• Nenhum resultado encontrado

Properties of l=1 B-1 and B*(2) Mesons

N/A
N/A
Protected

Academic year: 2021

Share "Properties of l=1 B-1 and B*(2) Mesons"

Copied!
7
0
0

Texto

(1)

Properties of L  1 B

1

and B

2

Mesons

V. M. Abazov,35B. Abbott,75M. Abolins,65B. S. Acharya,28M. Adams,51T. Adams,49E. Aguilo,5S. H. Ahn,30 M. Ahsan,59G. D. Alexeev,35G. Alkhazov,39A. Alton,64,*G. Alverson,63G. A. Alves,2M. Anastasoaie,34L. S. Ancu,34

T. Andeen,53S. Anderson,45B. Andrieu,16M. S. Anzelc,53Y. Arnoud,13M. Arov,60M. Arthaud,17A. Askew,49 B. A˚ sman,40A. C. S. Assis Jesus,3O. Atramentov,49C. Autermann,20C. Avila,7C. Ay,23F. Badaud,12A. Baden,61 L. Bagby,52B. Baldin,50D. V. Bandurin,59S. Banerjee,28P. Banerjee,28E. Barberis,63A.-F. Barfuss,14P. Bargassa,80

P. Baringer,58J. Barreto,2J. F. Bartlett,50U. Bassler,16D. Bauer,43S. Beale,5A. Bean,58M. Begalli,3M. Begel,71 C. Belanger-Champagne,40L. Bellantoni,50A. Bellavance,50J. A. Benitez,65S. B. Beri,26G. Bernardi,16R. Bernhard,22 L. Berntzon,14I. Bertram,42M. Besanc¸on,17R. Beuselinck,43V. A. Bezzubov,38P. C. Bhat,50V. Bhatnagar,26C. Biscarat,19

G. Blazey,52F. Blekman,43S. Blessing,49D. Bloch,18K. Bloom,67A. Boehnlein,50D. Boline,62T. A. Bolton,59 G. Borissov,42K. Bos,33T. Bose,77A. Brandt,78R. Brock,65G. Brooijmans,70A. Bross,50D. Brown,78N. J. Buchanan,49

D. Buchholz,53M. Buehler,81V. Buescher,21S. Burdin,42,†S. Burke,45T. H. Burnett,82C. P. Buszello,43J. M. Butler,62 P. Calfayan,24S. Calvet,14J. Cammin,71S. Caron,33W. Carvalho,3B. C. K. Casey,77N. M. Cason,55H. Castilla-Valdez,32

S. Chakrabarti,17D. Chakraborty,52K. M. Chan,55K. Chan,5A. Chandra,48F. Charles,18E. Cheu,45F. Chevallier,13 D. K. Cho,62S. Choi,31B. Choudhary,27L. Christofek,77T. Christoudias,43S. Cihangir,50D. Claes,67C. Cle´ment,40

B. Cle´ment,18Y. Coadou,5M. Cooke,80W. E. Cooper,50M. Corcoran,80F. Couderc,17M.-C. Cousinou,14 S. Cre´pe´-Renaudin,13D. Cutts,77M. C´ wiok,29H. da Motta,2A. Das,62G. Davies,43K. De,78S. J. de Jong,34P. de Jong,33

E. De La Cruz-Burelo,64C. De Oliveira Martins,3J. D. Degenhardt,64F. De´liot,17M. Demarteau,50R. Demina,71 D. Denisov,50S. P. Denisov,38S. Desai,50H. T. Diehl,50M. Diesburg,50A. Dominguez,67H. Dong,72L. V. Dudko,37 L. Duflot,15S. R. Dugad,28D. Duggan,49A. Duperrin,14J. Dyer,65A. Dyshkant,52M. Eads,67D. Edmunds,65J. Ellison,48 V. D. Elvira,50Y. Enari,77S. Eno,61P. Ermolov,37H. Evans,54A. Evdokimov,73V. N. Evdokimov,38A. V. Ferapontov,59 T. Ferbel,71F. Fiedler,24F. Filthaut,34W. Fisher,50H. E. Fisk,50M. Ford,44M. Fortner,52H. Fox,22S. Fu,50S. Fuess,50 T. Gadfort,82C. F. Galea,34E. Gallas,50E. Galyaev,55C. Garcia,71A. Garcia-Bellido,82V. Gavrilov,36P. Gay,12W. Geist,18

