivitytowardhuman pathogens(Jiménez-Gonzálezetal.,2008).It iswellestablished thatlipophilicpterocarpanspossessincreasedantifungalactivity, sincetheycrossfungalmembranesmoreeasily(Harborne,1978). TherootbarkisthesourceoftheV.macrocarpaextractstudied.This organiscontinuouslychallengedtosoilmicroorganisms,humidity andoxidativestress,conditionsthatmayenhancetheproduction ofpterocarpans.

BiologicalactivityscreeningofV.macrocarpaextracts demon-strated themostpositive resultsin terms of activityspectrum. Thetwoextractsactiveagainsttheprotozoawerefromtheroot (Table1).AlloftheV.macrocarpaextractswereactiveagainstat leastonefungalstrain(MIC≤125␮g/ml)(Table1),withthe

major-ityofMICvaluesforC.parapsilosisATCC22019comparableto,or betterthan,thedrugcontrols.C.parapsilosisisregardedas refer-enceyeast(CLSI,2008a,b,2012).Adecade-spanningmulti-centric studyinBrazilianhospitalsrevealedanincreaseintheincidenceof

Candidanon-albicanspathogens,primarilyC.parapsilosis(Colombo etal.,2006).Anotherstudyin29Spanishhospitalsreported can-didemiain ICU patientscaused by non-albicans species in 48% ofcases,withC.parapsilosisasthemostcommonspecies( Puig-Asensio etal., 2014).In dermatophytes, theMICvalues ranged from31.25to125␮g/ml(Table1).Literaturereportsthetraditional useofV. macrocarparootand stembarkinsuperficialmycoses treatmentinAmazonia (Piedade andFilho, 1988).In this work, theethylacetateextractsfromthesameplantorganswereactive againstclinicalisolatesofTrichophytonmentagrophytesLMGO09 andT.rubrumLMGO06(MIC31.25to≤125␮g/ml)–the

dermato-phytesresponsibleforthemajorityofsuperficialfungalinfections intheAmericas(Grannoumetal.,2013;Havlickovaetal.,2008).

V.macrocarparemainsawidelyusedtreatmentofdiabetes melli-tussymptoms(Bavilonietal.,2010;Oliveiraetal.,2008),orasan antiulcerandanti-inflammatory(Jesusetal.,2009)–suggesting thatitisanon-toxicspecies,asshowninexperimentalanimalsfor heartwoodmethanolextract(Jesusetal.,2012).

V.macrocarpaandV.guianensisareoftendescribedinthe lit-erature as sources of lectins, a very diverse class of proteins. Lectinsfoundintheseedsofthesespecies,amongotherFabaceae, showvariousbiologicalactivities,suchasalternativeantimicrobial agents(Vasconcelosetal.,2014),ashistologicalmarkers,orastools forcancerresearch(Sousaetal.,2015).

(5)

ethylacetateextractdemonstratedthemostleishmanicidal activ-ity(IC50 9.23␮g/ml) (Table 1).Thisspecies islocally knownas

“brincos-de-saguim”becauseitsfruitresembles“monkey’sears” anditisusedbytraditionalcommunitiestotreatpulmonary infec-tions(Corrêa,1984).Otherspeciesofthesamegenusareusedin Braziltotreatparasitismandgonorrhea(Mimakietal.,2004).

S.aureumextractswereinactiveagainstL.(L.)amazonensis,but exhibitedhighactivityin71%ofthetestsconductedagainstATCC strainsandclinicalisolatesofpathogenicfungi.C.glabrataLMGO 44 results(MIC0.12to 31.25␮g/ml)(Table1)are thereforean importantconsiderationinthesearchforleadercompoundsgiven theincreasedclinicalincidenceofthisspecies(Puig-Asensioetal., 2014).ItisimportanttonotethatS.aureumisusedbytheCerrado communitiesforthetreatmentoffungalinfectionsandasa hep-atoprotector–suggestingthatitisanon-toxicspecies.Quilombola andsomeindigenousBrazilianpeopleuseadecoctionofthestem barkasacontraceptive(Rodrigues,2007).TheMumbuca commu-nityuseaS.aureuminfusionasahepatoprotectorinTocantinsState, Brazil(Coelhoetal.,2005).AnotherSclerolobiumspeciesisusedin thetreatmentofskindiseases(Mu˜nozetal.,2000).

