• Nenhum resultado encontrado

Development of sandwich-form biosensor to detect Mycobacterium tuberculosis complex in clinical sputum specimens

N/A
N/A
Protected

Academic year: 2021

Share "Development of sandwich-form biosensor to detect Mycobacterium tuberculosis complex in clinical sputum specimens"

Copied!
9
0
0

Texto

(1)

The

Brazilian

Journal

of

INFECTIOUS

DISEASES

w w w . e l s e v i e r . c o m / l o c a t e / b j i d

Original

article

Development

of

sandwich-form

biosensor

to

detect

Mycobacterium

tuberculosis

complex

in

clinical

sputum

specimens

Taha

Roodbar

Shojaei

a

,

Mohamad

Amran

Mohd

Salleh

a,∗

,

Meisam

Tabatabaei

b

,

Alireza

Ekrami

c

,

Roya

Motallebi

d

,

Tavoos

Rahmani-Cherati

e

,

Abdollah

Hajalilou

a

,

Raheleh

Jorfi

a

aInstituteofAdvancedTechnology(ITMA),UniversitiPutraMalaysia,43400Serdang,Selangor,Malaysia

bNanosystemsResearchTeam(NRTeam),MicrobialBiotechnologyandBiosafetyDepartment,AgriculturalBiotechnologyResearch

InstituteofIran(ABRII),Karaj,Iran

cInfectiousandTropicalDiseasesResearchCenter,AhvazJundishapurUniversityofMedicalSciences,Ahvaz,Iran

dDepartmentofPlantBreedingandBiotechnology,CollegeofAgriculture,ShahrekordUniversity,P.O.Box115,Shahrekord,Iran eResearchandDevelopmentDepartment,Nanozino,16536-43181Tehran,Iran

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30January2014 Accepted19May2014

Availableonline30August2014

Keywords:

Mycobacteriumtuberculosiscomplex (MTBC)

Cadmium-telluridequantumdots (CdTe-QDs)

Goldnanoparticles(AuNPs) Fluorescenceresonanceenergy transfer(FRET)

Sandwich-formFRET-based biosensor

a

b

s

t

r

a

c

t

Mycobacteriumtuberculosis,thecausingagentoftuberculosis,comessecondonlyafterHIV onthelistofinfectiousagentsslaughteringmanyworldwide.Duetothelimitationsbehind theconventionaldetectionmethods,itisthereforecriticaltodevelopnewsensitivesensing systemscapableofquickdetectionoftheinfectiousagent.Inthepresentstudy,the sur-facemodifiedcadmium-telluridequantumdotsandgoldnanoparticlesconjunctwithtwo specificoligonucleotidesagainstearlysecretoryantigenictarget6wereusedtodevelop a sandwich-form fluorescence resonanceenergy transfer-based biosensor to detect M. tuberculosiscomplexanddifferentiateM.tuberculosisandM.bovisBacilleCalmette–Guerin simultaneously.Thesensitivityandspecificityofthenewlydevelopedbiosensorwere94.2% and86.6%,respectively,whilethesensitivityandspecificityofpolymerasechainreaction andnestedpolymerasechainreactionwereconsiderablylower,74.2%,73.3%and82.8%, 80%,respectively.Thedetectionlimitsofthesandwich-formfluorescenceresonanceenergy transfer-basedbiosensorwerefarlower(10fg)thanthoseofthepolymerasechain reac-tionandnestedpolymerasechainreaction(100fg).Although thecostofthedeveloped nanobiosensorwasslightlyhigherthanthoseofthepolymerasechainreaction-based tech-niques,itsuniqueadvantagesintermsofturnaroundtime,highersensitivityandspecificity, aswellasa10-foldlowerdetectionlimitwouldclearlyrecommendthistestasamore appropriateandcost-effectivetoolforlargescaleoperations.

©2014ElsevierEditoraLtda.Allrightsreserved.

Correspondingauthor.

E-mailaddresses:asalleh@upm.edu.my,amransalleh@yahoo.co.uk(M.A.MohdSalleh). http://dx.doi.org/10.1016/j.bjid.2014.05.015

(2)

Introduction

Tuberculosis (TB) is one of the major chronic infectious diseasescausedbyMycobacteriumtuberculosis(MTB)and rep-resentsaglobalhealthconcern.1,2Itisposingathreatevenin thedevelopedcountries,becauseitmayemergeasan obsta-cleofhumanimmunedeficiencysyndrome.2TBisspreadin the airand canaffect all partsofhumanbody but mostly lungs.3MTBwasreportedtohavecaused1.4milliondeaths and8.5millionincident casesacross theworldonlyinthe year2011.3

Beside MTB, the other members of what is commonly referred to as the M. tuberculosis complex including M. africanum,M.microti,andM.bovismayalsocauseTBinfection. TheonlyavailablevaccineagainstMTBistheattenuatedM. bovisstrainsorBacilleCalmette–Guerin(BCG)whichcauses some cross-reactivity or false-positive results during the detectionprocess.1,4 Therefore, developinganaccurateand reliabledetectiontechniquecapableofdifferentiatinginfected samplesfromthosevaccinatedisalsorequired.