D. Gele´,18C. E. Gerber,51Y. Gershtein,49D. Gillberg,5G. Ginther,71N. Gollub,40B. Go´mez,7A. Goussiou,55 P. D. Grannis,72H. Greenlee,50Z. D. Greenwood,60E. M. Gregores,4G. Grenier,19Ph. Gris,12J.-F. Grivaz,15 A. Grohsjean,24S. Gru¨nendahl,50M. W. Gru¨newald,29J. Guo,72F. Guo,72P. Gutierrez,75G. Gutierrez,50A. Haas,70 N. J. Hadley,61P. Haefner,24S. Hagopian,49J. Haley,68I. Hall,75R. E. Hall,47L. Han,6K. Hanagaki,50P. Hansson,40

K. Harder,44A. Harel,71R. Harrington,63J. M. Hauptman,57R. Hauser,65J. Hays,43T. Hebbeker,20D. Hedin,52 J. G. Hegeman,33J. M. Heinmiller,51A. P. Heinson,48U. Heintz,62C. Hensel,58K. Herner,72G. Hesketh,63 M. D. Hildreth,55R. Hirosky,81J. D. Hobbs,72B. Hoeneisen,11H. Hoeth,25M. Hohlfeld,21S. J. Hong,30R. Hooper,77

S. Hossain,75P. Houben,33Y. Hu,72Z. Hubacek,9V. Hynek,8I. Iashvili,69R. Illingworth,50A. S. Ito,50S. Jabeen,62 M. Jaffre´,15S. Jain,75K. Jakobs,22C. Jarvis,61R. Jesik,43K. Johns,45C. Johnson,70M. Johnson,50A. Jonckheere,50 P. Jonsson,43A. Juste,50D. Ka¨fer,20S. Kahn,73E. Kajfasz,14A. M. Kalinin,35J. R. Kalk,65J. M. Kalk,60S. Kappler,20 D. Karmanov,37J. Kasper,62P. Kasper,50I. Katsanos,70D. Kau,49R. Kaur,26V. Kaushik,78R. Kehoe,79S. Kermiche,14 N. Khalatyan,38A. Khanov,76A. Kharchilava,69Y. M. Kharzheev,35D. Khatidze,70H. Kim,31T. J. Kim,30M. H. Kirby,34 M. Kirsch,20B. Klima,50J. M. Kohli,26J.-P. Konrath,22M. Kopal,75V. M. Korablev,38B. Kothari,70A. V. Kozelov,38 D. Krop,54A. Kryemadhi,81T. Kuhl,23A. Kumar,69S. Kunori,61A. Kupco,10T. Kurcˇa,19J. Kvita,8F. Lacroix,12D. Lam,55

S. Lammers,70G. Landsberg,77J. Lazoflores,49P. Lebrun,19W. M. Lee,50A. Leflat,37F. Lehner,41J. Lellouch,16 V. Lesne,12J. Leveque,45P. Lewis,43J. Li,78Q. Z. Li,50L. Li,48S. M. Lietti,4J. G. R. Lima,52D. Lincoln,50J. Linnemann,65

V. V. Lipaev,38R. Lipton,50Y. Liu,6Z. Liu,5L. Lobo,43A. Lobodenko,39M. Lokajicek,10A. Lounis,18P. Love,42 H. J. Lubatti,82A. L. Lyon,50A. K. A. Maciel,2D. Mackin,80R. J. Madaras,46P. Ma¨ttig,25C. Magass,20A. Magerkurth,64

N. Makovec,15P. K. Mal,55H. B. Malbouisson,3S. Malik,67V. L. Malyshev,35H. S. Mao,50Y. Maravin,59B. Martin,13 R. McCarthy,72A. Melnitchouk,66A. Mendes,14L. Mendoza,7P. G. Mercadante,4M. Merkin,37K. W. Merritt,50 J. Meyer,21A. Meyer,20M. Michaut,17T. Millet,19J. Mitrevski,70J. Molina,3R. K. Mommsen,44N. K. Mondal,28 R. W. Moore,5T. Moulik,58G. S. Muanza,19M. Mulders,50M. Mulhearn,70O. Mundal,21L. Mundim,3E. Nagy,14 M. Naimuddin,50M. Narain,77N. A. Naumann,34H. A. Neal,64J. P. Negret,7P. Neustroev,39H. Nilsen,22A. Nomerotski,50 S. F. Novaes,4T. Nunnemann,24V. O’Dell,50D. C. O’Neil,5G. Obrant,39C. Ochando,15D. Onoprienko,59N. Oshima,50

J. Osta,55R. Otec,9G. J. Otero y Garzo´n,51M. Owen,44P. Padley,80M. Pangilinan,77N. Parashar,56S.-J. Park,71 S. K. Park,30J. Parsons,70R. Partridge,77N. Parua,54A. Patwa,73G. Pawloski,80B. Penning,22P. M. Perea,48K. Peters,44

(2)