PreviousresultsfromtheCerradoplantextractlibrary,builtby ourresearchgroup,havedemonstratedthatrootandstemextracts, mainlyfrombarkareoftenactiveagainstfungiandprotozoa(Da Costaetal.,2014).Thesepathogenexposedplantorgansshouldbe prioritizedfortargetcompoundsisolation.

Antifungal (85%) and leishmanicidal (23%) activity were observedfor26extractsfromthreespeciesoftheFabaceae fam-ily. E.ellipticumwas distinguishedby its activityagainst L.(L.)

amazonensis,especiallythestembarkethylacetateextract(IC50

9.23␮g/ml).S.aureumpresentednoactivityagainsttheparasite, butcuriouslysixroot/stemwoodandroot/stemethylacetateor ethanolextractsexhibiteddifferentialantifungalactivity(MIC0.12 to31.25␮g/ml).V. macrocarpa extractswerealso activeagainst bothmicro-organisms.Itsrootandstembarkareusedin super-ficialmycosestreatmentinAmazonia–traditionallyreferredtoas

angelim-do-cerrado or maleiteira(Piedade and Filho, 1988).The resultsfoundinTrichophytonmodelsareconsistentwiththis tra-ditionaluse.

FractionationofV.macrocarparootbarkEtOAcextractresulted in the isolation of a previously unreported vatacarpan (1) and knowncompoundmusizin(2).Vatacarpandemonstratednotable activityagainstC.albicansATCC10231(MIC0.98␮g/ml),an oppor-tunisticpathogenicfungiwhichisthemain etiologicalagentof candidiasis(PierceandLopez-Ribot,2013).

This work documentsthe activity of Cerrado plantextracts againstresistantclinicalfungalisolatesandLeishmania. Further-more,itconfirmstheneedtoconservetheCerradobiomehotspot withtheviewtodevelopingleadmolecules(DaCostaetal.,2014).

Authors’contributions

LSE,RBF and ERS conceived and designed the experiments; JEDPcollectedandidentifiedtheplantswiththeresearchgroup; DBS,RCDCandRMAconductedtheexperiments;RBFelucidated thestructuresof thecompounds;LSE,RBF, ERS, RMA,DBS and RCDC,contributedtodataanalysis;LSEandERScontributedwith reagents/materials/analysis tools and LSE, RBF, DBS,RCDC, ERS and RMA for paper writing. Allthe authorsapproved the final manuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

TheauthorswishtothankthefollowingBrazilianagenciesfor theirfinancialsupport:CNPq,CAPES,FAPDFandFINATEC.Weare grateful tothe Ministryof theEnvironment (CGEN/IBAMA) for authorizingbiologicalaccess.WealsoextendspecialthankstoDr. MariadoRosárioRodriguesSilvaforprovidingthefungalstrains.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.bjp.2015.07.012.

References

Albernaz,L.C.,dePaula,J.E.,Romero,G.A.S.,Silva,M.R.R.,Grellier,P.,Mambu,L., Espindola,L.S.,2010.Investigationofplantextractsintraditionalmedicineof theBrazilianCerradoagainstprotozoansandyeasts.J.Ethnopharmacol.131, 116–121.

Albernaz,L.C.,Deville,A.,Dubost,L.,dePaula,J.E.,Bodo,B.,Grellier,P.,Espindola, L.S.,Mambu,L.,2012.SpiranthenonesAandB,tetraprenylatedphloroglucinol derivativesfromtheleavesofSpirantheraodoratissima.PlantaMed.78,459– 464.

