• Nenhum resultado encontrado

Sustainable airport environments : a review of water conservation practices in airports.

N/A
N/A
Protected

Academic year: 2021

Share "Sustainable airport environments : a review of water conservation practices in airports."

Copied!
10
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Resources,

Conservation

and

Recycling

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / r e s c o n r e c

Review

Sustainable

airport

environments:

A

review

of

water

conservation

practices

in

airports

Isabella

de

Castro

Carvalho

,

Maria

Lúcia

Calijuri,

Paula

Peixoto

Assemany,

Marcos

Dornelas

Freitas

Machado

e

Silva,

Ronan

Fernandes

Moreira

Neto,

Aníbal

da

Fonseca

Santiago,

Mauro

Henrique

Batalha

de

Souza

FederalUniversityofVic¸osa,DepartmentofCivilEngineering,EnvironmentalResearchGroup,P.H.Rolfs,s/n,CampusUniversitário,Vic¸osa,MG36570-000,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30October2012

Receivedinrevisedform19February2013 Accepted20February2013

Keywords: Airport

Waterconsumption Efficientwateruse Rainwater Wastewaterreuse

a

b

s

t

r

a

c

t

Airportsconsumesignificantamountsofwatertomaintaintheirinfrastructure.Giventheincreasing worldwidedemandforthistypeoftransportandthecurrentsituationofwaterscarcityinmanyregions oftheplanet,effortsshouldbemadetoassesswaterconsumptionprofilesaswellasalternativesfor itsefficientuse.Inairportcomplexes,mostofthewaterisusedtomeetnon-potabledemands,making thempotentialenvironmentsforimplementingconservationpracticesaimedatreducingthesedemands –suchaswatermeteringandinstallationofwatersavingfixtures–andalsoforsearchingforalternative sources,suchasrainwaterandtreatedgreywaterordomesticsewageeffluent.Thisreviewpresents informationregardingwaterconsumptioningloballyimportantairportsinordertoprovideabasisfor studiesthatguidepoliciesanddecision-makingtowardasustainablemanagementoftheseenvironments duringtheplanningandexecutionofconstruction,expansionandmodernizationprojects.

© 2013 Elsevier B.V. All rights reserved.

Contents

1. Introduction... 28

2. Waterconsumptioninlargeairports... 28

3. WaterconsumptioninBrazil... 30

4. Mainattitudesrelatedtotheefficientuseofwater:experienceofmajorairports... 31

4.1. Waterconsumptionmetering... 31

4.2. Watersavingsanitaryfixtures... 32

4.3. Waterreuse... 32

4.3.1. Rainwateruse... 32

4.3.2. Greywaterreuse... 33

4.3.3. Seawaterreuse ... 34

4.3.4. Sewageeffluentreuse... 34

4.4. Othermeasures... 34

4.4.1. Landscapemanagement... 34

4.4.2. Airconditioningsystems... 34

5. Finalconsiderations... 35

References ... 35

∗ Correspondingauthor.Tel.:+553138993098;fax:+553138993093.

E-mailaddresses:isakpi@yahoo.com.br,isaccarvalho@hotmail.com(I.C.Carvalho),calijuri@ufv.br(M.L.Calijuri),paulaassemany@hotmail.com(P.P.Assemany), marcosdornelases@yahoo.com.br(M.D.F.M.e.Silva),r9neto@yahoo.com.br(R.F.MoreiraNeto),anibalsantiago@gmail.com(A.F.Santiago),mauro.batalha@ufv.br (M.H.B.deSouza).

0921-3449/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.resconrec.2013.02.016

(2)

1. Introduction

Thehighdemandfordrinkingwaterresultingfrompopulation increase,droughtsandunpredictableclimaticpatternsis becom-inganalarmingrealityinmanypartsoftheworld(Batesetal., 2008;WiekandLarson,2012).Increasingconcernsregardingthe consequencesofclimatechangealsoemphasizetheneedforwater resourcesmanagementplanninginordertoguaranteethatcurrent andfuturedemandswillbemettothedesiredlevelof satisfac-tion(BabelandShinde,2011;Iglesiasetal.,2011;Quevauviller, 2011;Schlüteret al.,2010).Withinthis context,theconceptof “waterconservation”involvesthecontrolledandefficientuseof thisresourceaswellasreusemeasures.Conservingwaterimplies actingin asystemic mannerin themanagementof supply and demand(Brooks,2006;HespanholandGonc¸alves,2004).

Urban water management efforts are usually focused on demand policiesthat tryto encourage the rational useof this resourceinordertoreducelossesand waste.Demand manage-mentisoneofthemostrelevantissuesworldwide(Arbuésetal., 2010;Fadlelmawla,2009;ZhongandMol,2010),focusingon reduc-ingconsumptionrelatedtowaterend-usesby,forinstance,using water-savingsanitary fixtures.Theobjectiveis tominimizethe needforwatersupplyandsewagetreatment,bothofwhichare associatedwithhighcostsandcanbeenvironmentallyandsocially detrimental(Willisetal.,2011).Supplymanagementisrelatedto thesearchforalternativewatersourcessuchasreuseofrainwater, wastewaterandgreywater,amongothers(GhisiandFerreira,2007; Hurlimann,2011;KahindaandTaigbenu,2011;Ryanetal.,2009). Airportsarepotentialenvironmentsforimplementingpolicies andtechnologiesaimedatconservingwaterbecauseoftheirlarge consumption,mostlyfornon-potablepurposessuchaswater cool-ingsystems,firecontrol,cleaningandwashingofvehicles,runways andaircrafts(MoreiraNetoetal.,2012).Worldwide,manyairports areemployinginitiativestopromotetheefficientuseofwater(ADR, 2009;FraportAG,2010;HKIA,2011;MAG,2007;NIAC,2011;SYD, 2009a,2009b).However,thosewhichimplementthisconceptmost stronglyareusuallythose thatarefacingwaterscarcity. Bolder alternatives,suchaswastewaterreuseandrainwaterusefortoilet flushing,bothofwhichneedgreaterinterventioninairport infra-structure,areusuallyimplementedonlyintheconstructionofnew terminalsorinscarcitysituations.

Themain purposesof this review aretocollectinformation regardingwater consumptionin airport complexesand present theconservationpracticesthat theycurrentlyadopt,aswellas informationpertinenttothefuturedevelopmentofpoliciesand programswhich aimatusingwaterrationallyinthese environ-ments.

2. Waterconsumptioninlargeairports

AccordingtotheAirportsCouncilInternational(ACI,2011),the numberof passengersregisteredin2010in 1318airportsfrom

157countriessurpassedthefivebillionmarkforthefirsttime,an increaseof6.6%comparedto2009.Globaldomestictrafficjumped by5.8%whileinternationaltrafficincreasedby7.7%.Aircargotraffic alsohitarecord:atotalof91milliontonswith15%growth com-paredto2009.Table1showsthenumberofpassengersbyregion in2010andthepercentageofvariationrelatedto2009.

Followingthetrendsbyregion,wecanobservethatthe emerg-ingmarketsledthegrowth.TheLatinAmerica-Caribbeanregion, supportedbysubstantialdevelopmentinBrazil,presentedwitha 13.2%increaseover2009.TheMiddleEastandAsia-Pacificregions alsopresentedsignificantgrowth.Thelowestpercentageswere observed for the mature marketsof North America (2.5%) and Europe(4.3%).

Thesefigureshighlighttheurgencyoffacingtheairportcapacity challenge.Airportoperatorsworldwidearefocusingontheneedto providethepassengerapositive,seamlesstravelexperience,andon planningnewcapacitytomeettheexpecteddoublingofpassengers inthenext15–20years.Morethanever,governmentsandairline partnerswillneedtoworkcloselywithairportstoensurethatthe requiredcapacityisaddedinasafe,secure,efficientandsustainable manner(ACI,2011).