Y. Peters,25P. Pe´troff,15M. Petteni,43R. Piegaia,1J. Piper,65M.-A. Pleier,21P. L. M. Podesta-Lerma,32,‡ V. M. Podstavkov,50Y. Pogorelov,55M.-E. Pol,2P. Polozov,36A. Pomposˇ,75B. G. Pope,65A. V. Popov,38C. Potter,5 W. L. Prado da Silva,3H. B. Prosper,49S. Protopopescu,73J. Qian,64A. Quadt,21B. Quinn,66A. Rakitine,42M. S. Rangel,2

K. J. Rani,28K. Ranjan,27P. N. Ratoff,42P. Renkel,79S. Reucroft,63P. Rich,44M. Rijssenbeek,72I. Ripp-Baudot,18 F. Rizatdinova,76S. Robinson,43R. F. Rodrigues,3C. Royon,17P. Rubinov,50R. Ruchti,55G. Safronov,36G. Sajot,13

A. Sa´nchez-Herna´ndez,32M. P. Sanders,16A. Santoro,3G. Savage,50L. Sawyer,60T. Scanlon,43D. Schaile,24 R. D. Schamberger,72Y. Scheglov,39H. Schellman,53P. Schieferdecker,24T. Schliephake,25C. Schmitt,25 C. Schwanenberger,44A. Schwartzman,68R. Schwienhorst,65J. Sekaric,49S. Sengupta,49H. Severini,75E. Shabalina,51

M. Shamim,59V. Shary,17A. A. Shchukin,38R. K. Shivpuri,27D. Shpakov,50V. Siccardi,18V. Simak,9V. Sirotenko,50 P. Skubic,75P. Slattery,71D. Smirnov,55R. P. Smith,50J. Snow,74G. R. Snow,67S. Snyder,73S. So¨ldner-Rembold,44 L. Sonnenschein,16A. Sopczak,42M. Sosebee,78K. Soustruznik,8M. Souza,2B. Spurlock,78J. Stark,13J. Steele,60 V. Stolin,36A. Stone,51D. A. Stoyanova,38J. Strandberg,64S. Strandberg,40M. A. Strang,69M. Strauss,75E. Strauss,72

R. Stro¨hmer,24D. Strom,53M. Strovink,46L. Stutte,50S. Sumowidagdo,49P. Svoisky,55A. Sznajder,3M. Talby,14 P. Tamburello,45A. Tanasijczuk,1W. Taylor,5P. Telford,44J. Temple,45B. Tiller,24F. Tissandier,12M. Titov,17 V. V. Tokmenin,35M. Tomoto,50T. Toole,61I. Torchiani,22T. Trefzger,23D. Tsybychev,72B. Tuchming,17C. Tully,68

P. M. Tuts,70R. Unalan,65S. Uvarov,39L. Uvarov,39S. Uzunyan,52B. Vachon,5P. J. van den Berg,33B. van Eijk,33 R. Van Kooten,54W. M. van Leeuwen,33N. Varelas,51E. W. Varnes,45A. Vartapetian,78I. A. Vasilyev,38M. Vaupel,25

P. Verdier,19L. S. Vertogradov,35M. Verzocchi,50F. Villeneuve-Seguier,43P. Vint,43P. Vokac,9E. Von Toerne,59 M. Voutilainen,67,xM. Vreeswijk,33R. Wagner,68H. D. Wahl,49L. Wang,61M. H. L. S Wang,50J. Warchol,55G. Watts,82 M. Wayne,55M. Weber,50G. Weber,23H. Weerts,65A. Wenger,22,kN. Wermes,21M. Wetstein,61A. White,78D. Wicke,25 G. W. Wilson,58M. R. J. Williams,42S. J. Wimpenny,48M. Wobisch,60D. R. Wood,63T. R. Wyatt,44Y. Xie,77S. Yacoob,53

R. Yamada,50M. Yan,61T. Yasuda,50Y. A. Yatsunenko,35K. Yip,73H. D. Yoo,77S. W. Youn,53J. Yu,78C. Yu,13 A. Yurkewicz,72A. Zatserklyaniy,52C. Zeitnitz,25D. Zhang,50T. Zhao,82B. Zhou,64J. Zhu,72M. Zielinski,71

D. Zieminska,54A. Zieminski,54L. Zivkovic,70V. Zutshi,52and E. G. Zverev37 (The D0 Collaboration)

1Universidad de Buenos Aires, Buenos Aires, Argentina 2LAFEX, Centro Brasileiro de Pesquisas Fı´sicas, Rio de Janeiro, Brazil

3Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 4Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, Sa˜o Paulo, Brazil

5University of Alberta, Edmonton, Alberta, Canada,

Simon Fraser University, Burnaby, British Columbia, Canada, York University, Toronto, Ontario, Canada,

and McGill University, Montreal, Quebec, Canada

6University of Science and Technology of China, Hefei, People’s Republic of China 7Universidad de los Andes, Bogota´, Colombia