Araújo,R.M.,Pinheiro,S.M.,Lima,M.A.S.,Silveira,E.R.,2008.CompleteNMRdata assignmentsfornovelpterocarpansfromHarpalycebrasiliana.Magn.Reson. Chem.46,890–893.

Baviloni,P.D.,DosSantos,M.P.,Aiko,G.M.,Reis,S.R.,Latorraca,M.Q.,DaSilva,V.C., Dall’oglio,E.L.,DeSousaJr.,P.T.,Lopes,C.F.,Baviera,A.M.,Kawashita,N.H.,2010.

Mechanismofanti-hyperglycemicactionofVataireamacrocarpa(Leguminosae): investigationinperipheraltissues.J.Ethnopharmacol.131,135–139.

CLSI,2008a.ClinicalandLaboratoryStandardsInstitute,CLSIM27-A3,3rded.

CLSI,2008b.ClinicalandLaboratoryStandardsInstitute,CLSIM38-A2,2nded.

CLSI,2012.ClinicalandLaboratoryStandardsInstitute,CLSIM27-S4,4thed.

Coelho,F.B.R.,DalBelo,C.A.,Lolis,S.F.,Santos,M.G.,2005.Levantamento etnofar-macológicorealizadonacomunidadeMumbucalocalizadanoJalapão–TO.Rev. Eletr.Farm.2,52–55.

Colombo,A.L.,Nucci,M.,Park,B.J.,Nouér,S.A.,Arthington-Skaggs,B.,daMatta,D.A., Warnock,D.,Morgan,J.,fortheBrazilianNetworkCandidemiaStudy,2006.

EpidemiologyofcandidemiainBrazil:anationwidesentinelsurveillanceof candidemiainelevenmedicalcenters.J.Clin.Microbiol.44,2816–2823.

Corrêa,M.P.,1984.DicionáriodeplantasúteisdoBrasiledasexóticascultivadas. ImprensaNacional,Riodejaneiro,pp.1926–1978,III,41.

Covell,C.J.,King,F.E.,Morgan,J.W.W.,1961.Thechemistryofextractivesfrom hard-woods.PartXXXI.2-Acetyl-1,8-dihydroxy-3-methylnaphthalene(musizin),a constituentofMaesopsiseminii.J.Chem.Soc.,702–706.

Da Costa,R.C.,Santana,D.B., Araújo,R.M.,de Paula,J.E.,DoNascimento,P.C., Lopes,N.P.,Braz-Filho,R.,Espindola,L.S.,2014.Discoveryoftherapanoneand suberononemixtureasamotifforleishmanicidalandantifungalapplications. Bioorg.Med.Chem.22,135–140.

DeAssis,P.A.,Theodoro,P.N.E.T.,dePaula,J.E.,Araújo,A.J.,Costa-Lotufo,L.V.,Michel, S.,Grougnet,R.,Kritsanida,M.,Espindola,L.S.,2014.Antifungalether digly-cosidesfromMataybaguianensisAublet.Bioorg.Med.Chem.Lett.24,1414– 1416.

DeMesquita,M.L.,Desrivot,J.,Bories,F.C.,Fournet,A.,dePaula,J.E.,Grellier,P., Espin-dola,L.S.,2005.AntileishmanialandtrypanocidalactivityofBrazilianCerrado plants.Mem.Inst.OswaldoCruz100,783–787.

Dewick,P.M.,2002.Medicinalnaturalproducts:abiosyntheticapproach,2nded. JohnWiley&Sons,NewYork,pp.515.

Dias,D.A.,Silva,C.A.,Urban,S.,2009.Naphthaleneaglyconesandglycosidesfrom theAustralianmedicinalplant,Dianellacallicarpa.PlantaMed.75,1442–1447.

Dias,D.A.,Urban,S.,Roessner,U.,2012.Ahistoricaloverviewofnaturalproductsin drugdiscovery.Metabolites2,303–336.