Table2presents thepassengertraffic dataforthemain air-ports in the world, as well as the population equivalent (PE) fortheseenterprisesintermsofwaterconsumption.Datawere extractedfromtheannualreports providedbytheoperatorsof theseairportsand,inordertocalculatethePE,aconsumptionof 200L/(personday)andonlythetotalamountofpotablewaterused intheairportwereconsidered.

ThefirsttenairportslistedinTable2wereamongthe30largest intermsofpassengertrafficin2010(ACI,2011).Theotherairports alsohadsignificantpassengertrafficin2010but,mostimportantly, theyprovideannualdataregardingtheiroperationsaswellassocial andenvironmentalresponsibilityactions.

These airports,suchas theParis-CDG, presented, in2010, a waterconsumptionequivalenttothatofcitieswithapopulation of31thousandpeople,providinganexampleofthegreatamount ofwaternecessaryfortheseairportstomaintaintheiractivities. PassengertrafficintheAtlantaInternationalAirport,in2010, sur-passed89millionbuttheairportconsumedanamountofwater equivalenttoacityof13thousandpeople,possiblyasaresultof itsgreatereffortinrationalizingitsuseofwater.

Fig.1showstheannualwaterconsumptionofsomeofthemain airportsintheworld,aswellasthewaterconsumptionper passen-ger,calculatedbydividingthetotalpotablewaterconsumptionby thenumberofpassengerstransportedinthesameyear. Informa-tionregardingthenumberofpassengersandwaterconsumption wasobtainedfortheyear2010forallairports,exceptfor Fiumi-cinoinRome,whichpublisheditslatestenvironmentalreportin 2009.Theindex“L/passenger”wasusedinmany oftheairport annualreportsstudiedinordertoquicklyandsimplyorganizedata andenableconsumptiontobecomparedbetweenthem.However, itiswellknownthatwaterdemandisacomplexandnon-linear Table1

Airpassengerandaircargotrafficin2010. RegionsdefinedbyACI Noof

passengersa %ofchange comparedto2009 Total cargob %ofchange comparedto2009 Noof airports Africa 155,979,778 9.5 1,715,838 1.9 154 Asia-Pacific 1,294,834,546 11.3 31,856,866 18.5 172 Europe 1,466,758,533 4.3 17,920,309 15.5 454 LatinAmerica-Caribbean 403,676,303 13.2 4,665,694 14.3 263 Middle-East 206,622,059 12.0 5,881,214 13.7 53 NorthAmerica 1,509,836,075 2.5 28,709,087 13.2 222 ACI 5,037,707,294 6.6 90,749,008 15.3 1318

AdaptedfromACI(2011).

aTotalpassengers:totalpassengersenplanedanddeplaned,passengersintransitcountedonce. b Totalcargo:loadedandunloadedfreightandmailinmetrictons.

(3)

Table2

Passengertrafficinimportantairportsworldwideandpopulationequivalent(PE)oftheseenterprisesintermsofwaterconsumptionfor2010.

Airports Abr. Noofpassengers

(millions)

PE(thousand people)a

Reference

1 AtlantaInternationalAirport ATL 89.3 13.0 DOAAtlanta(2010)

2 London-HeathrowAirport LHR 65.9 25.4 LHR(2010)

3 Paris-CharlesdeGaulleAirport CDG 58.2 31.4 ADP(2010)

4 FrankfurtAirport FRA 53.0 12.4 FraportAG(2010)

5 Madrid-BarajasAirport MAD 49.8 15.8 MAD(2010)

6 AmsterdamAirport AMS 45.2 17.0 SchipholGroup(2011)

7 SanFranciscoAirport SFO 39.3 24.7 SFIA(2011)

8 Rome-FiumicinoAirport FCO 36.2 15.6 ADR(2009)

9 SydneyAirport SYD 36.0 14.2 SYD(2010)

10 MunichAirport MUC 34.7 13.1 MUC(2010)

11 NaritaAirport NRT 32.9 23.8 NIAC(2011)

12 TorontoAirport YYZ 31.8 12.7 GTAA(2010)

13 Paris-OrlyAirport ORY 25.2 6.55 ADP(2010)

14 ZurichAirport ZRH 22.9 7.27 ZIA(2010)

15 ManchesterAirport MAN 18.3 12.4 MAG(2011)

16 BrusselsAirport BRU 17.2 3.56 BAC(2010)

17 Portugal-LisbonAirport LIS 14.1 7.84 ANA(2010)

18 Portugal-PortoAirport OPO 5.27 1.25 ANA(2010)

aCalculatedusingtotalwaterconsumptionprovidedbytheairportsannualenvironmentalreportsfor2010,exceptforRome-Fiumicino,whichhadinformationonlyfor

2009.

functionofclimatic,institutionalandmanagementvariables(Babel andShinde,2011).Thisindexwillthereforebeusedinthisreview, butnotwithouttakingintoaccountthatitisnecessaryto iden-tifythevariablesinsideanairportenvironmentthathaveagreater influenceonwaterconsumptionbeforeanystatementcanbemade regardingtheeffortsofairportsinimplementingwater conserva-tionpractices.

Majordifferencescanbehighlightedbetweentheamountsof waterconsumedintheairportsshowninFig.1.Airportswithlarge passengertrafficnumbers,suchastheairportsofAtlanta,Frankfurt andMadrid,showlowerconsumptionthanthosewithasmaller numberof passengers,suchasNarita, Rome-Fiumicinoand San Franciscoairports.Thisshowsthattherelationshipbetweenwater consumptionandthenumberofpassengersisnotalwaysdirect and proportional.Atlanta,despitehavingthehighest passenger traffic,isnotthelargestwaterconsumer,withanindexofonly 11L/passenger.Thisairporthasintegratedactionsfortheefficient useofwaterintoitspractices,suchastheadequatemanagement ofvegetatedareas,useofwatersavingsanitaryfixturesand air-coolingsystemsthatdonotusewatercoolingtowers.Lisbonand Manchesterairportshave alowertotal waterconsumption, but haveindicesof43and50L/passenger,respectively.Theairports ofFrankfurt,MadridandAmsterdamhavegreatertotalwater con-sumptionandpassengertraffic,butpresentindicesofonly22,24 and27L/passenger.FrankfurtandAmsterdamuserainwaterand

watersavingsanitaryfixtures,whereastheactionsofLisbonand Manchester towardtherationaluseof water arestill incipient. MadridAirport,however,despiteitslowconsumptionindex,has notimplementedanysignificantactionstoreduceconsumption, nordoesitusealternativewatersources,whichprovidesanother exampleofthefactthattheindex“L/passenger”doesnot necessar-ilyreflectconservationactionsorthebestmanagementofwater resourcesinaspecificairport.

Fig.2showssomeofthemainwatersourcesusedinairportsthat haveadoptedconservationpracticesandthatpresenttheresultsof theseinitiativesintheirannualreports.