8Center for Particle Physics, Charles University, Prague, Czech Republic 9Czech Technical University, Prague, Czech Republic

10Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic 11Universidad San Francisco de Quito, Quito, Ecuador

12Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Universite´ Blaise Pascal, Clermont-Ferrand, France 13Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Universite de Grenoble 1, Grenoble, France

14CPPM, IN2P3-CNRS, Universite´ de la Me´diterrane´e, Marseille, France

15Laboratoire de l’Acce´le´rateur Line´aire, IN2P3-CNRS et Universite´ Paris-Sud, Orsay, France 16LPNHE, IN2P3-CNRS, Universite´s Paris VI and VII, Paris, France

17DAPNIA/Service de Physique des Particules, CEA, Saclay, France

18IPHC, Universite´ Louis Pasteur et Universite´ de Haute Alsace, CNRS, IN2P3, Strasbourg, France 19IPNL, Universite´ Lyon 1, CNRS/IN2P3, Villeurbanne, France and Universite´ de Lyon, Lyon, France

20III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany 21Physikalisches Institut, Universita¨t Bonn, Bonn, Germany 22Physikalisches Institut, Universita¨t Freiburg, Freiburg, Germany

23Institut fu¨r Physik, Universita¨t Mainz, Mainz, Germany 24Ludwig-Maximilians-Universita¨t Mu¨nchen, Mu¨nchen, Germany 25Fachbereich Physik, University of Wuppertal, Wuppertal, Germany

(3)

27Delhi University, Delhi, India

28Tata Institute of Fundamental Research, Mumbai, India 29University College Dublin, Dublin, Ireland 30Korea Detector Laboratory, Korea University, Seoul, Korea

31SungKyunKwan University, Suwon, Korea 32CINVESTAV, Mexico City, Mexico

33FOM-Institute NIKHEF, Amsterdam, The Netherlands,

and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands

34Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands 35Joint Institute for Nuclear Research, Dubna, Russia 36Institute for Theoretical and Experimental Physics, Moscow, Russia

37Moscow State University, Moscow, Russia 38Institute for High Energy Physics, Protvino, Russia 39Petersburg Nuclear Physics Institute, St. Petersburg, Russia

40Lund University, Lund, Sweden, Royal Institute of Technology, Stockholm, Sweden,

Stockholm University, Stockholm, Sweden, and Uppsala University, Uppsala, Sweden

41Physik Institut der Universita¨t Zu¨rich, Zu¨rich, Switzerland 42Lancaster University, Lancaster, United Kingdom

43Imperial College, London, United Kingdom 44University of Manchester, Manchester, United Kingdom

45University of Arizona, Tucson, Arizona 85721, USA

46Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA 47California State University, Fresno, California 93740, USA

48University of California, Riverside, California 92521, USA 49Florida State University, Tallahassee, Florida 32306, USA 50Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

51University of Illinois at Chicago, Chicago, Illinois 60607, USA 52Northern Illinois University, DeKalb, Illinois 60115, USA

53Northwestern University, Evanston, Illinois 60208, USA 54Indiana University, Bloomington, Indiana 47405, USA 55University of Notre Dame, Notre Dame, Indiana 46556, USA

56Purdue University Calumet, Hammond, Indiana 46323, USA 57Iowa State University, Ames, Iowa 50011, USA 58University of Kansas, Lawrence, Kansas 66045, USA 59Kansas State University, Manhattan, Kansas 66506, USA 60Louisiana Tech University, Ruston, Louisiana 71272, USA 61University of Maryland, College Park, Maryland 20742, USA

62Boston University, Boston, Massachusetts 02215, USA 63Northeastern University, Boston, Massachusetts 02115, USA

64University of Michigan, Ann Arbor, Michigan 48109, USA 65Michigan State University, East Lansing, Michigan 48824, USA

66University of Mississippi, University, Mississippi 38677, USA 67University of Nebraska, Lincoln, Nebraska 68588, USA 68Princeton University, Princeton, New Jersey 08544, USA 69State University of New York, Buffalo, New York 14260, USA

70Columbia University, New York, New York 10027, USA 71University of Rochester, Rochester, New York 14627, USA 72State University of New York, Stony Brook, New York 11794, USA

73Brookhaven National Laboratory, Upton, New York 11973, USA 74Langston University, Langston, Oklahoma 73050, USA 75University of Oklahoma, Norman, Oklahoma 73019, USA 76Oklahoma State University, Stillwater, Oklahoma 74078, USA