Ontheotherhand,earlydetectionissocriticaltoavoid aTBepidemic.Toachievethat,manytechniqueshavebeen developedandwidelyappliedtodatesuchasbacteria’s phys-ical,physiologicalandbiochemicalcharacteristicsaswellas polymerasechainreaction(PCR)-basedtechniques.2,5–11More recentlyWHOrecommendedXpertMTB/RIFdetection tech-niqueasaprimarysensitivediagnostic test.12 However,all thesetechniqueshaveanumber ofshortcomings andas a result,thereisstillagrowingdesiretoaccomplishasimple, rapid,sensitiveand specificdetectionmethodto differenti-ateMTBC-infectedsamplesfromvaccinatedsampleswithan affordablecost.2,8,11,13,14

Theconserved genomic region of 6-kDaearly secretory antigenictarget 6(ESAT-6) has been foundof high homol-ogy among the different species ofmycobacteria and has beenused inthemost studiestodetect MTBC.15,16 Onthe other hand, to differentiate BCG vaccinated samples from MTB-infected samples, the ESAT-6 genomic region which is eliminated in all available BCG strains but present in the MTBcomplex was utilized.15,16 Inaddition, duringthe last decade, by applying nano-sized materials in biologi-cal detection and biological imaging aspects, the clinical diagnostics field has improved dramatically by developing rapid and sensitive methods at lower cost.17,18 Semicon-ductor nanocrystals, also known as quantum dots (QDs), are one of the most attractive fluorescent nanoparticles whichhavebeenwidelyappliedinbio-detectionprocesses.19 QDs are considered as alternative fluorescent probes for their unique optical properties such as high fluorescence yields, high photo-stability and narrow symmetric emis-sionspectrum.19 Moreover,thesymmetricemissionspectra of QDs have nominated them as an appropriate donor moleculeforFörsterresonanceenergytransfer(FRET)-based sensors,18,20,21inwhichtheelectronicexcitationenergyofa donormoleculeistransferredtoanearbyacceptormolecule via adipole–dipoleinteraction betweenthe donor/acceptor pair.22Caseinpoint,theQDsbroadlyusedasbio-sensorsby immobilizingwithparticularprobestodetectaspecifictarget nucleotide.23

Goldnanoparticles(AuNPs)havealsobeenutilizedwidely in the detection ofspecific RNA or DNA moleculesdue to theirunique opticalproperties.24,25 AuNPshaveremarkably highextinctioncoefficientsandabroadabsorptionspectrum, allowing higher sensitivity in optical detection techniques than traditionaldyes and designating AuNPsas a suitable acceptorforFRET.23,26Duetothefactthat,theemissionand absorption spectrum of CdTe-QDs and AuNPs significantly overlapin530nm,theemissionoftheQDsisquenchedwhen associatedwithoppositelychargedAuNPs.23,27

Inthepresentstudy,QDswereimmobilizedwithaspecific oligonucleotide (P1) andAuNPs wasconjunctwith another specificoligonucleotide(P2)againstESAT-6regiontodevelop aspecificandsensitivesandwich-formFRET-basedbiosensor todetectanddifferentiateM.tuberculosiscomplexfromBCG rapidly, accurately,and economically(Fig.1). Moreover,the validityofsandwich-formFRET-basedbiosensorin compar-isonwithculture,PCRandNestedPCRwasevaluated.

Materials

and

methods

Samples

Inthepresentstudy,50clinicalsamples(allsubjectswereHIV negative)werecollectedfromsputumspecimensofpatients whoweresuspectedtohavetuberculosisinTehranprovince hospitals, Iran (betweenDecember of 2005 and November 2008). The used procedures in the present study were in accordancewiththeethicalstandardsoftheresponsible com-mittee on humanexperimentation from each participating hospital.Thepatientshavegiveninformed priorto partici-patingintheresearch.Thedecontaminationandcultivation ofsampleswerecarriedout inthehospitals.Sampleswere decontaminated byusingN-acetylcysteine–NaOHprocedures. The mentioned samples were earlier analyzed and deter-mined byusing acultivation techniqueasa gold-standard detection methodby incubation250␮LofMycobacterium in theLowenstein–Jensenmediaat37◦Cinhumidatmosphere containing5%CO2.28

Primersandprobes

In the PCR-based-detection phases, the primer sets were orderedbased onaninsertionsequence oftheIS6110gene region(Table1).29,30

Inthenano-baseddetectionphase,twodifferent oligonu-cleotideprobeswere usedbasedontheconservedgenomic regionsofESAT-616todetectMTBCanddifferentiatebetween BCGandotherMycobacteriumspeciessimultaneously(Table1). The5endofthefirstoligonucleotideprobe(P1)waslinkedto QDsbyNH2andthe3endofthesecondoligonucleotideprobe

(P2) waslinked toAuNPsbySH tofacilitatethe hybridiza-tion process. The probes were purchased from Invitrogen (ShanghaiInvitrogenBiotechniqueCo).

DNAdetectionbyPCRandnestedPCRassays

According to a DNA extraction technique described elsewhere,31 thechromosomalDNA wasextractedutilizing

(3)

QD QD QD QD QD Au Au Au Au Au FRET Probe 1 Probe 2 Complementary target DNA Uncomplementary DNA

Fig.1–Sandwich-formFRET-basedbiosensorschematic.InthepresenceofthetargettheAuNPs/P2moietyoptically quenchedtheQDs/P1moiety.PresenceofthetargetmoleculesturnedtheAuNPs/P2intoafluorescenceacceptorclose enoughtotheQDs/P1resultinginaFRETsignal.