Goel,A.,Kumar,A.,Raghuvanshi,A.,2013.Synthesis,stereochemistry,structural classification,andchemicalreactivityofnaturalpterocarpans.Chem.Rev.113, 1614–1640.

Grannoum,M.A.,Long,L.,Cirino,A.J.,Miller,A.R.,Najafi,R.,Wang,L.,Sharma,K., Anderson,M.,Memarzadeh,B.,2013.EfficacyofNVC-422inthetreatmentof dermatophytosiscausedbyTrichophytonmentagrophytesusingaguineapig model.Int.J.Dermatol.52,567–571.

Harborne,J.B.,1978.AnnualProceedingsofthePhytochemicalSocietyofEurope, No.15:BiochemicalAspectsofPlantandAnimalCoevolution.AcademicPress, London.

Harvey,A.L.,Edrada-Ebel,R.,Quinn,R.J.,2015.There-emergenceofnaturalproducts fordrugdiscoveryinthegenomicsera.Nat.Rev.DrugDiscov.14,111–129.

Havlickova,B.,Czaika,V.A.,Friedrich,M.,2008.Epidemiologicaltrends inskin mycosesworldwide.Mycoses51,2–15.

(6)

Jesus,N.Z.T.,SilvaJúnior,I.F.,Lima,J.C.S.,Colodel,E.M.,Martins,D.T.O.,2012. Hip-pocraticscreeningandsubchronicoraltoxicityassessmentsofthemethanol extractofVataireamacrocarpaheartwoodinrodents.Rev.Bras.Farmacogn.22, 1308–1314.

Jiménez-González,L.,Álvarez-Corral,M.,Muˇnoz-Dorado,M.,Rodríguez-García,I., 2008.Pterocarpans:interestingnaturalproductswithantifungalactivityand otherbiologicalproperties.Phytochem.Rev.7,125–154.

Lee,K.H.,Rhee,K.H.,2013.AntimalarialactivityofnepodinisolatedfromRumex crispus.Arch.Pharm.Res.36,430–435.

Li,X.H.,McLaughlin,J.L.,1989. BioactivecompoundsfromtherootofMyrsine africana.J.Nat.Prod.52,660–662.

MeloeSilva,F.M.,dePaula,J.E.,Espindola,L.S.,2009.Evaluationoftheantifungal potentialofBrazilianCerradomedicinalplants.Mycoses52,511–517.

Mimaki,Y.,Harada,H.,Sakuma,C.,Haraguchib,M.,Yui,S.,Kudo,T.,Yamazaki, M.,Sashida,Y.,2004.ContortisiliosidesA-G:isolationofsevennewtriterpene bisdesmosidesfromEnterolobiumcontortisiliquumandtheircytotoxicactivity. Helv.Chim.Acta87,851–865.

Mu˜noz,V.,Sauvain,M.,Bourdy,G.,Callapa,J.,Bergeron,S.,Rojas,I.,Bravo,J.A., Balder-rama,L.,Ortiz,B.,Gimenez,A.,Deharo,E.,2000.Asearchfornaturalbioactive compoundsinBoliviathroughamultidisciplinaryapproach.PartI.Evaluation oftheantimalarialactivityofplantsusedbytheChacoboIndians.J. Ethnophar-macol.69,127–137.

Oliveira,H.C.,Santos,M.P.,Grigulo,R.,Lima,L.L.,Martins,D.T.O.,Lima,J.C.S., Stop-piglia,L.F.,Lopes,C.F.,Kawashita,N.H.,2008.AntidiabeticactivityofVatairea macrocarpaextractinrats.J.Ethnopharmacol.115,515–519.

Piedade, L.F., Filho, W.W., 1988. Antraquinonas de Vatairea guianensis Aubl. (Fabaceae).ActaAmazon18,185–187.

Pierce,C.G.,Lopez-Ribot,J.L.,2013.Candidiasisdrugdiscoveryanddevelopment: newapproachestargetingvirulencefordiscoveringandidentifyingnewdrugs. ExpertOpin.DrugDiscov.8,1117–1126.