77Brown University, Providence, Rhode Island 02912, USA 78University of Texas, Arlington, Texas 76019, USA 79Southern Methodist University, Dallas, Texas 75275, USA

80Rice University, Houston, Texas 77005, USA 81University of Virginia, Charlottesville, Virginia 22901, USA

82University of Washington, Seattle, Washington 98195, USA (Received 23 May 2007; published 23 October 2007)

(4)

This Letter presents the first strong evidence for the resolution of the excited B mesons B1and B2 as two separate states in fully reconstructed decays to B. The mass of B1is measured to be 5720:6  2:4  1:4 MeV=c2and the mass difference M between B

2and B1is 26:2  3:1  0:9 MeV=c2, giving the mass of the B2 as 5746:8  2:4  1:7 MeV=c2. The production rate for B

1 and B2 mesons is determined to be a fraction 13:9  1:9  3:2% of the production rate of the B meson.

DOI:10.1103/PhysRevLett.99.172001 PACS numbers: 14.40.Nd, 13.25.Hw

To date, the detailed spectroscopy of mesons containing a b quark has not been fully established. Only the ground 0 states B, B0, B0

s, Bc and the excited 1 state B are considered to be established by the Particle Data Group [1]. Quark models predict the existence of two broad (B0[JP  0] and B1 [1]) and two narrow (B1 [1] and B2 [2]) bound P states [2–7]. The broad states decay through an S wave and therefore have widths of a few hundred MeV=c2. Such states are difficult to distinguish, in effective mass spectra, from the combinatorial background. The narrow states contain the light quark with total angular momentum j  3=2 and consequently decay through a D wave, result-ing in widths of around 10 MeV=c2 [3,6,7]. Almost all observations of B1 and B2 have been made indirectly in inclusive or semi-inclusive decays [8–11], which prevents their separation and a precise measurement of their prop-erties. The measurement by the ALEPH collaboration [12], although partially done with exclusive B decays, was sta-tistically limited and model dependent. The masses, widths, and decay branching fractions of these states, in contrast, are predicted with good precision by various theoretical models [2–7]. These predictions can be verified experimentally, and such a comparison provides important information on the quark interaction inside bound states, aiding further development of nonperturbative QCD. This Letter presents a study of narrow L  1 states decaying to B with exclusively reconstructed B mesons using data collected by the D0 experiment [13,14] during 2002 – 2006 and corresponding to an integrated luminosity of about 1:3 fb1. Throughout this Letter, charge conjugated processes are implied.

The B1 and B2 mesons are studied by examining B candidates. This sample includes the following decays:

B1! B; B! B; (1) B2! B; B! B; (2)

B2! B: (3)

The direct decay B1! Bis forbidden by conservation of parity and angular momentum. The Bmeson is recon-structed in the exclusive decay B! J= K with J= decaying to . Each muon is required to be identified by the muon system, have an associated track in the central tracking system with at least two measurements in the silicon microstrip tracker (SMT), and have a transverse

momentum pT > 1:5 GeV=c. At least one of the two muons is required to have matching track segments both inside and outside the toroidal magnet. The two muons must form a common vertex and have an invariant mass between 2.80 and 3:35 GeV=c2, to form a J= candidate. An additional charged track with pT > 0:5 GeV=c, with total momentum above 0:7 GeV=c and with at least two measurements in the SMT, is selected. This particle is assigned the kaon mass and required to have a common vertex, with 2< 16 for 3 degrees of freedom, with the two muons. The displacement of this vertex from the primary interaction point is required to exceed 3 standard devia-tions in the plane perpendicular to the beam direction. The primary vertex of the p p interaction was determined for each event using the method described in Ref. [15]. The average position of the beam-collision point was included as a constraint.

From each set of three particles fulfilling these require-ments, a Bcandidate is constructed using the standard D0 procedures. The momenta of the muons are corrected using the J= mass [1] as a constraint. To improve the B selection, a likelihood ratio method [16] is utilized. This method provides a way of combining several discriminat-ing variables into a sdiscriminat-ingle variable with increased power to separate signal and background. The variables chosen for this analysis include the smaller of the transverse momenta of the two muons, the 2 of the Bdecay vertex, the B decay length divided by its error, the significance (defined below) SBof the Btrack impact parameter, the transverse momentum of the kaon, and the significance SKof the kaon track impact parameter.

For any track i, the significance Si is defined as Si 

T=T 2 L=L 2 p

, where T(L) is the projec-tion of the track impact parameter on the plane perpen-dicular to the beam direction (along the beam direction), and T [L] is its uncertainty. The track of each B is formed assuming that it passes through the reconstructed vertex and is directed along the reconstructed B momentum.