Table1–CharacteristicsofDNAoligonucleotideprimers andprobesutilizedfordetectionofMTBCbyPCR,nested PCRandnanobiosensor.

Technique Sequence(5→3) Genomic

region

PCR R:CCTGCGAGCGTAGGCGTCGG

F:CTCGTCCAGCGCCGCTTCGG

IS6110 NestedPCR Outerset

Pt8:GTGCGGATGGTCGCAGAGAT Pt9:GTGCGGATGGTCGCAGAGAT Innerset TB290: GGCGGGACAACGCCGAAT-GCGAA Pt9:GTGCGGATGGTCGCAGAGAT IS6110 Pre-preparation R: ACGAAGCTTTGCGAACATCCCAGT-GACGTT F: AATCGGATCCATGACA-GAGCAGCAGTGGAATTTC ESAT-6 ESAT-6 Nanobiosensor R: ACGAAGCTTTGCGAACATCCCAGT-GACGTT F: AATCGGATCCATGACA-GAGCAGCAGTGGAATTTC P1:NH2 (CH2)6-GTAAGTAAGGGAGGAAC P2:TGCTCCCCTTCGTCAGG-(CH2)6-SH ESAT-6 ESAT-6 ESAT-6 ESAT-6

proteinaseKand phenol:chloroform,and wassubsequently precipitated by using isopropanol and ethanol. To detect MTBCDNA,thePCRandnestedPCRassayswereperformed by utilizing BioRad thermocycler (BioRad, CA, USA) based on theprotocols described byEisenachet al.32 and Wilson et al.33 Toexaminetheexistenceandsizeoftheamplified fragments,2%agarosegelandtheGeneRulerTM 50bpDNA Ladder (Fermentas)were used. Visualizationofagarose gel wasdonebyethidiumbromideandgelswerephotographed withUVPBioDoc-ItTMsystemCCDcamera(UVPInc.,Upland, USA).Moreover,todeterminethedetectionlimitsoftheused methods,differentdilutionsofaknownchromosomalDNA stockwereused.

SynthesisofAuNPs

TheAuNPs weresynthesized through thecitratereduction method by adding trisodium citratesolution to 170mgL−1 HAuC14 under stirring and temperature condition. After a

color shift insolution from yellow to red, the stirring and heatingwere stoppedandthesolutionwasstoredat4◦C.24 Afterwards, the synthesized AuNPs were characterized by transmissionelectronmicroscope(TEM)(HitachiH-7100)and particles diameter size were determined using UTHSCSA ImageTool(UniversityofTexas).

(4)

SynthesisofCdTeQDs

TheNaHTesolutionwaspreparedbyadding2mMofNaBH4 andtelluriumpowderin50mLofdistilledwater.Toprepare CdTeQDs,10mMofCdC12and25mMofTGAweredissolvedin

250mLdistilledwaterunderstirringandthepHwasadjusted to11byusingNaOHsolution.Subsequently,theNaHTe solu-tion was addedto the solution underN2 protectionunder

stirringfor25min.Finally,thismixturewasheatedtoboilat 100◦Cfor2h.34 Then,the synthesizedAuNPswere charac-terizedbyTEM(HitachiH-7100)andparticles diametersize weredetermined usingUTHSCSAImageTool(Universityof Texas).

Conjugationofthefirstoligonucleotide(P1)ontheCdTe QDssurface

Conjugationofthe first probe on the surface ofCdTe QDs was carried out by mixing 1mL of CdTe QDs, 20␮g of the P1 and 50␮L of 1-ethyl-3-(dimethylaminopropyl) car-bodiimide hydrochloride(EDC). Thesolution was mixed in 50mMdipotassiumphosphatebuffersolution(pH=6)atroom temperature.23

Assemblingofthesecondoligonucleotide(P2)onthe AuNPssurface

Topreparetheself-assemblyoftheprobes ontothe AuNPs surface,10mLofAuNPssolution and 20␮gofthe P2were mixedatroomtemperatureforabout 10h.Afterwards, the solution was added into a dipotassium phosphate buffer solution(pH=6.0).TopurifytheAuNPs-probe,centrifugation wasperformedat18,000rcffor25minandthepelletwas re-suspendedindipotassiumphosphatebuffersolution.23

Pre-preparationofclinicalsputumspecimensforbiosensor procedure

TheclinicalsputumsampleswerefirstusedforPCR amplifi-cationofESAT-6gene(Table1).

ThePCRwasperformedbyutilizingBioRadthermocycler (BioRad,CA,USA)basedontheprotocolsdescribedby Eise-nachet al.32 Subsequently,PCRproductswere analyzedby sandwich-formFRET-basedbiosensor.

Sandwich-formFRET-basedbiosensor

Toperformthe sandwich-formFRET-basedbiosensorassay, 10␮L of QDs/P1 solution, 10␮L of AuNPs/P2 solution and 10␮L ofPCR product were mixed in atube. Subsequently, denaturationandannealingofsampleswiththeimmobilized oligonucleotideswere carried out at94◦C fortwominand at65–68◦C for twomin, respectively, using aBioRad ther-mocycler(BioRad,CA,USA).Then,thefluorescenceintention spectrawererecordedbyusingaspectrophotometer.Baseline changesestimatedbysubtractingthesecondrunfromthefirst runandthethresholdfornegativesamplewasestimatedat 8.2±3.