Puig-Asensio,M.,Pemán,J.,Zaragoza,R.,Garnacho-Montero,J.,Martín-Mazuelos,E., Cuenca-Estrella,M.,Almirante,B.,onbehalfoftheProspectivePopulationStudy onCandidemiainSpain(CANDIPOP)Project,HospitalInfectionStudyGroup (GEIH)andMedicalMycologyStudyGroup(GEMICOMED)oftheSpanishSociety ofInfectiousDiseasesandClinicalMicrobiology(SEIMC),andSpanishNetwork forResearchinInfectiousDiseases,2014.ImpactofTherapeuticStrategieson thePrognosisofCandidemiaintheICU.Crit.CareMed.42,1423–1432.

Rodrigues, E., 2007. Plants of restricted use indicated by three cultures in Brazil(Caboclo-riverdweller,IndianandQuilombola).J.Ethnopharmacol.111, 295–302.

Silva,E.M.,Araújo,R.M.,Freire-Filha,L.G.,Silveira,E.R.,Lopes,N.P.,dePaula,J.E., Braz-Filho,R.,Espindola,L.S.,2013.Clusiaxanthoneandtocotrienolseriesfrom Clusiapernambucensisandtheirantileishmanialactivity.J.Braz.Chem.Soc.24, 1314–1321.

Sousa,B.L.,SilvaFilho,J.C., Kumar,P.,Pereira,R.I., Łyskowski,A.,Rocha, B.A., Delatorre,P.,Bezerra,G.A.,Nagano,C.S.,Gruber,K.,Cavada,B.S.,2015. High-resolutionstructureofanewTnantigen-bindinglectinfromVataireamacrocarpa andacomparativeanalysisofTn-bindinglegumelectins.Int.J.Biochem.Cell Biol.59,103–110.

Vandeputte,P.,Ferrari,S.,Coste,A.T.,2012.Antifungalresistanceandnewstrategies tocontrolfungalinfections.Int.J.Microbiol.2012,1–26.

Vasconcelos, M.A., Arruda, F.V., Carneiro, V.A., Silva, H.C., Nascimento, K.S., Sampaio, A.H., Cavada, B., Teixeira, E.H., Henriques, M., Pereira, M.O., 2014. Effectof algaeand plantlectinson planktonicgrowth andbiofilm formation in clinically relevant bacteria and yeasts. BioMed. Res. Int.,

http://dx.doi.org/10.1155/2014/365272.

Referências

Documentos relacionados

impetigosa (syrup and pills) and of the different extracts prepared from the inner bark (infusion and methanolic extract) were compared (Table 2 )..

Table 2 shows that the crude extracts of Simarouba versicolor (root bark hexane and ethanol; stem bark ethanol; fruit hexane and ethanol), Guarea kunthiana (root ethanol; stem

Other promising compounds are the 2-aryl and 2-alkylquinoline alkaloids isolated from the extracts of the stem bark, root bark and leaves of Galipea longiflora (Rutaceae) (Fournet

and drimane sesquiterpenes isolated from the stem bark against strains of Leishmania amazonensis and Leishmania braziliensis promastigotes and Plasmodium falciparum

Purpose: To investigate the phytochemistry and cytotoxic activity of stem bark extracts from Anaxagorea dolichocarpa and Duguetia chrysocarpa - two species of

A análise descritiva de associação DEAN et al., 1990, entre achados clínicos com valores de hematócrito e proteína plasmática total, bem como a associação entre hematócrito

A procura de novos materiais luminescentes, o baixo custo de produção dos zeólitos, e o desempenho óptico apresentado por alguns materiais microporosos dopados com terras raras,

The methanolic extract from stem bark of Bauhinia monandra, a medicinal plant employed in folk medicine, yielded by column chromatography lup-20(29)-en-3β,24-diol ( 1 ) and