AirportssuchasFiumicino,SydneyandFrankfurtare promi-nent because of the volume of recycled water they use, as is Naritaforitsuseofgreywater.However,mostairportshavenot integrated theimplementationofconservation measures.Some airportsacttoreducedemandmainlythroughthemanagement andmonitoringofconsumption,whereasothersfocustheiractions onthesearchforalternativewatersourcesinresponseto increas-ingdemands.Theobjectiveshouldbetointegratesuchmeasures givenwateravailabilitywillnotkeeppacewithairportexpansion ortheexpectedgrowthoverthenextyears.Itisalsoimportantto highlightthatmanycountrieshaveconsideredmethodologiesfor introducingtariffsforwater,previouslyconsideredafreeresource (Fadlelmawla,2009;Zhongand Mol,2010).AccordingtoZhong andMol(2010),waterpricingsystemssuchasthesehavemany

(4)

Fig.2. Watersourcesinairports.

objectives:tocoverincreasingcosts,protectscarceresourcesand introduceaneconomicmotivationforpromotingtheefficientuseof water.Airportsshouldadoptsuchreformsandconsiderwater con-servationmeasuresnotonlyasenvironmentallyresponsiblebut alsoasaneconomicadvantage.

3. WaterconsumptioninBrazil

According to the Brazilian Airport Infrastructure Enterprise (Infraero)10 ofthemostimportantairportsinBrazilaccounted for67%oftheairpassengertrafficin2010.Together,theseairports consumedover3.5millioncubicmetersofwater,whichequals73% ofthetotalconsumption registeredforthe66Brazilianairports underInfraero’sadministration.

Figs.3and4showthatitisnotpossibletoconsidertheretobe anexplicitrelationshipbetweenthenumberofpassengers trans-portedandthewaterconsumptionineachrespectiveairport,either inBrazilorforinternationalairports.

Fig.3shows,forinstance,thatGaleãoAirport(GIG)represents 25%ofthetotalwaterconsumptionbutoccupiesfourthposition intermsofthenumberofpassengerstransported.AsforConfins Airport(CNF),theconsumptionof4.5%issimilartothatforthe airportsofBrasília(BSB)andCongonhas(CGH),at4.2and3.3%, respectively;however,thepassengermovementatConfinsin2010 washalfofthatoftheothertwoairports.

Fig.4showswaterconsumptionandtheindexoflitersper pas-sengerforthesame10airports.Ithighlightsthattheairportwith thegreatestpassengermovementdoesnotalwaysalsohavethe

largestconsumption.Inotherwords,fortheBrazilianaswellasfor theinternationalscenario,relatingwaterconsumptiontothe num-berofpassengerstransportedisnotasufficientmeasuretoassess theefficiencyofthewaterresourcemanagementmodelsusedbyan airport.Asmentionedearlierinthissection,Galeãooccupiesfourth positionintermsofnumberofpassengersbuthasthehighestvalue forL/passenger,immediatelyfollowedbyGuarulhosAirport(GRU). However,despitethesehighindices comparedtootherairports withsimilarlargepassengerthroughput,Galeãohasalready signif-icantlyreduceditswaterconsumptionafterimplementingsystems forreusingsewageeffluentandusingrainwatertomeetthewater demandsoftheairconditioningsystem.In2001,thisairport con-sumedabout150,000m3ofwaterpermonth.In2010,despitethe

increaseof106%inthenumberofpassengerscomparedto2001, themonthlywaterconsumptionhadreducedto99,200m3.

It isimportant tohighlightthat ahighindex ofL/passenger doesnotimplicatetheretobebadorinefficientmanagementof waterresources,becauseothercharacteristicsintrinsictoairport environments,suchascategory(internationalordomesticflights), numberofflightsandamountofcargotransported,amongothers, influencethepatternofwaterconsumptionandarenotrevealed fromtherelationshipbetweenconsumption andthenumberof passengers.However,thisrelationshipcanbeusedasaninitialstep inidentifyingexcessiveconsumptionandwherewater conserva-tionmeasuresarenecessary.

Airports witha similar annual passenger movement, in the rangeoffivetosixmillionpassengersperyear,suchastheairports ofPortoAlegre(POA),Salvador(SSA),Fortaleza(FOR)andRecife

(5)

Fig.4.Totalwaterconsumptionandconsumptionperpassengerinthe10Brazilianairportswithgreatestpassengertraffic.

(REC),present indices of 23,23, 29 and24L/passenger, respec-tively.However,ManausAirport(MAO)transportedtwomillion passengersin2010andhadanindexof82L/passenger.

Fig.5presentspassengertrafficandtheL/passengerindexfor themaininternationalairportsandforBrazilianairportswithlarge passengermovement.

RomeAirportpossessesanaverageconsumptionindexandis notableforthelargeamountofwateritrecycles(approximately 1700,000m3in2010,accordingtoADR,2009),asshowninFig.2.

InBrazil,GaleãoAirportpresentsa highconsumptionindexbut istheonlyoneinthecountrywhichimplementssewageeffluent reuseandrainwateruse.

Thus,wehighlightthenecessityofstudyingwaterconsumption inairportenvironments,takingintoaccountthesepeculiaritiesin ordertoobtaininformationthatisrelatedtosuchconsumption,so astoguideactionsrelatingtowaterresourceaswellaspoliciesthat promoteitspreservation,rationaluseandthesearchfor alterna-tivesources.InBrazil,suchstudieshaveanevengreaterurgency, becausemostairportsareundergoingrenovationsandare expand-ingtoaccommodatetwoimportantinternationalsportingevents, theFIFAWorldCupin2014andtheOlympicGamesin2016.

4. Mainattitudesrelatedtotheefficientuseofwater: experienceofmajorairports

Asmentioned inSections3 and 4,airports withalarge cir-culationofpeoplehaveimplementedactionsaimedatachieving

theefficientuseofwaterresources.Inthefollowingsectionswe presentthemostrelevantactionstheseairportshavecarriedout.

4.1. Waterconsumptionmetering

Aprogramfortherationaluseofwaterbeginswithasystematic evaluationoftheactivitiesandsectorsinwhichwaterisused.Any suchevaluationmustbecontinuousifthecontrolofwater con-sumptionthatisnecessaryfortheidentificationofleaksandlosses istobeachieved.Watermeteringacrosstheentiredistributionnet isessentialandanimportantstageofthisanalysis.

Concerns regarding control of water useare experienced in manyairports.AtTorontoPearsonInternationalAirport,baseline datahasbeencollectedandindividualmetersinstalledforallfood andbeveragefranchisesinordertoreducetheamountofpotable waterusedattheairport(GTAA,2006).

Initiatives such as leak control and monitoring of demand are also widelyemployed. Actions toreduce water use and to requirebestpracticesregardingwater efficiencymeasureshave beenadoptedatSydneyAirport.Amongtheseinitiatives,a com-pleteleakdetectionprogramandasophisticatedreal-timewater demandmonitoringsystemhavebeendeveloped(SYD,2009a).A monitoringprogramforwateruseandforregularlycheckingfor leakshasbeeninstigatedatLondonHeathrowInternational Air-port(LHR,2010).Thereisalsoanongoingleakdetectionprogram atManchesterAirporttoensureanyleaksarequicklydetectedand repaired(MAG,2007).

(6)

AtParis Airports, meshed distribution networks of drinking wateraremonitoredconstantly,andoperatingdataaredelivered toaninformationtechnologycenterusingfiber-opticcables.Alerts areroutedautomaticallytoanemergencyphonethatenablesa rapidreactionintheeventofaleak,andwaterqualityisconstantly controlled(ADP,2010).

ConfinsAirport,theseventhlargestairportinBrazilwith pas-senger traffic of 7.1 million in 2010, is implementing a model consumptionmanagementsystemthathasbeenoperationalsince theendof2012.Theconsumptionof48meteringpointswillbe monitoredcontinuously and a software using data from these pointswillmakeitpossibletoassessifconsumptionisasexpected andtoidentifyabnormalpatternsandleaks.Areportisgenerated withaconsumptiondiagnosis,makingiteasiertoadoptspecific policiesandmeasurestoreduceconsumption.