Fluorescenceprocedure

The fluorescence spectra were monitored by using a PD-3000UVultraviolet–visiblespectrophotometer(Appel,Japan). Theexcitationwavelength(excitationwavelengthofQDs)was setat370nmandtheemissionspectrawereprobedbetween 400and680nmastheAuNP’s(quencher)emissionwaslocated intherangeof570–650nm.Theexcitationandemission band-widthof5nmwasused.

Dataanalysis

DataanalysiswasperformedusingtheSAS6.12(SAS Insti-tute,Cary,NC),anddiagnosticsensitivityandspecificitywere determinedusingusualformula.

Sensitivity= TruePositive

TruePositive+FalseNegative×100 Specificity=FalsePositiveTrueNegative+TrueNegative×100

Theotherstatisticalparameterswerecalculatedusingan onlineclinicalcalculatoravailableathttp://www.vassarstats. net/clin1.html.

Results

Asmentionedearlier,cultivationtechniquewasconsidered thegold-standarddetectionmethodinordertocomparethe othertechniquesused,i.e.PCR,nestedPCRandthe sandwich-form FRET-based biosensor. In presence of M. tuberculosis infection in the sample, PCR and nested PCR products of about123bpand360bpwere observedusingIS6110primer sets (Fig. 2), and 60% (30/50)and 64% (32/50) ofthe speci-menswerefoundpositive,respectively.On theotherhand, outofthe50samplestestedbythesandwich-formFRET-based biosensor,70%(35/50)werefoundpositive.Interestingly,out of those 35 positive samples bythe FRET-based biosensor, only33(94.2%)wereculture-positive.Thus,twopositive sam-plesbyFRET-basedbiosensorassaywerereportednegativeby theculture-basedmethod.Furthermore,outofthe35positive samples,only27(77.1%)and30(85.7%)weredetectedbyPCR andnestedPCRtechniques,respectively.

Therefore,theoverallsensitivityandspecificityofthePCR method inrelationtothe cultivationmethod fordetection of MTBC was 74.2% (95% CI 56.4–86.8) and 73.3% (95% CI 44.8–91.0),respectively(Table2).Besides,sensitivityand speci-ficityofthenestedPCRmethodinrelationtothecultivation technique were 82.8% (95% CI 65.7–92.8) and 80% (95% CI 51.3–94.6),respectively(Table2).Thesampleswerefirst uti-lizedforPCRamplificationofESAT-6geneandsubsequently PCR productswere analyzedbysandwich-formFRET-based biosensor.Theresultsobtainedrevealedthatthe sandwich-formFRET-basedbiosensorversuscultivationdemonstrated indetectingMycobacteriumhad sensitivityandspecificityof 94.2%(95%CI79.4–99.0)and86.6%(95%CI58.3–97.6), respec-tively(Table2).

Todeterminethecharacteristicsofthedonorsand accep-tors in the sandwich-form FRET-based biosensor, the QDs andAuNPswerecharacterizedbyusingTEM.TheTEMimage

(5)

A

B

360

123

M

1

2

3

4

4

3

2

1

M

Fig.2–AmplifiedproductsofMTBCbyPCRandnestedPCRmethods.(A)PCRproductsM:GeneRulerTM50bpDNALadder,

1:positivecontrolsample,2:clinicalpositivesample,3:negativecontrolsample,4:clinicalnegativesample.(B)NestedPCR products(secondround)M:GeneRulerTM50bpDNALadder,1:clinicalpositivesample,2:positivecontrolsample,3:

negativecontrolsample,4:clinicalnegativesample.

50 nm

A

B

50 nm

Fig.3–TEMimageofsynthesizedAuNPs(A)andCdTe-QDs(B).

showedthattheQDand Aunanoparticleshaveaspherical morphologyandsuitablemonodispersity(Fig.3AandB).The QDsand AuNPsparticlesizewere determined at6nmand 8nm,respectively.Fromthemechanisticpointofview,inthe

solutioncontainingonlytheQDs/P1andAuNPs/P2(negative control), the fluorescencespectrum wasrecorded at50AU, whileinpresenceofMycobacteriumDNA(targetmolecule),a significantdownwardshiftinthespectrumpeakingat10AU

Table2–ComparisonbetweenFRET-basedbiosensor,PCRandnestedPCRversusculturemethodfordetectionof Mycobacteriumtuberculosisin50sputumclinicalsamples.