The resulting invariant mass distribution of the J= K system is shown in Fig.1. The curve represents the result of an unbinned likelihood fit to the sum of contributions from B! J= K, B! J= , and B! J= K de-cays, as well as combinatorial background. The mass distribution of the J= K system from the B! J= K hypothesis is parametrized by a Gaussian with the width depending on the momentum of the K. For

(5)

the contribution from B! J=  decays, the width of the J= mass distribution is parametrized with the same momentum-dependent width as the B! J= Kdecays, and then transformed to the J= K system by assigning the kaon mass to the charged pion. The decay B ! J= Kwith K! K produces a broad J= Kmass distribution with the threshold near MB  M. It is parametrized using Monte Carlo simulation (described later). The combinatorial background is described by an exponential function. The B! J= K and B ! J= mass peaks contain 23 287  344 (stat.) events.

For each reconstructed B meson candidate with mass 5:19 < MB < 5:36 GeV=c2, an additional charged track with transverse momentum above 0:75 GeV=c and charge opposite to that of the B meson is selected. The selection 5:19 < MB < 5:36 GeV=c2reduces the num-ber of Bcandidates to 20 915  293 (stat.). Since the BJ mesons (where BJ denotes both B1 and B2) decay at the production point, the additional track is required to origi-nate from the primary vertex by applying the condition on its significance S<

 6 p

. No angular variables are used to further select the signal.

For each combination satisfying the above criteria, the mass difference M  MB  MB is computed, giving the distribution shown in Fig.2. The signal exhibits a structure that is interpreted in terms of the decays (1) –(3). Since the photon from the decay B! B is not re-constructed, the three decays should produce three peaks with central positions 1  MB1  MB, correspond-ing to the decay B1! B, 

2 MB2  MB

, corre-sponding to B2! B

, and 3  MB2  MB, corresponding to B2! B. Note that here 2 3 MB  MB  

3 45:78 MeV=c2 [1]. Following this expected pattern, the experimental distribution is fitted to the following function:

FM  FsigM  FbckgM; FsigM  Nff1DM; 1; 1

 1  f1f2DM; 2; 2  1  f2DM; 3; 2 g:

(4)

In these equations, 1 and 2 are the widths of B1 and B2, f1is the fraction of B1contained in the BJsignal, and f2is the fraction of B2! B decays in the B

2 signal. The parameter N gives the total number of observed BJ ! B decays. The background FbckgM is parame-trized by a fourth-order polynomial.

The function Dx; x0;  in Eq. (4) is the convolution of a relativistic Breit-Wigner function with the experimental Gaussian resolution in M. The width of resonances in the Breit-Wigner function takes into account threshold effects using the standard expression [1,17] for L  2 decay.

The resolution in M is determined from simulation. All processes involving B mesons are simulated using the

EVTGEN generator [18] interfaced with PYTHIA [19],

fol-lowed by full modeling of the detector response with

GEANT[20] and event reconstruction as in data. The

dif-ference between the reconstructed and generated values of M is parametrized by a double Gaussian function with the  of the narrow Gaussian set to 7:5 MeV=c2, the  of the wide Gaussian set to 17:6 MeV=c2, and the normaliza-tion of the narrow Gaussian set to 3.8 times that of the wide Gaussian. Studies of various decay modes of D and B mesons show that simulation underestimates the mass resolution in data by 10%. As such, the widths of the Gaussians which parametrize the BJ resolution are in-creased by 10% to match the data, and a 100% systematic uncertainty is assigned to this correction. The widths of the observed structures are compatible with the experimental mass resolution, and the fit is found to be insensitive to

) 2 ) (GeV/c + ) - M(B + M(B 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 2

Number of Events / 10 MeV/c

0 50 100 150 200 250 -1 D0, L=1.3 fb 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0 50 100 150 200 250 +* B1 B +* B* 2 B + B* 2 B

FIG. 2 (color online). Invariant mass difference M 

MB  MB for exclusive B decays. The line shows the fit described in the text. The contribution of background and the three signal peaks are shown separately.

) 2 ) (GeV/c + K ψ M(J/ 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 2

Number of Events / 30 MeV/c

0 1000 2000 3000 4000 5000 6000 7000 -1 D0, L=1.3 fb 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 0 1000 2000 3000 4000 5000 6000 7000 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 0 1000 2000 3000 4000 5000 6000 7000 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 0 1000 2000 3000 4000 5000 6000 7000

FIG. 1 (color online). Invariant mass distribution of J= K events. The solid line shows the sum of signal and background contributions, as described in the text. Shown separately are contributions from J=  events (solid filled area), J= K events (hatched area) and combinatorial background (dashed line).

(6)

values of 1 and 2 below the mass resolution with the current statistics. Therefore, both these widths are fixed at 10 MeV=c2 in the fit, as suggested by theoretical models [3,7]. They are varied together over a wide range to esti-mate the associated systematic uncertainty.