4.2. Watersavingsanitaryfixtures

Majorairports have adoptedprograms toreplacetheir con-ventionalsanitaryfixturesbywatersavingequipmentandhave achievedsignificantreductionsinwaterconsumption.Atlanta Air-portreplaced,in 2007,630toiletsthatused 6.05Lper flushby newonesthatused4.84L.Additionally,around1200urinalsthat used3.8Lperflushwerereplacedbyonesusing1.9L(DOAAtlanta, 2009).

FortLauderdaleHollywoodInternationalAirport(Florida,EUA) had21,876,444passengersin2010(BCAD,2010).Accordingtothe CDA(2010),thisairportconsumedapproximately246,000m3 of

waterfromOctober2005toSeptember2006.Theinstallationof watersavingsanitaryfixturesinthebathroomscost$234,000,00 andsaved163,000m3ofpotablewaterafteroneyear,representing

savingsof$281,000.00andareturnontheinvestmentwithin10 months.

InFrankfurtAirport,theuseofflowlimitationequipmenton faucetshashelpedtosavethousandsofcubicmetersofwaterevery year,andtheinstallationofwaterlessurinalshassaved approx-imately 4.2million litersof drinkingwater each year.The cost savingsamounttoapproximatelyD33,000eachyear(FraportAG, 2011).

DubaiInternationalAirporthasinstalledsensor-operatedwash basinfaucetsinalltoiletsand,althoughnogreywatersystemsare used,theyhavebeeninstalledand somearehalf-flushsystems. Inaddition,astandardautomatic1.6IGflushhasbeeninstalledin thebathrooms,ashasadualflushingmechanism3.0/6.0Ltoreduce waterwastagethroughmanualflushingfromtoilets(DCADubai, 2004).

Otherimportant airports,suchasAmsterdam,SãoFrancisco, Fiumicino, Sydney, Toronto, Narita, Manchester and London-Heathrow,havehadequipmentinstalledinordertosave water andencouragewaterconservation.Tapswithwatersavingnozzles (aerators)thatareabletooptimizetheflushingprocess,low-flow restroomfixtures,automatic-shutoffvalves,automaticballcocks andurinalsareverycommonintoiletareasandarearequirement inthedesignofanynewbuildingsattheseairports(ADR,2009; LHR,2010;MAG,2007;NIAC,2011;SchipholGroup,2011;SFIA, 2011;SYD,2009a;GTAA,2006).

Theairports of Recifeand Galeãostand outin the Brazilian context.InRecife,toiletshavebeeninstalledusingatechnology similartothatemployedinaircraftinwhichflushingisoperated undervacuum,significantlyreducingwaterconsumption.The vac-uumsystemreducestotalconsumptionattheairportby30%.The estimatedmonthlyconsumptionis21,400m3,muchlessthanthe

30,600m3thatwouldbeusedbyaconventionalsystem.Thelatter

consumesanaverageof10Lperflushwhereastheconsumption ofthevacuumsystemcorrespondsto1.2Lperflush(Infraero, per-sonalcommunication).Manyactionshavebeenimplementedat

Galeãotoimprove itswater managementsystem,includingthe replacementofthewatermains,networksanddistributionlines thatcreatedahighriskofleaks,aswellasthesubstitutionofflow controlvalvesandtheinstallationoffloatswitches inthe stor-agecenters.Storageunitsand pumpingstations withstructural problemswererenovated(PizzatoandAlves,2010).However,even thoughgreateffortshavebeenmade,thereisstillmuchto accom-plishinthisairportbecauseitpresentshighconsumptionindicesin comparisontointernationalairportsofthesamesize,asdiscussed inSection3.

4.3. Waterreuse

Waterreusemeasuresareusuallymotivatedbyscarcity,and alsobyincreasinglystringentenvironmentalrestrictions.Thenew technologiesdevelopedforwastewater treatmentenablereuse; however,itseffectiveusedependslargelyontheeconomic advan-tagesthatwillberealizedaswaterpricesincrease(Casanietal., 2005).

Itisdifficulttomeasuretherealeconomicvalueofwaterreuse becausethebenefitsareembeddedinprotectionofsurfacewater resources,localeconomicdevelopment,publichealthprotection andmaintainingcurrent watersources forlonger,amongother aspects (Anderson, 2003). Economic costs cannot be evaluated withoutalsoconsideringsocialandenvironmentalcostsand bene-fits.Waterreuseisnotonlyanenvironmentallycorrectalternative butalsoarationalandsmartwayofusingrawmaterial.

Theachievementofgoodresultsdependsonthecommitment of professionals who have been trained to develop and adopt adequateconceptsand technologiesfor efficienttreatmentand environmentalsustainability.AccordingtoUrkiagaetal.(2008), howeverreuseisemployeditiscriticaltoobservethebasic prin-ciplesthatshouldguidesuchpractice:thepreservationofusers’ heath,consistentcompliancewithqualityrequirementsrelatedto theintendeduseand protectionofthematerialandequipment incorporatedintoreusesystems,aswellastheiroperationalcosts. Airportspresentlimitationsandpotentialities,aswellasother industrialtypologies.Theairlinesof190MemberStatesofthe Inter-nationalCivilAviationOrganization(ICAO)carriedapproximately 2.5billionpassengersin2010,showinganincreaseofabout8.7% over2009(ICAO,2010).AccordingtotheWorldHealth Organiza-tion(WHO,2009),thisindicatesthereisapotentialforcommercial airtransporttospreadcommunicablediseases.Thus,the imple-mentationofwaterreuseinairportsshouldbestrictlymonitored inordertominimizetheassociatedrisks.

FrankfurtAirporthassince2001maintaineditspotablewater volumeatthesamelevel,despiteincreasingpassengernumbers. Theconceptbehindthepotablewatersupplyintheairportarea is thatpotable water consumption shouldbereduced byusing servicewaterinstead.Theservicewatershareinthetotalwater consumptionhasrisento18%overthepasttenyears.Inthesame period,potablewaterconsumptionpertrafficunithasdeclinedby over20%.In2010,potablewaterconsumptionwas1.46millionm3,

whichequatesto19litersperpassenger;theservicewatervolume amountedto319,000m3(FraportAG,2010).FiumicinoAirportalso

reuseswaterandconsumesmorereusewaterthanpotablewater. Fig.6showsthehistoryofpotableandreusewaterconsumptionin ordertocompareFiumicinoandFrankfurtairports.

Experienceswithrationaluseofwaterinairports,suchasusing rainwater,greywater,seawaterandreusingwastewaterare pre-sentedinSections4.3.1–4.3.4.

4.3.1. Rainwateruse

Rainwaterharvestingisatechniqueadoptedgloballyandwhich isbecomingincreasinglyusefulinthecurrentcontextofthe qual-itativeandquantitativescarcityofwaterresources.Rainwatercan

(7)

Fig.6.AnnualpotablewaterconsumptionandreusewaterintheairportsofFiumicinoandFrankfurt(ADR,2009andFraportAG,2010).

beusedindomestic,industrialandagriculturalactivities,among others,providingasignificantreductionincostsbyusinga non-traditionalwatersource(AladenolaandAdeboye,2010).

Airportenvironments,becauseofimpermeabilizationofthesoil, containalargeamountofsuperficiallydrainedwater,which rep-resents great potential for storageduring therainy period and usefornon-potable activities.Thispotential,however, depends ontheregionwheretheairportislocatedandonthe technolo-gies available for treating this water. Deicing salt applications arecommonincoldclimateregionsand,accordingtoDaietal. (2012),thesechemicalshavenegativeeffectsontheenvironment (surfacewater,groundwater,plantsandanimals)thatshouldbe takenintoaccountwhenselectingarainwatertreatment technol-ogy.Additionally,eliminatingpollutantsfromroadsandrunways canbe veryexpensive; a comprehensivestudyof theavailable technologies and their economic feasibility must therefore be undertaken.