Methods Cultivationassay Value

Positive(n) Negative(n) Sensitivity% Specificity%

FRET-basednanobiosensor Positive 33 2 94.2 86.6 Negative 2 13 Total 35 15 PCR Positive 26 4 74.2 73.3 Negative 9 11 Total 35 15 NestedPCR Positive 29 3 82.8 80.0 Negative 6 12 Total 35 15

(6)

Wavelength (nm) Fluorescence intensity (A U) 520 50 10 590 680

QDs/P1 + AuNPs/P2 + Positive sample QDs/P1 + AuNPs/P2 or QDs/P1 + AuNPs/P2 + Negative sample

Fig.4–FluorometricpeaksofQDs/P1+AuNPs/P2solution andsolutioncontainedQDs/P1+AuNPs/P2+positive sampleobtainedbyspectrophotometer.

wasobserved(Fig.4).TheemissionspectrumoftheQDsand absorptionspectrumofAuNPsdemonstratedmaximum over-lap thatis critical toobtain FRET phenomena (Fig. 5). The FRETefficiency(E) ofthepresentedsystemwasdependent onmolarratioofAuNPs/P2toQDs/P1.Increasesinthemolar ratioofAuNPs/P2toQDs/P1leadstoanincreaseintheFRET efficiencyandthehighestFRETefficiencyfordeveloped sys-temwasachievedatAuNPs/P2toQDs/P1molarrationof1:10 (Fig.6) 400 0 0,2 0,4 0,6 0,8 1 450 500 550 Wavelength (nm) Nor maliz

ed absorbance intensity (a.u.)

QDs Em. AuNPs Abs.

600 650

Fig.5–OverlapbetweenQDsemissionspectrumand AuNPsabsorptionspectrum.

QDs-Prob1/AuNPs-Prob2 ratio 80 60 40 20 0:0 1:1 1:5 1:10 1:15 1:20 FRET efficiency %

Fig.6–Energytransferefficiencyfromdonor(QDs)toan acceptor(AuNPs)indifferentmolarratioofAuNPs/P2to QDs/P1.

Table3–ComparisonbetweenPCR,RT-PCRand

nanobiosensordetectionlimits.Presenceandabsenceof specificbandinagarosegelinPCRandRT-PCRdetection methodsweresignedpositive(+)andnegative(−) respectively.Inthenanobiosensortechnique,

observationofdownwardshiftinthefluorometercurve wassignedaspositive(presenceoftarget)andnoshift inthefluorometercurvewassignedasnegative (absenceoftarget). Sample Volume (fgmL−1) PCR RTPCR Nanobiosensor Positivecontrol 200 + + + 150 + + + 100 + + + 50 − − + 30 − − + 20 − − + 10 − − + 5 − − − Negativecontrol 0 − − −

Finally, the detection limit of the PCR and nested PCR methodswasmeasuredat100fgwhileforthesandwich-form FRET-basedbiosensoritwas10-foldlowerat10fg(Table3).

Discussion

In theoligonucleotide-based detection systems, the impor-tant matter concerned is probes specificity against closely relatedspecies,andinthecaseofMTBCdetection,the dif-ferentiation betweenBCG vaccinated samplesand infected samples.Therefore,utilizingoligonucleotideprobesbasedon conservedregionofMTBC,whichisdeleted inthe M.bovis BCG,isimportant.Thispointwastakenintocareful consider-ationinthepresentstudy.Therefore,theconservedgenomic regionsofESAT-6wasusedastheprobetodetectMTBCand

(7)

differentiateM.bovisBCGfromotherMycobacteriumspecies, duetothehigh existinghomologyintheESAT-6regionsof differentMycobacterialspeciesandtheabsenceofthisregion inBCGstrains.

Although,recentlyWHOrecommendedXpertMTB/RIFasa sensitivedetectionmethod,itisnotavailableinallcountries. Moreover,thewidelyusedmethodsinthecaseofclinicalTB detection inthe region inwhich the study was conducted arecultivationtestandnestedPCR;therefore,inthisregion thenewlydevelopedtechniquesmostlycomparedwiththese methods.Duetotheinsufficientsensitivityandspecificityof thePCR-basedassays,developingamoresensitivemethodfor thedetectionofMTBChasbeenconstantlysought.Although, thereare different valuesreported inthe published litera-ture, the sensitivity and specificity ofPCR assays used for detectionofMycobacteriuminthepresentstudywerein agree-mentwiththefindingsofChawlaetal.35andEkramietal.28 In the used clinical samples, four cases were found posi-tivebyculturebutnegativebyPCRand nested-PCR,which couldbeconsideredasfalsenegativeresults.Theseobserved falseresultswere attributedtothe concentration oftarget moleculesintheclinicalsamplesandtothespecificityof uti-lizedprimers.

In the case of the nested PCR assay, the sensitivity of 82.8%showedthatthis techniquecould notberegarded as anidealtechniquetodetectMTBC,despiteofitsspecificity tobeapproximatelyequaltothatofthesandwich-form FRET-basedbiosensor.ThelowestdetectionlimitofMycobacterium DNAachievedbyusingPCRandnestedPCRtechniqueswas 100fg,whichwasinagreementwithearlierreports.36,37This valuewasremarkablyhigherthanthatachievedbyusingthe sandwich-formFRET-basedbiosensor(10fg).