With these assumptions, the following parameters of B1 and B2 are obtained:

MB1  MB  441:5  2:4  1:3 MeV=c2; MB2  MB1  26:2  3:1  0:9 MeV=c2; (5)

where the first uncertainty is statistical, and the second is systematic. The correlation coefficient of these mass mea-surements is 0:659. With these relations, and using the mass of the B [1], the absolute masses of the B1 and B2 are

MB1  5720:6  2:4  1:4 MeV=c2;

MB2  5746:8  2:4  1:7 MeV=c2: (6)

The number of BJ decays is found to be N  662  91. The 2=d:o:f: of the fit is 33=40. Without the B

J signal contribution, the 2=d:o:f: of the fit increases to 97=45, which implies that this structure is observed with a statis-tical significance of more than 7. Fitting with only one peak, with floating width, increases the 2=d:o:f: to 54=42, which corresponds to more than a 4 significance that more than one resonance is observed. With the B2 ! Bdecay removed from the fit, the 2=d:o:f: of the fit increases to 41=41. Although with the current statistics we cannot distinguish between the two- and three-peaks hy-potheses, theory suggests that B2decays with almost equal branching ratios into B and B[3,7], and our fit indeed indicates a preference for this expected pattern.

The number of BJmesons and values f1and f2obtained from the fit are used to measure the production and decay ratios of B1 and B2: R1 BrB1! B BrBJ! B  f1 "0 "1  0:477  0:069  0:062; R2 BrB  2! B   BrB2! B f2 "3 "2  0:475  0:095  0:069; RJ Brb ! B0 J! B Brb ! B  3NBJ 2NB"0  0:139  0:019  0:032: (7)

Here "1, "2, and "3 are the efficiencies to select an additional pion from the BJ decay for decay modes B1! B, B2 ! B and B

2! B, respectively. They are determined from a simulation separately for each decay mode (1)–(3). The overall efficiency for detect-ing a pion from any BJ ! Bdecay is "

0  0:342  0:008  0:028. The value for RJ takes into account the decay BJ ! B00 assuming isospin conservation.

For the BJmass fit, the influences of different sources of systematic uncertainty are estimated by examining the changes in the fit parameters under a number of variations. Different background parametrizations are used in the fit to the M distribution. In addition, the effect of binning is tested by varying the bin width and position. The parame-ters describing the background are allowed to vary in the fit and their uncertainties are included in our results. To check the effect of fixing 1 and 2 at 10 MeV=c2, a range of widths from 0 to 20 MeV=c2 is used. The effect of the uncertainty on the mass difference MB  MB [1] is also taken into account. Different parametrizations of the detector mass resolution are tested, and in addition the fit is made without the 10% mass resolution correction. The uncertainty in the absolute momentum scale, which results in a small shift of all measured masses, is also taken into account. The summary of all systematic uncertainties in the BJ mass fit is given in TableI.

The measurement of the relative production rate RJuses the pion detection efficiencies predicted in simulation, as well as the numbers of BJ and B events. To estimate the systematic uncertainty on the number of Bevents, differ-ent parametrizations of the signal and background are used TABLE I. Systematic uncertainties of the BJ parameters determined from the M fit. The rows show the various sources of

systematic error as described in the text. The columns show the resulting uncertainties for each of the five free signal parameters as described in Eq. (4). MB1 and MB2  MB1 are in MeV=c2.

Source MB1 MB2  MB1 R1 R2 N Background parametrization 0.15 0.15 0.010 0.009 19 Bin widths/positions 0.85 0.70 0.006 0.026 12 Value of 1;2 0.75 0.55 0.023 0.032 138 B mass uncertainty 0.30 0.25 0.004 0.004 6 Momentum scale 0.50 0.03 0.000 0.000 0 Resolution uncertainty 0.20 0.05 0.007 0.004 10 Efficiency uncertainties 0.056 0.054 Total 1.30 0.90 0.062 0.069 140

(7)

for the fit. The resulting uncertainty is 200 B events. The systematic uncertainty on the number of BJ events is 140 (see TableI). The uncertainty of the impact parame-ter resolution in the simulation is estimated to be 10% [21]. It can influence the measurement of the selection efficiency of the pion from the BJ decay, and its contribu-tion to the systematic uncertainty of RJ is found to be 0.0056. The track reconstruction efficiency for particles with low transverse momentum is measured in Ref. [22] and good agreement between data and simulation is found. This comparison is valid within the uncertainties of branching fractions of different B semileptonic decays, which is about 7%. This uncertainty results in a 0.0096 variation of RJ. An additional systematic uncertainty of 0.0008 associated with the difference in the momentum distributions of selected particles in data and in simulation is taken into account. Combining all these effects in quad-rature, the total systematic uncertainty in the relative pro-duction rate RJis found to be 0.032, of which the dominant contribution comes from the uncertainty on the number of BJ events.