FraportAGoperatestworainwatertreatmentfacilities,located inCargoCitySouthandatTerminal2atFrankfurtInternational Airport.Attimesoflowrainfall,treatedwaterfromtheRiverMain isfedintothesystem.Thisservicewaterisfedviaseparate sup-plynetworkstosprinklersystems,toiletcisternsandsystemsfor wateringlandscapedareas.InCargoCitySouth,theservicewater issuppliedthroughout,andtheterminalsarealsosuppliedwith servicewater.Thesamesystemisstillundergoingfurther expan-sioninTerminal1and neighboringoffice buildings.FraportAG operatesastormwaternetworkwithalengthofapproximately 200km,23rainwatercontainmentbasinswithastoragevolumeof 100,000m3and47lightliquidseparators(FraportAG,2010).

OrlyandCharlesdeGaulleAirportsinParishave,since1996 and1999,respectively,beenequippedwitharainwatertreatment plant.In2005,theconstructioncostOrlyD740,000andCharles deGaulleD900,000.AtOrly,rainwaterisusedtosupplytheair conditioningsystemandheatingnetwork,andasmallpartisused forfirecontrol,saving70,000m3/yearofpotablewater(ADP,2010).

The Maintenance Division of the Department of Aviation in AtlantaAirporthasinstalledthree11.37m3watercisterns,which

capturewaterrunofffromtheroof.Thewatercollectedfromthe cisternsisusedtoirrigatethexeriscapedaswellasotherareas. During thehottermonths (Mayuntil August),theMaintenance Divisionusesapproximately36.37m3ofharvestedrainwaterper

month(DOAAtlanta,2009).

InNarita,rainwatertreatmentfacilitiesproducegreywaterfrom rainwaterthatispumpedupfromtheholdingpondsforuseas chil-lingwaterandauxiliarysuppliestothecentralheatingandcooling plants.Theairportalsobegantouserecycledwaterforflushingin thepassengerterminaltoiletsinApril2010(NIAC,2011).

SomebuildingsatBrusselsInternationalAirportarefittedwith sixrainwatercollectors,eachof10m3.Therainwaterisusedfor

flushingtoiletsandcleaningpurposes(BAC,2010).

AccordingtotheSchipholGroup,theAmsterdamAirport col-lectsrainanddrainwaterforreuseasrinsewater(SchipholGroup, 2011).

HeathrowandZurichAirportscollect59and10thousandm3,

respectively,ofrainwatereachyear.Arainwaterharvestingscheme atLondon-HeathrowAirporthasthepotentialtoreusearound85% oftherainfallwhich,togetherwiththeuseofboreholewater, pro-videsTerminal5with70%ofitsnon-potable waterneeds. This rainwaterharvestingschemeisthebiggestofitskindinEurope (LHR, 2010).Zurich Airport uses rainwater to supply technical installationsandalsofortoiletflushing(ZIA,2010).AtManchester Airport, there is a current review of opportunities for harvest-ingrainwaterfromroofsandhardsurfacesfornon-potableuses, includinguseinroadsweepersandforfiretraining(MAG,2007).

Rainwaterisoneof thealternativewater suppliesemployed at Galeão Airport. In 2009, thecompany responsible for water resourcesmanagementintheairportimplementedrainwater har-vestingfromtherooftops.The1500m3 collectedeverymonthis

treatedand combinedwithtreatedsewageeffluentforreusein coolingsystems(PizzatoandAlves,2010).

4.3.2. Greywaterreuse

Greywaterconsists of the effluentfrom lavatories, showers, kitchensinksandwashingmachines(HernándezLealetal.,2011; Liuetal.,2010;OttosonandStenstrom,2003)anddoesnotreceive anycontributionfromsewage.Thisis relatedtotheconceptof effluentsegregationatsource,whichmakestreatmentandreuse easier.Effluent suchasthis presentsa lower pollutant concen-trationincomparisonwithdomesticsewageandonlyrepresents asmallfractionoftheeffluentgeneratedinabuilding;itisone ofthemainalternativesforreducingpotablewaterconsumption (GilboaandFriedler,2008).Lietal.(2009)reviewsomegreywater treatmenttechnologies,includingphysical,chemicalandbiological processes,whichareusuallyprecededbyasolid–liquidseparation step(septictank,filterbags,screenandfilters)asapre-treatment, followedbyadisinfectionstepaspost-treatment.Accordingtothe authors,thephysicalprocessesalonearenotsufficienttoguarantee anadequatereductionintheorganics,nutrientsandsurfactants. Chemicalprocessescanhoweverefficientlyremovethesuspended solids,organicmaterialsandsurfactantsinlowstrength greywa-ter.Thecombinationofaerobicbiologicalprocesseswithphysical filtrationanddisinfectionisconsideredtobethemosteconomical andfeasiblesolutionforgreywaterrecycling.HernándezLealetal. (2011)statethatanaerobicmethodsareaninterestingalternative,

(8)

giventhelowcostandpotentialforenergyproduction.Theauthors highlighttheapplicabilityofsuchsystemstogreywatertreatment, sincethelownutrientlevelscanlimittheefficiencyofsomeaerobic systems.

Oftheairportswhichusegreywaterasanalternativesourceof water,wecanhighlighttheairportsofHongKonginChina,Narita inJapanandFiumicinoinItaly.HongKongAirporthasatreatment systemthattreatsgreywatercollectedfromaircraftcatering facili-tiesandterminalbuildingkitchenstogetherwithwaterrunofffrom aircraftwashingactivities.Treatedwaterisre-usedforirrigation. In2010thetreatmentplantprocessed1.4millionm3ofgreywater,

meetingalloftheairport’slandscapeirrigationneeds.Inthenear future,theairportplanstoinstallanewmembranebiological reac-torintheplanttoenhancethequalityofthetreatedwater(HKIA, 2011).

Greywaterfromthepassengerterminal restaurantsofNarita Airportistreatedatthekitchenwastewatertreatmentfacilityand isusedasflushingwaterinthepassengerterminaltoilets(NIAC, 2011).

AtFiumicinoAirportinRome,greywaterderivedfromTerminal restaurantsandfromthecompanyresponsibleforpreparingthe foodservedintheaircraftiscollectedand,afterphysicalprocesses toseparateoutthegrease,istreatedtogetherwithdomesticsewage usinganactivatedsludgebiologicalsystemforreuseinnon-potable activities(ADR,2009).

4.3.3. Seawaterreuse

Afurtheralternativesourceissalinewater.Althoughitisrichin substancesthatarenotdesirableforreusepurposes,suchassodium chloride,thiswaterhasbecomeattractivetoairportssituatednear thecoast,afterpropertreatment.

Seawater supplies 41% of the water demand of Hong Kong Airport,representing approximately380,000m3/d.A smallpart

(300m3/d)isusedforaircraftlavatorywaste,about7300m3/dis

usedfortoiletflushingandtherestisusedinthecoolingsystem. Thesavingsgeneratedbytheintroductionoftheseawatersupply is$500,000/year(HKIA,2011).

4.3.4. Sewageeffluentreuse

Wastewaterandsewageeffluentreusehaverecentlybeen con-sideredas potentialoptionstomanage increasingwater stress. Optionsforreusedependonthequalityoftheeffluentproduced after sewage treatment (Megdal, 2006). Reclaimed water from domesticsewageisusedfrequentlyinmanyapplicationssuchas irrigation,toiletflushing,cleaning,industrialreuseand environ-mentalenhancement(Changetal.,2007;Chiouetal.,2007;Jimenez andChavez,2003;Jimenezetal.,2001).Becauseofthepotentialrisk tohealthduetothepresenceofpathogenicmicroorganisms,reuse oftreated sewage needscarefulevaluation (JamwalandMittal, 2010)andishighlydependentonthetreatmenttechnologyused.