In the sandwich-form FRET-based biosensor, the NH2

linkedoligonucleotide(P1)wascapableofcovalentlyattaching ontothesurface-modifiedQDswithEDCduetothe adsorp-tion tendency of the carboxyl group of EDC and the NH2

linked to the P1.38 This conjugate showed maximum flu-orescence radiation at548nm. Secondoligonucleotide (P2) could easily self-assemble on AuNPs due to the attraction ofSH linked tothe P2and surface ofAuNPs.39 Two sam-plesthatwerepositivebycultureandnegativebynanosensor showed autofluorescent signals during examination. This problemhasbeenpreviouslyreportedbyEkramietal.28 Prob-ably, thereisa specificproblemwhen clinical samplesare tested.Generally,observedinterfacebyautofluorescencecan beattributedtonaturalfactorsinducedbysomereagentsin clinicalsamples.28

TheTEMimageconfirmedthat thesynthesized QDand Au nanoparticles were appropriate for the nanobiosensor designed (Fig. 3). The emission and absorption spectra of CdTe-QDsandAuNPssignificantlyoverlapat530nm; there-fore,CdTe-QDs and AuNPscould beusedsuccessfullyas a suitabledonorandacceptorpair(Fig.5).Tofindoutthe opti-mumFRET signal and maximum FRET efficiency, different molarratiosofAuNPs/P2toQDs/P1wereinvestigated. Opti-mummolarratioofAuNPs/P2toQDs/P1wasachievedat1:10 inwhich FRET efficiency wasabout 60% (Fig. 6). Athigher molarratios,manyoligonucleotideprobesimmobilizedinthe surfaceofAuNPswouldremainunhybridizedandtheFRET efficiencydecreasedenormously.While,atthelower molar

ratio,decreaseintheamountsofAuNPsleadstoinsufficient energytransferfromQDsnearAuNPsmoleculesand subse-quentlycausedareductionintheFRETsignal(Fig.6).More specifically,thefluorescencespectrumwas50AUforthe solu-tioncontainingQDs/P1andAuNPs/P2,butinthepresenceof thetargetadownwardshiftto10AUintheemissionspectrum wasrecorded (Fig.4).Theobserveddecreaseinthe fluores-cenceintensityinthesolutioncontainingthetargetsindicated that FRET process occurred in the QDs/P1-target-AuNPs/P2 complexsystem.Infact,theAuNPs/P2moietyinthepresence ofthetarget,opticallyquenchedtheQDs/P1moiety,basedon theForsterdipole–dipoleinteractionform.27,40Inotherwords, presenceofthetargetmoleculesturnedtheAuNPs/P2intoa fluorescenceacceptorcloseenoughtotheQDs/P1resultingin afivefoldFRETsignal(Fig.1).Thisprincipleledtoa down-ward shiftofthefluorometercurve incomparisonwiththe curveoriginallyobtainedforthesolutionwithoutanytarget DNA.

To the best ofour knowledge, there has been no pub-lishedreportsoncombiningQDsandAuNPstodetectbacterial targets, although some researchers have developed tech-niquesbyusingQDsandAuNPsseparately.41–43Forinstance, Soo etal.42 introducedanAuNPscross-linkingapproachto detectMTBC.Morespecifically,theAuNPswerefunctionalized withthiolmodifiedspecificprobes.Inthepresenceoftarget DNA,AuNPshybridizedtothetargetresultinginaggregation anddecreaseinabsorbanceofthesolution.Theabsorbance decreaseswereaccompaniedbyashiftinsolutioncolorfrom redtoreddishpurple.Ontheotherhand,intheabsenceof targetDNA,thecolorandabsorbanceofthesolutionwerenot altered.Thisassaydemonstratedthedetectionlimitofaslow as0.5pmoloftarget.42

Inanother study,Gazoulietal.43 developedanew tech-niquecombining QDs withmagneticbeads(MBs) todetect M.tuberculosisand M.aviumsubsp.Paratuberculosisbyusing DNA extracted from bronchoalveolar lavage specimens. In thistechnique,twobiotinylatedoligonucleotideprobeswere immobilizedontheQDsandMBssurfacetoformasandwich likehybridization system.Intheabsenceoftarget,no fluo-rescencesignalwasmonitoredwhileinthepresenceoftarget DNA,redfluorescencecolorwasobserved.Thedetectionlimit achievedinthisassaywasreportedat12.5ng.43

The developed sandwich-form FRET-based biosensor requires small amountofsample;therefore, itcould bean appropriate detection technique where limited volumesof samplesareavailable.Moreover,thenewlydeveloped biosen-sorincomparisonwiththecultivationmethodshowedhigh sensitivity andspecificity. Inaddition, the developed FRET-basedbiosensorpresentedadetectionlimitof10fgwhichwas remarkablylowerthanthe100fgofPCRandnestedPCR.The costofsandwich-formFRET-basedbiosensordevelopedinthe presentstudywasestimatedtobeslightlymorethanthe PCR-basedtechniques;butduetothespeedandaccuracyofthe FRET-basednanobiosensor,itslarge-scaleapplicationwould bemorecost-effective.

Conflicts

of

interest

(8)

r

e

f

e

r

e

n

c

e

s

1. ShinAR,ShinSJ,LeeKS,etal.Improvedsensitivityof diagnosisoftuberculosisinpatientsinKoreaviaacocktail enzymelinkedimmunosorbentassaycontainingthe abundantlyexpressedantigensoftheKstrainof Mycobacteriumtuberculosis.ClinVaccineImmunol. 2008;15:1788–95.

2. YeoWH,LiuS,ChungJH,LiuY,LeeKH.Rapiddetectionof Mycobacteriumtuberculosiscellsbyusingmicrotip-based immunoassay.AnalBioanalChem.2009;393:1593–600. 3. WorldHealthOrganization.WHOGlobaltuberculosisreport

2012.Availableat:www.who.int/iris/bitstream/10665/75938/1/ 9789241564502eng.pdf[accessedJune2012].