In conclusion, there is strong evidence that the B1and B2 mesons are resolved for the first time as two separate states. Their measured masses are given by Eq. (5). The BJ production rate, the branching fraction of B2to the excited state B, and the fraction of the B1 meson in the BJ production rate are also measured as given in Eq. (7). Our results are consistent with all previous observations [8–12] of excited B states. These results will help to develop models describing bound states with heavy quarks. We thank the staffs at Fermilab and collaborating insti-tutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); PPARC (United Kingdom); MSMT (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); Research Corporation; Alexander von Humboldt Foundation; and the Marie Curie Program.

*Visitor from Augustana College, Sioux Falls, SD, USA.

Visitor from The University of Liverpool, Liverpool, UK.Visitor from ICN-UNAM, Mexico City, Mexico. x

Visitor from Helsinki Institute of Physics, Helsinki, Finland.

k

Visitor from Universita¨t Zu¨rich, Zu¨rich, Switzerland. [1] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1

(2006).

[2] T. Matsuki and T. Morii, Phys. Rev. D 56, 5646 (1997); T. Matsuki, T. Morii, and K. Sudoh, Prog. Theor. Phys.

117, 1077 (2007).

[3] M. Di Pierro and E. Eichten, Phys. Rev. D 64, 114004 (2001); E. J. Eichten, C. T. Hill, and C. Quigg, Phys. Rev. Lett. 71, 4116 (1993).

[4] N. Isgur, Phys. Rev. D 57, 4041 (1998).

[5] D. Ebert, V. O. Galkin, and R. N. Faustov, Phys. Rev. D 57, 5663 (1998); 59, 019902 (1998).

[6] A. H. Orsland and H. Hogaasen, Eur. Phys. J. C 9, 503 (1999).

[7] A. Falk and T. Mehen, Phys. Rev. D 53, 231 (1996). [8] R. Akers et al. (OPAL Collaboration), Z. Phys. C 66, 19

(1995); G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 23, 437 (2002).

[9] P. Abreu et al. (DELPHI Collaboration), Phys. Lett. B 345, 598 (1995).

[10] D. Buskulic et al. (ALEPH Collaboration), Z. Phys. C 69, 393 (1996).

[11] T. Affolder et al. (CDF Collaboration), Phys. Rev. D 64, 072002 (2001).

[12] R. Barate et al. (ALEPH Collaboration), Phys. Lett. B

425, 215 (1998).

[13] V. M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 565, 463 (2006).

[14] V. M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 552, 372 (2005).

[15] J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C

32, 185 (2004).

[16] G. Borisov, Nucl. Instrum. Methods Phys. Res., Sect. A

417, 384 (1998).

[17] J. Blatt and V. Weisskopf, Theoretical Nuclear Physics (John Wiley & Sons, New York, 1952), p. 361.

[18] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A

462, 152 (2001).

[19] T. Sjo¨strand et al., Comput. Phys. Commun. 135, 238 (2001).

[20] R. Brun and F. Carminati, CERN Program Library Long Writeup No. W5013 1993.

[21] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett.

97, 021802 (2006).

[22] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett.

Referências

Documentos relacionados

Assim, a compreensão das características de RAA forneceu subsídios impo rtantes para o favorecimento da relação produtor -consumidor também em momentos de crise

“As substâncias de reserva das plantas” é o título atribuído à EEA de Ciências da Natureza, que foi desenvolvida no 2.º ciclo do Ensino Básico. A turma, de 6.º ano, era

Figure 4.5: Comparison of test error performance for growing ratios of unlabeled data for manifold regularization models trained with Laplacian Regularized Least Squares and

A adição de eritorbato de sódio e/ou urucum aos hambúrgueres de carne suína foi suficiente para reduzir a formação de substancias reativas ao ácido tiobarbitúrico

Para isso alguns métodos de extração foram avaliados, mas o que mais aproximou-se desse objetivo foi o de SPME, pois dentre as suas vantagens pode se

O curso tinha quatro disciplinas: o professor George Springer lecionava Lógica Matemática, o professor Luis Henrique Jacy Monteiro, da USP, lecionava Álgebra

Conclui-se que o clima do cerrado não afetou o desempenho dos animais durante o período experimental, não ocorrendo estresse térmico em bovinos nelore no sistema de confinamento,

Nesse contexto, para explicar a necessidade prática Kant afirma que: Ainda que na verdade subsista um abismo intransponível entre o domínio do conceito da natureza, enquanto sensível,