Currently, there is a global increase in thereuse of treated domesticsewage,mostlyincountriesfacingwatershortagesand thathaveimplementedanexpensivepotablewaterusefee. Fol-lowingthisglobaltrend,airportsareincreasinglyadoptingsimilar practices.AtFiumicino,sanitary,kitchenandrestauranteffluent aretreatedbyactivatedsludgeandultravioletdisinfectionbefore beingreusedinlandscapeirrigation,airconditioningsystemsand firecontrol(ADR,2009).

QingdaoAirportinChina,which transported8.2million pas-sengersin2008,usesmembranebioreactorstotreatitseffluent. AccordingtoLiuetal.(2007),thesystemcost$800,000,hasthe capacitytotreat1000m3/dandoccupiesanareaof10,000m2.The

treatedeffluentisreusedinthemaintenanceoftheairport com-plex:30%forafforestation,40%forirrigationofgreenareas,20%for thefirecontrolsystemand10%isdischarged.

DubaiAirport hasan online oil-water separator systemand awastewatertreatmentplant,operated bya technicianonsite. Therecycledwateris usedfor washingvehiclesand withinthe engineering works. All the vehicles operated by the Engineer-ing Services Division are cleaned using recycled water and all drainagere-entersthewastewatertreatmentplant.Thisplant cur-rentlytreats80m3ofsewageonadailybasis.TheDepartmentof

CivilAviationofDubai,which islocatedintheairportcomplex, hasinvestigatedtheconsumptionratesforirrigation,findingthat 960,000m3/monthofwaterisusedforirrigationin85,000m2

land-scapingprojects.Inordertominimizetheseconsumptionrates,the airportimplementedsewageeffluentuseforirrigation(DCADubai, 2004).

TheactualwatersavingsmadebyKingsfordSmithAirport,in Sydney,Australia,fluctuateaccordingtodemandand,in2009,the watertreatmentplantsavedanaverageof350m3offreshpotable

watereach day.In2010and2011,thisincreasedtoanaverage of580m3 perdayandisexpectedtoincreaseuptoamaximum

of1000m3perdayoverthenext20years.Thewatertreatment

plantprocessesrawsewagefromtheInternationalTerminaland itssurroundings,includingthemulti-storycarpark,UlmBuilding (SydneyAirport’sCorporateOffice)andtheCustomsHouse.The treatmentplantproducestwostreamsofrecycledwater.One com-prisesrecycledwaterthatispipedtotheInternationalTerminalto beusedfortoiletflushing.Thereare526toiletsand212urinals con-nectedtothissystem,thatwillallbeflushedusingrecycledwater. Theotherstreamcomprisesreverseosmosiswaterthatispipedto theCentralServicesBuildingandusedinair-conditioningcooling towers(SYD,2009b).

InBrazil,Galeãohasasewageeffluentreusesystem.Theeffluent ismixedwith8m3h−1ofrainwaterorwithwellwaterinorder

toachievethemaximumproductionefficiencyforreuse,whichis 20m3h−1.Themixtureispre-treatedbycoagulation,filtrationin

sandfilters,filtrationwithactivatedcarbonandthenseparatedby membranes(reverseosmosis),whichresultsinanexcellentwater qualitysuitableforsupplyingthecoolingtowerswithallnecessary securityrequirements(PizzatoandAlves,2010).

4.4. Othermeasures

4.4.1. Landscapemanagement

Airportcomplexesusuallyhavelargelandscapedareasthatplay anestheticroleaswellasprotectsoilandminimizethecarriageof sedimentsintodrainagechannels.Maintainingareassuchasthese usewater,sotheirmanagementmustbebasedonthepremiseof theefficientuseofthisresource.

AtlantaAirporthasarigorousplanningprogramfortheir land-scapedareas,named“XeriscapeLandscaping”.Theplantsmeetthe requirementsforlowwaterdemand(xerophilousplantsareusually selected).Areaswherelandscapeisparticularlyimportant esthet-icallyareprioritized(DOAAtlanta,2009).AccordingtotheCDA (2010),thechoiceofspeciesshouldbeofthosewiththelowest growthrate,whichtoleratedroughtsandwhichdonotattractbirds orotheranimals.

4.4.2. Airconditioningsystems

Air cooling systems ensure the comfort of passengers and employeesbutconsumelargeamountsofwater.Theuseofrecycled waterinsuchsystems,ormoreefficientheatexchangers,is essen-tialifwaterconsumptioninairportsistobereduced.

At Atlanta Airport, after steam-powered refrigerators were replacedbyelectricchillers,theneedforwatertogeneratesteam waseliminated,andwaterconsumptionintheboilerswas there-forereduced(DOAAtlanta,2009).

AwatertreatmentsystemwasinstalledinAmsterdam Inter-nationalAirportforsupplyingwatertothecoolingtowersonthe

(9)

roofsofTerminals2and3in2010.Thepurposewastoreducethe mineralcontentofthecoolingwaterandachieveasavingofupto 20%ofthewatersupply(SchipholGroup,2011.

5. Finalconsiderations

Themostrelevantinformationpresentedinthispaperis: -Waterconsumptioninairportshasbeenassessedandcompared

intermsofpassengertrafficandtheindexofL/passenger,whichis widelyusedinairportannualreports.Thisstudyemphasizesthat inmanysituationssuchanindexdoesnothaveadirectinfluence onconsumption.Othervariablespertainingtoairportactivities shouldbestudiedinordertodetermineamoreaccurateindex toassess,compareandevenpredictwaterconsumptioninsuch environments.

-Airportenvironmentsconsumelargeamountsofwaterto main-taininfrastructureandoperationsand,inmostcases,thisvolume isusedtomeetnon-potabledemands,suchasfirecontrol, wash-ingoffloorsandaircraft,landscapeirrigationandairconditioning systems,whichcanbemettoalargeextentbyalternativewater sources(rainwaterandtreatedeffluent,forinstance).

-These environments have extensive impermeable areas (run-waysandrooftops)thatcanbeusedtoharvestlargevolumes ofrainwater.Manyairportsoperationsdonottakeadvantageof therainwateravailablefromrunwaysandpavedareas,which isalreadycollectedandtreatedtoavoidcontaminationofwater bodiesbyoilandgrease.Itisimportanttohighlight,however,that thispotentialshouldbeassessedinthecontextoftheeconomic feasibilityofthecurrenttechnologiesavailableforremoving pol-lutantsfromsuchareas.

-Someairportshaveahighproductionofwastewater,whichcould makefeasibletheimplementationofreusingsewageeffluentas wellasgreywater,aftertreatment.Examplesofairportsthatare alreadyimplementingreuseprovethatthispracticeistechnically andeconomicallyfeasible,aswellasproviding environmental gainsassociatedwithsavingpotablewater.

-Increasesinairportcapacityandchangesininfrastructureshould befollowedbytheinstallationofwatersavingsanitaryfixtures andamodernandefficientsystemforwatermetering,aimedat monitoringconsumptionanddevelopingpoliciesforits reduc-tion.

References

ACI Airports Council International. Annual traffic data 2010 – passengers; 2011. Available from: http://www.aci.aero/cda/acicommon/display/main/ acicontent07c.jsp?zn=aci&cp=1-5-54-556662[accessed20.02.12]. ADPAéroportsdeParis.Corporatesocialresponsibilityreport;2010.Availablefrom:

http://services.aeroportsdeparis.fr/ADP.DownLoadManager/getFile.aspx? ideFile=64[accessed20.02.12].