4. AndersenP,DohertyTM.ThesuccessandfailureofBCG: implicationsforanoveltuberculosisvaccine.NatRev Microbiol.2005;3:656–62.

5. GillP,GhalamiM,GhaemiA,MosavariN,Abdul-TehraniH, SadeghizadehM.Nanodiagnosticmethodforcolorimetric detectionofMycobacteriumtuberculosis16SrRNA.

Nanobiotechnology.2008;4:28–35.

6. CurrieCSM,FloydK,WilliamsBG,DyeC.Cost,affordability andcost-effectivenessofstrategiestocontroltuberculosisin countrieswithhighHIVprevalence.BMCPublicHealth. 2005;5:130–43.

7. BardarovSJr,DouH,EisenachK,BanaieeN,YaS,ChanJ. Detectionanddrug-susceptibilitytestingofM.tuberculosis fromsputumsamplesusingluciferasereporterphage: comparisonwiththeMycobacteriaGrowthIndicatorTube (MGIT)system.DiagMicrobiolInfectDis.2003;45: 53–61.

8. HsiehSC,ChangCC,LuCC,etal.Rapididentificationof Mycobacteriumtuberculosisinfectionbyanewarray

format-basedsurfaceplasmonresonancemethod.Nanoscale ResLett.2012;7:180.

9. LiH,TurhanV,ChokhaniL,StrattonCW,DunbarSA,Tang YW.Identificationanddifferentiationofclinicallyrelevant mycobacteriumspeciesdirectlyfromacid-fast

bacillus-positiveculturebroth.JClinMicrobiol. 2009;47:3814–20.

10.MdivaniN,LiH,AkhalaiaM,etal.Monitoringtherapeutic efficacybyreal-timedetectionofMycobacteriumtuberculosis mRNAinsputum.ClinChem.2009;55:1694–700.

11.ChanED,HeifetsL,IsemanMD.Immunologicdiagnosisof tuberculosis:areview.TuberLungDis.2000;80:131–40. 12.VassallA,vanKampenS,SohnH,etal.Rapiddiagnosisof

tuberculosiswiththeXpertMTB/RIFassayinhighburden countries:acost-effectivenessanalysis.PLoSMed.2011;8: e1001120,http://dx.doi.org/10.1371/journal.pmed.1001120. 13.VanDeunA,PortaelsF.Limitationsandrequirementsfor

qualitycontrolofsputumsmearmicroscopyforacid-fast bacilli.IntJTubercLungDis.1998;2:756–65.

14.ChanED,RevesR,BelisleJT,BrennanPJ,HahnWE.Diagnosis oftuberculosisbyavisuallydetectableimmunoassayfor lipoarabinomannan.AmJRespirCritCareMed.

2000;161:1713–9.

15.VanPinxterenLAH,RavnP,AggerEM,PollockJ,AndersenP. Diagnosisoftuberculosisbasedonthetwospecificantigens ESAT-6andCFP10.ClinDiagnLabImmunol.2000;7:155. 16.HanifSNM,Al-AttiyahR,MustafaAS.Thenaturalexpression

ofgenesencodingmajorantigensofRd1andRd9inM. TuberculosisandotherMycobacteria.MycobactDis.2011;1:2. 17.ShiX,HongT,WalterKL,etal.ING2PHDdomainlinks

histoneH3lysine4methylationtoactivegenerepression. Nature.2006;442:96–9.

18.AlgarWR,KrullUJ.Quantumdotsasdonorsinfluorescence resonanceenergytransferforthebioanalysisofnucleicacids,

proteins,andotherbiologicalmolecules.AnalBioanalChem. 2007;391:1609–18.

19.FrascoMF,ChaniotakisN.Semiconductorquantumdotsin chemicalsensorsandbiosensors.Sensors.2009;9: 7266–86.

20.AlgarWR,TavaresAJ,KrullU.Beyondlabels:areviewofthe applicationofquantumdotsasintegratedcomponentsof assays,bioprobes,andbiosensorsutilizingoptical transduction.AnalChimActa.2010;673:1–25. 21.ZekavatiR,SafiS,HashemiSJ,etal.Highlysensitive

FRET-basedfluorescenceimmunoassayforaflatoxinB1using cadmiumtelluridequantumdots.MicrochimActa.2013, http://dx.doi.org/10.1007/s00604-013-1047-y.

22.WuP,BrandL.Resonanceenergytransfer:methodsand applications.AnalBiochem.1994;218:1–13.

23.DaiZ,ZhangJ,DongQ,etal.Adaptionofaunanoparticles andCdTequantumdotsinDNAdetection.ChinJChemEng. 2007;15:791–4.

24.KamelipourN,MohsenifarA,TabatabaeiM,etal. Fluorometricdeterminationofparaoxoninhumanserum usingagoldnanoparticle-immobilizedorganophosphorus hydrolaseandcoumarin1asacompetitiveinhibitor. MicrochimActa.2014;181:239–48.

25.Liz-MarzanLM.Tailoringsurfaceplasmonsthroughthe morphologyandassemblyofmetalnanoparticles.Langmuir. 2006;22:32–41.

26.BaptistaP,PereiraE,EatonP,etal.Goldnanoparticlesforthe developmentofclinicaldiagnosismethods.AnalBioanal Chem.2008;391:943–50.