ADR Aeroportidi Roma.Environmental report; 2009. Available from:http:// www.adr.it/c/documentlibrary/get file?uuid=e60b5298-f5ac-415c-80aa-62abfe6c4b46&groupId=17615[accessed20.02.12].

AladenolaOO,AdeboyeOB.Assessingthepotentialforrainwaterharvesting.Water ResourcesManagement2010;24(10):2129–37.

ANAAeroportosdePortugal.Relatóriodesustentabilidade;2010.Availablefrom: http://www.bcsdportugal.org/ana—aeroportos-de-portugal-2010/1766.htm [accessed20.02.12].

AndersonJ.Theenvironmentalbenefitsofwaterrecyclingandreuse.WaterSupply 2003;3(4):1–10.

Arbués F, García-Vali ˜nas MA, Villanúa I. Urban water demand for service and industrial use: the caseof Zaragoza. WaterResources Management 2010;24(14):4033–48.

BabelMS,ShindeVR.Identifyingprominentexplanatoryvariablesforwaterdemand predictionusingartificialneuralnetworks:acasestudyofBangkok.Water ResourcesManagement2011;25(6):1653–76.

BAC BrusselsAirport Company. Environmental report; 2010. Available from: http://www.brusselsairport.be/en/cf/res/pdf/env/en/envreport2010en [accessed03.03.12].

BatesBC,KundzewiczZW,WuS,PalutikofJP.Climatechangeandwater—IPCC tech-nicalpaperVI.Geneva:IPCCSecretariat;2008.

BCAD Broward County Aviation Department. Annual statistical report; 2010. Available from: http://www.broward.org/Airport/About/Documents/ Fy10aviationhistoricalanalysis.pdf[accessed03.03.12].

BrooksDB.Anoperationaldefinitionofwaterdemandmanagement.International JournalofWaterResourcesDevelopment2006;22(4):521–8.

CasaniS,Rouhany M,KnøchelS.Adiscussionpaperonchallenges and limi-tationsto waterreuseandhygiene inthefoodindustry. WaterResearch 2005;39(6):1134–46.

CDA Chicago Department of Aviation. Sustainable airport manual; 2010. Availablefrom: http://www.airportsgoinggreen.org/Content/Documents/CDA-SAM-v2.1-Octobe-31-2011-FINAL.pdf[accessed20.02.12].

ChangTC,YouSJ,ChuangSH.Evaluationforthereclamationpotentialof high-techindustrialwastewatereffluenttreatedwithdifferentmembraneprocesses. EnvironmentalEngineeringScience2007;24(6):762–8.

ChiouRJ,ChangTC,OuyangCF.Aspectsofmunicipalwastewaterreclamationand reuseforfuturewaterresourceshortagesinTaiwan.WaterScienceand Tech-nology2007;55(1–2):397–405.

DaiHL,ZhangKL,XuXL,YuHY.Evaluationontheeffectsofdeicingchemicalsonsoil andwaterenvironment.ProcediaEnvironmentalSciences2012;13:2122–30. DCADubaiDepartmentofCivilAviation.Publicenvironmentreport;2004.

Avail-able from: http://www.aerohabitat.eu/uploads/media/12-01-2009-Dubai Airport-PublicEnvironmentalReport2003-04.pdf[accessed03.03.12]. DOA Atlanta Department of Civil Aviation—Hartsfield-Jackson Atlanta

Inter-national Airport. Annual environmental report; 2009. Available from: http://www.atlanta-airport.com/docs/Airport/Environmental/2009%20Annual %20Env%20ReportRevised%205-27-10.pdf[accessed03.03.12].

DOAAtlanta Department ofCivil Aviation—Hartsfield-JacksonAtlanta Interna-tional Airport.Annualenvironmentalreport: 2010progressupdate; 2010. Availablefrom:http://www.atlanta-airport.com/docs/Airport/Environmental/ 2010ProgressUpdate.pdf[accessed03.07.12].

FadlelmawlaA.TowardssustainablewaterpolicyinKuwait:reformsofthecurrent practicesandtherequiredinvestments,institutionalandlegislativemeasures. WaterResourcesManagement2009;23(10):1969–87.

FraportAGFrankfurtAirportGroup.Environmentalstatement2008and Envi-ronmental program to 2011 for Frankfurt Airport; 2011. Available from: http://www.fraport.com/content/fraport-ag/en/misc/binaer/sustainability/ environmentalstatements/environmentalreport2008/jcr:content.file/file.pdf [accessed03.03.12].

Fraport AG Frankfurt Airport Group. Connecting sustainably report; 2010. Available from: http://www.fraport.com/content/fraport-ag/en/misc/binaer/ sustainability/sustainabilityreport2010/jcr:content.file/sustainabilityreport 2010.pdf[accessed03.03.12].

GhisiE,FerreiraDF.Potentialforpotablewatersavingsbyusingrainwaterand greywaterinamulti-storeyresidentialbuildinginsouthernBrazil.Buildingand Environment2007;42(7):2512–22.

GilboaY, Friedler E.UV disinfectionof RBC-treated light greywatereffluent: kinetics,survivalandregrowthofselectedmicroorganisms.WaterResearch 2008;42(4–5):1043–50.

GTAAGreaterTorontoAirportsAuthority.Environmentalperformancereport;2006. Available from: http://www.torontopearson.com/WorkArea/DownloadAsset. aspx?id=1360[accessed20.02.12].

GTAAGreaterTorontoAirportsAuthority.Corporateresponsibilityreport;2010. Available from: http://www.torontopearson.com/uploadedFiles/GTAA/ Content/Publications/SocialResponsibility/GTAA%20CR%20Online.pdf [accessed20.02.12].

HernándezLealL,TemminkH,ZeemanG,BuismanCJN.Characterizationand anaer-obicbiodegradabilityofgreywater.Desalination2011;270(1–3):111–5. HespanholI,Gonc¸alvesOM.Conservac¸ãoereúsodeágua—manualdeorientac¸ões

paraosetorindustrial[Waterreuseandconservation-guideforthe indus-trial sector]. São Paulo, Brazil: FIESP/CIESP; 2004. Available from: http:// www.fiesp.com.br/publicacoes/pdf/ambiente/reuso.pdf[accessed17.01.12][in Portuguese].

HKIAHongKongInternationalAirport.Plantthefuture—annualreport2010/2011; 2011. Available from: http://www.hongkongairport.com/eng/pdf/media/ publication/report/1011/efull.pdf[accessed03.03.12].

HurlimannA.Householduseofandsatisfactionwithalternativewatersourcesin VictoriaAustralia.JournalofEnvironmentManagement2011;92(10):2691–7. ICAOInternationalCivilAviationOrganization.AnnualreportoftheCouncil;2010.

Available from: http://www.icao.int/publications/Documents/9952en.pdf [accessed03.03.12].

IglesiasA,GarroteL,DizA,SchlickenriederJ,Martin-CarrascoF.Re-thinkingwater policyprioritiesintheMediterraneanregioninviewofclimatechange. Envi-ronmentalScience&Policy2011;14(7):744–57.

JamwalP,MittalAK.ReuseoftreatedsewageinDelhicity:microbialevaluationof STPsreuseoptions.ResourcesConservationandRecycling2010;54(4):211–21. JimenezB,ChavezA.LowcosttechnologyforreliableuseofMexicoCity’s

wastewa-terforagriculturalirrigation.Technology2003;9(1–2):95–108.