27.WargnierR,BaranovAW,MaslowVG.Energytransferin aqueoussolutionsofoppositelychargedCdSe/ZnScore/shell quantumdotsandinquantumdot-nanogoldassemblies. NanoLett.2004;4:451–7.

28.EkramiAR,Samarbaf-ZadehAR,KhosraviA,etal.Validityof bioconjugatedsilicananoparticlesincomparisonwithdirect smear,culture,andpolymerasechainreactionfordetection ofMycobacteriumtuberculosisinsputumspecimens.IntJ Nanomed.2011;6:2729–35.

29.CaviedesL,LeeTS,GilmanRH,etal.Rapid,efficientdetection anddrugsusceptibilitytestingofMycobacteriumtuberculosisin sputumbymicroscopicobservationofbrothcultures.JClin Microbiol.2000;38:1203–8.

30.MauryaAK,KantS,NagVL,KushwahaR,DholeTN.Detection of123bpfragmentofinsertionelementIS6110Mycobacterium tuberculosisfordiagnosisofextrapulmonarytuberculosis. IndianJMedMicrobiol.2012;30:182–6.

31.AmitaJ,VandanaT,GuleriaRS,VermaRK.Qualityevaluation ofmycobacterialDNAextractionprotocolsforpolymerase chainreaction.MolBiolToday.2002;3:43–50.

32.EisenachKD,CaveMD,BatesJH,CrawfordJT.Polymerase chainreactionamplificationofarepetitiveDNAsequence specificforMycobacteriumtuberculosis.JInfectDis. 1990;161:977–81.

33.WilsonSM,McNerneyR,NyePM,Godfrey-FaussettPD,Stoker NG,VollerA.Progresstowardasimplifiedpolymerasechain reactionanditsapplicationtodiagnosisoftuberculosis.JClin Microbiol.1993;3:776–82.

34.SafarpourH,SafarnejadMR,TabatabaeiM,etal.

DevelopmentofaquantumdotsFRET-basedbiosensorfor efficientdetectionofPolymyxabetae.CanJPlantPathol. 2012;34,http://dx.doi.org/10.1080/07060661.2012.709885. 35.ChawlaK,GuptaS,MukhopadhyayC,RaoPS,BhatSS.PCRfor

M.tuberculosisintissuesamples.JInfectDevCtries. 2009;3:83–7.

36.GengvinijN,PattanakitsakulS,ChierakulN,ChaiprasertA. DetectionofMycobacteriumtuberculosisfromsputum

specimensusingone-tubenestedPCR.SoutheastAsianJTrop MedPublicHealth.2001;32:114–25.

(9)

37.PaoCC,YenTSB,YouJB,MaaJS,FissEH,ChangAH.Detection andidentificationofMycobacteriumtuberculosisbyDNA amplification.JClinMicrobiol.1990;28:1877–80.

38.GuerouiZ,LibchaberA.Single-moleculemeasurementsof gold-quenchedquantumdots.PhysRevLett.

2004;93:16108–11.

39.MaxwellDJ,TaylorJR,NieS.Self-assemblednanoparticle probesforrecognitionanddetectionofbiomolecules.JAm ChemSoc.2002;124:9606–12.

40.OhE,HongMY,LeeD,NamSH,YoonHC,KimHS.Inhibition assayofbiomoleculesbasedonfluorescenceresonance energytransfer(FRET)betweenquantumdotsandgold nanoparticles.JAmChemSoc.2005;127:3270–1.

41.LiandrisE,GazouliM,AndreadouM,etal.Directdetectionof unamplifiedDNAfrompathogenicmycobacteriausing DNA-derivatizedgoldnanoparticles.JMicrobiolMethods. 2009;78:260–4.

42.SooPC,HorngYT,ChangKC,etal.Asimplegoldnanoparticle probesassayforidentificationofMycobacteriumtuberculosis andMycobacteriumtuberculosiscomplexfromclinical specimens.MolCellProbes.2009;23:240–6.

43.GazouliM,LiandrisE,AndreadouM,etal.Specificdetection ofunamplifiedMycobacterialDNAbyuseoffluorescent semiconductorquantumdotsandmagneticbeads.JClin Microbiol.2010;48:2830–5.

Referências

Documentos relacionados

In the present study, a nested-PCR system, targeting rv2807 , with conventional PCR followed by real-time PCR, was developed to detect Mycobacterium tuberculosis complex (MTC)

Objective: To compare the performance of nested polymerase chain reaction (NPCR) with that of cultures in the detection of the Mycobacterium tuberculosis complex in pulmonary

Riddley - Notes on the botany of Fernando Noronha.. Desmidiaeeae "in" Symbolae

METHODS A total of 302 sputum samples from an equal number of patients with presumptive diagnosis of pulmonary tuberculosis (PTB) were submitted for routine smear microscopy,

objective of the present study was to evaluate PCR with oligonucleotides for the insertion sequence 6110 (IS6110) of the Mycobacterium tuberculosis complex in testing sputum

examination of induced sputum samples as a param- eter of inflammation to be used in clinical practice and describes conditions under which the induced sputum technique should be

In conclusion, we validated a nested-PCR technique using MPB64 fragment in the diagnosis of pleural and meningeal tuberculosis in our specimens, confirming it to be a

The ability to detect rabies virus in clinical samples can be increased with the use of a second amplification step, using the technique of Nested PCR , but this procedure