Jimenez-CisnerosB, Maya-RendónC, Salgado-VelázquezG. Theeliminationof helminthova,faecalcoliforms, salmonellaandprotozoancystsby various physicochemicalprocessesinwastewaterandsludge.WaterScienceand Tech-nology2001;43(12):179–82.

KahindaJM,TaigbenuAE.RainwaterharvestinginSouthAfrica:Challengesand opportunities.PhysicsandChemistryoftheEarth2011;36:968–76.

LHRLondonHeathrowAirport.Sustainabilityperformancesummary;2010. Avail-able from: http://www.heathrowairport.com/static/Heathrow/Downloads/ PDF/2010-sustainability-performance-summary.pdf[accessed03.03.12].

(10)

LiF,WichmannK,OtterpohlR.Reviewofthetechnologicalapproachesforgrey watertreatmentand reuses.Science ofthe TotalEnvironment 2009;407: 3439–49.

LiuS,ButlerD,MemonFA,MakropoulosC,AveryL,JeffersonB.Impactsofresidence timeduringstorageonpotentialofwatersavingforgreywaterrecyclingsystem. WaterResearch2010;44(1):267–77.

LiuZ,QunM,AnW,SunZ.Anapplicationofmembranebio-reactorprocess forthewastewatertreatmentofQindaoInternationalAirport.Desalination 2007;202(1–3):144–9.

MADMadrid-BarajasAirport. Environmentalmanagementreport;2010. Avail-able from: http://www.aena-aeropuertos.es/csee/ccurl/54/66/barajasMA WEB ingok.pdf[accessed15.03.12].

MAG Manchester Airport Group. Environmental plan (part of the Manches-ter Airport master plan to 2030); 2007. Available from: http://www. manchesterairport.co.uk/manweb.nsf/alldocs/8100FB8EF658808C8025736400 2D85FA/$File/Environment+Plan.pdf[accessed15.01.12].

MAG Manchester Airport Group. Sustainability report 2010/11; 2011. Avail-able from: http://www.manchesterairport.co.uk/manweb.nsf/alldocs/ 8100FB8EF658808C80257364002D85FA/$File/SustainabilityReport.pdf [accessed15.01.12].

MegdalSB.WaterResourceAvailabilityFortheTucsonMetropolitanArea.Tucson: WaterResourcesResearchCenter;2006.

MoreiraNetoRF,Carvalho IC,Calijuri ML,SantiagoAF.Rainwater usein air-ports:acasestudyinBrazil.ResourcesConservationandRecycling2012;68: 36–43.

MUC Munich Airport. Perspectives: sustainability and annual report; 2010. Available from: http://www.munich-airport.de/media/download/general/ publikationen/en/ib2010en.pdf[accessed15.01.12].

NIACNaritaInternationalAirportCorporation.NaritaAirportenvironmentreport; 2011. Available from:http://www.naa.jp/en/environment/pdf2011/kankyo report2011.pdf[accessed03.03.12].

OttosonJ,StenströmTA.Faecalcontaminationofgreywaterandassociatedmicrobial risks.WaterResearch2003;37(3):645–55.

Pizzato M,Alves N. Gestão Sustentável dos RecursosHídricos noAeroporto InternacionaldoRiodeJaneiro—Galeão;2010[Sustainablemanagementofthe waterresourcesinRiodeJaneiroInternationalAirport].RevistaMeioFiltrante. Available from: http://www.meiofiltrante.com.br/materiasver.asp?action= detalhe&id=616&revista=n45[accessed20.02.12].

Quevauviller P. Adapting to climate change: reducing water-related risks in Europe—EUpolicyandresearchconsiderations.EnvironmentalScience&Policy 2011;14(7):722–9.

RyanAM,SpashCL,MeashamTG.Socio-economicandpsychologicalpredictorsof domesticgreywaterandrainwatercollection:evidencefromAustralia.Journal ofHydrology2009;379:164–71.

Schiphol Group. Annual Report; 2011. Available from: http://2011. annualreportschiphol.com/fbcontent.ashx/downloads/SchipholAnnualreport 2011ENG.pdf[accessed03.03.12].

SchlüterM,HirschD,Pahl-WostlC.Copingwithchange:responsesoftheUzbek watermanagementregimetosocio-economictransitionandglobalchange. EnvironmentalScience&Policy2010;13(7):620–36.

SFIASan FranciscoInternational Airport.Environmental SustainabilityReport; 2011. Available from: http://www.flysfo.com/downloads/reports/SFO2011 Environmental Sustainability Report.pdf[accessed20.02.12].

SYDSydneyAirport.SydneyAirportMasterPlan–Sustainability,ClimateChange and Environmental Management; 2009a. Available from: http://www. sydneyairport.com.au/corporate/community-environment-and-planning/∼/ media/Files/Corporate/Environment%20Plan/Master%20Plan/

14SustainabilityEnviro.pdf[accessed20.02.12].

SYDSydneyAirport.WaterRecyclingPlant;2009b.Availablefrom:http://www. sydneyairport.com.au/corporate/about-us/building-a-better-airport/water-recycling-plant.aspx[accessed20.02.12].

SYD Sydney Airport. Key highlights; 2010. Available from: http://www. sydneyairport.com.au/corporate/∼/media/files/corporate/about%20us/annual% 20report/2010/key%20highlights%2010.pdf[accessed20.02.12].

UrkiagaA,delasFuentesL,BisB,ChiruE,BalaszB,HernandezF.Developmentof anal-ysistoolsforsocial,economicandecologicaleffectsofwaterreuse.Desalination 2008;218(1–3):81–91.

WHO.WorldHealthOrganization.GuidetoHygieneandSanitationinAviation.3rd ed.Geneva:WorldHealthOrganization;2009.

WiekA,LarsonKL.Water,people,andsustainability—asystemsframeworkfor ana-lyzingandassessingwatergovernanceregimes.WaterResourcesManagement 2012;26(11):3153–71.

WillisRM,StewartRA,PanuwatwanichK,WilliamsPR,HollingsworthAL. Quan-tifyingtheinfluenceofenvironmentalandwaterconservationattitudeson householdendusewaterconsumption.JournalofEnvironmentManagement 2011;92(8):1996–2009.

ZhongL,MolAPJ.WaterpricereformsinChina:policy-makingandimplementation. WaterResourcesManagement2010;24(2):377–96.

ZIA Zurich International Airport. Annual report; 2010. Available from: http://www.zurich-airport.com/Portaldata/2/Resources/documents

unternehmen/investorrelations/geschaeftsbericht/AnnualReport2010.pdf [accessed20.02.12].

Referências

Documentos relacionados

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

A contribuição deve ser original e inédita e não estar sendo avaliada para publicação por outra revista; caso contrário, de- ve-se justi fi car em “Comentários

Water conservation in the form of demand management should also be encouraged in industry, pressing for the adoption of modern industrial processes and washing systems with

Diante da análise das características do federalismo e do presidencialismo brasileiro estabelecidas pela Constituição de 1988, o próximo tópico analisa como esse

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

o a Descriptor element containing the CCP ’s signature of the remaining content of its parent Container element (the signature of its Item sibling); o an Item

Water in the XXI century has become the primary factor for sustainable development, eradication of poverty and reversal of ecosystem degradation. Increasing water demand

7KH LQWHQVH VSRUXODWLRQ RI % FLQHUHD RQ GLVHDVHG HXFDO\SWXVSODQWVLVHDVLO\VSUHDGE\ZLQGDQGE\LUULJDWLRQ ZDWHU)HUUHLUD)HUUHLUD 6RX]D)HUUHLUD 0LODQL7KLVLVVLPLODUIRU